
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Analysis on the thermal response to beam impedance heating of the
post LS2 proton synchrotron beam dump
To cite this article: L Teofili et al 2019 J. Phys.: Conf. Ser. 1350 012169

 

View the article online for updates and enhancements.

This content was downloaded from IP address 37.161.78.245 on 19/12/2019 at 22:20

https://doi.org/10.1088/1742-6596/1350/1/012169
http://googleads.g.doubleclick.net/pcs/click?xai=AKAOjssJqHjrcr5z-89p-0Wf9dpoBGFzIYuXyUrOGM5Ye9TCAYGDKRJGtCSulGY0yDcQSqUJZUreTR0CtowbNhldPVRSP5x8vZJFkBNiE3V3oeQl9zsvtMFp_NfnHCiysZu2GX2BOiETOyYn1iUbPIgvMaWVv8v4WdiRfKquuUOLvhTEBrKaMvFTvAuDCZXYn08oNG_N6z8x-nrPl406vueW1uddyaCJuxA_fSKZy0U4A8F-QP7q-Vj_&sig=Cg0ArKJSzL6uZdI0KzjN&adurl=http://iopscience.org/books


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

10th International Particle Accelerator Conference

Journal of Physics: Conference Series 1350 (2019) 012169

IOP Publishing

doi:10.1088/1742-6596/1350/1/012169

1

Analysis on the thermal response to beam impedance

heating of the post LS2 proton synchrotron beam

dump

L Teofili1,2,3, M Marongiu1, M Migliorati1,2,3, F Giordano3, I Lamas3,
F-X Nuiry3, G Romagnoli3 and B Salvant3

1 Sapienza University of Rome, Rome, Italy
2 INFN, Rome, Italy
3 CERN, Geneva, Switzerland

E-mail: lorenzo.teofili@uniroma1.it

Abstract. The High Luminosity Large Hadron Collider (HL-LHC) and the LHC-Injection
Upgrade (LIU) projects at CERN are upgrading the whole CERN accelerators chain to increase
beam brightness and intensity. In this scenario, some critical machine components have to be
redesigned and rebuilt. Due to the increase in beam intensity, minimizing the electromagnetic
interaction between the beam and devices is a crucial design task. Indeed, these interactions
could lead to beam instabilities and excessive thermo-mechanical loadings in the device. In this
context, this paper presents an example of multi-physics study to investigate the impedance
related thermal effects. The analysis is performed on the conceptual design of the new proton
synchrotron (PS) internal dump.

1. Introduction
In the framework of the project LIU [1], all the LHC injectors chain is being upgraded in order
to operate with beams of increased intensity and brightness. This is critical for those accelerator
components that have to interact directly with the beam as collimators, scraper, absorbers or
dumps. This class of devices is also known with the name of Beam Intecepting Devices (BID).
Their functionality can be deeply affected by changes in beam intensity. Thus, if this parameter
increases, detailed and careful studies should be done to assess if the BID will continue to work
as expected in the new scenario. In case the functionality is compromised, a new BID has to be
designed and built.

The intensity of the beams in the Proton Synchrotron (PS) is foreseen to be doubled with
respect to the current situation after the long shutdown 2 (LS2), 2019-2020 [1]. In this scenario,
the two current internal dumps, which are responsible for stopping the beam if needed or
requested, have to be replaced. It has been proved that they cannot cope with the new post LS2
high intensity beams [2]. The design of the new devices, able to absorb and stop the new intense
beams, has been recently completed and it is currently in the prototyping phase [3, 4]. The
new PSdumps are scheduled to be installed before May 2020. The initial design of the device
presented high impedance, i.e. strong electromagnetic interaction between the beam and the
device itself. A high impedance can generate beam instabilities and high RF-Heating [5]. An
impedance reduction campaign was carried out at CERN [6]. The design of the new PSdump
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was electromagnetically simulated to individuate the reasons of such a high impedance. The
design was modified in order to decrease the electromagnetic coupling between the beam and the
device. The operations of simulation and design modification were iteratively repeated until the
impedance of the PSdump was under the beam instability threshold [7, 8]. This paper, after the
presentation of the device geometry and materials, reviews the impedance of the last PSdump
design. Subsequently, it focuses on the impedance heating induced by the beam on the device.
Finally, it reports the results of a thermal simulation in a pessimistic scenario.

