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We analyze some relevant semiclassical and quantum features of the implementation of polymer
quantum mechanics to the phenomenology of the flat isotropic Universe. We firstly investigate a
parallelism between the semiclassical polymer dynamics of the flat isotropic Universe, as reduced to the
effect of a modified simplectic structure, and the so-called generalized uncertainty principle. We show how
the difference in the sign of the fundamental Poisson bracket is reflected in a sign of the modified source
term in the Friedmann equation, responsible for the removal of the initial singularity in the polymer case
and for the survival of a singular point in the Universe past, when the generalized uncertainty principle is
concerned. Then, we study the regularization of the vacuum energy of a free massless scalar field, by
implementing a second quantization formalism in the context of polymer quantum mechanics. We show
that from this reformulation naturally emerges a cosmological constant term for the isotropic Universe,
whose value depends directly on the polymer parameter of the regularization. Finally, we investigate the
behavior of gravitational waves on the background of a modified dynamics, according to the semiclassical
Friedmann equation. We demonstrate that the presence of a bounce in the Universe past naturally removes
the divergence of the gravitational wave amplitude and they can, in principle, propagate across the
minimum volume turning point. This result offers an intriguing perspective for the detection of
gravitational signals coming from the pre-big-bounce collapsing Universe.
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I. INTRODUCTION

Modern quantum gravity approaches are mainly based
on the use of Ashtekar-Barbero-Immirzi variables [1,2],
which constitute the starting point for the construction of
loop quantum gravity theory [3,4]. The main success
obtained by this reformulation of the quantum gravitational
field morphology is, from a phenomenological point of
view, the derivation of a big-bounce cosmology [5,6]. In
fact, despite the minisuperspace model associated with
homogeneous cosmological universes [7] prevents a full
implementation of the SUð2Þ symmetry, at the ground of
the discretization of the geometrical operators (areas and
volumes) [8,9], a notion of cutoff on the Universe volume
and then a maximum critical density for the Planck era is
recovered with a suitable procedure, recovering the general
theory prescription and formalisms.
Actually, the regularization procedure of the minisuper-

space dynamics allows the construction of semiclassical
equations for the Universe evolution, which turns out to be
closely related to the metric approach in the polymer
representation of canonical quantization [10]. In particular,
in [11], the cubed scale factor, i.e., the Universe volume,
has been identified as the natural variable in which the
correspondence between the two semiclassical theories
(i.e., semiclassical loop cosmology and semiclassical

polymer dynamics) are better linked to each other. In fact,
for such a choice, the polymer parameter (the discretization
step of the cubed scale factor) turns out to be directly linked to
the Immirzi parameter. The peculiarity of such a configura-
tional variable choice relies on the possibility to define a
critical density depending on fundamental constants only,
exactly like in loop quantum cosmology. For a discussion on
the use of the cubed scale factor in more general cosmo-
logical models, like the generic inhomogeneous solution,
see [12] and on the different phenomenological issue in the
mixmaster chaos of Bianchi IX, see [13].
In this paper, using the polymer quantum mechanics

framework, we study the phenomenology of the flat
Robertson-Walker geometry, by adopting the cubed scale
factor as configurational variable.
In particular, we consider three different questions: one

of conceptual relevance about the meaning of polymer
quantum mechanics on a perturbative level, and two
phenomenological implications concerning the vacuum
energy of a massless scalar field (i.e., the value of the
cosmological constant as vacuum energy) and the propa-
gation of gravitational waves through the big bounce.
Firstly, we study the semiclassical polymer dynamics on

a perturbative limit, when the cutoff parameter is small
enough and the modified Hamiltonian formulation can be
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restated as a standard Hamiltonian constraint associated
with modified Poisson brackets. This analysis puts the
semiclassical polymer dynamics on the same level of
the so-called generalized uncertainty principle [14], with
the nontrivial difference of a sign on the right-hand side
of the brackets [15]. The polymer and generalized uncer-
tainty principle reformulations can then be seen as the
phenomenological low-energy limit of, respectively, loop
quantum cosmology [16] and string theory [14,17–19],
implemented as a modified simplectic structure.
We study the behavior of the flat isotropic Friedmann-

Robertson-Walker Universe (dominated by radiation and
stiffmatter, respectively) for both the casesmentioned above,
demonstrating that, while in the polymer approach the
singularity is still removed as in the exact (nonperturbative)
case, the generalized uncertainty principle dynamics is still
associated with a big bang, i.e., the cosmological singularity
survives. Furthermore, analyzing the structure of the
Friedmann equation in these same cases, we show that they
coincide, respectively, with those of exact polymer semi-
classical mechanics (i.e., semiclassical loop quantum cos-
mology) and brane cosmology approach, when the Universe
density is sufficiently small with respect to the critical one.
Hence, we restrict our attention to the exact polymer

quantum physics only and, as a first step, we study the
vacuum energy of a massless scalar field living on the flat
isotropic Universe. Despite a complete scheme of second
quantization of the field being forbidden because it is no
longer possible to define suitable creation and annihilation
operators, we demonstrate that, due to polymer regulari-
zation, the vacuum energy no longer diverges. This result
provides a nonzero cosmological constant to the Universe
dynamics, whose value is, however, dependent on the value
of the discretization parameter. A discussion of the possible
fine-tuning required to deal with a “dark energy candidate”
is developed, but, for a Planckian discretization step,
the resulting values of three dimensionless parameter of
the model are still very peculiar. This investigation on the
vacuum state of a free massless scalar field has an important
conceptual value, since it demonstrates that a cosmological
constant rigorously emerges in the polymer quantum
mechanics framework. However, we do not identify a
mechanism for the reduction of the cosmological constant
value to the actual one. A qualitative implementation of the
upper limits for a polymer cutoff on the physical space [20]
provides a vacuum energy density many orders of magni-
tude greater than the one requested by the Universe
acceleration. We can only stress that the calculated ground
state of the scalar field Hamiltonian function is not a state
for the quantum dynamics of the system and, therefore, we
dynamically have to deal with a time dependent expectation
value on the vacuum state of the scalar field.
The analysis of the gravitational wave propagation on a

bounce cosmology offers a new point of view on the
possibility to observe pre-big-bounce features. In fact, the

presence of the bounce regularizes the wave amplitude
which no longer diverges as in the big-bang model. Thus, it
is, in principle, possible that gravitational waves produced
in the collapsing Universe remain in linear regime across
the bounce and they could be today detected. In particular,
we study the polymer deformation of the wave spectrum
and consider the propagation of peaked wave packets, i.e.,
burst signals. It is interesting to notice that, in the limit of
wavelengths of the ripples that are large with respect to the
cutoff parameter, the standard properties [21] are recovered.
In other words, the gravitational wave morphology is
sensitive to the discretization parameter, although it lives
in the configurational space and not in the physical one.
The point is that the discretization of the scale factor of the
Universe is clearly reflected on the nature of any physical
spatial scale, including the physical wavelength.
The paper is structured as follows. In Sec. II we

present the standard Friedmann-Lemaître-Robertson-
Walker (FLRW) cosmological model in its Hamiltonian
formulation, using as configurational variable the volume
V ¼ a3. In Sec. III we introduce the polymer representa-
tion of quantum mechanics in the momentum polariza-
tion; moreover, we present a way to treat both quantum
and semiclassical states in the polymer framework. In
Sec. IV we analyze the FLRW Universe in the polymer
framework, firstly with an “exact” approach, and secondly
in a perturbative approach, confronting the latter with the
generalized uncertainty principle approach. In Sec. V we
recall the theory of the quantum harmonic oscillator in
polymer representation and then we evaluate the vacuum
energy density for a massless scalar free field in a flat
FLRW background in the polymer framework. In Sec. VI
we discuss how, in terms of the semiclassical formulation
of polymer quantum mechanics, the introduction of a
cutoff regularizes the amplitude of gravitational waves
propagating through a flat FLRW universe. We also study
the spectrum of such waves and the time evolution of a
Gaussian wave packet and we compare it to the classical
case. Finally, in Sec. VII we sum up the main result of the
paper with concluding remarks.

II. STANDARD COSMOLOGY

The standard cosmological model relies on the
Friedmann-Robertson-Walker isotropic and homogeneous
expanding Universe. This model is based on the cosmo-
logical principle (i.e., at large scales the Universe is
isotropic and homogeneous, as confirmed by the cosmic
microwave background spectrum), on the perfect fluid
approximation of the matter-energy content and on general
relativity, and its geometry is described by the Robertson-
Walker metric:

ds2 ¼ dt2 − a2ðtÞ
�

dr2

1 − Kr2
þ r2dθ2 þ r2sin2θdφ2

�
; ð1Þ
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where aðtÞ is the scale factor through which the whole
expansion history of the Universe is parametrized. Our
study will be focused on the flat Universe, so from here on
we will use K ¼ 0. Besides, we will use natural units
ℏ ¼ c ¼ 1.

