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Interleukin-33 (IL-33) is a IL-1 family member of cytokines exerting pleiotropic activities.

In the steady-state, IL-33 is expressed in the nucleus of epithelial, endothelial, and

fibroblast-like cells acting as a nuclear protein. In response to tissue damage, infections

or necrosis IL-33 is released in the extracellular space, where it functions as an alarmin

for the immune system. Its specific receptor ST2 is expressed by a variety of immune cell

types, resulting in the stimulation of a wide range of immune reactions. Recent evidences

suggest that different IL-33 isoforms exist, in virtue of proteolytic cleavage or alternative

mRNA splicing, with potentially different biological activity and functions. Although initially

studied in the context of allergy, infection, and inflammation, over the past decade

IL-33 has gained much attention in cancer immunology. Increasing evidences indicate

that IL-33 may have opposing functions, promoting, or dampening tumor immunity,

depending on the tumor type, site of expression, and local concentration. In this review

we will cover the biological functions of IL-33 on various immune cell subsets (e.g.,

T cells, NK, Treg cells, ILC2, eosinophils, neutrophils, basophils, mast cells, DCs, and

macrophages) that affect anti-tumor immune responses in experimental and clinical

cancers. We will also discuss the possible implications of diverse IL-33 mutations and

isoforms in the anti-tumor activity of the cytokine and as possible clinical biomarkers.
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INTRODUCTION TO IL-33 BIOLOGY

Interleukin-33 (IL-33) is a cytokine member of IL-1 family, including IL-1α, IL-1β, IL-18, and IL-
1Ra that are related to each other by receptor structure and signal transduction pathways. These
cytokines share a conserved structure of β-trefoil fold comprised of 12 anti-parallel β-strands
that are arranged in a three-fold symmetric pattern. The β-barrel core motif is packed by various
amounts of helices in each cytokine structure (1). IL-33 was initially described in 2003 by Girard’s
group as a nuclear protein abundantly expressed in high endothelial venules (HEVs), specialized
blood vessels that mediate the entry of lymphocytes into lymphoid organs and therefore named
“nuclear factor from high endothelial venules” (NF-HEV) (2).
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It is now known that IL-33 is a chromatin-associated nuclear
cytokine in vivo through chromatin-binding motif within its N-
terminal nuclear domain, suggesting that nuclear localization
and binding to histones are important for IL-33 function and
regulation (3). Nuclear IL-33 can function as a transcriptional
repressor when overexpressed in transfected cells, although there
is still no direct evidence that endogenous nuclear IL-33 regulates
gene or protein expression (4). IL-33 is constitutively expressed in
different human and mouse tissues in the steady-state, including
epithelial, endothelial, fibroblast-like cells, and myofibroblasts
and its expression can be increased during inflammation (2, 5).
After cell stress or necrosis, IL-33 is released into the extracellular
space and functions as an endogenous danger signal that alerts
the immune system of tissue damage during trauma or infection.
Indeed, IL-33 is considered an “alarmin” able to activate different
actors of the innate immune system, mediating a variety of
immune reactions including anti-cancer immune responses (6).
Here, we will review the biological role of IL-33 affecting immune
responses with particular emphasis on anti-tumor immunity.

IL-33 Isoforms
Similar to IL-1β and IL-18, IL-33 is synthesized in a full-length
form (amino acids 1–270) that is found in the nucleus, in the
cytosol and outside the cell. As IL-1β and IL-18, IL-33 is cleaved
intracellularly by the enzyme caspase-1 before release outside
the cell. This process requires the NLRP3 inflammasome, which
can be activated in response to endogenous and exogenous
danger signals. This NLRP3 inflammasome leads to Caspase-
1 activation and, in turn, to IL-33 processing and release
(7). When cells undergo necrosis or injury, full-length IL-33
is released in the extracellular space where it is cleaved by
inflammatory proteases. During apoptosis, a process that does
not trigger inflammation in vivo, IL-33 is cleaved and inactivated
by endogenous caspases (8–10). Processing by apoptotic caspases
is an important regulatory mechanism that limits or suppresses
the pro-inflammatory properties of IL-33 during homeostatic
cell turnover. Another regulatory mechanism limiting IL-33
activity is oxidation. Extracellular IL-33 is susceptible to cysteine
oxidation that leads to the formation of disulphide bridges,
resulting in conformational changes that inhibit the binding to
ST2 receptor, thus rapidly inactivating IL-33 following allergen
exposure (11).

Recent studies have demonstrated the existence of several
human full-length active mRNA splice variants dependent on
both the cell type expressing IL-33 and the pathological condition
and triggered by diverse stimulations during immune responses
(12–14). Of note, inflammatory proteases from neutrophils
(proteinase 3, elastase, and cathepsin G) (15), mast cells
(chymase, tryptase, and granzyme B) (16), and environmental
allergens (17) can process full-length IL-33 into shorter mature
forms (18–21 kDa) whose biological activity is 10- to 30-fold
more potent than the full-length form (see Figure 1). The mature
form does not translocate into the nucleus because it lacks
the nuclear localization signal found in full-length IL-33 (18,
19). Proteolytic cleavage of IL-33 was shown to induce allergic
inflammation in vivo (17) highlighting a novel mechanism by
which inflammatory and environmental proteases can amplify

allergic inflammation. Of interest, isoform variants as well as
cleavage by endogenous and exogenous proteases has been
described also for other epithelial-derived cytokines, such as
thymic stromal lymphopoietin (TSLP), resulting in pleiotropic
functions in health and disease (20). Although both isoforms
are biologically active the relative importance of full length and
mature IL-33 forms in vivo remains unclear (2, 21). In a mouse
model of lung delivery of recombinant adenoviruses encoding
IL-33 isoforms the full-length IL-33 induced inflammation in
an ST2-independent fashion, but not pulmonary eosinophilia,
goblet cell hyperplasia, or Th2 skewing, whereas mature IL-33
induced ST2-dependent Th2-associated effects. Both isoforms
had similar effects on gene expression, suggesting that the
different effects are due to differential utilization of the ST2
receptor (22). In addition, in a mouse model of DNA cancer
vaccine, delivery of either full-length or mature IL-33 as an
immunoadjuvant induced potent Th1 and cytotoxic T cell (CTL)-
associated anti-tumor immunity and complete regression of
established TC-1 tumor in mice. Interestingly, the full-length IL-
33 was more potent than mature IL-33 in expanding the humoral
immune response (23).

The IL-33/ST2 Axis
IL-33 exert its cytokine activity through binding to its primary
specific receptor ST2, which is dependent on the co-receptor, IL-
1 receptor accessory protein (IL-1RAcP), and the adaptor protein
MyD88 for signaling (24). The crystal structure of IL-33 with ST2
has revealed that surface charge complementarity is crucial for
specific binding (25). The gene that encodes for ST2 produces its
transmembrane receptor but also produces a soluble form of ST2
(sST2), which acts as a binding decoy for IL-33 and thus down-
modulates IL-33 activity during inflammatory responses, such
as in experimental allergic asthma (26) and collagen-induced
arthritis (27). Most hematopoietic cells express ST2. ILC2s, some
Treg cells, and mast cells are the primary tissue-resident cells
that constitutively express high levels of ST2, implying that these
cells are initial targets of IL-33 (3). Non-hematopoietic cells,
including endothelial cells, epithelial cells, and fibroblasts, are
reported to express ST2 and respond to IL-33, although the
in vivo consequences of signaling in these populations are less
well-characterized.