The device geometry is presented in Fig. 1. The main part of the dump is the dump core
(180×230×40 mm3) [4], made by two blocks of different materials: Copper Cromium Zirconium
(CuCr1Zr) and Graphite. They have to stop and absorb the particle beam. Inside the core, a
system of cooling pipes in stainless steel is hipped [9, 4] to the CuCr1Zr block. This boosts the
efficiency of the heating exchange between the dump core and its cooling pipes, in which water
flows at 22 ◦C. The dump core and the cooling system is mounted on a movable shaft. The
extremity of this shaft can rotate moving the core from its rest position to the working position,
i.e. the core is put into the beam trajectory so that the beam is completely absorbed (see Fig.
1 right). The core and its shaft are assembled into a vacuum vessel, as shown in Fig. 1 right.
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Figure 1. Design of the PSdump with nomenclature. Left: The vacuum vessel, the beam
propagation direction is highlighted, note that the beam is propagating along the z axis. Center:
The PSdump core, the blocks of Copper Cromium Zirconium (CuCr1Zr) and Graphite that have
to abosorb the PS beams. Right: assembly of the core inside the vessel in the rest position.
Note that the internal cavity of the moving shaft opens to the environment, thus, this cavity
contains air at room temperature.

2. Electromagnetic Simulations
As anticipated, an impedance minimization campaign was carried out for the device and it is
presented in [6]. Thus, this section discusses just the impedance results on the last PSdump
model with the aim of computing the induced RF-Heating. The impedance of the device was
estimated using the commercial software CST studio suite [10]. It is well known and widely
used at CERN for electromagnetic simulations [11]. Its Eigenmode solver [12] computes the
resonant frequencies (frn), the Shunt impedances (Rn) and the quality factors (Qn) of the nth
electromagnetic resonant mode in the PSdump. This data can be fitted with a Lorenzian function
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and summed up in order to obtain Z(f), the device impedance as a function of frequency f :

Z(f) =
n=∞∑
n=1

Rn

1 + jQn

( f
frn
− frn

f

) , (1)

where j =
√
−1. CST Wakefield solver [13] allowed to compute directly the impedance. The

impedance obtained from Wakefield and Eigenmode solver was compared as a benchmark and
little differences were found. In Fig. 2 the model used for electromagnetic simulation is shown.
In table 1 the value of the electrical conductivity for each material has been reported, along with
the other considered thermal physical properties. In Fig. 3, the results of the electromagnetic
analysis, that is the real part of the impedance obtained with the Eigenmode solver, which is
slightly more pessimistic than the one obtained trough the wakefield solver, is reported along
with the power spectrum and the normalized beam power spectrum (defined in the next section).

The impedance is characterized by strong resonant modes. This was expected due to the
geometry of the device that presents empty volumes. Unfortunately, these volumes are needed
for the functionality of the device and cannot be removed.

Table 1. Material Physical Properties at 25 ◦C

Material σc
[
S
m

]
k
[

W
Km

]
C
[

kJ
Kkg

]
ρ
[
kg
m3

]
SS 304L 1.34 · 106 13.3 0.48 7962
Graphite 1.00 · 105 24.0 0.71 2250
CuCr1Zr 5.96 · 107 401 0.39 8930
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Figure 2. CST model of the new PSdump. The vacuum vessel is represented as transparent.

3. RF-Heating
Well established results [14], show that the electromagnetic beam-equipment interaction causes
a total power deposition proportional to the square of the beam intensity and to the real part
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of the device impedance according to:

∆P =
(
f0eNbeam

)2p=+∞∑
p=−∞

| Λ
(
pω0

)
|2 Re

[
Z‖(pω0)

]
, (2)

where Nbeam is the beam intensity, e is the elementary charge, f0 is the revolution frequency
of the beam in the accelerator, ω0 = 2πf0, Λ is the normalized beam spectrum, |Λ|2 is the
normalized beam power spectrum (NBPS) and Re

[
Z‖
]

is the real part of the longitudinal
coupling impedance.