A. Cosmological dynamics

The evolution of the Universe is described by cosmologi-
cal equations, which are derived by using themetric (1) in the
Einstein equations, together with the energy-momentum
tensor of the perfect fluid TPF

μν ¼ diagðρ;−P;−P;−PÞ.
The 00-component of Einstein equations results in the first
Friedmann equation:

H2 ¼ _a2

a2
¼ χ

3
ρ; ð2Þ

which describes the relative velocity of the expansion as
function of the matter-energy density of the Universe. Here
χ ¼ 8πG is the Einstein constant.
The jj-components are all equivalent and, combined

with Eq. (2), reduce to the second Friedmann equation, also
known as the acceleration equation:

2
ä
a
¼ −

χ

3
ðρþ 3PÞ; ð3Þ

which describes the relative acceleration of expansion.
Finally, combining these two Friedmann equations, the

continuity equation is obtained:

_ρ ¼ −3
_a
a
ðρþ PÞ: ð4Þ

It can be solved by using a polytropic constant equation of
state P ¼ ωρ, where ω is a parameter that can take values in
the interval ω ≤ 1 (greater values would result in a super-
luminal sound velocity and are therefore nonphysical).
The solution is ρðaÞ ¼ ρ0a−3ð1þωÞ and it holds even with
the semiclassical modifications that we will apply in the
following chapters [11].
These three equations completely describe the dynamics

of the Universe. Actually, since any one of the three can be
derived from the other two, only two of them are strictly
necessary. Usually in the literature the first Friedmann and
the continuity equations are chosen.

1. The content of the Universe

The matter-energy density ρ that appears in the first
Friedmann equation (2) receives contributions from differ-
ent kinds of cosmological fluids, each characterized by its
own value of the polytropic parameter ω:

ρðaÞ ¼
X
i

ρiðaÞ ¼
X
i

ρ0a−3ð1þωiÞ; ð5Þ

where the subscript i indicates the type of fluid: we have
ωsm ¼ 1 for stiff matter, ωr ¼ 1

3
for radiation, ωm ¼ 0 for

baryonic matter, and ωΛ ¼ −1 for the cosmological con-
stant (note that this is also the minimal physical value,
because smaller values predict weird phenomena).
However, since each contribution makes the others negli-
gible for certain values of aðtÞ, the thermal history of the
Universe is usually divided into different “domination” eras
during which only the relevant fluid is considered. For
example, near the singularity only stiff matter and radiation
are relevant, while observations lead us to believe that
today’s Universe is going through a cosmological constant
era. This case of negative pressure is rather interesting, and
will now be expanded upon.

B. The cosmological constant problem

The acceleration equation has been written in Eq. (3).
From this equation, one can deduce that the Universe
decelerates during its expansion if ρþ 3P > 0, while it
accelerates if ρþ 3P < 0.
The first condition seems to be always satisfied by

ordinary fluids. Yet, in 1998, two independent groups, led
by Riess [22] and Perlmutter [23], showed that the Universe
is actually accelerating during its expansion.
The discovery may lead to two different conclusions:

(a) it might be wrong to use general relativity because the
dynamics is modified [24];

(b) there could be a component of the Universe with a
unusual equation of state, such as

P < −
1

3
ρ; ð6Þ

which is currently dominating the Universe dyna-
mics [25].

Without considering corrections to general relativity, one
can justify the measured acceleration of the Universe by
adding a cosmological constant Λ in the Einstein field
equations:

Gμν − Λgμν ¼ χTμν: ð7Þ

If one shifts this new term to the right-hand side as
proposed by Weinberg in [25], it is interpreted as a physical
phenomenon and not as a bare property of space-time. The
field equations become then

Gμν ¼ χðTμν þ ρΛgμνÞ; ð8Þ

where ρΛ ¼ Λ
χ is the energy density related to the cosmo-

logical constant, and it is such that

Tμν
Λ ¼ −Pgμν ¼ ρΛgμν ð9aÞ

and from the continuity equation (4) we obtain
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_ρΛ ¼ 0 ð9bÞ

and thus ρΛ is a constant energy density.
Before the first evidence of acceleration of the Universe,

the strong observational upper bound, i.e., Λ < 10−120, led
many particle physicists to suspect some fundamental
principle to exist, in order to have Λ ¼ 0, as discussed
in [26]. Such a principle does not exist and the attempt to
set the cosmological constant to zero has failed.
Many tried to explain the presence of a constant energy

density as the result of the vacuum state of the quantum
fields that fill the Universe. This approach leads for the
scalar field to

ρΛ ¼ k4max

16π2
; ð10Þ

where kmax is the momentum cutoff, i.e., the energy scale at
which the theory is believed to lose its validity. It can be
estimated as the Planck energy, being widely believed that
Planck length is the scale at which both gravitational and
quantum effects need to be simultaneously taken into
account. With this assumption, ρΛ is 10122 times bigger
than the energy density related to the cosmological constant
measured today: “This is probably the worst theoretical
prediction in the history of physics!” (from [27]).

C. Hamiltonian formulation and the volume variable

Wewill now restate the dynamics of the FLRW Universe
in the framework of the Hamiltonian formulation of gravity,
using a new variable V ¼ a3 that we will refer to as
“volume.” The reason for this choice, as we will see in the
next sections, is that this is the only variable with which the
polymer parameter and the critical density are independent
on the scale factor [11].
The Arnowitt-Deser-Misner line element in the homo-

geneous and isotropic model becomes [7]

ds2 ¼ N2ðtÞc2dt2 − a2ðtÞ½dr2 þ r2dθ2 þ r2 sin2 θdφ2�:
ð11Þ

Due to this, in the presence of an energy density ρ ¼ ρðaÞ
and substituting the RW metric directly in the Einstein-
Hilbert action, the following Hamiltonian constraint is
obtained:

HFLRWða; paÞ ¼ −
χ

24π2
p2
a

a
þ 2π2ρa3 ¼ 0; ð12Þ

where pa ¼ − 12π2

χN a _a is the momentum conjugate to a.
By performing a canonical transformation, we rewrite

the Hamiltonian constraint as a function of the volume
variable and its momentum conjugate PV :

HFLRWðV; PVÞ ¼ −
B
2
P2
VV þ 2π2ρV ¼ 0 ð13Þ

with B ¼ 3χ
4π2

. The independent cosmological equations are

now derived from the Hamilton equation _V ¼ ∂HFLRW∂PV
:

H2 ¼ 1

9

_V2

V2
¼ χ

3
ρ; ð14Þ

_ρ ¼ −
_V
V

�
ρ −

∂ðρVÞ
∂V

�
: ð15Þ

The former is exactly the same as Eq. (2), while the
latter coincides with the continuity equation (4) under
the identification − ∂ðρVÞ

∂V ¼ P and will have solution
ρðVÞ ¼ ρ0V−ð1þωÞ.
Substituting the density as a function of V in the

Hamiltonian constraint, the system is analytically solvable
and the evolution of the volume in time is given by

VðtÞ ¼ ½πð1þ ωÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
ðBρ0Þ

p
t� 2

1þw: ð16Þ

Explicating all the constants and using Planck units
ρP ¼ t−4P , τ ¼ t

tP
with tP ¼ ffiffiffiffi

G
p

, we can rewrite our
equations as dimensionless:

H2
adðQÞ ¼ H2t2P ¼ 8π

3
Q; Q ¼ ρ

ρP
; ð17Þ

H2
adðVÞ ¼

8π

3
V−ð1þωÞ; ρ0 ¼ ρP; ð18Þ

VðτÞ ¼ ½ð1þ ωÞ
ffiffiffiffiffiffiffiffiffi
6πQ̄

p
τ� 2

1þω; Q̄ ¼ ρ0
ρP

: ð19Þ

The plots are shown in the following sections (Figs. 1
and 2).

III. POLYMER QUANTUM MECHANICS

Polymer representation is an alternative representation of
quantummechanics, nonunitarily connected to the standard
Schrödinger representation. The introduction of a funda-
mental area in loop quantum gravity (LQG) leads to a
bounce, i.e., a minimum of the scale factor, removing the
singularity (see [6,28,29]). In analogy to LQG, polymer
representation introduces a fundamental scale in the Hilbert
space. When applied to cosmology, it leads to the appear-
ance of a bounce for the volume of the Universe.
Following [10], we now introduce the polymer repre-

sentation of quantum mechanics.
Given the orthonormal basis jμii for the Hilbert space

H0, where μi ∈ R, i ¼ 1;…; N and such that hμijμji ¼ δi;j,
the Hilbert space Hpoly for the polymer representation is
built by the completion ofH0. In such a space we can define
two fundamental operators:

BARCA, DI ANTONIO, MONTANI, and PATTI PHYS. REV. D 99, 123509 (2019)

123509-4



ϵ̂jμi ¼ μjμi; ð20aÞ

ŝðλÞjμi ¼ jμþ λi; ð20bÞ

respectively, label and shift operators. ŝðλÞ is a family of
parameter-dependent unitary operators. Yet, they are dis-
continuous and, therefore, they cannot be generated by the
exponentiation of a self-adjoint operator.
Let us now consider a Hamiltonian system with canoni-

cal variables q and p. In the momentum polarization, a state
jψi has wave function ψðpÞ ¼ hpjψi, and then, for the
fundamental states, we have