In hematopoietic cells, IL-33 acts primarily on immune
cells associated with type 2 and regulatory immune responses,
including ILC2s, Th2 cells, eosinophils, mast cells, and basophils,
as well as subsets of dendritic cells, myeloid-derived suppressor
cells, and Tregs (28). However, it is now clear that the action
of IL-33 is not limited to the activation of type-2 immune
responses. Indeed, recent studies have revealed important roles
of IL-33 in the activation of immune cells involved in type-1
immunity, such as Th1 cells, NK cells, CD8+ T cells, neutrophils,
macrophages, B cells, and NKT cells (19, 29, 30). This pleiotropic
nature of IL-33 (Figure 2) is likely to explain why IL-33 has been
implicated in a wide variety of non-allergic diseases, including
infectious diseases (fungal, helminth, protozoa, bacterial, and
viral infection), cardiovascular diseases, chronic obstructive
pulmonary disease (COPD), fibrotic diseases, musculoskeletal
diseases, inflammatory bowel diseases, diseases of the central
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FIGURE 1 | Mechanisms and effects of the enzyme-specific IL-33 cleavage. Biological events such as apoptotic stress, Inflammation, and necrosis can differentially

generate various IL-33 protein variants with high biological activity or no activity depending on the enzyme produced by the cells. Apoptotic cells enable the

production and release of caspases 3 and 7, that cleaves IL-33 in the caspase site (CS) generating inactive fragments of IL-33 by disruption of some IL-1 like

functional domains close to CS. The insurgence of inflammation or necrosis process leads to the local recruitment of mast cells and neutrophils, the main effectors of

inflammatory processes. When these cells reach the inflammed site, they produce, and release enzymes that cleave the IL-33 protein at the Inflammatory site (IS)

inside the central region. These cleavage-specific enzymes allow the production and release of highly active forms of IL-33, capable to stably bind the ST2 receptor

(ST2) on a plethora of ST2-expressing cells. In other cases this active IL-33 does bind to the soluble form of its receptor (sST2), which acts as a decoy receptor. In this

latter event the effect of IL-33 will be suppressed by the formation of an sST2/IL-33 decoy complex. When no apoptotic nor inflammatory enzymes are produced, an

uncleaved form of IL-33 is released, with a very low biological activity compared to that showed by IL-33 cleavage products originated by neutrophil and mast

cell-derived enzymatic cutting. When the IL-33 is cleaved by certain environmental allergens, their enzymatic activity at the IS site gives rise to multiple peptide

products sharing the whole IL-1 like region of IL-33, that does retain the ability to bind ST2. The IL-33 cleavage products herein shown are all equipped with the ST2

binding sequence (inside the IL-1 like region). The secondary fragments lacking the ST2 binding sequence and generated during the cleavage reaction are not

depicted and have no effect on IL-33/ST2 binding.

nervous system (Alzheimer), graft vs. host disease (GVHD),
obesity, diabetes, and cancer (3).

IMMUNE CELL TARGETS OF IL-33
AFFECTING TUMOR-IMMUNE
RESPONSES

CD4+ Th Cells
Naïve CD4+ T helper cells constitutively express ST2 and
stimulation with IL-33 skews their differentiation toward a Th2

phenotype. CD4+ T cells are needed in the effector phase of a
protective antitumor immune response against tumors lacking
MHC class II (31). However, human CD4+ T cells can suppress
tumors expressing adequate levels of MHC class II and self-
antigens on their surface, through secretion of IFN-γ or direct
tumor killing (32). Interestingly, Villareal et al. demonstrated
that IL-33 can be an effective adjuvant when combined with an
HPV16 E6/E7-encoded DNA vaccine, enhancing both antigen
specific CD4+ and CD8+ IFN-γ+ T cells, and antigen specific
IgG concentration in the serum, leading to regression of
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FIGURE 2 | Stimulation of immune cells by IL-33. IL-33 is secreted by epithelial, endothelial, or fibroblasts in response to various stimuli, including infection or cell

stress causing injury. IL-33 exerts its biological activities through binding to its specific receptor ST2 expressed by most hematopoietic cells. IL-33/ST2 can stimulate a

variety of immune cell reactions, including: an atypical Th2-type of immune response through production of IL-5 and IL-13 by ILC2 and Th2 cells; IFNγ production by

NK, NKT, and Th1 cells; CD107a exposure and IFNγ production by activated CD8T cells; in vivo expansion of ST2+ Treg cells B and Breg cells; release of

inflammatory cytokines (e.g., IL-1β, IL-6, TNFα) by DC, macrophages and mast cells; M2 macrophage polarization; degranulation of mast cells, basophils, and

eosinophils; neutrophil migration; phenotypic, and functional activation of DC and eosinophils. There is some evidence that activated DCs, macrophages, and perhaps

mast cells can produce IL-33.

established TC-1 tumor in mice (23). In accordance with
this study, Mousa Komai-Koma et al. showed that IL-33 may
promote CD4+ T helper 1 (Th1) differentiation by a mechanism
depending on IL-12 and ST2. IL-33 and IL-12 synergistically
increase both ST2 and IL-12R expression in early activated
CD4+ T cells. These data indicate that IL-33 promotes Th1 cell
development, while it is ineffective on mature Th1 cells (33). A
possible explanation for such differences is that ST2 expression
is induced only in early-TCR activated naïve CD4+ T cells
and is then gradually inhibited when Th1 cells fully mature.
Although the signaling pathway by which IL-33 enhances Th1
polarization is still unknown, it is likely that IL-33 inducing Th1
or Th2response depends on the cytokine milieu, in particular
the balance of IL-12 and IL-4 levels in vivo (33). Of note, IL-33
also promotes the differentiation of IL-9-producing Th cells (34)
which exert potent antitumor immune responses in vivo (35, 36).

CD4+ Treg Cells
ST2/IL-33 signaling is known to expand suppressive CD4+

Foxp3+ GATA3+ Treg cells in vivo and in vitro (37). IL-
33-expanded Tregs express ST2 and can be found in several

immune and non-immune tissues exerting potent suppressor
function in a variety of pathological conditions, such as
autoimmunity, inflammation, transplantation, and allergy (38).
ST2+ Treg expansion can be mediated by IL-33 signaling in
DCs, through production of IL-2, which selectively expands
ST2+ Tregs (39). In the intestine, particularly rich in ST2+

Treg cells, IL-33 signaling stimulates transforming growth
factor (TGF)-β1-mediated differentiation of Treg cells and
provides a signal for Treg-cell accumulation and maintenance
in inflamed tissues (40). In ApcMin/+ mice, epithelial-derived
IL-33 promoted the expansion of ST2+ Treg cells in the colon
correlating with increased tumor burden (41, 42). A similar
observation was recently reported in the CT26 adenocarcinoma
model, where rIL-33 administration to tumor-bearing mice
promoted, while IL-33 blockade reduced, the expansion of
ST2+ Treg cells in tumor tissue and spleen (43). Moreover,
IL-33 blockade reduced accumulation of Treg cells in tumor
microenvironment and inhibited tumor growth in a preclinical
model of human non-small-cell lung cancer (NSCLC) xenografts
(44). In contrast, some studies have reported inhibitory effects
of IL-33/ST2 on Treg cells expansion. In a melanoma mouse
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model, IL-33 was shown to inhibit Treg infiltration in the tumor
microenvironment indirectly, through stimulation of MDSCs,
which had reduced capacity to induce the differentiation or
expansion of Treg cells in vitro (45). A recent study using
reciprocal bone marrow chimeras in a mouse model of sporadic
colon cancer, genetic ablation of ST2 in both hematopoietic
and non-hematopoietic compartments leads to increased tumor-
infiltrating ST2+ Foxp3+ Tregs and enhanced colon tumor
development (46).

