
1 

 

 
 
 
 
 
 

FACOLTÀ DI INGEGNERIA CIVILE E INDUSTRIALE  
Dipartimento di Ingegneria Meccanica e Aerospaziale  

DOTTORATO DI RICERCA  
IN MECCANICA TEORICA E APPLICATA  

XXXII CICLO  
 

 
Ph.D. Thesis 

Advanced control algorithm applied to the Guidance 
Navigation & Control of complex dynamic systems 

 
 

September 2019 

   
Tutor:        Head Professor:  
Gianluca Pepe       Antonio Carcaterra  

 
 

Candidate:  
Dario Antonelli 

 

  



2 

 

 

  



3 

 

 

Clarence “Kelly” Johnson referring to the SR-71 

“Everything about the aircraft had to be invented” 

 

 

 

 

 

 

 

 

 

 

Wernher Magnus Maximilian von Braun 

“I have learned to use the word 'impossible' with the greatest caution” 
 
 
 
 
 
 
 
 
 
 
 

Elon Reeve Musk 

“Persistence is very important. You should not give up unless you are forced to give up” 
 
 
 
 
 
 
 
 
 
 
 
 

Anthony “Tony” Edward Stark interviewed by Christine Everhart 
Ms. Everhart: “you've been called the da Vinci of our time. What do you say to that ?” 

Mr. Stark: “Absolutely ridiculous. I don't paint” 
 
 
 
 
 
 
 
 
 

“Dedicated to the Engineering Pioneers” 
 

 



4 

 

 
 

 

 

 

  



5 

 

Index of contents 
 

 

Abstract               13 

 

 

Chapter 1: State of the art for control strategies          14 

 

1.1 Overview of the control literature           14 

 

 

Chapter 2: FLOP Control algorithm (Feedback Local Optimality Principle)      20 

 

2.1 Introduction              20 

 

2.2 Theoretical Foundations, Local Optimality Principle        20 

 

2.3 FLOP Principle formulation            23 

 

2.4 FLOP feedback solution technique 1 DOF systems         24 

 

2.5 A simple 1 DOF case             30 

 

2.6 FLOP technique formulation for N-DOF systems         33 

 

2.7 Affine systems class, dealing with nonlinearities         36 

 

2.8 Inverted Pendulum case            38 

 

2.8.1 Swing up controller            39 

 

2.8.2 Numerical results            41 

 

 

Chapter 3: La Sapienza Autonomous car project         47 

 

3.1 Autonomous Vehicles research project          47 

 

3.2 Dynamic Model of the Vehicle           47 

 

3.3 Cruise Control, a test case to introduce control limits        51 

 

3.4 Steering control strategies, kinematic vs potential approach       52 

 

3.5 Results, high speed cornering           55 

 

3.6 Obstacle Avoidance            59 

 

3.7 Trajectory optimization            64 



6 

 

 

 

Chapter 4: Secure Platform, Autonomous marine rescue vehicle, research project     73 

 

 4.1 “Secure Platform” Joint Research project Introduction        73 

 

 4.2 Surface marine craft vehicle dynamics           74 

 

 4.3 FLOP for vehicle GN&C (guidance, navigation & control)       76 

 

 4.4 Results              77 

 

 

Chapter 5: Rocket vertical landing VTVL          83 

 

 5.1 The rocket vertical landing problem          83 

 

 5.2 Dynamic model             84 

  

5.3 Application of the FLOP control           86 

 

5.4 Results              87 

 

 

Chapter 6: Micro magnetic robots actuated by an MRI         92 

 

 6.1 Micro magnetic robot actuated by an MRI introduction        92 

 

 6.2 Robot design concept            93 

 

 6.3 Dynamic model             96 

 

 6.4 FLOP control formulation         101 

 

 6.5 Experimental setup          102 

 

  6.5.1 Robot design and build         102 

 

  6.5.2 Magnetic actuation system        105 

   

  6.5.3 Response of the system to magnetic actuation      107 

 

 6.6 Experimental results          108 

 

  6.6.1 introduction to the experimental activity      108 

 

   

 

 

 



7 

 

 

6.6.2 experimental test with waypoints       109 

 

   

6.6.3 path following of Bezier based trajectory                111 

 

 

Chapter 7: Thesis Conclusions          116 

 

 7.1 Conclusions           116 

 

 

Appendix A             118 

 

Bibliography             122 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 

 

List of Figures 
 

 

 

1: Feedback or closed-loop control scheme           14 

 

2: MPC controller              18 

 

3: Examples of autonomous vehicle            18 

 

4: FLOP first two iterations workflow, red quantities are known at each step      24 

 

5: Evolution of the system’s state x, of the control u and of cost function       32 

 

6: Performance index J provided by different choices of the tuning parameter g      33 

 

7: inverted pendulum              38 

 

8: inverted pendulum penalty function            40 

 

9: Swing-up maneuver with perturbed parameters          43 

 

10: Swing-up maneuver with different initial conditions         44 

 

11: Swing-up maneuver: FLOP vs energy method, initial condition 𝜃0  = 𝜋      45 

 

12: Swing-up maneuver: FLOP vs energy method, initial condition 𝜃0  =
3

4
𝜋      46 

 

13: Bike model              48 

 

14: Pacejka longitudinal force model           49 

 

15: Rolling resistance and aerodynamic drag acting on the vehicle        50 

 

16: Pacejka lateral force model            50 

 

17: Actual turning radius             53 

 

18: 𝑔𝑟 (𝒙) function for various turning radius          53 

 

19: 𝑔𝑠 (𝒙) function for various speed           54 

 

20: Potential surface track strategy             54 

 

21: Trajectory analysis             55 

 

 

 



9 

 

 

 

 

22: Center of instantaneous rotation            55 

 

23: 𝑔𝑠 (𝒙) function for various speed           56 

 

24: Trajectory comparison             57 

 

25: Control and Pacejka’s forces comparison          58 

 

26: Flop Vs LQR comparison            59 

 

27: FLOP Vs LQR comparison            59 

 

28: Obstacle avoidance             60 

 

29: FLOP steering and torques            60 

 

30: No obstacle detection             61 

 

31: Obstacle detection             61 

 

32: Obstacle avoidance             61 

 

33: Carriage maintenance             62 

 

34: Returning in the previous carriage           62 

 

35: No obstacle detection             62 

 

36: Obstacle detection             63 

 

37: Obstacle avoidance             63 

 

38: Carriage re-entry              63 

 

