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Abstract. The measurement of the mental workload during real tasks by means 

of neurophysiological signals is still challenging. The employment of Machine 

Learning techniques has allowed a step forward in this direction, however, most 
of the work has dealt with binary classification. This study proposed to examine 

the surveys already performed in the context of EEG-based workload 

classification and to test different machine learning algorithms on real 

multitasking activity like the Air Traffic Management. The results obtained on 
35 professional Air Traffic Controllers showed that a KNN algorithm allows 

discriminating up to three workload levels (low, medium and high) with more 

than 84 % of accuracy on average. Moreover, in such realistic employment it 

emerges how important is to opportunely choose the set of features to ward off 

that task-related confounds could affect the workload assessment.   
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1   Introduction 

Reading the Special Issue for the golden anniversary of the “Multiple Resources 

and Mental Workload” theory of Christopher D. Wickens [1] allows to retrace the 

history of the concept of workload from the difficulty of its definition up to the need 

to measure it within Human Factors, passing through the definition of a workload 

model. In fact, since the ‘70s, when the term workload began to appear in scientific 

publications, several terms and definitions have overlapped and followed one another. 

The mental workload, mental effort and mental strain were the most widely used 

terms to define the relationship between the cognitive resources of a person who is 

required to perform a task and the difficulty of the task itself. One of the first 

definitions of workload was “the mental effort that the human operator devotes to 

control or supervision relative to his capacity to expend mental effort” [2]; another 

typical description define the workload as “the difference between the capacities of 

the information processing system that are required for the task performance to satisfy 

performance expectations and the capacity available at any given time” [3]. In each of 

the definitions given to the workload to date there is the term "capacity" which 

implies a finite amount of resources [1], in this case cognitive resources. The pool of 



cognitive resources referred to is not unique, but it is the set of different pools that 

allows to explain the link between performance and difficulty in the case of 

multitasking. In fact, many of the actions we perform are multitasking, such as 

observing a picture to describe it, talking while driving and typically multitasking 

activities such as those carried out in an aircraft cockpit. 

1.1   Multifaceted aspects of workload 

It is precisely in these safety-critical environments that the need to evaluate an 

operator's workload was firstly felt. In 1981, again Wickens pointed out that the 

development of increasingly complex technologies had radically changed the role and 

load to which an operator was subjected, leading to the dual need to exploit the model 

of multiple resources to optimize the processing of human operator information in the 

definition of tasks ("Should one use keyboard or voice? Spoken words, tones, or text? 

Graphs or digits? Can one ask people to control while engaged in visual search or 

memory rehearsal?"[1]) and measure the operator's workload. From that moment on, 

the measure of the workload has spread from the aeronautical [4][5], the educational 

[6][7] and to the clinical [8] fields. Even the aims of workload measurement have 

evolved: the ultimate goal in all environments is mainly the Workload Adaptation, the 

process of workload management to aid learning, healing or limiting human errors. 

Moreover, workload measurement affects both the design and management of 

interfaces. On the one hand, by testing the workload of subjects during the use of web 

interfaces [9], for example, it is possible to direct the design. On the other hand, in the 

field of adaptive automation, it is the continuous monitoring of the workload level of 

the subject that allows the system to vary the feedback in response to the mental state 

of the operator [10], [11]. 

1.2   Workload Measurements 

The workload of an operator can be measured in three ways: by administering 

questionnaires, analyzing the performance of a subject or through 

psychophysiological measures. Since the workload has different aspects (e.g. mental 

workload is different from physical workload) the questionnaires preferably used are 

multidimensional ones, such as NASA TLX [12] and SWAT [13]. However, these are 

subjective measures and require subjects to be trained in interpreting and judging their 

condition. Moreover, they can only be assessed after a task, not online. Similarly, 

performance measures do not represent a direct indicator of the workload status of the 

subject as they do not allow to know the amount of resources used and therefore the 

residual resources to reach that performance value [14]. Moreover, measuring 

performance on a task does not allow to obtain this measure of a differential nature 

(the remaining resources) so it is always necessary to use a secondary task. However, 

even the use of secondary tasks very often remains too closely linked to typical 

laboratory tasks and makes what really happens in multitasking implausible [15]. The 

main objective of neurophysiological measurements is to provide an objective and 

continuous, as well as an online measurement of an operator's workload. Thanks to 



the possibility of making neurophysiological measures less and less intrusive, so far 

have been correlated with workload values almost all neurophysiological known 

measures like the Electrocardiogram (ECG), the Eye movements, the Pupil diameter, 

the Respiration, the Galvanic Skin Response (GSR) and the brain activity. 