CD8+ T Cells
Unlike CD4+ T cells, only effector CD8+ T cells or polarized
Tc1 cells, but not naïve and early activated CD8+ T cells, express
ST2 (47). High expression of ST2 in CD8+ T cells cultured
in Tc1 polarizing conditions is regulated by T-bet, a master
transcription regulator of Th1 effector functions. Moreover, it
was shown that IL-12 and IL-33 synergistically increased T-
bet and Blimp1, transcription factors critical for effector fate
of CD8+ T cell (47). Recent studies from transplantable solid
tumor models have indicated a direct role of exogenous IL-33
in promoting antitumor CD8+ T cell immunity using either IL-
33 transgenic mice (48), IL-33 DNA as vaccine adjuvant (23),
or IL-33 expressing tumor cells (49). Systemic administration of
rIL-33 in melanoma tumor bearing mice, promoted expansion,
increased tumor infiltration and effector function of antigen-
specific CD8+ IFN-γ+ T cells by both a direct or DCs-
mediated effect (50). In the aggressive C1498 acute myeloid
leukemia (AML) model, IL-33 treatment significantly increased
the percentage of effector memory liver CD8+ T cells leading
to delayed leukemia development and improved overall survival
(51). This finding suggest a role of exogenous IL-33 in promoting
rapid expansion of the effector memory CD8+ T cell pool,
consistent with the results from solid tumor models (23, 48).
In this study the increased CD8+ T cells activation level up-
regulates PD-1/PD-L1 expression in vivo, therefore combination
of PD-1 blockade and IL-33 treatment further improves survival
of leukemia-bearing mice (51).

Type-2 Innate Lymphoid Cells
Innate lymphoid cells (ILCs), belonging to the family of innate
cells, are characterized by classic lymphoid cell morphology,
but lack lineage-specific markers and somatically rearranged
antigen receptors. Based on the expression of transcription
factors, phenotypic markers, and effector cytokine production
profiles, ILCs have been divided into three distinct subclasses:
group 1 ILCs, group 2 ILCs, and group 3 ILCs (52). ILC are
derived from a common lymphoid progenitor and possess a wide
range of cell surface markers, many of which have only recently
been elucidated (53). ILC2, originally identified in the mouse
and human mesenteric lymph nodes as lineage marker negative,
c-kit+, Sca-1+, IL-7Ra+, and ST2+ cells (54), were also found
in lung, skin, and gut, while only a small number of circulating
ILC2s can be detected in blood (55). They are involved in
tissue repair (56), anti-helminth immunity (57), and allergic
inflammation (58).These cells are dependent on transcription
factor GATA-binding protein 3 for their development and
maintenance (59). Activation of ILC2s by alarmins (IL-25, IL-33,

and TSLP) secreted by epithelial cells upon cellular stress and
tissue damage (55, 60), produce IL-5, IL-13 (54), IL-4, IL-6, IL-9,
and amphiregulin which induce Th2 differentiation (61). This
group of innate cells was often observed to infiltrate tumors in
humans, but their role seems more frequently associated with
cancer progression than restriction. Clinical studies suggested
that increased numbers of ILC2s in peripheral blood of patients
with gastric cancer, could contribute by cytokines they secrete
to the immunosuppressive environment maintained by CD4+ T
helper 2 (Th2), myeloid-derived suppressor cells (MDSC), and
macrophages (62). ILC2s might also induce immune suppression
via secretion of amphiregulin (63), which enhances Treg activity
in vivo and can thereby inhibit antitumor immune responses
induced by DC vaccination (64). The anti-tumoral activity of
ILC2 was described for the first time by Ikutani et al. in a mouse
model of lung metastatic melanoma. Following tumor induction,
administration of rIL-33 induced the development of IL-5-
producing ILC2, which recruited and maintained eosinophils
responsible for tumor cell death and tumormetastasis prevention
(65). Overexpression of IL-33 in several tumor cell lines induced
high numbers of ILC2s, when transplanted in mice, with
potent anti-tumoral activity. The latter study suggests that local
production of IL-33 induces ILC2 to release CXCR2 ligands able
to sustain the expression of CXCR2 on tumor cells and induce
their apoptosis (66).

NK and NKT Cells
IL-33 directly activates both human (19) and mouse (30) NKT
and NK cells inducing IFN-γ production via cooperation with
IL-12, thus contributing to establish Th-1 immunity. During
viral infection, IL-33/ST2 axis amplifies the expansion of NK
cells and enhances host defense (67, 68). The role of IL-
33 on NKT in cancer immunity is unknown. In contrast, a
number of reports have analyzed the effects of IL-33 on NK cell
expansion and/or activation in tumor-bearing mice. In mouse
experimental metastasis models of B16 melanoma and Lewis
lung carcinoma, transgenic expression of IL-33 in the host
promoted the recruitment of cytotoxic NK cells to the pulmonary
site that inhibited metastasis formation (48). In vitro, IL-33
directly activated NK cell cytotoxicity, stimulated NF-κB and
up-regulated CD69 expression (48). Furthermore, B16 and 4T1
tumor cells overexpressing IL-33 implanted into syngeneic mice
induced IFN-γ+ NK cells in tumor tissue that mediated IL-
33 anti-tumoral effect (49). Similarly, increased frequencies of
CD107a+IFN-γ+ NK cells were observed following exogenous
administration of IL-33 in spleens and tumors of B16 melanoma-
bearingmice (69). In contrast with these reports, previous studies
in 4T1 breast cancer model showed that IL-33/ST2 signaling
impairs NK cell activation. ST2-deficient mice bearing 4T1
tumors exhibited increased numbers of activated NK cells (IFN-
γ+ CD27high CD11bhigh, CD69+ KLRG−) and NK cytotoxic
activity, with respect to wild-type (WT) counterparts. In vivo
depletion of NK cells accelerated 4T1 tumor growth in ST2−/−

mice (70). Moreover, exogenous administration of IL-33 to
WT 4T1 tumor-bearing mice decreased NK cell activation
and cytotoxicity and promoted tumor progression (71), thus
suggesting a detrimental role for IL-33 in NK cell-dependent
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anti-tumor responses. These contrasting results suggest that IL-
33 may exert opposing effects on NK cells within the tumor
microenvironment depending on the levels of IL-33 expressed
and on the primary target cells.

Macrophages
Several lines of evidence indicate that IL-33 amplifies the
expression of M2 markers on macrophages in vitro and
in vivo, thus promoting the suppressor function of tumor-
associated macrophages (TAMs). Blockade of IL-33 abrogates
the polarization of TAMs into (alternatively activated) M2
macrophages in a model of human non-small-cell lung cancer
(44). Expression of IL-33 was found to stimulate the recruitment
of M2-like macrophages into the cancer microenvironment in
mouse models of colon (41, 72–74) and breast cancer (71)
correlating with tumor progression. Of note, IL-33 stimulated
macrophages to produce prostaglandin E2, which supported
colon cancer stemness (73). Furthermore, in mouse tumor
xenografts IL-33 was shown to promote metastasis through
recruitment of M2-like TAMs (75). Recently, it was shown in the
mouse monocyte/macrophage line RAW264.7 that IL-33 directly
induces MMP-9 expression, which facilitates tumor progression,
invasion, and angiogenesis (76). These observations indicate that
IL-33/ST2 signaling on macrophages promotes M2 polarization,
immunosuppression, and tumor progression.