39: Cross collision scenario             63 

 

40: No obstacle detected             63 

 

41: Obstacle detected              64 

 

42: Obstacle avoidance             64 

 

43: Carriage re-entry              64 

 

44: Vehicle maximum cornering speed           65 

 

 



10 

 

 

 

 

 

45: Vehicle maximum cornering speed from different initial conditions       66 

 

46: Optimal trajectory technique            68 

 

47: Vehicle speed and steering control           69 

 

48: Monza racetrack              70 

 

49: Monza trajectories             71 

 

50: Secure platform prototype            73 

 

51: reference system              75 

 

52: Obstacle avoidance             77 

 

53: Trajectory evolution, obstacle avoidance capabilities, target reaching       79 

 

54: Navigation speed              80 

 

55: Lateral speed through the obstacles           80 

 

56: Azimuth evolution              81 

 

57: Jet pumps thrusts              81 

 

58: Experimental activity             82 

 

59: Experimental activity             83 

 

60: Rocket main systems, body reference and NED reference        84 

 

61: Rocket flight phases             86 

 

62: FLIP maneuver phases             87 

 

63: FLIP maneuver angle rate and control           88 

 

64: reentry maneuver              89 

 

65: Vertical landing maneuver            89 

 

66: Vertical landing final approach, speed, pitch angle, and thrust        90 

 

67: Vertical landing final approach, speed, pitch angle, and thrust        90 

 



11 

 

 

 

 

 

 

 

68: Magnetic resonance (MR) images of an SFNU type robot        94 

 

69: Depending on the density of the robot and the position of COM and COV      95 

 

70: Experimental setup, top and side camera record the motion of the vehicle placed inside the            

pool                97 

 

71: forces acting on the vehicle, the magnetic forces are generated by three fixed coils      98 

 

72: (a) SFNU and SSND type of robot designs consist of four main components: (A) is the magnet 

cap, (B) is the spherical NdFeB permanent magnet        102 

 

73: Cross-section view CAD models, with the parametric design dimensions. (a) represents the design 

for SFNU type of robot, and (b) represents the design for SSND type of robot    104 

 

74: The pseudo-MRI experimental setup consists of a custom-built, water-cooled uniform field 

generator using pancake coils, and the pool filled with silicone oil, in which the robot moves  106 

 

75: experimental test, performed using few waypoints       109 

 

76: Yaw and Pitch angle evolution          110 

 

77: linear trajectory for SSND and SFNU, and attitude       111 

 

78: Planar trajectory for SSND and SFNU, and attitude       112 

 

79: Vertical trajectory for SSND and SFNU, and attitude       113 

 

80: 3D trajectory for SSND and SFNU, and attitude       114 

 

81: Experimental activity           114 

 

82: Magnetic field produced by a bar magnet        118 

 

83: Magnets attracting and repelling          119 

 

84: The direction of the magnetic force         119 

 

85: A magnetic dipole near a bar magnet         120 

 

 



12 

 

List of Tables 

 
 

1: Set of values              31 

 

2: Symbols and values used             38 

 

3:  Parameters used              41 

 

4: Monza Lap times              72 

 

5: Vehicle characteristics             74 

 

6: Rocket’s parameter             87 

 

7: SFNU and SSND components masses         103 

 

8: SFNU and SSND dimensions          105 

 

9: target point and desired orientation         109 

 

10: Initial conditions            109 

 

 

 

 

 

 

 

 

 



13 

 

Abstract 

 

In this Thesis a new Optimal control-based algorithm is presented, FLOP is part of a new class of 

algorithms the group of Mechatronic and Vehicle Dynamic Lab of Sapienza is developing under the 

name of Variational Feedback Controllers (VFC). The proposed method starts from classical optimal 

variational principles, usually part of the Pontryagin’s or Bellman’s methods, but it provides the user 

with the possibility to implement a feedback control, even in the presence of nonlinearities. In fact, 

even though Pontryagin approach provide the best solution for the considered system, it has an 

engineering weakness, since the identified solution is a feedforward control law. 

The control program form of the solution presents an engineering weakness, that is they use only one 

single information on the system state: the initial condition. This approach would be natural if the 

system’s model is not affected by any error, the state of the system is perfectly known, and all the 

environment forces are known in advance. Under these conditions, the system response for any future 

time depends only on the initial information provided by the initial condition. However, engineering 

practice and real world meet a different scenario. Models of the controlled process have some degree 

of approximation, because the real dynamics is only roughly represented by the estimated differential 

equations, and the environment external disturbance is generally unknown. In this context, use of 

measurements by sensors is of great value and feedback control strategies use the valuable support 

of measurements. Variation Feedback Control is aimed at using the power of variational functional 

calculus to state a well posed optimality principle, but using the information coming from sensors, 

integrating in this way the available information contained into initial conditions, the only one used 

in the context of control programs, providing a more reliable controlled system. This chance is 

obtained by changing the optimality principle used in the classical approach. FLOP approach, respect 

to classical nonlinear controls, such as Sliding Mode, Lyapunov and feedback linearization controls, 

presents a great advantage because of the chance of a more flexible specification of the objective 

function. In this work the FLOP algorithm is applied to define new techniques for Guidance 

Navigation and Control (GN&C) of complex dynamic systems. Autonomy requires as a main task to 

be able to self-perceive and define the best way to reach the desired part of the state space, in which 

the considered system moves by applying different strategies and modification of the applied 

algorithms to perform the task, whatever the considered dynamic system. Model based control 

techniques such as LQR, SDRE and MPC have the advantage of being aware of the system dynamics, 

but in general they present some drawbacks, in fact LQR and SDRE algorithms require linear 

dynamics or a linearized form of the real dynamics, as well as limitations in terms of penalty function, 

while MPC, in their nonlinear formulation namely NMPC, can deal with nonlinear dynamics and 

strong constraints, moreover they can introduce strong constraints for the system state as well as for 

the control actuation, the major drawback of these techniques is that the online optimization process 

requires a huge computational effort especially when the dynamics of the system is very complicated, 

or the system presents an high number of degrees of freedom, moreover time for convergence is 

strictly connected to the convexification of the considered cost function that has to be minimized, 

especially in presence of constraints in terms of the state and or of the control.  