Summarizing the evidence, the ECG, the GSR and the ocular activity measurements 

highlighted a correlation, not only with workload, but also with different mental states 

like stress, mental fatigue, drowsiness. Therefore, they were demonstrated to be useful 

and robust only in combination with other neuroimaging techniques directly linked to 

the Central Nervous System (CNS), that is the brain [16]. Consequently, the 

electroencephalogram (EEG) and the functional Near-Infrared Spectroscopy (fNIRS) 

as measures of the brain activity, are the most likely candidates that can be 

straightforwardly employed to monitor the workload in real environments [17]. 

Between the two, the EEG is usually preferred for the workload assessment for its 

high temporal resolution. Moreover, it has been proved that EEG features provide 

higher accuracy respect to ECG and GSR ones [18], [19].  

The electroencephalogram is the measure of brain electrical activity that in a non-

invasive way can be performed by means of electrodes placed on the scalp. To date, 

there has been a strong improvement in technology oriented towards minimally 

invasive systems, with few electrodes, and possibly, dry electrodes [20]. The analysis 

of EEG signals is usually aimed at studying the variance of the spectral power in the 

conditions of interest. In the case of Workload, it has emerged that a higher task 

demand corresponds to an increase in frontal theta band activity and a decrease in 

parietal alpha band activity [16]. 

1.3   Machine learning to get back out-of-the-lab  

Therefore, the concept of workload was born for practical needs, has been modeled 

in the laboratory essentially using dual-task procedures, but then the need to measure 

it in realistic contexts as in operational, educational and clinical returns 

overwhelmingly. The practical implications of applying a workload measurement in a 

realistic environment define the characteristics that an automatic workload 

measurement system must have. Firstly, especially in the applications in real 

environment, it is difficult to create a direct link between the mental state of the 

subject and his brain activity, or more generally his physiological state since there is 

no control condition typical of the laboratory. The employment of secondary 

cognitive task (e.g. the n-back) during real activities does not fit the realistic 

conditions and may increase the actual workload level [21]. Moreover, because of the 

high individual variability of physiological responses, traditional statistical tests are 

not able to discover the relationship between cause and effect, so it is necessary to 

employ techniques that allow to take into account the individual characteristics to 

correctly define the level of workload, such the machine learning techniques [22]. 

Such methods allow to extract the features mostly influenced by the mental state 

variation, and then use this information to classify the specific workload level. 

Secondly, since by definition the workload is linked to the performance by the 

inverted “U” model[23], the ideal would be to be able to distinguish at least 3 levels 

of workload, one suboptimal that concerns the workload too low, one optimal, and the 



threshold that defines the overload condition. However, most of the work in literature 

is limited to classify two levels of workload, the low and high. In these cases, the 

levels of accuracy reached are generally very high, greater than 80% [18], [22], [24]–

[29]. Much less are the examples of multiclass-classification[17], whose highest 

number of workload levels classified has been 7 [30] and, almost all, have been 

obtained by means of n-back and arithmetic tasks in a laboratory context[31], [32]. In 

this context, the majority of methods used to define the level of mental workload of a 

subject are supervised machine learning techniques. The process that leads from the 

recording of EEG signals to an indication of the workload level passes through the 

use of signal analysis methods that allow to extract the informative features of the 

phenomenon to be investigated. Regarding the measurement of the workload have 

been used in several studies both spectral, temporal and spatial features [33]. The use 

of spectral features remains the most suitable for the temporal continuity required by 

the workload monitoring, since the brain activity induces variations in its spectral 

power which, unlike ERPs used for time domain analysis [34], does not need to be 

triggered with a certain timing [35]. Taking into account the nature of the features, 

there are countless different examples of configurations, in terms of number of 

channels and frequencies used in the literature. The number of electrodes can vary 

from 64 [24], [36] to 6 [37], and even the bands considered vary from 2 (Theta and 