ψμðpÞ ¼ hpjμi ¼ eiμp: ð21Þ

Defining the multiplication operator V̂ðλÞ by

V̂ðλÞψμðpÞ ¼ eiλpeiμp ¼ ψμþλðpÞ ð22Þ

we see that V̂ðλÞ is the shift operator inHpoly and it is clear
that the momentum operator p̂ cannot exist as the generator
of translations. On the other hand, as regards the coordinate
operator q̂, it can be defined as the following differential
operator,

q̂ψμðpÞ ¼ −i
∂
∂pψμðpÞ ¼ μψμðpÞ; ð23Þ

and it is the label operator in Hpoly.
It is possible to prove that the Hilbert space of the

wave functions in such a polarization is given by
Hpoly ¼ L2ðRB; dμHÞ, where RB is the Bohr compactifi-
cation of the real axis and dμH is the Haar measure.
If one wants so study the coordinate polarization, in

which ψðqÞ ¼ hqjψi, it is possible to see that the funda-
mental wave functions are Kronecker deltas. In this case it
is the translation operator to be discontinuous which again
implies the nonexistence of the momentum operator
and it can be proved that the Hilbert space is Hpoly ¼
L2ðRd; dμcÞ, where Rd is the real axis with discrete
topology and dμc is the counting measure.
Given the impossibility of well defining both q̂ and p̂, the

dynamics cannot be directly implemented. For this reason,
we have to approximate the momentum operator by defining
a regular graph γμ0 ¼ fq ∈ R∶q ¼ nμ0 with n ∈ Zg,
where μ0 is the fundamental scale introduced by the polymer
representation. Consequently, defining μn ¼ nμ0, we con-
sider the subspace Hγμ0

⊂ Hpoly which contains all those
states jψi such that

jψi ¼
X
n

bnjμni; ð24Þ

where
P

njbnj2 < ∞. Now the translation operator acts only
by discrete steps in order to remain on γμ0 :

V̂ðμ0Þjμni ¼ jμnþ1i: ð25Þ

When the condition p ≪ 1
μ0

is satisfied, we can write

p ≈
1

μ0
sin ðμ0pÞ ¼

1

2iμ0
ðeiμ0p − e−iμ0pÞ ð26Þ

and in return we can approximate the action of the
momentum operator by that of V̂ðμ0Þ:

p̂μ0 jμni ¼
1

2iμ0
ðV̂ðμ0Þ − V̂ð−μ0ÞÞjμni

¼ i
2μ0

ðjμnþ1i − jμn−1iÞ: ð27Þ

As regards the squared momentum operator, we can
choose two different approximations:

p2 ≈
2

μ20
ð1 − cos ðμ0pÞÞ ð28aÞ

so that

p̂2
μ0 jμni ¼

1

μ20
ð2 − V̂ðμ0Þ − V̂ð−μ0ÞÞjμni ð28bÞ

or

p2 ≈
1

μ20
sin2 ðμ0pÞ ð29aÞ

so that

p̂2
μ0 jμni ¼

1

4μ20
ð2 − V̂ð2μ0Þ − V̂ð−2μ0ÞÞjμni; ð29bÞ

which are equivalent through a reparametrization of the
polymer scale.
Now, we can implement a Hamiltonian operator on the

graph:

Ĥγμ0
¼ 1

2m
p̂2
μ0 þ V̂ðq̂Þ; ð30Þ

where V̂ðq̂Þ is the potential.
If one wants to quantize a system using the momentum

polarization of the polymer representation, one has to
approximate the momentum operator using Eq. (28b) or
Eq. (29b), while the coordinate operator is a derivative
operator, given by

q̂ψðpÞ ¼ i
∂
∂pψðpÞ: ð31Þ

Alternatively, one can work with semiclassical states,
i.e., states peaked in their classical value, by operating the
following substitution on the classical Hamiltonian:
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p →
1

μ0
sin ðμ0pÞ ð32aÞ

p2 →
2

μ20
ð1 − cos ðμ0pÞÞ or p2 →

1

μ20
sin2ðμ0pÞ:

ð32bÞ

IV. SEMICLASSICAL POLYMER
EVOLUTION OF THE UNIVERSE

We will now apply some features of polymer quantum
mechanics to the Hamiltonian formulation of the standard
cosmological model. In the spirit of the Ehrenfest theorem
[11], this will be done at a semiclassical level, meaning that
we will not develop a full quantum theory but will apply
quantum modifications to the classical evolution.

A. Exact approach

The first modification, called exact substitution, consists
of using the approximation of p2 as a squared sine (32b) in
the FLRWHamiltonian, and deriving the dynamics through
the standard Hamilton equations. This has already been
done in [11], and therefore we will only report the main
results.
The Hamiltonian function becomes

Hpoly
FLRW ¼ −

B
2μ20

½sin2ðμ0PVÞ�V þ 2π2ρ̄V−ω ¼ 0: ð33Þ

Through the Hamilton equations, we find the modified first
Friedmann equation and the volume evolution:

H2 ¼ 1

9

_V2

V2
¼ χ

3
ρ

�
1 −

ρ

ρμ

�
; ρμ ¼

B
4π2

1

μ20
; ð34Þ

VðtÞ ¼
�
4π2ρ0
B

� 1
1þω

�
B2

4
ð1þ ωÞ2t2 þ μ20

� 1
1þω

: ð35Þ

First of all, by taking the classical limit μ0 → 0 and
therefore ρμ → ∞, the standard equations (14) and (16) are
recovered. This can be better visualized by rewriting these
equations in their dimensionless form, with the same
procedure used for the classical case:

H2
adðQÞ ¼ H2t2P ¼ 8π

3
Q

�
1 −

Q
Qμ

�
; Qμ ¼

ρμ
ρP

; ð36Þ

H2
adðVÞ ¼

8π

3
V−ð1þωÞð1 − V−ð1þωÞÞ; ð37Þ

VðτÞ ¼
�
½ð1þ ωÞ

ffiffiffiffiffiffi
6π

p
τ�2 þ 2π3

3
μ20

� 1
1þω

: ð38Þ

It is clear how, sinceH2 can now be zero for a finite value of
the density ρ ¼ ρμ, the evolution of the volume as a
function of time will have a critical point, and already
from Eq. (35) we see a nonzero minimum for the volume.
This is shown in Figs. 1 and 2, where the polymer-modified
evolution is compared to the classical one: we see that,
while for low energies (i.e., great volumes and times) the
latter is recovered, for high energies the change is sub-
stantial in that H2 goes to zero for a finite value of the
density and of the volume, and the volume itself reaches a
nonzero minimum and starts to increase again. So, this
deformation, already at a semiclassical level, results in a
big-bounce scenario and effectively solves the singularity.
The minimal volume is easily calculated to be V0 ¼ ðρ0ρμÞ

1
1þω,

which becomes V0 ¼ ð2π3
3
μ20Þ

1
1þω in its dimensionless form.

In Eq. (37) we put Qμ ¼ 1, which is equivalent to asking
that V0 ¼ 1; this automatically fixes the value of the

(dimensionless) polymer parameter to μ0 ¼
ffiffiffiffiffi
3
2π3

q
≈ 0.22,

which corresponds to a polymer lattice parameter of

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Q

H
ad

2
(Q

)

0 1 2 3 4 5
0

1

2

3

4

5

V

H
ad

2
(V

)

FIG. 1. The confrontation between the classical (continuous)
and polymer (dashed) dimensionless Hubble parameter as func-
tion (top panel) of density Q and (bottom panel) of volume V for
ω ¼ 1=3; for the polymer functions the parameters are Qμ ¼ 1

and μ0 ¼
ffiffiffiffiffi
3
2π3

q
.
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Lpoly ¼ ffiffiffiffiffi
μ03

p
lP ≈ 0.60lP. Of course this is just an esti-

mate, and it depends on the definition of Planck density, but
being of the order of the Plank length it is well within the
expectations.

1. The sign of the cosmological constant

Looking at Eq. (34), it is possible to have a negative
cosmological constant.
It is interesting to consider a universe filled with some

kind of energy density ρs associated with a source, and a
cosmological constant energy density ρΛ. The Friedmann
equation is then

H2 ¼ χ

3
ðρs þ ρΛÞ

�
1 −

ρs þ ρΛ
ρμ

�
: ð39Þ

The condition

H2 ≥ 0 ð40Þ

has to be always satisfied. It implies

ðρs þ ρΛÞðρμ − ρs − ρΛÞ ≥ 0: ð41Þ

Condition (41) is verified in two cases:

�
ρs ≥ −ρΛ;
ρs ≤ ρμ − ρΛ

ð42aÞ

or

�
ρs ≤ −ρΛ;
ρs ≥ ρμ − ρΛ:

ð42bÞ

While Eq. (42b) has no intersection on the ðρΛ; ρsÞ plane,
Eq. (42a) identifies three different regions where condition
(40) is satisfied, as shown in Fig. 3.
In region A, i.e., ðρΛ ≤ 0Þ ∧ ð−ρΛ ≤ ρs ≤ −ρΛ þ ρμÞ,

the energy density related to the cosmological constant is
negative but is balanced by matter density; in region
B, i.e., ð0 < ρΛ < ρμÞ ∧ ð0 ≤ ρs ≤ −ρΛ þ ρμÞ, both the
densities are positive; in region C, i.e., ½ð0< ρΛ < ρμÞ∧
ð−ρΛ ≤ ρs ≤ 0Þ�∨½ðρΛ > ρμÞ∧ ð−ρΛ ≤ ρs ≤−ρΛþρμÞ�, the
matter density is negative and then this region is not of
physical interest.
In conclusion, we have found a region where it is

possible to have a negative value for the cosmological
constant.