The present technique is applied in complex engineering applications, the autonomous car, an 

autonomous marine craft for rescue purposes, rocket landing problem, and finally to the control of a 

micro-magnetic robot, actuated by a Magnetic Resonance Imaging (MRI) for non-invasive surgery. 

will be discussed, this research projects are part of the activities developed by the group of 

Mechatronic and Vehicle Dynamic Lab of Sapienza. 
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Chapter 1 

 

 

State of the art for control strategies 

 

1.1 Overview of the control literature 

Multiple human activities and devices require the "control" or "regulation" of some system’s 

properties. For instance, the temperature control of a room as well as in an industrial production 

process, the autonomous control for terrestrial, marine, and aerospace vehicles, and the control of 

Financial trading. Control theory is concerned with mathematical models of physical or biological 

systems of this kind. 

Control systems are usually classified in different ways, one preliminary classification can be done 

considering “feedforward” or “open” loop control strategies and “feedback” or “closed” loop control 

strategies [1-8].  

In open-loop systems we wish to provide, in advance, to the system the proper sequence of control 

inputs that will generate the desired output of the controlled variable. This means that the control 

strategy will not take into the account the actual behavior of system, or the so called Plant, 

disregarding any measurements coming from the sensors, this approach holds under the unrealistic 

assumptions, that the model which describes the dynamic of the Plant is perfect, and that no 

disturbances affect the evolution of the controlled variable. However, reality meats a different 

scenario, in fact models are always an approximation of the real system, and disturbances are not 

known a priori. Therefore, the feedforward approach is affected by an engineering weakness and 

results to be non-effective if directly applied to the system. 

Instead in the closed-loop of feedback formulation, the control algorithm is evaluated iteratively at 

each loop, in the basis of the actual state of the system, i.e. taking into the account the estimation of 

the controlled variable, obtained applying sensor estimation algorithm to the data provided by the 

sensors as shown in Fig. 1 

 

 

Figure 1: Feedback or closed-loop control scheme. 
 

The aim of the Controller block is to generate a control input to reduce the error between the measured 

output of the Plant and the reference signal provided by the user [1-8]. The controller will guarantee 

Controller Plant 

State 
Estimator 

Reference Output 
Control 
input 

_ + 

error 

Estimated state 
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the desired response of the system if the overall controlled system is stable [1-8], and therefore 

stability is a mandatory property for the system. 

Several control techniques have been developed through the years, with different advantages and 

weakness, among these the controllers that belong to the class of the Optimal Control Theory are of 

great interest for the researchers, even though they were initially formulated during the 1950s.    

The Optimal control theory applies mathematical tools to identify a control law for a dynamical 

system over a time horizon such that a performance index is optimized. It is widely used in several 

scientific fields as well as many Engineering applications. 

Optimal control is based on the calculus of variations, this is a mathematical optimization technique, 

the origin of this mathematical tool is commonly associated to the brachistochrone problem (from 

Ancient Greek βράχιστος χρόνος (brákhistos khrónos) meaning 'shortest time'), posed by Johann 

Bernoulli in 1696.  

The well-known mathematician asked to find the curve, lying in the vertical plane between a point A 

and a lower point B, where B is not directly below A, on which a frictionless bead slides under the 

influence of a uniform gravitational field to a given end point in the shortest possible time.  

The method has been applied for deriving control policies [9-16] thanks to the work of Lev Pontryagin 

and Richard Bellman in the 1950s, after contributions to calculus of variations [9,10]. The solution 

provided by the Optimal control theory can be used as control strategy in control theory. 

As stated in [11]: 

 

“The objective of Optimal control theory is to determine the control signals that will cause a process 

to satisfy the physical constraints and at the same time minimize (or maximize) some performance 

criterion.” 

 

In other word, Optimal control deals with the problem of the proper control law, i.e. the proper 

sequence of inputs, for a given system, such that a certain optimality criterion is achieved. A control 

problem includes a cost functional that is a function of state and control variables.  

The optimal control statement is represented by the Hamilton-Jacobi-Bellman set of differential 

equations, obtained applying the variational calculus, these provide the paths for the control inputs 

that minimize the index of performance 𝐽 
 

𝐽 = ∫𝐸(𝑥, 𝑢) + 𝜆(�̇� − 𝑓(𝑥, 𝑢)) 𝑑𝑡

𝑇

0

    (1) 

 

Where 𝐸(𝑥(𝑡), 𝑢(𝑡)) represents the cost functions, and �̇� = 𝑓(𝑥(𝑡), 𝑢(𝑡)) the dynamic equations of 

the considered system. The control set can be identified using the Pontryagin's minimum principle 

[12-16], subject to the initial condition 𝑥(0) = 𝑥0 and the terminal value for the Lagrangian multiplier 

𝜆(𝑇) = 0, this is also known as two boundary conditions problem [12]. 

The solution provided by Pontryagin’s minimum principle represents the optimal trajectory 𝑥∗(𝑡) and 

the associated optimal control set 𝑢∗(𝑡), however this is an open loop solution, known as control 

program technique. It is clear that a major drawback affects these techniques, in fact since they cannot 

rely on the sensors measurements and considering the model approximation and the unpredictability 

of the random disturbances that usually affect the system’s dynamic, the optimal set of control 𝑢∗(𝑡) 
cannot be directly used as control input to the real system. 

Several techniques to solve this weakness have been proposed, such as Linear Quadratic Regulator 

(LQR), State Dependent Riccati Equation (SDRE) and Model Predictive Control (MPC). 
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If the system dynamics are described by a set of linear differential equations and the cost is described 

by a quadratic function the problem is called LQ. In these cases, the solution for the controlled system 

is provided by the linear–quadratic regulator (LQR), this is a feedback optimal based controller.  