Alpha, [9]), to 7 (0–4 Hz, 4–7 Hz, 7–12 Hz, 12–30 Hz, 30–42 Hz, 42–84 Hz, 84–128 

Hz [38]), up to considering all the single frequency bins that define the spectrum [39]. 

Several studies have shown that it does not necessarily take more than 5-10 electrodes 

to classify the workload [24]. Especially when dealing with a high number of 

channels and high spectral resolution, the number of used features increases 

exponentially and leads to the so-called "curse of dimensionality"[40]. Many 

researchers have therefore highlighted the need to make a selection of features both to 

decrease the computational cost of machine learning algorithms and to use this as 

additional information in experimental setups. In fact, if the analysis shows that some 

electrodes are not useful for the classification of the workload, it is possible to remove 

them and then make the instrumentation lighter and less invasive. In this case the 

most used methods for the selection of features are those recursive, such as recursive 

feature elimination [18], [41], sequential forward feature selection [24] or methods 

that take into account the dependence between features such as the Minimum 

Redundancy Maximum Relevance selection [37], [42], [43], or unsupervised method 

(Locally linear embedding, [44]). Once defined a meaningful set of features, it is 

necessary to choose a model to define the workload level. In the literature 

innumerable algorithms, essentially of a supervised nature, have been used to define 

the workload level of a subject starting from his brain signals, belonging to both the 

so-called Shallow learning and deep Learning domains [45], [46]. In all cases the 

efficiency of such algorithms is usually presented in terms of accuracy. However, the 

accuracy obtained in different studies are not directly comparable, since the 

calculation of accuracy includes several factors like the task employed to elicit the 

workload, the number of subjects and the number of EEG signals recorded (and also 

the kind of instrumentation employed), the features extracted, the methods used to 

eventually select them and, only at the end, the algorithm used to classify the 

workload. Only taking into account all this information, it could be possible to 



compare the results obtained so far in different works employing machine learning 

techniques to classify the level of workload. 

Leveraging on the theoretical comparison of the works done so far with regard to 

the classification of the workload through electroencephalographic signals, it is 

necessary to highlight an issue. In any case, starting from a very large set of features 

or making a blind selection of them, very high accuracy of classification could be 

obtained. However, it could not be directly associated with a change in the workload 

level. To be sure that the system has actually classified workload, it is therefore 

necessary to perform two fundamental actions. Firstly, it is necessary to perform an 

excellent calibration of the machine learning algorithm avoiding task-related 

confound, like for example movements or the influences of other mental states. 

However, during a real task that is typically highly multitasking, it may not be 

possible to perform a rigorous calibration of the system, as the ideal conditions 

provided by the typical control conditions of the laboratory task are lacking. 

Therefore, in these cases the calibration could be dirtied by task-related confounds. 

To solve this problem cross-task calibration has been proposed, but the results 

produced so far have not shown that it is possible to use a laboratory task to 

effectively classify a real task and the performance is much lower than that obtained 

in a within-subject condition [41]. Secondly, it should be preferred a careful selection 

of features related to the phenomenon, and possibly not to the other mental state 

variations, respect to a blind one. In the case of workload, for example, many works 

have identified in the activity of the frontal brain areas in the theta band and parietal 

areas in the alpha band [47] the most informative features. Even more accurately, [30] 

have carried out a selection of the channels through source localization analysis, and 

it has been possible for them to classify 7 levels of workload.  

Therefore, the practical aim of this work is to provide a comparison of five 

different machine learning algorithms and two different sets of EEG features to 

discriminate three different levels of workload during a real task of Air Traffic 

Management. The Air Traffic Management (ATM) is a highly multitasking activity. 