Dendritic Cells
Although dendritic cells (DCs) express low levels of ST2 on
their cell surfaces, they respond to IL-33 by up-regulating
MHC-II, CD40, CD80, CD86, OX40L, CCR7, and by increasing
production of several cytokines (IL-4, IL-5, IL-13, TNF-α, and IL-
1β) and chemokines (CCL17 and CCL22) (77–80). In addition,
IL-33-activated DCs promote an atypical Th2-type of immune
response inducing IL-5- and IL-13-producing CD4+ T cells
in vitro and in vivo (77, 79), which can be further amplified
during allergic inflammatory response via ST2 (78, 81). In vivo,
IL-33 exposure induces DC recruitment and activation in the
lung (78, 79). IL-33 promotes the expansion of DCs from
bone marrow (BM), by stimulating the secretion of basophils-
derived GM-CSF. However, such IL-33 differentiated BM-DCs
expressed low levels of MHC-II but high PD-L1 and PD-L2
immune checkpoints on the surface, and displayed reduced
capacity to prime naïve T cells (82). In support of this potential
tolerogenic effect, IL-33 has been shown to promote IL-2
secretion by murine DCs, thus supporting the in vitro and in
vivo expansion of ST2-expressing Treg cells (39). In mice bearing
4T1 breast cancer IL-33 administration increased the percentage
of splenic CD11c+ DCs expressing IL-10 (71). In contrast, in a
murine AML model, systemic IL-33 administration promoted
DC activation and “licensing” for cross-priming of tumor-
reactive CD8+ T cells (51). Likewise, in EG7 lymphoma, B16,
and inducible BrafV600EPTEN melanoma models exogenous IL-
33 activated myeloid DCs within the tumor microenvironment
increasing antigen cross-presentation and restoring anti-tumor
T cell activity in a ST2, MyD88, and STAT1-dependent manner
(50). On the whole, these results suggest that IL-33 depending
on the context can stimulate DC antigen presentation and, thus,

anti-tumor immune responses, or induce tolerogenic features,
thus supporting tumor growth.

Myeloid-Derived Suppressor Cells
Myeloid-derived suppressor cells (MDSCs) are closely related to
granulocytes and monocytes but differ from them in that they
are absent in healthy individuals but expand under pathological
conditions, such as cancer, exerting potent immune suppressive
role (83). Several reports described the ability of IL-33 to
expand MDSCs in vivo during tumorigenesis. In 4T1 breast
cancer model, IL-33 has been reported to promote MDSC
expansion (71). Exogenous administration of IL-33 increased
intratumoral and systemic accumulation of CD11b+ Gr-1+

MDSCs that expressed TGF-β1 and IL-13α1R with higher
incidence of monocytic vs. granulocytic MDSCs. Fittingly,
absence of IL-33/ST2 signaling reduced the accumulation,
proliferation, and immunosuppressive ability of MDSCs in
tumor-bearing mice (71, 84). Moreover, IL-33 upregulated in
MDSCs the expression and activity of arginase-1 in vitro and
activated NF-κB and MAPK signaling in vivo, which augment
their immunosuppressive ability (84). Conversely, in vitro IL-
33 was shown to negatively regulate MDSC development
from BM progenitor cells inhibiting the differentiation of
granulocytic MDSCs (G-MDSCs), but not of monocytic MDSCs
(M-MDSCs). In addition, IL-33-treated BM-derived MDSCs
exhibited diminished immunosuppressive capacity, reduced
inhibition on T-cell proliferation and IFN-γ production, and
diminished production of ROS (45). In B16 melanoma mouse
models, IL-33 administration was shown to decrease MDSCs
accumulation in the spleen and tumor microenvironment (45,
69). These evidences indicate that IL-33 may promote or halt
MDSCs expansion depending on the tumor type.

Neutrophils
IL-33 directly acts on murine neutrophils in the lungs (85).
Indeed, IL-33-treated neutrophils produced IL-4, IL-5, IL-9, and
IL-13 and displayed a distinct gene expression profile in contrast
to resting and lipopolysaccharide (LPS)-treated neutrophils.
These neutrophils were found in the lungs of ovalbumin
(OVA)-induced mouse model of asthma. Adoptive transfer of
IL-33-driven neutrophils significantly worsened the severity of
the disease in this model (86). In vitro, IL-33 promoted IL-4, IL-5,
IL-9, and IL-13 expression in murine neutrophils in time- and
dose- dependent manner. IL-33-induced neutrophils expressed
high levels of CXCR1, CCR1, IL-1R2, and CXCR2 mRNAs
compared with LPS-induced neutrophils. In a mouse model
of choriomeningitis virus-induced hepatitis, IL-33 promoted
neutrophil recruitment in the liver and dampened liver injury
by limiting T-cell activation. Liver neutrophils displayed an
immunosuppressive phenotype, characterized by high levels
of arginase-1, iNOS and IL-10 (87). Thus, IL-33 may promote
inflammatory or regulatory neutrophils, depending on the
pathological condition. Little is known about the effects of
IL-33 on neutrophils in tumor immunity. In a mouse model
of ectopic CT26 colon carcinoma, systemic chemotherapy with
irinotecan induced intestinal mucositis, associated with the
induction of IL-33, and increased neutrophil accumulation
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in the intestine. Supernatants from intestine explants treated
with irinotecan enhanced migration of neutrophils in vitro in
an IL-33/CXCL1/2/CXCR2-dependent manner. Importantly,
IL-33 blockade reduced mucositis and enabled prolonged
irinotecan treatment of ectopic colon carcinoma leading to a
beneficial outcome of the chemotherapy. These results suggest
that inhibition of the IL-33/ST2 pathway may represent a novel
approach to limit mucositis and improve the effectiveness of
chemotherapy (88).

Eosinophils
Administration of IL-33 in mice causes massive tissue infiltration
of eosinophils and elevations of typical type 2 cytokines such
as IL-5, IL-9, and IL-13, contributing to allergy and fibrosis
(89). These responses also occurred in RAG knockout mice,
suggesting that innate cells, particularly IL-5 producing ILC2s,
were the direct target of IL-33 (54). However, IL-33 is now
known to act directly on eosinophils leading to upregulation of
CCR3, CD69, and CD11b, production of chemokines (CCL17,
CXCL2, CXCL3, and CXCL10), and cytokines (IL-6, IL-13, GM-
CSF) (90). IL-33 sustained eosinophil survival in vivo in a ST2-
dependent manner and via autocrinous production of GM-CSF.
Moreover, IL-33 and GM-CSF promoted the production of IL-
4 and IL-13 by eosinophils, which in turn favored macrophage
polarization toward M2 phenotype (91). In a murine model of
melanoma, in vivo expansion of innate IL-5–producing ILC2
cells following systemic IL-33 injection played an important
role for eosinophil recruitment and metastasis control. Innate
IL-5-producing cells were increased in response to tumor
invasion, and their regulation of eosinophils is critical to halt
tumor metastasis (65). We reported that in transplantable
B16 melanoma models, IL-33 restricted tumor growth and
inhibited lung metastasis through recruitment and activation of
eosinophils. Indeed, ST2-deficient mice presented an increased
metastatic load and reduced lung eosinophilia compared to
wild type mice. Depletion of eosinophils completely abolished
the anti-tumor effects of IL-33 administration (69). Kim et al.
also reported substantial expansion of intratumoral eosinophils
in mice transplanted with IL-33-expressing tumor cells (EL4,
CT26, and B16); however, their role in IL-33-induced anti-tumor
effects was not addressed (66). In our study, IL-33 expanded
eosinophils expressed T cell-attracting chemokines and induced
NK and CD8+ T cell-recruitment at the subcutaneous tumor site,
but not at the lung metastatic site. In addition, IL-33 activated
eosinophils in vitro enhancing CD11b, CD69, and granzyme B
expression and activating cytotoxic functions against melanoma
cells (69). These findings suggest that depending on the tumor
site, eosinophils may play an accessory role, supporting the
recruitment of tumor-reactive CD8+ T cells (92), or a direct
cytotoxic effect against tumor cells. Indeed, IL-33 can potently
activate human eosinophils, enhancing adhesion, promoting
survival, and inducing ROS production and degranulation (93,
94). Of note, degranulation of eosinophils has been shown in vivo
in proximity of tumors (95, 96) and after in vitro stimulation,
resulting in efficient killing of target mouse (97) and human
(98) tumor cells, highlighting the tumoricidal properties of
eosinophils (99).