The beam structure, i.e. bunch length, bunch number and interbunch distance is constantly
changing into the PS. To compute the RF-Heating a worst case scenario approach was adopted,
i.e. the beam with the larger frequency spectrum which run into the machine for more than
0.5 s was considered among the PS beams. The parameters reported in table 2 represent this
scenario. The total beam intensity was set to Nbeam = 2.4 · 1013 protons. In Fig. 3 the NBPS
is reported.

Table 2. Bunch parameters selected for the impedance heating calculation, worst case scenario

Shape Length Interbunch γ N Bunches
(4σ) Distance

gaussian 30 [ns] 100 [ns] 27.74 18

Analysis of the beam dissipated power has also been performed in order to obtain the
dissipated power spectrum. A sensitivity analysis technique has been used, i.e. the resonant
modes’ frequencies have been randomly moved with respect to the initial value obtained by
simulations within a range of ±10 MHz to study the coupling between beam spectrum and
longitudinal device impedance. The power dissipated by every mode for an average case and
for a worst case scenario was computed. In Fig. 3 the worst case scenario is reported. At the
frequency values of the first resonant mode, 105 MHz, the NBPS is not totally null and there
is a small coupling with the real part of the impedance function, giving a dissipated power of
7mW. The power dissipated on the other modes can be considered almost negligible.
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Figure 3. Normalized beam power spectrum [adimensional units] (NBPS), dissipated power
spectrum and real part of the impedance. Colors refer to different scales.
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4. Thermal Simulations
The power dissipated on the device, around 7 mW, seems rather small. However, it has to be
taken into account that this power is flowing into the PSdump continuously while the beam is
circulating in the accelerator. In specific operational scenarios beams run for several hours in
the PS machine uninterruptedly. Thus, this rather small power is applied for a long period of
time. Further, it is crucial to know the areas in which this power fluxes into the device. Indeed,
if the flux is concentrated in small regions where no cooling system is present, also low values
of deposited power could increase appreciably the temperature. This could potentially lead to
material outgassing, ablation or even cracking. This last case can happen if the temperature
gradient between cold and hot zones is so large to generate intense mechanical stresses. Since
a dump is a critical component for an accelerator and because of the reasons listed above, the
analysis was carried out with thermal simulations.

The method exposed in [15] was used to obtain the map of the dissipated power on the
PSdump. It consists in interfacing two commercial software, CST studio suite and Ansys
mechanical [16] in order to compute the thermomechanical effects of the impedance heating.

Every mode below 1 GHz was considered and for each one of them a 3D dissipated power
map was obtained. All this contributions were summed up to compute the final power flux,
reported in Fig. 4. Only the flux on the core and the shaft has been reported being more than
95% of the total power deposited in the PSdump. Most of the power is deposited in the shaft
and in the cooling tubes.

Always considering a worst case scenario approach, a thermal steady state simulation was
run. It is implicit in the steady state simulation the assumption that the 7 mW are deposited
continuously till the equilibrium is reached. This is a pessimistic scenario because between the
extraction of a PS beam and the injection of a new one there is a time interval in which no beam
is circulating. Thus, no impedance induced power is deposited in the device.

The only simulated cooling mechanism was the convection on the internal surfaces of the
shaft, 5 W/Km2. The cooling system was ignored. This represents the case of a pump failure.
The temperature results are shown in Fig. 5. The maximum temperature increase is clearly
negligible being less than 1◦C. Thus, no drawbacks are expected.

Figure 4. Impedance induced power flux on the core and shaft.
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Figure 5. Core and shaft temperature at steady state.

5. Conclusions
The paper reports on the analysis done on the impedance heating effects for the new design of
the proton synchrotron dump. First, the results of the impedance simulations are discussed,
then the computed 3D induced RF-Heating map is presented. Finally, the thermal effects of the
impedance heating is estimated in a worst case scenario. The final findings predicts that the
RF-Heating does not generate any thermomechanical issue for the presented PSdump design.
Measurements of the device impedance are foreseen in order to benchmark the electromagnetic
simulations.
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