In fact, air traffic controllers are continuously engaged in visual activities (airplane 

control on the radar) and auditory (as they communicate with the pilots of different 

aircrafts). The ATM represents one of the fields where the evaluation of workload has 

a fundamental role both in training aspects and in operational conditions[48], [49]. In 

fact, it has been established that it is a high demanding work during which the 

slightest error could have very ominous effects [50]. Changes in the traffic 

manipulation, complexity or volume, produced changes in mental resources required 

and therefore in workload. In ATM domain, different tasks have been used to 

investigate workload changes and to create a workload index based on biosignals, 

even though most of the results are related to laboratory environment. However, the 

present study takes advantages of realistic task in a highly realistic context and of 35 

professional Air Traffic Controllers. 



2   Methods 

2.1   Experimental Protocol  

An experimental protocol with high realistic ATM scenarios has been settled up. 

The controller position is similar to the ones used in the real operational center. The 

controller working position has two screens, one 30" to display radar image and a 21" 

to interact with the radar image (zoom, move, clearances and information) and the 

voice communication between controller and pseudo-pilot uses the same hardware 

and software like the one used in training (headphones, microphone and push-to-talk 

command), very similar to what normally used into operations. The radar picture 

shows the sector (light grey), routes, waypoints and flights displayed according to 

their coordination state (white ones are assumed). Information on neighbor flights is 

displayed in the list. The experimental task consists in an ATM scenario in which 

different air-traffic conditions take place. For instance, the task could start with an 

increasing traffic complexity until a hard condition, and then decreasing until a 

condition similar to the initial one by passing through a medium complexity 

condition. The variation of the task complexity is necessary to evaluate if the system 

is able to differentiate the different workload levels. Each scenario lasts globally 45 

minutes, while each session of low (L), medium (M) and high (H) workload level 

lasts about 15 minutes. The different levels of traffic, defined by subject matter 

experts (SME), vary according to the number of aircrafts, traffic geometry, the 

number of conflicts and subjective assessment of controller’s skill. Three different 

scenarios have been proposed, with compatible events in order to induce the three 

mentioned difficulty levels (Easy, Medium, Hard), but not exactly the same, to not 

induce habituation or expectation effects on the experimental subjects. The 

experimental protocol involves 35 professional ATCOs. ATCOs have been selected in 

order to have a homogeneous sample in terms of sex, age and expertise. Sixteen EEG 

channels (FPz, F3, Fz, F4, AF3, AF4, C3, Cz, C4, P3, Pz, P4, POz, O1, Oz, O2) have 

been recorded by the digital monitoring BEmicro system (EBNeuro system) with a 

sampling frequency of 256 Hz. All the EEG electrodes have been referenced to both 

earlobes, and the impedances of the electrodes have been kept below 10 kΩ. 

2.2   Signal Processing 

The EEG signals have been digitally band-pass filtered by a 4th order Butterworth 

filter (low-pass filter cutoff frequency: 30 Hz, high-pass filter cutoff frequency: 1 Hz) 

and the Fpz signal has been used to correct eyes-blink artifacts from the EEG data by 

means of the Reblinca algorithm [51]. It should be underlined that normally in a 

realistic environment, different sources of artifacts could affect neurophysiological 

recorded signals, more than in the laboratory environments. For instance, ATCOs 

normally communicate verbally and perform several movements during their 

operational activity. Then each trial having an amplitude exceeds 100 µV (threshold 



criteria), or the slope trend higher than 3, or a sample to sample difference higher than 

25 µV have been marked as “artifact” and then rejected, with the aim to have clean 

EEG signals from which estimate the brain parameters for the different analyses. The 

aforementioned parameters and related techniques have been set following the 

methodology available on the EEGLAB toolbox [52].  

2.3   Features extraction 

The EEG signals have been segmented in periods of 2 seconds, 0.125 seconds 

shifted. After that, for each period, the power spectral density (PSD) by using the Fast 

Fourier Transform has been computed in the Theta and Alpha frequency bands 

because it has been stated that they are the most related to workload effects[9], [47]. 