The finite horizon, linear quadratic regulator (LQR) is given by [6]: 

 

�̇� = 𝐴𝑥 + 𝐵𝑢             𝑥 ∈ ℝ𝑛, 𝑢 ∈ ℝ𝑚 

𝐽 =
1

2
∫(𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢) 𝑑𝑡

𝑇

0

+
1

2
𝑥𝑇(𝑇)𝑃1𝑥(𝑇) 

   (2) 

where 𝑄 ≥ 0, 𝑅 > 0, 𝑃1 ≥ 0 are symmetric, positive (semi-) definite matrices. This can be solved 

applying the minimum principle which leads to: 

𝐻 = 𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢 + 𝜆𝑇(𝐴𝑥 + 𝐵𝑢 ) 

�̇� = (
𝜕𝐻

𝜕𝜆
)
𝑇

= 𝐴𝑥 + 𝐵𝑢         𝑥(0) = 𝑥0 

−�̇� = (
𝜕𝐻

𝜕𝑥
)
𝑇

= 𝑄𝑥 + 𝐴𝑇𝜆      𝜆(𝑇) = 𝑃1𝑥(𝑇) 

0 = (
𝜕𝐻

𝜕𝑢
) = 𝑅𝑢 + 𝐵𝑇𝜆   ⟹     𝑢 = −𝑅−1𝐵𝑇𝜆 

   (3) 

 

If one is now able to solve the two boundaries conditions problem obtains the optimal solution, but 

in general is not easy to be solved. Instead the LQR techniques proposes for the costate 𝜆(𝑡) =
𝑃(𝑡)𝑥(𝑡) which provide a solution using the Time Varying Riccati equation: 

 

�̇� = �̇�𝑥 + 𝑃�̇� = �̇�𝑥 + 𝑃(𝐴 − 𝐵𝑅−1𝐵𝑇𝑃)𝑥 

−�̇�𝑥 − 𝑃𝐴𝑥 + 𝑃𝐵𝑅−1𝐵𝑇𝑃𝑥 = 𝑄𝑥 + 𝐴𝑇𝑃𝑥 

 

Simplifying the 𝑥, one obtains the Time Varying Riccati equation, the solution to this can be found using the 

terminal condition 𝑃(𝑇) = 𝑃1, even though is not easy: 

 

−�̇� = 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 + 𝐴𝑇𝑃 

   (4) 

 

The solution found for the control, is still time dependent 𝑢 = −𝑅−1𝐵𝑇𝑃(𝑡)𝑥 which is undesirable, 

since its is not a feedback control. Otherwise if the time horizon is extended to 𝑇 = ∞ the algebraic 

Riccati equation must be considered, i.e. �̇� = 0, the LQR technique provide an optimal feedback 

control law for the considered system and cost function: 

 

𝑢 = −𝑅−1𝐵𝑇𝑃𝑥    (5) 

 

Even though the LQR provide an optimal based feedback control, this optimality is guaranteed only 

for linear systems, and quadratic cost functions. Different techniques can be used to introduce the 

nonlinearities of the considered model into the controller, such as approximation or numerical 
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schemes, that will produce a feedback control as close to optimal as possible. One direct formula for 

nonlinear systems is almost impossible to be formulated, therefore several suboptimal techniques 

have been developed, as well as the one that will be discussed throughout this work.  

One chance to take into the account the nonlinearities of the controlled system, providing a 

suboptimal feedback control is represented by the SDRE technique, this is based on the algebraic 

Riccati equation, used to find the optimal solution for the LQR in the linear dynamic cases. The SDRE 

approach extends this method also to nonlinear dynamic systems by allowing the matrices involved 

in the Riccati algebraic equation to vary with respect to the state variables and possibly the controls 

as well [17-20]. The early work on the SDRE was done by Pearson [18] Garrand, McClamroch and 

Clark [19], Burghart [20] and Wernli and Cook [21]. More recent works on SDRE have been done 

by Krikelis and Kiriakidis [22], and Cloutier, D’Souza and Mracek [23]. 

This technique considers a system dynamic described by the affine system class: 

 

�̇� = 𝑓(𝑥) + 𝐵(𝑥)𝑢    (6) 

 

Where state nonlinearities are present, and the control inputs depends linearly by the system state. 

Wernli and Cook [10] introduced a more general case for the SDRE technique, i.e.: 

 

�̇� = 𝑓(𝑥, 𝑢)    (7) 

Since dynamic system often exhibits nonlinearities also in terms of the control input, Wernli and 

Cook provided different techniques to deal with this more general class of systems, this can be done 

modifying the structure of the dynamic system rewriting it with constant and state dependent matrices 

and introducing a power series formulation as in [17-20]. 

A different approach is represented by introducing the control nonlinearities through a cheap 

formulation, i.e. introducing them into the state nonlinearities, by adding other differential equations 

which described the nonlinear dynamic of the actuators [23]. 

Another technique to introduce nonlinearities as well as more general penalties function is 

represented by the Model Predictive Control (MPC), also referred to as Receding Horizon Control 

and Moving Horizon Optimal Control. This approach was initially developed for the oil industries 

and has been widely adopted in industry because of its effectiveness and the ability to deal with 

multivariable constrained control problems, and nonlinear problems [24-29]. The origin of the MPC 

can be traced back to the 1960s [26], but the real interest for this technique started in the 1980s with 

the papers [27,28], The scheme of MPC is depicted in Fig. 2.  

The idea behind the MPC is to use a model (Plant) to predicts the future behavior of the Process (real 

system), the output provided by the Process is used as actual condition of the system, while the 

predicted output produced by the Plant is used as feedback for the Optimizer, which performs an 

optimization process to determine which is the best control input to be applied to the Process to make 

it tracks the desired Reference. The control set determined by the Optimizer is applied according to 

a receding horizon philosophy: At time t only the first input of the optimal set of control is applied to 

the Plant. The other commands of the optimal set are discarded, and a new optimal control problem 

is solved at time t + 1. As new measurements are collected from the plant at each time t, the receding 

horizon mechanism provides the controller with the desired feedback characteristics. 
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The optimization process guarantees the optimality of the solution provided by the controller, at the 

cost of a high computational effort, especially when several constraints have to be respected and the 

Process exhibits a strong nonlinear behavior. 

Figure 2: MPC controller. 

 

Unmanned and autonomous vehicles, terrestrial, naval, and aerial, are one of the most active field of 

research of these days Fig.3, in fact this devices permits to reduce the action of the human in the 

vehicle control, with different degrees of autonomy, from basic systems that only support the human 

in controlling the vehicle, to advanced algorithms operating a complex set of actuators and sensors, 

with the aim to remove the human in the control loop. 

 

Figure 3: Examples of autonomous vehicles, from the left top in clockwise sense, Roborace 

autonomous racecar, Lockheed-Martin SR-72 autonomous surveillance hypersonic plane, SpaceX 

Falcon heavy booster autonomous rocket landing, DARPA Sea-hunter autonomous marine vessel. 

Optimizer Process 

Real 
Output 

Control 
input 

Plant 

Reference 

_ + 

Tracking
error 

MPC 

controller 
Predicted 
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Four applications of the proposed control will be presented in this work, regarding, autonomous car, 

autonomous marine vehicle, rocket vertical landing and MRI actuated micro robots.  The autonomous 

car idea is usually supported by the fact that human beings are poor drivers [30,31]. However, is not 

easy to design and build a perception-control system that drives better than the average human driver. 