B. Perturbative approach

Polymer features can be implemented in the cosmologi-
cal model also through another approach. If we consider the
Schrödinger commutation relation ½q; p� ¼ i of standard
quantum mechanics and use the polymer approximation
(26), we obtain a cosine that can be expanded in a power
series:

½q; p� →
�
q;
sinðμ0pÞ

μ0

�
¼ cosðμ0pÞ½q; p�

¼ i cosðμ0pÞ ≈ i

�
1 −

μ20p
2

2

�
: ð43Þ

At a semiclassical level this modified commutation
rule becomes a rule for Poisson brackets. The polymer-
modified evolution can then be derived from the standard
unmodified Hamiltonian constraint (13) through the

scheme fV; PVg ¼ ð1 − μ2
0

2
P2
VÞ.

FIG. 3. Study of the sign of the cosmological constant on the
ðρΛ; ρsÞ plane. The regions in the plotting are the ones that satisfy
condition (40).
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FIG. 2. The confrontation between the classical (continuous)
and polymer (dashed) dimensionless volume as function of τ with

μ0 ¼
ffiffiffiffiffi
3
2π3

q
for ω ¼ 1=3. The minimal volume is highlighted.
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This scheme is made to look similar to the so-called
generalized uncertainty principle (GUP). This approach
states that by modifying the canonical commutation rela-
tions (CCRs) of standard quantum mechanics, it is possible
to obtain the generalized uncertainty principle that was
derived in the low-energy limit of string theory [14]:

½q; p� ¼ ið1þ λp2Þ; ð44Þ

ΔqΔp ≥
1

2
ð1þ λðΔpÞ2 þ λhp̂i2Þ; ð45Þ

where λ is the GUP parameter. This principle implies a
fundamental minimum uncertainty on position Δq0 ¼

ffiffiffi
λ

p
,

and therefore through the simple modification of the CCR it
is possible to implement string features in quantum
mechanics without going too deep in string theory, and
to reproduce a low-energy limit of brane cosmology
[17–19]. Notice how the GUP modification of the CCR,

under the identification λ ↔ μ2
0

2
, coincides with the polymer

deformation of Poisson brackets apart from a sign. During
this section we will study the “perturbative” polymer
approach and present in parallel the results that would
be obtained with a GUP approach, i.e., by deriving the
dynamics thorough the modified commutation relation
used as a modified rule for Poisson brackets. For a more
detailed mathematical confrontation between the two
approaches, see [30].
The first Friedmann equation in the perturbative polymer

approach takes the form

H2 ¼ 1

9

_V2

V2
¼ χ

3
ρ

�
1 −

ρ

2ρμ

�
2

: ð46Þ

The equivalent equation in the GUP framework is H2 ¼
χ
3
ρð1þ ρ

2ρλ
Þ2 with ρλ ¼ B

8π2
1
λ. Notice how the different sign

completely changes the dynamics: now H2 does not
become zero for a finite value of the density, and therefore
in this model a bounce is not possible. Thus, we conclude
that the GUP semiclassical deformation does not solve the
singularity. Figure 4 shows the comparison between the
two approaches, with the equations rewritten in dimension-
less form: H2

ad ¼ 8π
3
Qð1� Q

2Qi
Þ2 ¼ 8π

3
V−ð1þωÞð1� V−ð1þωÞ

2
Þ2,

where the subscript i indicates both μ and λ and in the last
equation we put Qi ¼ 1.
Now, Eq. (46) is slightly different from the exact

polymer substitution case, in that H2 goes to zero for
ρ ¼ 2ρμ instead of ρ ¼ ρμ. However, the last factor is
squared, and if we expand it we obtain

H2 ¼ χ

3
ρ

�
1 −

2ρ

2ρμ
þ ρ2

4ρ2μ

�

≈
χ

3
ρ

�
1 −

ρ

ρμ
þO

�
ρ2

ρ2μ

��
: ð47Þ

We see that the exact equation (34) is recovered in the limit
ρ ≪ ρμ; already here we can say that this approach is a low-
energy limit of the exact one.
The dimensionless form of the new first Friedmann

equation is

H2
adðQÞ ¼ 8π

3
Q

�
1 −

Q
2Qμ

�
2

; ð48Þ

H2
adðVÞ ¼

8π

3
V−ð1þωÞ

�
1 −

V−ð1þωÞ

2

�
2

; ð49Þ

where in the latter we put Qμ ¼ 1 and ρ̄ ¼ ρP as before. In
Fig. 5 we see the comparison between these behaviors and

0.0 0.5 1.0 1.5 2.0
0

5

10

15

20

Q

H
ad

2
(Q

)

0 1 2 3 4 5 6
0

1

2

3

4

5

V

H
ad

2
(V

)

FIG. 4. The confrontation between the classical (continuous
lines), perturbative polymer (dashed lines) and GUP (dotted
lines) dimensionless Hubble parameter as function (top panel) of
density Q and (bottom panel) of volume V for ω ¼ 1=3; for
the polymer and GUP functions the parameters are Qi ¼ 1

and λ ¼ μ2
0

2
¼ 3

4π3
.
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the ones coming from the exact approach. We can see how
for low energies they coincide exactly, while for high
energies, where the Q2 term becomes relevant and is not
negligible anymore, they are slightly different. In particular,
the values of maximal density and minimal volume are
different, as mentioned before.
Solving the evolution leads to the following implicit

expression for the volume variable as a function of time:

V
1þω
2

A1μ0
þ 1

2
ln½1 − A2

1μ
2
0V

−ð1þωÞ� ¼ � Bffiffiffi
2

p
μ0

ð1þ ωÞt; ð50Þ

where A2
1 ¼ 2π2ρ0

B . This is rewritten as dimensionless,
plotted, and compared with its counterpart from the exact
approach:

V
1þω
2 þ A0

2
ln ½1 − A2

0V
−ð1þωÞ� ¼ �ð1þ ωÞ

ffiffiffiffiffiffi
6π

p
τ ð51Þ

with A2
0 ¼ π3

3
μ20. As we can see from Fig. 6, the difference

between the two is mainly the value of the minimal volume,

which in this case becomes V0 ¼ ð ρP
2ρμ

Þ 1
1þω ¼ ðπ3

3
μ20Þ

1
1þω, but

the fundamental character of this model being a bounce
cosmology is unaltered.
We would like to stress that higher orders of expansion in

the polymer parameter are expected to produce no significant
new physics on the bounce cosmology. In fact, the consid-
ered noncommutative formulation of polymer quantum
mechanics must converge on the exact polymer representa-
tion of the cosmological dynamics, actually equivalent to
LQC. On the other hand, the situation for the interesting
analysis in [31] is different. Here, the standard approach
discussed in [6,29] receives corrections from the graph
structure underlying the space representation, in particular
from small terms in the inverse node number. This revised
loop cosmology predicts prebounce oscillations of the
Universe scale factor and its main conceptual merit is to
reproduce the bounce morphology of LQC on a more well-
grounded representation of the space graph.
In the GUP approach the following implicit equation for

the volume as a function of time is obtained:

V
1þω
2

C1

− arctan ðC1V−1þω
2 Þ ¼ Bffiffiffi

λ
p ð1þ ωÞ

2
t; ð52Þ

V
1þω
2 þ C0 arctanðC0V

1þω
2 Þ ¼ ð1þ ωÞ

ffiffiffiffiffiffi
6π

p
τ ð53Þ

with C1 ¼ 2π
ffiffiffiffiffi
λρ0
B

q
and C0 ¼

ffiffiffiffiffiffiffiffi
4π3

3
λ

q
. Figure 7 compares

the evolution in the two approaches. As we can see, in the
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FIG. 5. The confrontation between the perturbative (continuous
lines) and exact polymer (dashed lines) dimensionless Hubble
parameter as function (top panel) of densityQ and (bottom panel)
of volume V for ω ¼ 1=3; the parameters are Qμ ¼ 1

and μ0 ¼
ffiffiffiffiffi
3
2π3

q
.

FIG. 6. The confrontation between the exact (continuous line)
and perturbative polymer (dashed line) dimensionless volume as

a function of τ for ω ¼ 1=3 with μ0 ¼
ffiffiffiffiffi
3
2π3

q
. The minimal

volumes are highlighted.
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GUP framework the volume V still goes to zero and the
singularity is still present.
In conclusion, we can confirm that while the polymer

deformation solves the singularity by introducing a big
bounce, the GUP deformation does not. Besides, we can
conclude that our perturbative approach is the low-energy
approximation of the polymer exact approach, i.e., it is to
loop quantum cosmology what the generalized uncertainty
principle is to brane cosmology.

V. VACUUM ENERGY DENSITY OF THE SCALAR
FIELD IN POLYMER REPRESENTATION

In this section we study the vacuum state of the scalar
field in polymer quantum mechanics. We derive the energy
spectrum of the harmonic oscillator in polymer represen-
tation, in order to evaluate the vacuum energy density of the
massless scalar field in a flat FLRW universe.