The EEG frequency bands were defined accordingly with the Individual Alpha 

Frequency (IAF) value estimated for each subject. Since the alpha peak is mainly 

prominent during rest conditions, the participants were asked to keep the eyes closed 

for a minute before starting with the experiment. In particular, the theta and alpha 

bands have been respectively defined as (IAF-6 ÷ IAF-2) and (IAF-2 ÷ IAF+2). Two 

different sets of features have been considered. In the first case, the PSD values in the 

theta and alpha bands have been computed for 14 EEG electrodes, to imitate what is 

usually done in several studies in literature [9], [41], [43], [53]. In this work, 28 PSD 

Features (14 Channels x 2 Bands) have been computed. The second set consisted of 9 

features, 5 describing the frontal theta activity and 4 the alpha parietal activity. These 

features have been chosen according to the literature, because it is proven these are 

the features most correlated to workload [6], [47]. In both cases the features have 

been normalized because the differences in ranges affect the calibration and the 

functioning of some algorithms [54] (e.g. K nearest neighbor). 

2.4   Machine Learning Algorithms 

Five different machine learning techniques have been employed to discriminate 

between three different levels of workload (i.e. Low, Medium and High level). The 

starting dataset shows balanced classes (6000 instances per class) and has been used 

in a within-subject manner, as this approach is allowed in case of long-lasting 

recordings of a single subject. The total amount of occurrences available for each 

subject has been divided in an optimization set, which occurrences have been used for 

the optimization of model parameters by using grid search and 3-fold cross validation, 

and an evaluation set, where the performance of the algorithms have been evaluated 

computing the accuracy through 5-fold cross-validation. Optimization and evaluation 

of machine-learning techniques have been computed by Phyton Scikit-learn 

library[55]. In particular five different techniques have been trained to cover a wide 

range of algorithms types: a regression-based method (the multinomial logistic 

regression), a linear method without any optimization procedure (LDA), a linear 

classifier with a cost parameter (SVM), an instance-based method (the k nearest 

neighbor) and an ensemble method (the Random Forest).  



Logistic Regression (LR) is a model used for the prediction of the probability of 

occurrence of an event. In this case it has been used in its multiclass configuration, the 

multinomial logistic regression and the value of l2 penalization has been chosen in the 

log space between -3 and 3  

Linear Discriminant Analysis (LDA) is a linear algorithm that allows to create 

hyperplanes in n-dimensional space according to the number of features, to 

discriminate 2 or more classes. Its advantage is that it has not any parameter to 

optimize, however, it could finally try to describe only linear problems. 

Support Vector Machine (SVM) is a supervised algorithm that allows to create 

hyperplanes in n-dimensional space according to the number of features, to 

discriminate 2 or more classes. It could be a linear or nonlinear classifier (or 

regressor) according to the employed kernel. In this case it has been used a linear 

kernel in a multiclass configuration using the Crammer and Singer method () and the 

optimal cost parameter has been chosen in a log space between -3 and 3 

K- Nearest Neighbor (KNN) is a nonlinear instance-based algorithm. Its main idea is 

to predict the class on the basis of the distance between the observation and the first k 

neighbors and does not assume a priori the distribution of the dataset. The advantage 

of this algorithm is that it is optimized locally, and it is not affected by the complexity 

of the entire phenomena. The weakness is that the computational cost could be as high 

as the amount of features increase. Only the number k of neighbors has been chosen 

in a range from 1 to 20. 

Random Forest Classifier (RF) is a nonlinear classifier [56] belonging to the 

ensemble methods. This family of classifiers allows to generalize well to new data 

[57] and are more robust to overfitting than individual trees because each node does 

not see all the features at the same time[56]. Several parameters could be optimized, 

however, in this case only the number of trees ([10,100,200]) have been chosen.  

In the latter case, the algorithm allows also to obtain the information related to the 

feature importance that could be used to explain how the model is affected by each 

feature. Therefore the topographies showing the feature importance in the case of 28- 

feature and 9-feature sets have been compared. 