The 2007 DARPA Urban Challenge [32] was a landmark achievement in robotics, when 6 of the 11 

autonomous vehicles in the finals successfully navigated an urban environment to reach the finish 

line. The success of this competition generated the idea, that fully autonomous driving task was a 

“solved problem”, and that it was only a matter of time, to have fully functional autonomous cars on 

our roads. Eventually reality faces a different scenario, in fact today, fifteen years later, the problems 

of localization, mapping, scene perception, vehicle control, trajectory optimization, and higher-level 

planning decisions associated with autonomous vehicle development is not still completely solved 

yet. In fact, the most advanced commercial vehicles still need a human supervisor responsible for 

taking control during periods where the AI system is “unsure” or unable to safely proceed remains 

the norm [31,32]. 

The history of model-based ship control starts with the invention of the gyrocompass in 1908, which 

allowed for reliable automatic yaw angle feedback. The gyrocompass was the basic instrument in the 

first feedback control system for heading control and today these devices are known as autopilots. 

The next breakthrough was the development of local positioning systems in the 1970s. Global 

coverage using satellite navigation systems was first made available in 1994. Position control systems 

opened for automatic systems for waypoint tracking, trajectory tracking and path following [53].  

Complex, high-performance, high-cost rocket stages and rocket engines were usually wasted after the 

launch. These components fall back to Earth, crashing on ground or into the Oceans. Returning these 

stages back to their launch site has two major advantages cost saving, and reduction of the impact of 

space activities on the environment. However, early reusability experience obtained by the Space 

Shuttle and Buran vehicles enlighten all the difficulties of this task [54-59]. Therefore, rocket vertical 

landing represent an interesting and challenging test case for new control algorithms. 

Untethered mobile robots have opened new methods and capabilities for minimally invasive 

biomedical applications [76-80]. The minimally invasive surgeries reduce the surgical trauma, 

leading to fast recovery time and increase in the comfort of patients. However, surgeons have no 

direct line-of-sight at these operations, and therefore, such opera- tions require an intraoperative 

medical imaging modality to monitor the state of the surgery deep in the tissue. Without such 

feedback information, the surgeon would not have visual feedback and could not continue the 

operation safely and reliably. 
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Chapter 2 

 

FLOP Control algorithm (Feedback Local Optimality Principle) 

 

2.1 Introduction 

Nowadays technology advances produce mechanical systems with constantly increasing complexity, 

in order to provide higher performance nonlinear behavior arises and cannot be neglected, moreover 

electronics devices are no more only accessories in them, but have changed them into Mechatronics 

systems able to act smarter than in the past times [1-29]. These development leads to all new 

possibilities that are strictly related to the necessity of automation of these systems, requiring to them 

the capability of autonomously act in rather complex scenarios, interact with the environment and 

other agents acting within it. Navigation guidance and control represent the main capability for an 

autonomous vehicle especially when it has to move properly within other vehicles or cooperate with 

other agents. Control algorithm become determinant to reach the required standards in terms of safety, 

task succeeding, reliability, fuel consumption, pollution and fail-safe, especially when human being 

is involved as in autonomous driving car, autonomous industrial robots and machineries, flying and 

floating vehicles [30-59]. Optimal based control strategies can consider multiple task and 

nonlinearities, but a main drawback is present, the Pontryagin optimal control theory, provides 

feedforward control law [9-16].     

The control program form of the solution presents an engineering weakness, that is they use only one 

single information on the system state: the initial condition. This approach would be natural if the 

system’s model is not affected by any error, the state of the system is perfectly known, and all the 

environment forces are known in advance. Under these conditions, the system response for any future 

time depends only on the initial information provided by the initial condition. However, engineering 

practice and real world meet a different scenario. Models of the controlled process have some degree 

of approximation, because the real dynamics is only roughly represented by the estimated differential 

equations, and the environment external disturbance is generally unknown [60-75].  

In this context, use of measurements by sensors is of great value and feedback control strategies use 

the valuable support of measurements. Variation Feedback Control is aimed at using the power of 

variational functional calculus to state a well posed optimality principle, but using the information 

coming from sensors, integrating in this way the available information contained into initial 

conditions, the only one used in the context of control programs, providing a more reliable controlled 

system [9-16], [60-75]. 

In this work the FLOP capabilities are shown for two research projects developed by the group of 

Mechatronic and Vehicle Dynamic Lab of Sapienza, devoted to the realization of two autonomous 

vehicles that will be discussed in detail within this thesis; the autonomous car, starting from a 

production series city car and a joint research project, named Secure Platform, devoted to the design 

an autonomous marine craft vehicle, for rescue purposes. 

 

 

 

2.2 Theoretical Foundations, Local Optimality Principle 

Optimal control problems, based on variational approach, are constituted by three main elements as 

stated in 1, the cost function 𝐸(𝑥(𝑡), 𝑢(𝑡)), evolution equation �̇� = 𝑓(𝑥(𝑡), 𝑢(𝑡)), and the optimality 

principle. The FLOP principle is based on the variational approach and modifies the optimality 
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principle, by changing it from a global optimality, to a local one, this modification gives the chance 

to formulate a feedback control law. 

Optimal control theory relies on the minimization (or maximization) of a performance index 𝐽, subject 

to the equation of the controlled process �̇� = 𝑓(𝑥, 𝑢, 𝑡) with its initial condition 𝑥(0) = 𝑥0, the 

evolution equation is introduced by the Lagrangian multiplier 𝜆(𝑡) leading to the following: 

 

𝐽 = ∫𝐸(𝑥, 𝑢) + 𝜆(�̇� − 𝑓(𝑥, 𝑢)) 𝑑𝑡

𝑇

0

= ∫ ℒ(�̇�, 𝑥, 𝑢, 𝜆)𝑑𝑡
𝑇

0

, (8) 

 

The solution of the problem is represented by optimal trajectory 𝑥∗(𝑡) associated to the optimal 

control trajectory 𝑢∗(𝑡). The Pontryagin’s equations can be derived by applying the variational 

calculus to the (8)  

  

{
 
 
 

 
 
 

   

𝜕𝐸

𝜕𝑥
− 𝜆

𝜕𝑓

𝜕𝑥
− �̇� = 0

𝜕𝐸

𝜕𝑢
− 𝜆

𝜕𝑓

𝜕𝑢
= 0

�̇� = 𝑓(𝑥, 𝑢, 𝑡)

𝑥(0) = 𝑥0
𝜆(𝑇) = 0

 (9) 

 

The general structure solution is represented by the function 𝑣∗ = (𝑥∗, 𝑢∗) that provides the minimum 

(maximum) 𝐽∗(𝑥∗, 𝑢∗), this can be written as: 

 

𝑣∗ = (𝑥∗, 𝑢∗) = 𝑉(𝑥0, 𝑇, 𝑡) (10) 

Where the function 𝑉 represents the general solutions structure, since once 𝐸 and 𝑓 are given, the 

solution depends only by the time horizon 𝑇 and by the initial condition 𝑥0. 