A. Energy spectrum of the harmonic oscillator
in polymer representation of quantum mechanics

The Hamiltonian function of the harmonic oscillator

Ĥ ¼ p̂2

2m þ 1
2
mω2q̂2, due to the substitutions (31) and (28a),

leads to the polymer Hamiltonian Ĥμ:

Ĥμ ¼
1

mμ2
½1 − cos ðμpÞ� − 1

2
mω2∂2

p: ð54Þ

A state of energy E, in momentum polarization, is
described by the wave function ψðpÞ. Thus, the following

Schrödinger equation, in polymer representation, can be
studied:

ĤμψðpÞ ¼ EψðpÞ: ð55Þ

Through an opportune reparametrization of the polymer
scale μ and the following variable change,

u ¼ μpþ π

2
; ð56aÞ

∂p ¼ μ∂u; ð56bÞ

Equation (54) turns into

∂2
uψðuÞ þ

�
2E
ωg

−
ℏ2

2g2
−

ℏ2

2g2
cos ð2uÞ

�
ψðuÞ ¼ 0; ð57Þ

where we have defined

g ¼ mωμ2; ð58Þ

which is a dimensionless parameter that measures the
intensity of polymer corrections. Equation (57) is the
Mathieu equation that leads to the following even and
odd solutions:

ψ2nðuÞ ¼ π−1=2cen

�
1

4g2
; u

�
; ð59aÞ

E2n ¼ ω

�
1

4g
þ g
2
An

�
1

4g2

��
ð59bÞ

and

ψ2nþ1ðuÞ ¼ π−1=2senþ1

�
1

4g2
; u

�
; ð60aÞ

E2nþ1 ¼ ω

�
1

4g
þ g
2
Bnþ1

�
1

4g2

��
; ð60bÞ

where An and Bn are the Mathieu characteristic value
functions, cen and sen are, respectively, the elliptic cosine
and sine of order n.
In Fig. 8, the plotting of E

ω vs g for the fundamental state
and some of the first excited states of polymer quantum
harmonic oscillator is shown.
The energy spectrum is degenerate both in the range of

small polymer corrections (small g) and of big polymer
corrections (big g). The fundamental state is the only one
with an energy that does not diverge for g → ∞.
As discussed in [32], ψ2nðuÞ are π periodic for even n

and π antiperiodic for odd n, while ψ2nþ1ðuÞ are π
antiperiodic for even n and π periodic for odd n, as shown
in Fig. 8.
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FIG. 7. The confrontation between the classical (continuous
line), perturbative polymer (dashed line), and GUP (dotted line)
dimensionless volume as a function of τ for ω ¼ 1=3 and

λ ¼ μ2
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The polymer representation should reproduce the stan-
dard Schrödinger quantization in the limit μ → 0. In light of
this consideration, it is easy to show that Eqs. (59b) and
(60b) tend to the energy spectrum of the standard harmonic
oscillator. Using the asymptotic expansion from [32], in the
limit of small polymer corrections, i.e., for g → 0, we get

E2n ≃ E2nþ1 ≃ ω

�
nþ 1

2
−
ð2nþ 1Þ2 þ 1

16
g

�
: ð61Þ

In the opposite limit, i.e., for g → ∞, which is the limit of
big polymer correction to standard quantization, it can be
shown that

E0 ≃
ω

4g
→ 0; ð62Þ

which is the only value of n for which the energy
eigenvalue does not diverge.
Also in polymer representation, the fundamental state is

the one with n ¼ 0. Yet, n has no physical interpretation,
due to the impossibility to define annihilation and creation
operators in polymer representation.
As regards the fundamental state, it is possible to show

that Eq. (59a) reproduces correctly the standard fundamen-
tal state, in the case of n ¼ 0 and μ → 0. In [33,34],
asymptotic expansions of periodic solutions of the Mathieu
equation have been studied. Using those expressions,
one has

ce0ðq; uÞ ¼ D0ðαÞ þ o
�
q−

1
2

	
ð63Þ

being

α ¼ 2q
1
8 cos u; ð64aÞ

DmðαÞ ¼
1

2m=2 e
−α2

4 Hm

�
αffiffiffi
2

p
�
; ð64bÞ

where Hm is the Hermite polynomial and q is a parameter
that appears in the standard formulation of the Mathieu
equation.
It can be easily shown that, in the limit g → 0,

ce0ðq; uÞ ∼ e−
p2

2ℏmω; ð65Þ
which is exactly the fundamental state of a standard
harmonic oscillator in momentum representation.

B. Evaluation of the vacuum energy density

The aim of this section is to study the scalar field in the
background of an isotropic and homogeneous expanding
flat universe. In particular, we are interested in the
evaluation of the energy density for the fundamental state
of the field, i.e., the vacuum energy density.
Given the metric (1), the action of the theory is

Sϕ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p 1

2
gμν∂μϕ∂νϕ: ð66Þ

The metric tensor can be split as follows:

gμν ¼ diagðg00; qabÞ; ð67Þ

where qab is the spatial metric, and, then,
ffiffiffiffiffiffi−gp ¼ ffiffiffiffiffiffi−qp ¼

a3ðtÞ.
We can write the Lagrangian of the field as follows:

Lϕ ¼ ffiffiffiffiffiffi
−q

p �
1

2
_ϕ2 þ qab∂aϕ∂bϕ

�
ð68Þ

and, consequently, the conjugate momentum density is

Π ¼ ∂Lϕ

∂ _ϕ ¼ ffiffiffiffiffiffi
−q

p _ϕ; ð69Þ

and due to the Lagrangian (68) and the momentum (69), we
can derive the Hamiltonian function and density, the latter
of which is defined as H≡ Π _ϕ − Lϕ:

Hϕ ¼
Z

d3x̄H; ð70aÞ

H ¼ Π2

2
ffiffiffiffiffiffi−qp −

1

2

ffiffiffiffiffiffi
−q

p
qab∂aϕ∂bϕ: ð70bÞ

It is convenient to change coordinates,

ðt; xiÞ → ðt; x̄iÞ; ð71aÞ

x̄i ¼ aðtÞxi; ð71bÞ

FIG. 8. Plotting of E
ω vs g. In this plot, the first states (n ¼ 0, 1,

2, 3) of the energy spectrum of a polymer quantum harmonic
oscillator are shown. They are π periodic (dashed blue lines) and
π antiperiodic (continuous red lines).
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and then the line element (1) becomes

ds2 ¼ dt2 − ðdx̄2 þ dȳ2 þ dz̄2Þ: ð72Þ

After this change, the Fourier decomposition of the field
ϕ̄ and the momentum Π̄ is analogous to the one developed
in the Minkowski background, as in [35]. One reduces the
Universe in a fiducial box of finite volume V̄ ¼ R

d3x̄ and
then

ϕ̄ðt; x̄Þ ¼ 1ffiffiffiffi
V̄

p
X
k̄

ϕ̄k̄ðtÞeik̄·x̄; ð73aÞ

Π̄ðt; x̄Þ ¼ 1ffiffiffiffi
V̄

p
X
k̄

π̄k̄ðtÞeik̄·x̄; ð73bÞ

where x̄ is the three-vector ðx̄; ȳ; z̄Þ, k̄ is the Fourier mode in
the new coordinates and it is k̄ ¼ k

aðtÞ, with k being the

comoving frequency. Moreover, ϕk and πk have been
chosen as real functions and they have the dimension,
respectively, of length1=2 and length1=2.
It is easy to define the δ functions:

δk̄;k̄0 ¼
1

V̄

Z
d3x̄eiðk̄−k̄0Þ·x̄; ð74aÞ

δ3x̄;ȳ ¼
1

V̄

X
k̄

eiðx̄−ȳÞ·k̄: ð74bÞ

Using these definitions in the Hamiltonian (70a), we can
rewrite it as a composition of independent harmonic
oscillators:

HϕðtÞ ¼
X
k̄

Hk̄ðtÞ; ð75aÞ

Hk̄ðtÞ ¼
1

2
π̄2
k̄
þ 1

2
k̄2ϕ̄2

k̄
; ð75bÞ

where k̄2 ¼ k2

a2 is the norm of the three-vector k̄.
We would like to express this result in the old coor-

dinates ðt; x; y; zÞ. In order to do so, the understanding of
how the Fourier components ϕ̄k̄ and π̄k̄ are related to the
comoving components ϕk and πk is needed.
When x → x̄ ¼ ax, the transformation for the field and

the momentum is

ϕ̄ðt; x̄Þ ¼ ϕðt; xÞ; ð76aÞ

Π̄ðt; x̄Þ ¼ Πðt; xÞ
a3

ð76bÞ

because the field is scalar while the momentum is actually a
scalar density.
Imposing Eq. (76) in Eq. (73), we obtain a relation for

the Fourier components of the field and its momentum for
the transformation x → x̄ ¼ ax:

ϕ̄k̄ ¼ a3=2ϕk; ð77aÞ

π̄k̄ ¼
πk
a3=2

: ð77bÞ

In terms of the old coordinates, we get

HϕðtÞ ¼
X
k

HkðtÞ; ð78aÞ

HkðtÞ ¼
π2k
2a3

þ 1

2

k2

a2
a3ϕ2

k; ð78bÞ

where, as already discussed, the three-vector k is comoving
and the cosmological expansion related time dependence is
in the aðtÞ terms. This result has been found in [36,37].
Due to the presence of the scale factor aðtÞ, the

Hamiltonian is time dependent. In quantum mechanics, a
physical state described by the wave function ψ is a
solution of the Schrödinger equation:

HðtÞψ ¼ i∂tψ : ð79Þ

If the Hamiltonian is time dependent, its eigenstates do
not satisfy Eq. (79), hence they are not physical states.
Nevertheless, in this work, the words “eigenstate,” “eigen-
value,” and “fundamental state” will be used in relation to
the time dependent Hamiltonian.
The polymer quantization of the single Fourier mode is

now implemented through the substitutions (31) and (28a):