3   Results 

The classification results for both sets of features are shown in Fig 1 and 2. Each 

box plot represents the value of the accuracy of the population, while the single mean 

value of the accuracy obtained for each subject is shown in the black dot. The 

Friedman test has been performed to statistically assess if there is any significant 

difference between the algorithms, because the sphericity requirement was not met for 

both conditions (Mauchly’s test p<10-4). For the 28-feature set the Friedman test 

provided χ2 (N=35, df=4)=123.0171 (p<10-4) and for the 9-feature set χ2 (N=35, 

df=4)=126.2857 (p<10-4). The multiple comparison Bonferroni corrected has been 

performed and the results are shown in Table 1. In both cases the mean accuracy 

provided by the KNN is significantly higher than all the other algorithms. The 

Random Forest provided significantly higher accuracy than the LR, LDA and SVM. 

Such 3 methods did not show significant differences in their performances when the 



28-feature set was used, while the SVM performed significantly worse than the other 

algorithms when 9 features were used. In Fig 3 are shown the topographies of the 

feature importance computed with the Random Forest algorithm for theta and alpha 

band. The values have been normalized. The scalp maps show that the most important 

features are the central and occipital PSD values in alpha band in the case of 28-

feature set and the parietal activity in alpha band in case of the 9-feature set. 

 

 

Fig. 1. Accuracy distribution for each algorithm in case of 28 features. The black  

dots represent the accuracy value for each subject. 

  

 

 



 

Fig. 2. Accuracy distribution for each algorithm for 9-feature set. The black  

dots represent the accuracy value for each subject. 

  

Fig. 3. Topographies of Feature importance according to Random Forest algorithm  

in theta and alpha band. In the first row are represented the results for 28 features and 

in the second row for 9 features.  



Table 2.  Mean accuracies and standard deviation for each algorithm and multiple 

comparison p-value (Bonferroni corrected). When the results for the two sets of 

features are different both p-value have been reported. 

 Accuracy (%) p-value 28-Feat/9 Feat 

Algorithm 28-Feat 

Mean (SD) 

9-Feat 

Mean (SD) 
LR LDA SVM KNN RF 

LR 49.176 

(6.74) 

43.096 

(5.72) 

 1.000 0.874/ 

10-7 

0.000 0.000 

LDA 47.889 

(5.74) 

42.645 

(4.88) 

1.000  1.000/ 

4.9*10-5 

0.000 0.000 

SVM 47.645 

(7.57) 

39.914 

(6.55) 

0.874/ 

10-7 

1.000/ 

4.9*10-5 

  0.000 

KNN 84.947 

(5.05) 

62.112 

(3.98) 

0.000 0.000 0.000 0.000 0.000 

RF 78.214 

(4.68) 

58.617 

(4.57) 

0.000 0.000 0.000 0.000  

 

4   Discussion 

This work aims to classify three different levels of workload during real 

multitasking activities like the ATM. According to the theory, a correct modulation of 

the workload in a laboratory environment should be based on a dual task to allow an 

evaluation of the subject's residual cognitive resources and consequently, by 

definition, of his workload. However, in a real environment, it is very difficult to 

integrate a control condition, as well as to take into account the variability underlying 

cognitive phenomena both intra and inter subject. Therefore, the application of 

Machine Learning has been considered the solution for classifying the workload and 

overcoming these issues typical of real applications. The preliminary analysis of the 

works carried out so far in this context has shown that it is possible to discriminate 

with acceptable accuracy only two levels of workload  [6], [18], [22], [24], [25], [27]–