FLOP approach considers a modification of the optimality criterion, passing from the global approach 

to a local approach, leading to a suboptimal solution 𝑣(𝑥, 𝑢) that compared to the general solution 

provided by Pontryagin’s theory provides a cost function 𝐽(𝑥, 𝑢): 
 

∀ 𝑣 ≠ 𝑣∗  ,   𝐽(𝑥, 𝑢) ≥  𝐽(𝑥∗, 𝑢∗) (11) 

 

this is done considering a time partition of the time interval [0, 𝑇] into 𝑁-subintervals of the cost 

function integral: 

 

𝐽 = ∫ ℒ(�̇�, 𝑥, 𝑢, 𝜆)𝑑𝑡
𝑇

0

= ∫ ℒ(�̇�, 𝑥, 𝑢, 𝜆)𝑑𝑡
𝜏1

𝜏0

+∫ ℒ(�̇�, 𝑥, 𝑢, 𝜆)𝑑𝑡
𝜏2

𝜏1

+⋯+∫ ℒ(�̇�, 𝑥, 𝑢, 𝜆)𝑑𝑡
𝜏𝑁

𝜏𝑁−1

 

(12) 
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Now in order to obtain a formulation that will be useful for the algorithm developed in following 

section, it is considered a set of solutions 𝑣𝑖
∗ = (𝑥𝑖

∗, 𝑢𝑖
∗) which, for each subinterval [𝜏𝑖−1, 𝜏𝑖], 

minimizes only the related integral, in the place of the optimal solution 𝑣∗ that solve the problem (9) 

for the entire time interval [0, T] 
 

𝑚𝑖𝑛 𝐽𝑖 = ∫ ℒ(�̇�, 𝑥, 𝑢, 𝜆)𝑑𝑡
𝜏𝑖

𝜏𝑖−1

 (13) 

 

For each integral is required to satisfy the boundary conditions for the related Pontryagin’s equations 

so that: 

 

𝑥𝑖−1(𝜏𝑖−1) = 𝑥𝑖(𝜏𝑖−1) 

𝜆𝑖(𝜏𝑖) = 0 
(14) 

 

Because of the first condition, a piecewise function of class 𝐶0 is generated along the entire interval 
[0, 𝑇].  
Now it is possible to express every solution for each interval through the function 𝑉 defined above, 

written for the specific integral 𝑖, hence with its own initial condition for the state 𝑥𝑖
∗(𝜏𝑖−1) and its 

time horizon 𝜏𝑖: 
 

𝑣𝑖
∗ = 𝑉(𝑥𝑖−1

∗ (𝜏𝑖−1), 𝜏𝑖, 𝑡) (15) 

  

The remarkable element of the suggested strategy is that the structure of each of the 𝑣𝑖
∗ solution is the 

same for all integrals, except for the parameters 𝑥𝑖−1
∗ (𝜏𝑖−1), 𝜏𝑖, since 𝐸 and 𝑓 are the same for each 

interval and equal to the one assigned for the problem (9). 

The new criterion of optimality expressed by (13) leads to:  

 

𝐽′∗ =∑∫ ℒ(𝑣𝑖
∗)𝑑𝑡

𝜏𝑖−1+∆𝜏𝑖

𝜏𝑖−1

𝑁

𝑖=1

 (16) 

 

In general, cost functions J∗ and J′∗ differs, and given the modification of the optimality criterion 

 

𝐽∗ ≤ 𝐽′∗ (17) 

 

Nevertheless, problem (9) provides the chance, under some conditions, to formulate a feedback 

control law, that cannot be provided by solving directly the equations. Hence Local optimality 

principle offers important advantages respect to the original problem (1). 
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2.3 FLOP Principle formulation 

In the following analysis a constant timestep ∆𝜏 is considered, hence the 𝑖 − 𝑡ℎ timestep ∆𝜏𝑖 is 

expressed as function of the overall time horizon 𝑇 and the number of steps 𝑁, hence ∆𝜏𝑖 = ∆𝜏 =
𝑇/𝑁.   𝐽′∗ is can be re-written as:  

 

𝐽′
∗
= ∫ ℒ(𝑣1

∗)𝑑𝑡 
𝑈𝐵1

𝐿𝐵1

+⋯+∫ ℒ(𝑣𝑖
∗)𝑑𝑡 

𝑈𝐵𝑖

𝐿𝐵𝑖

+⋯+∫ ℒ(𝑣𝑁
∗ )𝑑𝑡 

𝑈𝐵𝑁

𝐿𝐵𝑁

. (18) 

 

where 𝐿𝐵𝑖 = (𝑖 − 1)∆𝜏  and 𝑈𝐵𝑖 = 𝑖∆𝜏. 
The solution to the problem can be evaluated by applying the transversality condition 𝜆𝑖 = 𝜆|𝑈𝐵𝑖 =

0 and the continuity condition 𝑥𝐿𝐵𝑖 = 𝑥𝑈𝐵𝑖−1 for each integral, given the initial condition 𝑥𝐿𝐵1 = 𝑥0, 

as expressed in (14).  