ϕk → i∂πk ; ð80aÞ

πk →
a3=2

μ
sin

�
μπk
a3=2

�
; ð80bÞ

where the factor a3=2 has been included in order to have
V̂ðμÞ transforming as a scalar during the expansion of the
Universe.
It is essential to say that the physical results that we

obtain here are closely linked to Eq. (80b). This choice of
πk in polymer representation is not unique and it has been
inspired by [37,38]. This new ambiguity deserves attention
and further investigation.
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The polymer Hamiltonian operator becomes

Hμ
k ¼

1

μ2

�
1 − cos

�
μπk
a3=2

��
−
1

2
a3

k2

a2
∂2

∂π2k : ð81Þ

We solve the following equation, in order to evaluate the
eigenvalues and eigenstates of the operator (81):

Hμ
kðtÞψkðt; πkÞ ¼ EkðtÞψkðt; πkÞ: ð82Þ

Solutions of such an equation are given by the results of
the previous section, once we define

u≡ μπk
a3=2

þ π

2
; ð83aÞ

g≡ k̄μ2 ¼ k
a
μ2; ð83bÞ

we obtain

ψ2n
k ðt; uÞ ¼ π−1=2cen

�
1

4g2
; u

�
; ð84aÞ

E2n
k ðtÞ ¼ k

a

�
1

4g
þ g
2
An

�
1

4g2

��
ð84bÞ

and

ψ2nþ1
k ðt; uÞ ¼ π−1=2senþ1

�
1

4g2
; u

�
; ð85aÞ

E2nþ1
k ðtÞ ¼ k

a

�
1

4g
þ g
2
Bnþ1

�
1

4g2

��
: ð85bÞ

The fundamental state is then

ψ0
kðt; uÞ ¼ π−1=2ce0

�
1

4g2
; u

�
; ð86aÞ

E0
kðtÞ ¼

k
a

�
1

4g
þ g
2
A0

�
1

4g2

��
: ð86bÞ

The vacuum state j0i is defined as

j0i ¼
Y
k

j0ik; ð87aÞ

X
k

Hμ
kðtÞj0i ¼

X
k

E0
kðtÞj0i ¼ E0ðtÞj0i; ð87bÞ

and we define the energy density of the vacuum as

ρΛðtÞ≡ E0ðtÞ
V̄

: ð88Þ

By means of Eq. (86b), the energy density of the vacuum
becomes

ρΛðtÞ ¼
1

V̄

X
k̄

k̄

�
1

4g
þ g
2
A0

�
1

4g2

��
; ð89Þ

where, for convenience, the sum is expressed in terms of k̄.
It is important to remember that there is a factor a−1 in the
definition (83b) of g, and then g is thought of as a function
of k̄.
Using the prescription 1

V̄

P
k̄ →

1
ð2πÞ3

R
d3k̄ to develop the

continuum limit and switching to the variable k, the energy
density of the vacuum can be evaluated over all space:

ρΛðtÞ ¼
Z

d3k
ð2πÞ3a3

�
1

4μðkÞ2 þ
k2μ2ðkÞ
2a2

A0

�
a2

4k2μ4

��
:

ð90aÞ

With the quantization of the single modes being inde-
pendent from one another, there is no a priori reason to ask
for the polymer scale to be the same for each mode. From
now on, we will consider a mode-dependent polymer scale
μðkÞ, which needs to satisfy the following condition,

μ2ðkÞk → 0; for k → 0; ð90bÞ

in order to correctly reproduce the standard propagator of
the scalar field, as shown in [35].
The dependence of the energy of the fundamental state

for the single mode is all in the magnitude k and not in the
direction or versus of the vector k. Thus, it seems
reasonable to choose μðkÞ≡ μðkÞ. We choose the following
polymer scale:

μðk̄Þ≡ αl
5
2

Pk̄
2 ¼ αl

5
2

P
k2

a2
; ð90cÞ

where lP is the Planck length and α is a dimensionless
constant. This choice is the simplest polymer scale that
makes the integral above converge. It satisfies the condition
(90b) and it has the correct dimension of length1=2.
Defining the adimensional parameter q ¼ α2=5lPka−1

and noticing that the dependence from the frequency is all
in k and then

R
d3k ¼ 4π

R∞
0 k2dk, the energy density of

the vacuum is in the end calculated:

ρΛ ¼ IM
16π2α

8
5l4

P

; ð91Þ

where IM is the adimensional integral defined by
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IM ≡
Z

∞

0

dq

�
2q−2 þ 4q8A0

�
1

4
q−10

��
≃ 2.776: ð92Þ

In the general definition (88), ρΛ is clearly a function of
time. In fact, not only is the Hamiltonian explicitly time
dependent, but the energy density has to be evaluated in the
fiducial box of volume V̄ ¼ a3V0, with V0 being the
comoving box. The volume of the box is a function of
time due to the expansion of the Universe. These two
different contributions do cancel in the evaluation of the
energy density (91), which is a constant. This energy
density does behave as an actual cosmological constant.
Moreover, one can observe that the polymer scale (90c) is
Planckian if α ¼ Oð1Þ. In [20], an upper bound on the
polymer scale is discussed. Moreover, the polymer quan-
tization is here implemented on the single Fourier mode
and the coordinate variable is the Fourier component ϕk of
the scalar field: there is no a priori direct link between the
polymer scale and a length scale in the physical space. If the
polymer scale in the configuration space and lengths in
the physical space were related, and if we asked α to make
ρΛ ≃ 10−120, i.e., the measured cosmological constant, the
polymer scale would not be small, but comparable to the
Hubble horizon. We would then observe macroscopical
polymer corrections we clearly do not measure in the
Universe we live in. The cosmological constant problem is
then not solved by an opportune choice for the parameter α.

C. Cosmological dynamics with polymer scalar field

Despite the time dependence of the Hamiltonian, it is
worth studying what happens when we consider the
vacuum energy density evaluated above inside the equa-
tions for the cosmological dynamics.
A modified Friedmann equation (34) has been found. An

effective energy density ρeff has been introduced by the
presence of the damping factor 1 − ρ

ρμ
, due to the polymer

corrections to the semiclassical cosmological dynamics.
We now express the polymer scale μ0 as

μ0 ¼ βlP
2 ffiffiffi

χ
p

; ð93Þ

where β is an adimensional constant, lP is the Planck length,
and μ0 has the dimension of the inverse of PV . Then, in the
hypothesis that the energy density ρΛ of the scalar field is the
dominant component of the Universe, we explicitly evaluate
the damping term that appears in the corrected Friedmann
equation, by means of Eqs. (91) and (34),

1 −
ρΛ
ρμ

¼ 1 −
π2IM
3

β2

α8=5
; ð94Þ

and one should ask this damping term to be 10−120 in order to
solve the cosmological constant problem that has been
presented. Despite the fact that this could be a mechanism
for the reduction of the cosmological constant value, there is

no physical reason for such a fine-tuning for the parameter α,
which is related to the polymer scale μ of the scalar field, and
β, which is related to the polymer scale μ0 of the metric.
In conclusion, the cosmological constant problem is not
automatically solved, even considering polymer corrections
to the cosmological dynamics.

VI. PROPAGATION OF GRAVITATIONALWAVES
ON A FLAT SEMICLASSICAL POLYMER

FLRW BACKGROUND

In this section we investigate the propagation of gravi-
tational waves when the cosmological background is
described by a semiclassical polymer dynamics. We firstly
recall the standard behavior of cosmological gravitational
waves and then study the effects induced by a modified
Friedmann equation.

A. Gravitational waves on a classical
flat FLRW background

In order to study the propagation of gravitational waves
on a classical FLRW background with null curvature [21],
we use perturbation theory by taking into account the
following perturbed metric:

gμν ¼ ḡμν þ hμν; jhμνj ≪ 1; ð95Þ
where ḡμν is the metric tensor corresponding to the line
element (1) for the flat FLRW Universe on a synchronous
reference frame.
We then write the Einstein equations as

Rμν ¼ χSμν ¼ Tμν −
1

2
gμνTλ

λ ð96Þ

so that the equation of propagation for gravitational waves
is found by writing the first order linearized equations that
will be indicated with the following notation:

δRμν ¼ χδSμν: ð97Þ
At this point, a suitable infinitesimal transformation of
coordinates can be chosen in order to have h0i ¼ h00 ¼ 0. It
is then necessary to write the linearized Christoffel sym-
bols, Γα

βγ ¼ Γ̄α
βγ þ δΓα

βγ , where δΓα
βγ is the Christoffel at the

first order in hμν. The only ones that survive are given by

δΓ0
ij ¼ −

1

2
_hij; ð98Þ

δΓi
jk ¼ −

1

2a2
ðhij;k þ hik;j − hjk;iÞ; ð99Þ

δΓi
0j ¼ −

1

2a2

�
_hij −

2_a
a
hij

�
: ð100Þ

It is then possible to write the linearized Ricci tensor
δRμν whose nonzero components are
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δR00 ¼
1

2a2

�
ḧii −

2_a
a

_hii þ 2

�
_a2

a2
−
ä
a

�
hii

�
; ð101Þ

δR0i ¼
1

2
∂t

�
1

a2
ð∂ihjj − ∂jhijÞ

�
; ð102Þ

δRij ¼ −
1

2
ḧij þ

_a
2a

ð _hij − hkkδijÞ þ
_a2

a2

�
−2hij þ

1

2
hkkδij

	
þ 1

2a2
ð∂k∂khij − ∂k∂jhki − ∂k∂ihkj − ∂j∂ihkkÞ:

ð103Þ

We consider a perfect fluid whose energy-momentum
tensor on a synchronous reference frame is given by Tμν ¼
diagðρ;−P;−P;−PÞ and we can perturb the physical
quantities:

ρ ¼ ρ̄þ δρ; P ¼ P̄þ δP; uμ ¼ ūμ þ δuμ: ð104Þ

Recalling that the normalization of the four-velocity has to
be maintained, it is found that δu0 ¼ 0 for a synchronous
reference frame where uμ ¼ ð1; 0⃗Þ is always a solution of
the geodesic equation and the components of the linearized
energy-momentum tensor will be

δTij ¼ a2δPδij − P̄hij; ð105Þ

δT0i ¼ ðρ̄þ P̄Þδui; ð106Þ

δT00 ¼ δρ ð107Þ

so that

δSij ¼
1

2
ða2ðδρ − δPÞδij − hijðρ̄ − P̄ÞÞ; ð108Þ

δS0i ¼ ðρ̄ − P̄Þδui; ð109Þ

δS00 ¼
1

2
ðδρþ 3δPÞ: ð110Þ

We are now ready to write the first order Einstein equations
which read

ð00Þ∶ ḧii−
2_a
a
_hiiþ2

�
_a2

a2
−
ä
a

�
hii ¼ χa2ðδρþ3δPÞ; ð111Þ

ð0iÞ∶ 1

2
∂t

�
1

a2
ð∂ihjj − ∂jhijÞ

�
¼ χðρ̄ − P̄Þδui; ð112Þ

ðijÞ∶ ḧij −
_a
a
ð _hij − hkkδijÞ þ 2

_a2

a2
ð2hij − hkkδijÞ

þ −
1

a2
ð∂k∂khij þ ∂i∂jhkk − ∂i∂khkj − ∂k∂jhikÞ

¼ χð−a2ðδρ − δPÞδij þ hijðρ̄ − P̄ÞÞ: ð113Þ

The above equations take into account three types of
modes: scalar, vector, and tensor modes.
With another infinitesimal coordinate transformation, we

impose the transverse-traceless gauge that is obtained by
the conditions hkk ¼ 0 and hij;j ¼ 0, where repeated
indices have to be summed over. In this gauge only the
tensor modes, in which we are interested, appear and we
obtain the following equation of propagation for the
gravitational waves:

ḧij −
_a
a
_hij þ 4

_a2

a2
hij −

1

a2
∂k∂khij ¼ χhijðρ̄ − P̄Þ: ð114Þ

Using the acceleration (3) and Friedmann (2) equations
for the flat FLRW, the equations above can be rewritten as
follows [21]:

ḧij −
_a
a
_hij − 2

ä
a
hij −

1

a2
∂k∂khij ¼ 0; ð115Þ

which can be again written for a monochromatic wave with
wave number k:

ḧij −
_a
a
_hij − 2

ä
a
hij þ

k2

a2
hij ¼ 0: ð116Þ

Since the physical wave has to satisfy the condition



 hμνḡμν





 ≪ 1; ð117Þ

i.e., the condition of smallness compared to the background
which becomes 



 hija2





 ≪ 1 ð118Þ

for a synchronous reference frame, it is found that the
physical wave is the rescaled one, h̃ij ¼ hij

a2 , for which the
propagation equation reads as

̈h̃ij þ 3
_a
a
_̃hij þ

k2

a2
h̃ij ¼ 0: ð119Þ

The solution, displayed for the radiation dominated
Universe (aðtÞ ∝ ffiffi

t
p

) in Fig. 9, appears as a damped
oscillator with a divergence toward the singularity, as
shown in Fig. 10. This shows that, just as any other
physical quantity, even the amplitude of gravitational
waves diverges toward the big bang, in particular as the
amplitude grows larger than 1, perturbation theory can no
longer be valid and the model is nonpredictive.
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B. Gravitational waves on a semiclassical
Polymer flat FLRW background

As shown previously in Sec. IVA, the modification of
the FLRW metric by the semiclassical Polymer theory
causes the singularity to be removed so that a bounce, i.e., a
minimum for the scale factor, appears. It is then expected
that, just as any other physical quantity, also the amplitude
of the gravitational waves in such a background will be
regularized. To see this, it is first necessary to write the
equation of propagation in terms of the volume V for the
monochromatic wave:

ḧij −
1

3

_V
V
_hij þ

4

9

_V2

V2
hij þ

k2

V
2
3

hij ¼ χhijðρ̄ − P̄Þ ð120Þ

and then in terms of the nondimensional quantities τ ¼ t
tP
,

q ¼ ktP, Q ¼ ρ̄
ρP
¼ 1

Vγ, where ρP ¼ 8π
t2Pχ

and γ is the poly-

tropic constant:

d2hij
dτ2

−
1

3

1

V
dV
dτ

dhij
dτ

þ 4

9

1

V2

�
dV
dτ

�
2

hijþ
q2

V
2
3

hij− 8πQð2− γÞhij ¼ 0: ð121Þ

Next we write the equation for the radiation dominated
Universe, but this time using the polymer-modified
Friedmann equation (34):

d2hij
dτ2

∓ 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24πQ

�
1−

Q
Qμ

�s
dhij
dτ

þ32

3
πQ

�
1−

Q
Qμ

�
hijþ

q2

V
2
3

hij−
16π

3

1

V
4
3

hij¼ 0: ð122Þ

Where the equation with the minus sign concerns the
expanding Universe while the equation with the plus sign
concerns the collapsing Universe. With appropriate initial

conditions, Eq. (122) can be solved numerically and
the two branches can be joined. The results that will be
described are those of the rescaled perturbation, h̃ij ¼ hij

V2=3,
for it represents the physical wave.
It is seen in Fig. 11 that both branches are damped

oscillators that grow toward the time of the bounce where,
as expected, the amplitude takes a finite value as shown in
Fig. 12. Clearly, this could mean that gravitational waves
can propagate from the collapsing Universe to the expand-
ing one through the bounce and measures of gravitational
waves that come from events that happened before the
bounce could be made possible. This theoretically implies
that we could get information about the Universe before the
time of the bounce. This is not possible by means of
electromagnetic measures.
It also needs to be specified that the described model

holds only when perturbation theory holds, i.e., when the
amplitude of the gravitational wave in question remains
smaller than 1; if this condition is not satisfied, Einstein

FIG. 9. Solution for the rescaled perturbation h̃ij with wave
number ktP ¼ 1, where tP is the Planck time, as a function of the
evolution parameter τ ¼ t

tP
.

FIG. 10. Solution for the rescaled perturbation h̃ij with wave
number ktP ¼ 1, where tP is the Planck time, as a function of the
evolution parameter τ ¼ t

tP
, the divergence toward the singularity

is shown.

FIG. 11. Solution for the rescaled perturbation h̃ij with wave
number ktP ¼ 1 and Qμ ¼ 1, where tP is the Planck time, as a
function of the evolution parameter τ ¼ t

tP
.
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equations must be solved exactly. Nonetheless, the model
remains valid for all those perturbations that are born close
enough to the bounce that they would not have time to grow
in amplitude and exit the range of validity of perturbation
theory.
We can also study how varying the parameters q and Qμ

changes the appearance of the solution.
Keeping in mind that Eq. (122) looks like a damped

oscillator with nonconstant coefficients, it is clear that the
period of such oscillations will depend on the inverse of
the wave number, in a way that the greater q is the denser
the oscillation will be, as shown in Fig. 13.
On the other hand, changing the parameter Qμ corre-

sponds to changing the polymer scale μ0 and in the limit
Qμ → ∞ the classical limit is recovered. For this reason, we
expect that by increasing the value of Qμ the solution
reaches greater values around the bounce so that it can

recover the divergence in the true classical limit, as shown
in Fig. 14.
Furthermore, the above results are compatible with the

analysis carried out in [39], where the gravitational wave
amplitude today as a function of the bounce temperature is
plotted. Here it is found that such amplitude reaches an
asymptotic value as long as a high enough temperature is
assumed. This asymptotic value must be very close to the
classical one since, as we go far from the bounce, polymer
effects are negligible, and, for this reason, the value of the
minimal volume, related to the bounce temperature, will
not influence the amplitude of the gravitational wave
detected today.

C. Spectral dependence and Gaussian wave packet

We can now study the dependence on the nondimen-
sional wave number, q ¼ ktP, of the amplitude at a fixed
time, i.e., the spectral dependence of the amplitude. The
latter corresponds, once again, to a damped oscillator, both

FIG. 12. Solution for the rescaled perturbation h̃ij with wave
number ktP ¼ 1 and Qμ ¼ 1, where tP is the Planck time, as a
function of the evolution parameter τ ¼ t

tP
, the elimination of the

singularity at the bounce is clear in this graph.

FIG. 13. Solution for the rescaled perturbation h̃ij with wave
number ktP ¼ ffiffiffiffiffi

17
p

andQμ ¼ 1, where tP is the Planck time, as a
function of the evolution parameter τ ¼ t

tP
. A greater wave

number causes the oscillation to get denser.

FIG. 14. Solution for the rescaled perturbation h̃ij with wave
number ktP ¼ 1, where tP is the Planck time, as a function of the
evolution parameter τ ¼ t

tP
. Here, the parameter Qμ ¼ 105 has

been chosen and it can be seen that the solution grows larger near
the bounce compared to the solution with smaller Qμ.