[29], [33], [36]–[39], [42], [45], [46], [58], even though, above all in view of a 

practical application of the workload measurement, it is necessary to establish at least 

the value of two thresholds to define the underload and the overload state. The most 

frequently employed features are the spectral ones, because they can be calculated 



with a high temporal resolution (up to one second) and allow to monitor brain activity 

in a quantitative manner without temporal triggers. Therefore, in this work the values 

of the PSD calculated in time windows of 2 seconds have been used, averaging the 

values of PSD in each band to limit the number of features and keep at the same time 

under control the collinearity[59]. Due to this condition, in fact, the information 

provided by very close frequency bins could be superimposable, which would lead to 

introduce a bias in the creation of the model. Since the number of observations 

available is in the order of thousands, it was decided not to use any feature selection 

algorithm, but to provide a posteriori information on the feature importance. One of 

the chosen algorithms, the Random Forest, allowed to have this information. Taking 

advantage of this potentiality, it has been highlighted that the most discriminating 

features of the concerned model are in the alpha band. In particular, when the higher 

number of features has been used, the most important features cover the central and 

occipital brain areas. This aspect can be explained considering that the alpha band 

intervenes twice in the considered task. In fact, in the alpha band it is possible to find 

both the motor alpha pattern, due to the activity of the sensorimotor area and 

generally strongly lateralized [60], and the pattern associated to the visual area. This 

set of features is not directly referring to the typical workload topographies, whose 

purpose is to measure the net of cognitive resources used by the subject, but rather 

these features provide the information derived from the movements of the subjects to 

define the level of workload imposed by the task itself, which does not necessarily 

correspond to that perceived by the subject. On the other hand, when only frontal 

theta and parietal alpha features have been used, the most important features are 

related to parietal activity, that is usually associated with the attentional alpha pattern 

that reflects the increase of brain activity in areas afferent to the posterior attentional 

networks [60]. Therefore, it has been demonstrated that, especially when the task is 

real and the algorithm does not take advantage of a rigorous calibration to avoid the 

task related confounds, the role of the features chosen a priori becomes essential and 

recalls the concept of "no free lunch" [61] in machine learning: the necessity to use 

prior knowledge to optimize the algorithm functioning, but at the cost of generality. 

However, it is necessary to highlight that reducing the number of features there is a 

decreasing in the performance of each tested algorithms. In fact, to classify three 

levels of workload it was decided to test different algorithms of machine learning, 

which in the first place can be divided into two categories: regression and 

classification. Among the classifiers, we can further distinguish linear (LDA and 

SVM) and non-linear (KNN and RF) methods. Although regression has been 

proposed as a method that avoiding the strict equality between classes allowing to 

have higher performances, especially in case of cross-task classification [41], it 

provided an accuracy value equal to 50%, but still higher than the chance (33.33%). 

On the other hand, linear methods both in the case of optimization (SVM) and in the 

case of non-optimized method (LDA) provided significantly lower accuracy than 

nonlinear methods. The linear methods are appropriate when limited data and limited 

knowledge about the data itself is available[62]. However, a linear classifier does not 

work well in the presence of strong noise or outliers, if the dimensionality of the 

features space is too high, if regularization was not done well or the problem is 

intrinsically non-linear [17]. If there are large amounts of data, non-linear methods are 

suitable to find potentially complex structure in the data. In this work the KNN not 



only provides the highest accuracy (84%), but it also has different advantages: it is a 

method that does not require the calculation of the covariance matrix as in the case of 

the LDA and is therefore mathematically very simple [57]. On the other hand, it does 

not need time for training (because it just memorizes the training set) and then could 

be used for an online application when there are a few features. In fact, in the case of 

a large number of features this method does not allow to easily manage those 

irrelevant and at the same time becomes computationally expensive to calculate the 

distance. In addition to the high accuracy provided, even the choice of Random Forest 

as classifier in realistic multitasking could be advantageous essentially for two 

reasons. First, because it is an ensemble method, it tends to generalize well and is not 

subjected to overfitting, Second, it allows to have the information regarding the 

feature importance, that increase the possibility to know what the system is actually 

classifying. However, the final choice of a classifier should be made after a systematic 

evaluation of other different performance parameters, such sensitivity, specificity, 

recall and precision. 

5   Conclusion 

With this work it has been proved that it is possible to reach very high accuracy to 

distinguish between three levels of workload during a real task only by using the EEG 

signals. However, according to the literature the high accuracy is only one of the 

optimal characteristics required for an out-of-the-lab classifier besides the none or at 

most few data samples for training the classifier and higher temporal reliability. 

Therefore, several other questions need to be pointed out in realistic contexts. 
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