Mast Cells
IL-33 activates its receptor complex (ST2: IL-1RAcP) on human
mast cells (100) and basophils (19). IL-33 synergizes with IgE-
and non-IgE-dependent stimuli to release cytokines from human
mast cells (101). Similarly, IL-33 augments substance P-induced
vascular endothelial growth factor (VEGF) production from
human mast cell lines (102). The latter findings are clinically
relevant because VEGFs produced by humanmast cells (103) and
basophils (104) play an important role in chronic inflammation
and in tumor growth (105). We have demonstrated that IL-
33 up-regulated the Fcγ receptor type IIa and synergistically
enhanced immune complex-triggered activation of human mast
cells (106). Collectively, these findings demonstrate that IL-
33 can synergistically potentiate the immunologic and non-
immunologic release of mediators from human and rodent mast
cells. Single cell analysis demonstrated that IL-33 increased both
the number of degranulating and chemokine-producing mast
cells and the magnitude of individual mast cell response (107).
The relevance of IL-33-mediated mast cell response has been
found also in vivo in several pathological conditions, including
cancer. Mast cells and basophils are known to infiltrate several
types of tumors but, due to the wide range of mediators they
release, it is difficult to define their specific pro- or anti-tumoral
activity (103). Mast cell activation by IL-33 may occur in a
number of tumor types. In skin cancers, mast cells accumulated
with IL-33 expressing fibroblasts in UV-exposed murine skin
samples (108). In the ApcMin/+ mouse model, IL-33 deficiency
reduced tumor burden (109, 110) and decreased mast cell
density in polyps as well as suppressed the gene expression
of mast cell-derived proteases and cytokines that promote
angiogenesis, Treg function, and MDSC recruitment within the
tumor microenvironment (111–113).

Basophils
Human basophils constitutively express ST2 which is induced by
IL-3 (114, 115). Although IL-33 alone failed to directly induce
degranulation of human basophils, it exerted priming effects.
It enhanced degranulation and IL-4 production in response
to IgE cross-linking (114). By contrast, IL-33 alone activated
unprimedmurine basophils in vitro (116). Recently, Rivellese and
collaborators, using highly purified human basophils, elegantly
demonstrated that IL-33 alone induces the release of low
but detectable amounts of IL-4 (117). IL-33 synergistically
potentiated IL-4 production induced by IL-3 or anti-IgE.
Interestingly, IL-33 did not induce basophil degranulation, as
evaluated by the membrane expression of CD63, but significantly
enhanced IgE-mediated histamine release. Collectively, these
findings indicate that IL-33 can activate human basophils
presumably through the engagement of ST2. Furthermore,
IL-33 can enhance IL-3- and anti-IgE-mediated basophil
degranulation, histamine secretion, and cytokine production.
The role of basophils in anti-cancer immunity is poorly
characterized and the effects of IL-33 in stimulating or regulating
basophils responses in cancer are unknown. In mouse models of
melanoma, Sektioglu et al. reported that intratumoral basophils
enhanced CD8+ T cell infiltration via production of the
chemokines CCL3 and CCL4, contributing to tumor rejection
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following Treg cell depletion (118). Recently, low circulating
eosinophils and basophils were associated with poor prognosis
in CRC patients (119). Moreover, basophils in tumor-draining
lymph nodes of bothmice and pancreatic ductal adenocarcinoma
patients correlated with Th2 responses in tumors and poor
prognosis (120).

ROLE OF IL-33 IN CANCER: EVIDENCES
FROM EXPERIMENTAL TUMOR MODELS

Accumulating evidences indicate that the axis IL-33/ST2 plays a
role in tumor immunity. However, both pro-tumoral and anti-
tumoral functions have been reported and the current literature
suggest that IL-33 may differently affect tumor immunity
depending on the tumor type, immune cell targets and on
cooperating microenvironmental factors (121).

Breast Cancer
The majority of reports point to a pro-tumoral role of IL-
33 in breast cancer models. In mice, the IL-33/ST2 axis was
shown to promote the growth and lung and liver metastases of
4T1mammary tumors facilitating the intratumoral accumulation
of immunosuppressive myeloid (Gr-1+ TGF-β1+ MDSC, IL-
10-expressing CD11c+ DCs, and alternatively activated M2
macrophages), ILC2, and Treg cells, while dampening the
expansion of activated NK cells (70, 71, 84). Lukic group
demonstrated that IL-33/ST2 axis promotes the expression of
pro-angiogenic VEGF in tumor cells and attenuates tumor
necrosis, thus facilitating mammary tumor growth (122). In
contrast, another study reported that transgenic overexpression
of IL-33 in 4T1 breast cancer cells reduces tumor growth and
metastasis in vivo (49). In vitro, IL-33 acts as a critical tumor
promoter during epithelial cell transformation and sustains
breast cancer tumorigenesis (123). Recently, it has been reported
that IL-33 overexpression in human ER-positive breast cancer
cells results in resistance to tamoxifen-induced tumor growth
inhibition, by promoting cancer stem cell properties (124).
These findings indicate that in breast cancer IL-33/ST2 exert
both intrinsic and extrinsic pro-tumoral function favoring
tumorigenesis and stemness and reducing anti-tumor immunity.

Colorectal Cancer
Anumber of evidences frommousemodels point to an important
role of the IL-33/ST2 axis in promoting colorectal cancer
(CRC) tumorigenesis, progression and malignancy (125). In
the ApcMin/+ mouse model for human familial adenomatous
polyposis, abrogation of the IL-33/ST2 axis by knockout of
IL-33 (109) or ST2 (41, 110) inhibits proliferation, induces
apoptosis, and suppresses angiogenesis, thus decreasing tumor
number and size. Accordingly, overexpression of IL-33 in MC-
38 mouse CRC cells results in increased in vitro proliferation
and enhanced tumor growth and liver metastasis after orthotopic
transplant in syngeneic mice through tumor-derived IL-33-
induced recruitment of CD11b+ GR1+ and CD11b+ F4/80+

myeloid cells and angiogenesis (126). In addition, expression
of IL-33 in human CRC cells promoted their growth and
metastasis in vivo and reduced the survival of recipient nudemice

(127). Likewise, IL-33/ST2 signaling in CRC tissues promoted
the malignant growth and metastatic spread of CRC through
modification of the tumor microenvironment (72). In a recent
study, it was shown that IL-33 overexpression or exogenous
administration of IL-33 to human or murine colon cancer cells
enhanced cell growth in vivo and promoted colon cancer cell
stemness through an immune-associated mechanism (73). In
contrast, some studies have reported an anti-tumoral function
of IL-33 in CRC models. Abrogation of ST2 signaling in CT26
mouse adenocarcinoma cells enhanced tumor development after
subcutaneous transplant into syngeneic BALB/c mice (74). In
the azoxymethane (AOM)/dextran sodium sulfate (DSS) model,
IL-33-deficient mice were shown to be highly susceptible to
cancer-associated colitis showing increased tumor number, size,
and grade, due to a protective function of IL-33 in regulating
an IgA-microbiota axis in the intestine (128). Fittingly, in a
mouse model of sporadic colon cancer tumorigenesis in the
absence of preexisting inflammation lack of IL-33 signaling
enhanced colon tumorigenesis, while IL-33 treatment reduced
tumor growth in the transplantable MC38 model, via IFN-γ-
mediated antitumor immune response (46). These evidences
suggest that in the absence of preexisting chronic or acute
inflammation the homeostatic release of IL-33 by dying colon
epithelial cells protects against the initiation and development of
sporadic colon cancer.