For each integral the following set of equation can be written, these will provide the solution for the 

𝑖 − 𝑡ℎ timestep:  

 

{
 
 

 
 

   

𝜕𝐸

𝜕𝑥𝑖
− 𝜆𝑖

𝜕𝑓

𝜕𝑥𝑖
− �̇�𝑖 = 0

𝜕𝐸

𝜕𝑢𝑖
− 𝜆𝑖

𝜕𝑓

𝜕𝑢𝑖
= 0

�̇�𝑖 = 𝑓(𝑥𝑖, 𝑢𝑖 , 𝑡)

∀  𝑡 ∈ [𝐿𝐵𝑖, 𝑈𝐵𝑖] (19) 

 

This set of equation provides the functions 𝑥𝑖
∗, 𝜆𝑖

∗, 𝑢∗𝑖, 𝑖 = 1,… ,𝑁. The FLOP approaches the method 

of solution using a discretized version of equations (19). Namely, the time-step discretization is 

purposely chosen as ∆𝜏. Now applying the Euler first-order approximation for �̇�𝑖 and �̇�𝑖, by neglecting 

second order terms, one has: 

 

{
  
 

  
 

   

𝜕𝐸

𝜕𝑥
|
𝐿𝐵𝑖

− (𝜆
𝜕𝑓

𝜕𝑥
)|
𝐿𝐵𝑖

−
𝜆𝑈𝐵𝑖 − 𝜆𝐿𝐵𝑖

∆𝜏
= 0

𝜕𝐸

𝜕𝑢
|
𝐿𝐵𝑖

− (𝜆
𝜕𝑓

𝜕𝑢
)|
𝐿𝐵𝑖

= 0

𝑥𝑈𝐵𝑖 − 𝑥𝐿𝐵𝑖
∆𝜏

= 𝑓(𝑥𝐿𝐵𝑖 , 𝑢𝐿𝐵𝑖)

∀  𝑖 ∈ [1, 𝑁] (20) 

 

The solution technique of these equations goes through the following steps: 

 

• from the first interval, 𝑖 = 1, one sets 𝑥𝐿𝐵𝑖 = 𝑥0 and 𝜆𝑈𝐵𝑖 = 0. The equations (20) become a 

system of three equations in three unknowns, 𝑥𝑈𝐵1, 𝜆𝐿𝐵1, 𝑢𝐿𝐵1.  

• Once (20) is solved, 𝑥𝑈𝐵1 is used as initial condition for the interval 𝑖 = 2 which, together 

with 𝜆𝑈𝐵2 = 0, produces again a system of three equations in the three unknowns 

𝑥𝑈𝐵2, 𝜆𝐿𝐵2 , 𝑢𝐿𝐵2.  

• The process is iterated for all the following intervals up to 𝑖 = 𝑁, and it produces the set of 

desired solutions 𝑥𝑖
∗, 𝜆𝑖

∗, 𝑢𝑖
∗, over the whole-time interval [0, 𝑁∆𝜏]. 
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The following figure illustrates the process steps: 

 

 

Figure 4: FLOP first two iterations workflow, red quantities are known at each step. 
 

 

It is important to notice that ∆𝜏 plays a special role in the FLOP technique since, it changes the degree 

of accuracy of the solution. Since it acts as free parameter to be tuned, it is expected that the choice 

of its value can be suitably selected to obtain the best performance of the present method, as will be 

shown in the next section, some remarkable considerations can be done to set boundaries value for 

this parameter.   

 

 

2.4 FLOP feedback solution technique 1 DOF systems 

The local formulation of the optimality as stated by the equation (16), should provide, in general, a 

solution that performs worse than the solution of the Pontryagin’s method. It will be shown that for 

a problem described by a linear evolution equation 𝑓(𝑥, 𝑢) and a quadratic cost function 𝐸(𝑥, 𝑢), the 

FLOP method described in section 2.3, that relies on the local optimality principle described in 

section 2.2, will provide the same solution of the Pontryagin’s method, given a suitable choice for the 

length of the time interval ∆𝜏. 

From equation (20)  �̇�𝑖 ≅
𝜆𝑈𝐵𝑖−𝜆𝐿𝐵𝑖

∆𝜏
, and the local transversality condition, 𝜆𝑈𝐵𝑖 = 0, is used. This 

implies �̇�𝑖 ≅ −
𝜆𝐿𝐵𝑖

∆𝜏
. Looking at the continuous counterpart of this equation, it seems natural to assume 

�̇� = −
𝜆

∆𝜏
= 𝐺𝜆.  

This leads to a reformulation of the Pontryagin’s problem in the following augmented form:  

{
 
 
 

 
 
 

   

𝜕𝐸

𝜕𝑥
− 𝜆

𝜕𝑓

𝜕𝑥
− �̇� = 0

𝜕𝐸

𝜕𝑢
− 𝜆

𝜕𝑓

𝜕𝑢
= 0

�̇� = 𝑓(𝑥, 𝑢, 𝑡)

�̇� = 𝐺𝜆 
         

∀  𝑡 ∈ [0, 𝑇] (21) 

𝑥𝐿𝐵1                 𝑥𝑈𝐵1  

 
 

𝜆𝐿𝐵1          𝜆𝑈𝐵1 = 0 

𝑥𝐿𝐵2                 𝑥𝑈𝐵2  

  

  

𝜆𝐿𝐵2          𝜆𝑈𝐵2 = 0 

Transversality condition Transversality condition 

Continuity condition 

Initial 
condition 

𝑖 = 1 𝑖 = 2 

𝑥𝐿𝐵𝑁−1                 𝑥𝑈𝐵𝑁 
  
  

𝜆𝐿𝐵𝑁−1          𝜆𝑈𝐵𝑁 = 0 

𝑖 = 𝑁 

Transversality condition 

… 

FLOP technique 
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This formulation is characterized by the presence of an augmented set of variables, that includes, 

besides 𝑥, 𝑢, 𝜆 the new variable 𝐺. This equation form reveals some important advantages with respect 

to the classical form (5). 

Let solve first the augmented equation (21) under the hypothesis of linearity: 

{
 
 

 
 

    

𝑞𝑥 − �̇� − 𝑎𝜆 = 0
𝑟𝑢 − 𝜆𝑏 = 0
�̇� = 𝑎𝑥 + 𝑏𝑢
�̇� = 𝐺𝜆 
         

  (22) 

The set of equation (22) might provide the chance to determine a feedback solution for the control 𝑢, 

at the cost of introducing a new equation for the costate 𝜆 that is not directly provided by the 

variational calculus applied to the integral that defines 𝐽. This can be obtained considering a different 

approach that provides a similar set of equations, but considers a different formulation for the 

performance index integral, this has been modified as follows: 

𝐽 = ∫ [
1

2
𝑞(𝑥 − 𝑋)2 +

1

2
𝑟(𝑢 − 𝑈)2 + 𝜆(�̇� − 𝜙 − 𝑏𝑢) + 𝜆�̇� +

1

2
𝜆𝑔2] 𝑑𝑡

𝑇

0

  (23) 