FIG. 15. h̃ij as a function of q ¼ ktP at the fixed time τ ¼ 2,
with Qμ ¼ 1.
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for negative and positive wave numbers, that grows as
q → 0, as shown in Fig. 15. This is the case also for the
classical solution with which we can compare the polymer
one. As we go close to the bounce, like in Fig. 16, the
classical and polymer cases differ in amplitude around
small q and become very similar for large q. By remember-
ing that the choice Qμ ¼ 1 implies the polymer scale to beffiffiffiffiffi
μ03

p ¼ OðtPÞ, the above results suggest that polymer
effects are visible mostly for those wavelengths that are
of the order or greater than the polymer scale itself.
Furthermore, by looking at Fig. 17, it is clear that at times
far away from the bounce the polymer and classical waves
tend to be similar even at small q and we find a classical
limit for large times, as we expected.
It is then useful to look at the time evolution of a

Gaussian wave packet during the history of the Universe.
For this reason, we can consider a Gaussian wave packet on

the domain of wave numbers and, by doing the one-
dimensional Fourier transform, it is possible to find the
evolution of the packet in the domain of position. Such a
Fourier transform is given by

h̄ijðx; τÞ ¼
Z

dq
2π

h̃ijðq; τÞgðqÞe−iqx; ð123Þ

FIG. 16. Classical (dashed lines) and polymer (continuous
lines) amplitude, h̃ij, as a function of q ¼ ktP at the fixed time
τ ¼ 2, with Qμ ¼ 1.

FIG. 17. Classical (dashed line) and polymer (continuous line)
amplitude, h̃ij, as a function of q ¼ ktP at the fixed time τ ¼ 100,
with Qμ ¼ 1.

FIG. 18. Time evolution of a Gaussian wave packet with
parameters σ ¼ 0.5 and μ ¼ 2 in a polymer-modified FLRW
background, pictured at times τ ¼ 2 (a), τ ¼ 1000 (b), and τ ¼
9000 (c).
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where h̃ijðq; τÞ is the solution of the wave equation and
gðqÞ is the normal distribution

gðqÞ ¼ 1

σ
ffiffiffiffiffiffi
2π

p e
−ðq−q̃Þ2

2σ2

with standard deviation σ and mean value q̃. The results are
computed numerically and displayed below in Fig. 18 for

three different times: τ ¼ 2, 1000, 9000. Such results show
that a Gaussian wave packet in the domain of the comoving
wave numbers corresponds to a Gaussian packet in the
domain of position and it does not spread throughout the
history of the Universe although it does lower in amplitude.
Furthermore, since the shape of h̃ijðq; τÞ is symmetric for
the collapsing and expanding universes, also the appear-
ance of the wave packet will be symmetric.
In Fig. 19 a classical wave packet is shown and it

can be noted that the evolution looks very similar to the
polymer case, but, as expected, the amplitudes will evolve
differently.

VII. CONCLUDING REMARKS

In this paper, we have developed a detailed analysis
of phenomenological effects concerning the flat iso-
tropic Universe as described in a semiclassical polymer
representation.
We start by studying the perturbative case of a polymer

generalized Hamiltonian dynamics, as restated via modi-
fied Poisson brackets. This paradigm allows a parallelism
with the so-called generalized uncertainty principle formu-
lation, associated, like the polymer procedure, with a
minimal cutoff scale, but being thought of as the low-
energy limit of string or brane theory. We show that the
parallelism is directly reflected into a different structure of
the Friedmann equation: the different signs of the two
approaches correspond to two different signs in the term
modifying the matter source. While the perturbative poly-
mer is associated with a nonsingular cosmology (exactly as
the full polymer scenario and the semiclassical loop
quantum cosmology), the generalized uncertainty principle
still predicts a big-bang cosmology (for a discussion on
quantum level see [40]), just like the brane cosmology
Friedmann equation. Clearly, the modified Poisson brack-
ets approach gives a matter source that is obtained from the
exact one (semiclassical loop quantum cosmology and
brane cosmology), when the ratio between the Universe
energy density and its critical value is expanded up to
first order.
This analysis suggests that, as long as we remain well

below the cutoff energy density, we can use the modified
Poisson brackets’ approach, leaving free choice on the two
signs, and then qualitatively describe string and loop
cosmology, respectively.
An interesting point that could be addressed in a future

analysis is how the background dynamics obtained with the
perturbative polymer approach differs from the standard
LQC results reported, e.g., in [41,42] where the cosmo-
logical Klein-Gordon equation is solved for a massless
scalar field in order to derive the duration of the inflationary
phase compatible with the observed data. However, it is
worth stressing that, as suggested by the smallness of the
tensor to scalar ratio in the primordial perturbations [43],
the inflationary phase has to take place in a purely classical

FIG. 19. Time evolution of a Gaussian wave packet with
parameters σ ¼ 0.5 and μ ¼ 2 in a classical FLRW background,
pictured at times τ ¼ 2 (a), τ ¼ 1000 (b), and τ ¼ 9000 (c).
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region of the cosmological dynamics. Thus the cutoff
physics effects on the background evolution are expected
to be essentially negligible when the de Sitter phase starts at
temperature values 3 of 4 orders smaller than the Planck
scale. Of more physical impact could be the study of the
deformation of the scalar perturbation spectrum induced by
the implementation of polymer quantum mechanics in the
scalar field fluctuations, see for instance the analysis
in [37].
Then, we face the subtle question about the possibility to

regularize the vacuum energy density of a free massless
scalar field by a polymer regularization of its second
quantization.
Actually, we arrive to a finite value of the vacuum energy

density of the scalar field in second quantization, although a
generalization of the creation and annihilation operators is
not possible.
The main merit of this analysis consists of the constant

character of the vacuum energy density which lives on a flat
isotropic universe, whose dynamics is seen in the semi-
classical polymer representation. In other words, we
demonstrate the emergence of a cosmological constant
from the regularized vacuum energy of the scalar field.
Clearly, if the discretization parameter in the adopted
configurational variable, i.e., the Universe volume, is taken
of the order of the Planck scale, the obtained cosmological
constant is still of the cutoff order and it is unable to
account for the present value of the cosmological constant,
presumably accelerating the present day Universe. Yet, a
discussion about the fine-tuning of the model parameters
which provides the right value of the present Universe
acceleration is also discussed.
However, we raise the question about the nonstationary

character of such a vacuum energy density, as a conse-
quence of the fact that the corresponding Hamiltonian
function is time dependent and therefore its eigenstates are
not physical states. Actually, the observed vacuum energy
of the Universe is determined by the projection of a generic
physical state on the vacuum state here discussed. This
problem could be numerically addressed only once all the
excited states have been regularized, according to the
polymer procedure, facing a nontrivial mathematical prob-
lem. Hence, a numerical analysis with different initial
conditions can be performed to clarify the real phenom-
enology of the mean value associated with this cosmo-
logical constant.
Finally, we investigate the question concerning the

behavior of gravitational waves living on the semiclassical
polymer flat isotropic Universe. We analyze the deforma-
tion of the wave amplitude and spectrum and we

demonstrate that the presence of a bounce prevents the
divergence of the wave amplitude, which is typical of the
big-bang cosmology.
In principle, we could observe gravitational waves

emitted before the bounce during the collapsing process
of the Universe. In fact, sufficiently small space time
ripples, produced during the pre-big-bounce phase (for
instance by galaxy crunches), could reach the turning point
of minimal volume, still in the linear regime, and then they
could, in principle (i.e., if not thermalized), reach Earth and
current and future detectors. This possibility opens an
intriguing perspective on the chance to search for infor-
mation of the pre-big-bounce Universe, currently propa-
gating in our expanding branch.
The present formulation of the cosmological dynamics in

a polymer semiclassical representation, closely resembling
the big-bounce features of LQC, calls for a full quantum
implementation of the considered scheme in order to
analyze the cosmological perturbation spectrum. The aim
could be to understand if polymer quantum mechanics is
able to provide results similar to those predicted in [44],
where features of the cosmological perturbation spectrum
are investigated in the LQG framework. Since our polymer
analysis is based on a metric approach the methodology
that could be addressed is analogous to the one proposed in
[45], for the standard WKB formulation to the Wheeler–
de Witt approach. However, two considerations are in
order. Firstly, the methodology proposed in [45], based
on an expansion in the Planck mass of the theory, predicts
nonunitary quantum gravity corrections to quantum field
theory; this question must be primarily addressed before
implementing this procedure in the polymer sector (see for
instance [46]). Secondly, the semiclassical corrections to a
de Sitter phase of inflation, as described by the polymer
formulation, are expected to be very small because inflation
takes place rather far from the Planckian epoch and the cutoff
physics effects are essentially vanishing. Nonetheless, once
fixed a predictive unitary formulation of quantum perturba-
tion dynamics, it would be relevant to perform a study of
quantum gravity corrections to the spectrum of fluctuations
that led to the late Universe structure formation.
Altogether, the results discussed in this manuscript show

how the presence of the bounce, due to a cutoff physics, can
alter our investigation and interpretation of the present
Universe. The presence of a nonsingular turning point of
minimal volume in the past of our Universe does not
correspond simply to a cutoff on a diverging energy
density, making the theory of the big bounce physical,
but it also gives a completely new point of view on the
present cosmological phenomenology.
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