Lung Cancer
The IL-33/ST2 axis plays a critical role in various inflammatory
lung diseases, including asthma and fibrosis (129). However, few
studies have investigated the contribution of this pathway to lung
cancer. Akimoto et al. reported that ST2 expression in human
and murine lung cancer is inversely correlated with metastatic
potential (130). Exposure to IL-33 enhanced oncotic cell death of
ST2+ low-metastatic Lewis lung carcinoma cells, but not of ST2−

high-metastatic cells, thus suggesting that IL-33 enhances lung
cancer progression by selecting for malignant cells. Moreover,
in vitro stimulation with IL-33 promoted the migration and
invasiveness of human lung A549 cells (131) and enhanced the
growth and metastasis of primary non-small-cell lung cancer
(NSCLC) cells after xenotransplant into immunodeficient mice
(132). Vice versa, IL-33 blockade efficiently inhibited tumor
growth of patient-derived NSCLC xenografts, abrogating M2
polarization of macrophages, and reducing the accumulation of
Treg cells within the tumor microenvironment (44). In mouse
lung tumor models stable transfection of IL-33 gene into tumor
cells inhibited tumor growth and metastatic spread in vivo (49,
133). Of note, IL-33 expressing metastatic A9 lung cancer cells,
a TC1-derived cell line with spontaneous down-regulation of
MHC-I, restored MHC-I expression and immune recognition
in mice (133). Although these evidences indicate that IL-33/ST2
expression in lung tissue or cancer cells fuels tumor growth, the
contribution of IL-33 to anti-tumor adaptive immune responses
against this cancer remains to be established.

Melanoma
Accumulating evidences indicate that in melanoma models IL-
33 exert anti-tumoral and anti-metastatic effects by conditioning

Frontiers in Immunology | www.frontiersin.org 8 November 2018 | Volume 9 | Article 2601

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Afferni et al. IL-33 in Tumor Immunology

the local immune environment. Systemic injections of IL-33
significantly inhibit tumor growth in mice bearing subcutaneous
B16.F10 melanomas (50, 69) and in BRAFV600EPTEN-inducible
melanomamodel (50). Dominguez et al. reported that IL-33 both
directly stimulated CD8+ T cell expansion and IFN-γ production
and activated myeloid dendritic cells (mDCs) increasing antigen
cross-presentation. Of note, combination therapy with rIL-33
and agonistic anti-CD40 antibodies demonstrated synergistic
anti-tumoral activity in this model (50). Using subcutaneous
and experimental metastasis B16 melanoma models, we recently
demonstrated that IL-33 inhibits melanoma tumor growth
and pulmonary metastasis in vivo in an eosinophil-dependent
manner (69). In a previous study, it was shown that IL-33
transgenic mice inhibit tumor metastasis in the B16 melanoma
model (48). Likewise, transgenic expression of a secretable
mature form of IL-33 by plasmid DNA in B16 tumor cells
reduced tumor growth and metastasis in vivo (49). In these
models, both NK and CD8+ T cells were required for the
anti-tumoral effect of IL-33. Instead, Kim et al. showed
that subcutaneous injection of adenoviral vector-transfected
B16 melanoma cells engineered to secrete IL-33 did not
develop palpable tumors in mice, in a CD8+ T- and NK-
independent manner, through expansion of CXCR2 ligands-
secreting intratumoral ILC2 (66). Ex vivo explanted IL-33-
expressing B16 tumors exhibited higher reactive oxygen species
(ROS) levels and increased CXCR2 expression and apoptosis
thus suggesting a role for IL-33 in creating a hypoxic tumor
microenvironment supporting ILC2-induced apoptosis (66).
The explanation for such diverse immune-mediated anti-tumor
mechanisms needs further investigations, although it is plausible
that different local concentrations of IL-33 within the tumor
microenvironment may stimulate different responses.

Other Tumors
IL-33 has been reported to exert an anti-tumoral role in
other tumor models. In a human papilloma virus (HPV)-
associated model for cancer immunotherapy IL-33 was shown
to act as a potent vaccine adjuvant augmenting Th1 and
CD8+ T-cell responses, inducing anti-tumor immunity in vivo
(23). Enforced expression of IL-33 in a large collection of
murine tumor cell lines, including CT26 colon carcinoma,
EL4 lymphoma, B16 melanoma, Lewis lung carcinoma (LLC),
A9, and 4T1 lung cancer, results in reduced tumor growth
in vivo (49, 66, 133). In a murine acute myeloid leukemia
(AML) model administration of IL-33 significantly inhibited
leukemia growth and improved mice survival rate in a CD8+

T cell dependent manner (51). Notably, combination of PD-
1 checkpoint blockade with IL-33 further prolonged mice
survival, and induced complete leukemia regression in 50%
of animals. The latter report represents the first evidence
for combining IL-33 with immunotherapy targeting immune
checkpoint inhibitors. Recently, administration of rhIL-33
was shown to expand Vγ9 T cells improving the therapeutic
response to phosphoantigen in preventing tumor growth in a
humanized mouse lymphoma model (134). Pro-tumoral effects
were observed in several other types of experimental cancers
(135). In an organotypic culture model, carcinoma-associated

fibroblasts (CAFs) were found to express high levels of IL-33
which promoted cancer invasive behavior of head and neck
squamous cell carcinoma (HNSCC) cells (136). In gastric cancer,
IL-33 exerted a pro-tumorigenic function inducing cancer cell
invasion by stimulating the secretion ofMMP-3 and IL-6 via ST2-
ERK1/2 pathway (137) and activation of the JNK pathway (138)
conferring chemotherapy resistance in vitro. Finally, in mouse
models of cholangiocarcinoma (CCA), a malignant neoplasm
of the biliary-duct system, administration of IL-33 was found
to increase biliary tumorigenesis through an increase of IL-6
expression in tumor tissue (139) and to enhance cholangiocyte
proliferation, by increasing the numbers of IL-13-producing
ILC2s (140). The effects of IL-33 in experimental cancers are
summarized in Table 1.

IL-33/ST2 AS A BIOMARKER PREDICTIVE
OF CANCER PROGRESSION AND
PATIENTS SURVIVAL

The recent literature regarding IL-33 involvement in
tumorigenesis is controversial, since IL-33 seems to have
dual, pro-inflammatory or protective, roles depending on
the cellular and cytokine context. Some studies have shown
a positive correlation between IL-33 expression in tumor
tissue and a favorable prognosis in cancer patients. For
example expression levels of IL-33 and ST2 were significantly
down-regulated in both adenocarcinoma and squamous cell
carcinoma of lung tissues when compared to adjacent normal
lung controls (141). Furthermore, plasma IL-33 levels were
elevated during the early stage of lung cancer and decreased with
advanced cancer stages, probably due to lung volume reduction
containing bronchial epithelium and vascular endothelium as
sources of IL-33 (142). The observed decreases indicate that
the expression levels of IL-33 are inversely associated with
lung cancer progression (143). Of interest, in hepatocellular
carcinoma resected tissues expression of IL-33 by intratumoral
effector memory CD62L−KLRG1+CD107a+ CD8+ T cells
was shown to be a prognostic marker for increased patients
survival (144). Serum levels of IL-33 were significantly higher
in patients with breast cancer compared to patients with benign
breast diseases, so the local expression of IL-33 may be a
marker for differentiating malignant from normal/benign tissues
(145, 146). IL-33 expression in adjacent tissues also tends to be
higher compared to normal tissues, suggesting that adjacent
non-cancerous tissues may be similarly relevant to cancers in
terms of anti-tumor immunity. Local IL-33 expression may
also increase intratumoral accumulation of immunosuppressive
lymphoid cells in patients with breast cancer (145, 146).
Plasma sST2 levels and nuclear IL-33 expression were found
to be increased in endothelial cells in bone marrow biopsies
from patients with myeloproliferative neoplasms, whereas
low/undetectable levels were found in healthy donors (147).
It has been proposed that IL-33 induces the production of
cytokines and growth factors that promote myelopoiesis and
facilitates the development of leukemia by inducing and/or
enhancing the proliferation of hematopoietic progenitors in the
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TABLE 1 | Role of IL-33 in experimental tumors.

Role Cancer type Species Reported effects References

Pro-tumoral Breast Mouse IL-33/ST2 favors accumulation of immunosuppressive myeloid cells, Tregs, and ILCs.

Increases tumor pro-angiogenic VEGF.

(70, 71, 84, 122)

Human IL-33/ST2 promotes epithelial cell transformation and breast tumorigenesis. Confers breast

cancer endocrine resistance and cancer stem cell properties.

(123, 124)

CRC Mouse IL-33/ST2 increases polyposis in ApcMin/+ mice. Enhances tumor proliferation, growth, and

angiogenesis. Promotes accumulaion of immunosuppressive myeloid cells.

(41, 72, 73, 109, 110,

126)

Human IL-33/ST2 expression increases tumor growth and metastasis in nude mice, tumor

recruitment of prostaglandin E2-producing macrophages, and M2 polarization. Promotes

colon cancer cell stemness.

(72, 73, 127)

Lung (NSCLC) Human ST2 increases tumor invasiveness and metastatic potential by selection of malignant cells.

IL-33 blockade suppresses tumor growth and metastasis in nude mice, M2 polarization, and

Treg accumulation.

(44, 130–132)

Gastric Human IL-33 induces cancer cell invasion and confers chemotherapy resistance in vitro. (137, 138)

HNSCC Human IL-33 expression in CAFs promotes cancer invasive behavior. (136)

CCA Mouse IL-33 increases biliary tumorigenesis in mice via IL-6. It induces cholangiocyte proliferation

mediated by ILC2s.

(139, 140)

Anti-tumoral Melanoma Mouse Transgenic host or tumoral expression or IL-33 administration inhibits tumor growth and

pulmonary metastasis, via stimulation of NK, CD8+ T cells, DCs, ILC2s, and eosinophils.

(48–50, 66, 69)

Lung Mouse IL-33 expression in lung cancer cells reduces tumor growth in vivo, restores MHC-I expression

and immunovisibility.

(49, 133)

CRC Mouse IL-33/ST2 signaling negatively correlates with tumor progression of CT26 and MC38 tumors.

IL-33 induced IFNγ-mediated antitumor immune response. In a model of DSS-induced colitis

IL-33 exerts a protective function regulating in testinal IgA-microbiota axis.

(46, 74, 128)

AML Mouse IL-33 inhibits leukemia growth, improves mice survival rate through CD8+ T cells and

synergizes with PD-1 blockade to promote tumor rejection.

(51)

Lymphoma Mouse IL-33 expands anti-lymphoma Vγ9T cells and improves the therapeutic response to

phosphoantigen.

(134)

CRC, colorectal cancer; NSCLC, non-small cell lung cancer; HNSCC, head and neck squamous cell carcinoma; CCA, cholangiocarcinoma; AML, acute myeloid leukemia; CAF, cancer

associated fibroblasts.

bone marrow microenvironment from patients with chronic
myeloid leukemia (147).

In other clinical conditions, increased IL-33 expression was
inversely correlated with the overall survival of cancer patients.
Serum IL-33 levels were increased in renal cell carcinoma
(RCC) patients compared to healthy volunteers (148). Such
over-expression was associated with advanced tumor-lymph
node-metastasis (TNM) stage, resulting in reduced survival and
increased risk of recurrence in patients. Mechanistically, it has
been shown that IL-33 enhances RCC cell growth in vivo and
prevents chemotherapy-induced tumor apoptosis in vitro via
JNK signaling activation in tumor cells (149). Similarly, both IL-
33 and ST2 were up-regulated in ovarian tumors compared to
normal ovary and ovarian benign tumors, and the expression
levels were further increased in tumor tissues at the metastatic
site (150). It has been proposed that IL-33/ST2 axis promotes
ovarian cancer migration and metastasis through regulation of
ERK and JNK signaling pathways (151). Furthermore, most
head and neck squamous cell carcinoma (HNSCC) cases with
a low invasion pattern grading score (IPGS) showed low or
no expression of IL-33, whereas most HNSCC cases with high
IPGS displayed abundant expression of IL-33 in CAFs and
in cancer cells. This observation suggests a paracrine effect
of IL-33 as a result of the crosstalk between tumor cells
and surrounding stromal cells. Hence, CAFs overexpressing

IL-33 promote the induction of epithelial-to-mesenchymal trans-
differentiation, eventually leading to tumor progression and
poor prognosis (136). Higher IL-33 expression was described
in glioma tissue compared to normal brain tissues at both
transcriptional and translational levels (152, 153). It has been
proposed that IL-33 stimulates cell migration through the
expression of matrix metalloproteinases (MMP2/MMP9) via the
ST2/ NF-κB pathway, thereby promoting cell invasion and tumor
growth (154). Higher expression of IL-33 and total ST2 (ST2L and
sST2) have also been reported in colorectal cancer (CRC) tissues
compared to adjacent normal tissues (127). This observation
could be explained considering that inflammatory cytokines are
important components of the CRCmicroenvironment and colon
cancer progression is closely related to chronic inflammation.
Increased IL-33 expression is observed in poorly differentiated
human CRC cells, which is associated with poor survival in
patients with metastatic colon cancer (73).

The relation between IL-33 and sST2 serum levels and the
survival of patients suffering from liver cirrhosis (LC) and
hepatocellular carcinoma (HCC) has not been determined yet.
No significant difference in IL-33 serum levels was found in
HCC compared to LC. IL-33 levels did not correlate with overall
survival or liver function parameters, whereas sST2 levels were
significantly elevated in LC and HCC patients, compared to
healthy subjects, and were associated with overall survival of
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HCC. Therefore, its function remains to be clarified (155).
Similarly, IL-33 protein levels were significantly lower in gastric
cancer tissues than adjacent tissues. These levels were associated
to the depth of tumor invasion and the morphology of the tumor,
suggesting that IL-33 is involved in the process of inflammatory
reaction in the development of gastric cancer, while it is not
significantly associated with the overall survival of these patients
(156).

ANALYSIS OF IL-33 MUTATIONS AND
ISOFORMS IN CANCER

IL-33 gene undergoes a certain number of somatic mutations
during tumorigenesis. Depending on the exact location in the
gene (and protein), the mutation may be putative of some
key functional aberrancies that influence the IL-33 global

functional properties (Figure 3). In general, IL-33 mutations
occurred with very low frequencies in all tumors examined
(0.072–1.391%). However, some mutations may putatively have
a key impact on the functionality of IL-33. IL-33 protein is
equipped with three main regions (Nuclear, Central, IL-1-like)
with three specific binding and cleavage sequences in each of
these domains (Figure 3). For example, there are 15 unique
mutations in skin cancer patients, with a missense mutation
(M52I at nucleotide 6250538 of the chromosome 9) targeting
the chromatin binding site (R1). We hypothesize that this
amino acid change potentially breaks the ability of IL-33 to
bind DNA and thus to exert its regulatory functions. There
are additionally 11 unique somatic missense mutations all
affecting the IL-1-like domain of the protein (but outside the
R3 sequence), that can putatively compromise the IL-33 binding
ability to its specific receptor ST2 (3, 157). Another tumor that
displays a mutation affecting the ability of IL-33 to bind the

FIGURE 3 | Distribution of unique somatic IL-33 gene mutations in tumors and in the domain regions of the IL-33 protein. (A) IL-33 gene mutations in each tumor

have been obtained by inferring the publicly available cBioPortal database for analysis of large-scale cancer genomics data sets (http://www.cbioportal.org/). For each

tumor type the number of mutations (n) and the total number of sample patients is depicted. The IL-33 gene mutation positions are aligned to the three principal

regions of the IL-33 protein. R1, Chromatin binding domain (M45XLRSGXXI53); R2, Cleavage site for inflammatory Proteases

(T90VECFAFGISGVQKYTRALHDSS112); R3, Cleavage site for caspase 3 and caspase 7 (D175GVDG179). Some missense (red text) and truncation (black text)

mutations are depicted. (B) Somatic IL-33 gene mutation frequencies calculated by data analyzed in (A) and indicated for each tumor type.
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FIGURE 4 | Distribution of IL-33 RNA transcript variants in tumor samples compared to normal tissues. (A) Schematic representation of the chromosome location

(red box and text) of the IL-33 gene (upper panel) with the location of exons present in each indicated transcript variant (lower panel). Data are obtained by ENSEMBL

genome browser (https://www.ensembl.org/). There are 3 isoforms of IL-33 gene, which are: NM_001199640 (CDDS56563.1), NM_001199641 (CDDS56564.1),

NM_033439 (CDDS6468.1). (B) Expression of the IL-33 transcript variants indicated in (A) for each tumor compared to the normal tissues. Expression data (T.P.M,

transcript per million) are obtained by interrogating the public database for Isoform expression resource analysis (Isoexpresso, http://wiki.tgilab.org/ISOexpresso/main.

php). IL-33 transcript variant expression data are not available for skin, blood, brain, and ovarian cancers/normal tissues within Isoexpresso database. The

predominant forms for brain and ovarian tumors are variants 1 whereas the predominant form expressed in skin tumors is the transcript variant 3 (resource:

Mammalian Transcriptomic Database, http://mtd.cbi.ac.cn/).

chromatin is the uterine cancer with the R48H amino acid
change (Figure 3). Interestingly, the mutations E121K, H221Y,
S225F, and H246Y, all occurring in the IL-1-like domain, are
classified as deleterious in terms of IL-33 functional changes for
skin cancers as evidenced by the cBioPortal database. Some of
these mutations, like the amino acid change H221Y, are also
shared with other tumors such as bladder cancer, thus denoting
their significance. There is only one somatic missense alteration
(G176S) occurring inside the R3 region, shared by colon and
blood cancer patients (Figure 3). These mutations can putatively
disrupt the cleavage site for caspase 3 and 7, thus increasing
the IL-33 resistance to these proteases with key consequences in
skin tumor survival and progression. Mutations in the cleavage
site for inflammatory proteases (R2) occur only in colon and
uterine tumors, with the A95V amino acid change (colon) and

two mutations in uterine tumor (missense V101L and truncation
S111).

As mentioned above, the IL-33 gene is equipped with a
splicing system generating three different variants of the IL-
33 protein (Figure 4A). The first isoform variant is composed
by 7 exons, whereas the variants 2 and 3 contain 6 and 4
exons, respectively. The role and the extent of expression of each
isoform in cancer is still a field of debate. Nevertheless, public
databases such as IsoExpresso are now available, containing
expression data of isoforms associated to thousands of human
genes involved in cancer progression (158). We then extracted
data about the expression of IL-33 isoform variants in different
types of tumors and the normal counterparts (Figure 4B). The
IsoExpresso database revealed a differential expression across
the lesions and normal tissues or across the isoform variants
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of IL-33. Thyroid, liver, breast, and bladder cancers display
a change in isoform expression when compared to normal
counterparts. Indeed, variants 2 and 3 are highly expressed in
these tumors compared to expression levels observed in normal
tissues (Figure 4B). Of note, bladder cancer presents a splice site
mutation (X157, Figure 3), and the presence of this mutation
may probably be associated to the observed expression shift of the
IL-33 isoform variants in this type of cancer (Figure 4). Indeed,
in the tumor lesions the mainly expressed isoforms are variant
2 and 3, whereas the normal tissues express the variant 1 only
(Figure 4B). This strongly suggests that this mutation affects the
disappearing of IL-33 exon 4 (Figure 4A). In contrast, uterine
tumor has been associated with a splice mutation (X115, close
to the S111 truncation, Figure 3) not affecting the expression of
IL-33 splice variants (Figure 4B).

CONCLUDING REMARKS

The role of IL-33 in tumorigenesis and cancer immunity
remains controversial. The current literature indicate that IL-
33 expression can be regulated during the progression of
distinct types of cancers and that IL-33/ST2 signaling within
the tumor microenvironment may differently contribute to
tumorigenesis, promoting antitumor responses or mediating
tumor growth or metastasis, depending on the nature of the
malignant tissue. Further studies are needed to elucidate the role
of this pathway at specific time points during cancer development
as a possible diagnostic/prognostic marker for patients and
to clarify whether IL-33/ST2 blockade may represent a valid
approach for adjuvant therapies of established IL-33-dependent
tumors.

It has been suggested that IL-33 has opposing effects in tumor
immunity depending on its local concentration (121). In this
respect, the tumor histotype may crucially determine the amount
of IL-33 expressed. In addition, the presence of different IL-
33 isoforms may play a crucial role. Thus, it may be possible
that under steady-state conditions the homeostatic release of
IL-33 by apoptotic epithelial cells may be regulated by caspase

cleavage, thus limiting excessive inflammation. We envisage that,
as in several chronic inflammatory diseases, also in tumors IL-
33 could exist in several different forms as a result of post-
translational processes, including intracellular and extracellular
modification, or as a result of mRNA alternative splicing. There
is compelling evidence that different forms and cleavage products
of IL-33 can exert dissimilar biological activities. Unfortunately,
the identification and the concentrations of the different forms
of IL-33 in different tumors is largely unknown. Future studies
should characterize the different forms of IL-33 in human
and experimental tumors. Moreover, the mutation level of
IL-33 gene observed in human solid tumors (Figure 3) may
be associated with different isoforms and distinct stimulated
antitumor immune responses. Lastly, since the new frontier
of cancer immunotherapy is the employment of immune
checkpoint inhibitors (i.e., against PD-1, PD-L1, CTLA-4) further
studies are needed to clarify whether IL-33 conditioning may
increase the therapeutic response to checkpoint blockade in
cancer patients.
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