The new performance index 𝐽 now depends on four variables 𝑥, 𝑢, 𝜆, 𝑔, these must be differentiated 

to minimize the integral 𝐽. The functions 𝑋,𝑈 are time dependent and can be determined, as will be 

discussed further in this section. Now the (22) representing the Euler-Langrange set of equations can 

be written as:  

{
 
 

 
 
𝑞(𝑥 − 𝑋) − �̇� − 𝜆𝜙𝑥 = 0

𝑟(𝑢 − 𝑈) − 𝜆𝑏 = 0

�̇� − 𝜙 − 𝑏𝑢 + �̇� +
1

2
𝑔2 = 0

�̇� − 𝑔𝜆 = 0

 

with:  

𝑥(0) = 𝑥0 
𝜆(𝑇) = 0 
𝑔(0) = 𝑔0 

 

From the second of the (24) it’s possible to express the control 𝑢 as a function the 

costate 𝜆: 

𝑢 =
𝑏

𝑟
𝜆 + 𝑈 

        (24) 

Now plugging this back into the Hamilton-Jacobi-Bellman set of equation one obtains 

{
 
 

 
 �̇� = 𝑞(𝑥 − 𝑋) − 𝜆𝜙𝑥

 �̇� + �̇� = 𝜙 +
𝑏2

𝑟
𝜆 + 𝑏𝑈 −

1

2
𝑔2

�̇� = 𝑔𝜆

         (25) 
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That is a set of differential equation in the variables 𝑥, 𝑔, 𝜆. The resulting is system is bad conditioned, 

because it doesn’t respect the Cauchy Theorem, this can be easily proved wrtiting it in it’s matricial 

form by calling 𝜓 = [�̇�, �̇�, �̇�]
𝑇
: 

[
0 0 1
1 1 0
0 0 1

]𝜓 = 𝜌(𝑥, 𝑔, 𝜆) 

𝐴𝜓 = 𝜌(𝑥, 𝑔, 𝜆) 

        (26) 

 

The coefficients matrix 𝐴 has two repeated rows and hence it is not invertible, this means that there 

is no solution for the system. Beside this, it is possible to eliminate the variable 𝜆, this produces a 

system of differential equation in the variables 𝑥, 𝑔. The new system instead does satisfy the Cauchy 

Theorem and hence a solution for the control is supported. Substituting the third into the first of the 

(26) one obtains: 

𝑔𝜆 + 𝜆𝜙𝑥 = 𝑞(𝑥 − 𝑋)         (27) 

 

Solving for 𝜆: 

𝜆 =
𝑞(𝑥 − 𝑋)

𝑔 + 𝜙𝑥
 

        (28) 

 

This permits to express the control 𝑢 in function of the two variables 𝑥 e 𝑔, this means that the 

control law is still non feedback, since other dependeces are present.  

𝑢 =
𝑞𝑏

𝑟

𝑥 − 𝑋

𝑔 + 𝜙𝑥
+ 𝑈 

        (29) 

 

the (28) can also be used to evaluate �̇�, that can be substituted into the third of the (26) 

�̇� = 𝑞
�̇�

𝑔 + 𝜙𝑥
− 𝑞

𝑥 − 𝑋

(𝑔 + 𝜙𝑥)2
(�̇� + 𝜙𝑥𝑥�̇�) = 𝑔𝑞

𝑥 − 𝑋

𝑔 + 𝜙𝑥
 

        (30) 

 

Now plugging this last and introducing the (28) into the second and the third equations of the (26), 

produce the following set of differential equations:  

{
 
 

 
  �̇� + �̇� = 𝜙 +

𝑏2

𝑟

𝑞(𝑥 − 𝑋)

𝑔 + 𝜙𝑥
+ 𝑏𝑈 −

1

2
𝑔2

𝑞
�̇�

𝑔 + 𝜙𝑥
− 𝑞

𝑥 − 𝑋

(𝑔 + 𝜙𝑥)2
(�̇� + 𝜙𝑥𝑥�̇�) = 𝑔

𝑞(𝑥 − 𝑋)

𝑔 + 𝜙𝑥

 
        (31) 

 

After some manipulations and considering the cases in which 𝑔 ≠ 𝜙𝑥 the resulting set of equations 

is: 

{
 
 

 
 �̇� + �̇� = 𝜙 +

𝑏2

𝑟
(𝑞

𝑥 − 𝑋

𝑔 + 𝜙𝑥
) + 𝑏𝑈 −

1

2
𝑔2

1

𝑔 + 𝜙𝑥
[�̇� −

(𝑥 − 𝑋)(�̇� + 𝜙𝑥𝑥�̇�)

𝑔 + 𝜙𝑥
− 𝑔(𝑥 − 𝑋)] = 0

 
        (32) 
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This can also be written as  

{
�̇� + �̇� = 𝜙 +

𝑏2

𝑟
(𝑞

𝑥 − 𝑋

𝑔 + 𝜙𝑥
) + 𝑏𝑈 −

1

2
𝑔2

�̇�[𝑔 + 𝜙𝑥 − 𝜙𝑥𝑥(𝑥 − 𝑋)] − �̇�(𝑥 − 𝑋) = 𝑔(𝑥 − 𝑋)(𝑔 + 𝜙𝑥)

         (33) 

 

The system of differential equation (33) has two equations in the two unknowns 𝑥, 𝑔, and hence the 

chance to find a solution is supported. It is important to enlight one theoretical observation for the 

costate 𝜆, in fact even though the formulation �̇� = 𝑔𝜆 suggests an exponential behaviour for this 

variable, its evolution depends on the system state 𝑥, therefore the system evolution has to be 

described in the two variables 𝑥, 𝑔. The two euqations of the (39) can now be written in matricial 

form calling �̇̃� = [�̇�, �̇�]𝑇 as follows:  

[
1 1

[𝑔 + 𝜙𝑥 − 𝜙𝑥𝑥(𝑥 − 𝑋)] −(𝑥 − 𝑋)
] [
�̇�
�̇�
] = [

𝜙 +
𝑏2

𝑟
(𝑞

𝑥 − 𝑋

𝑔 + 𝜙𝑥
) + 𝑏𝑈 −

1

2
𝑔2

𝑔(𝑥 − 𝑋)(𝑔 + 𝜙𝑥)

] 
        (34) 

 

 

𝐴�̇̃� = 𝜌(�̃�) 

To satisfy the conditions of the Cauchy Theorem, the matrix 𝐴 has to be non-singular and hence its 

determinant has to be non-zero, i.e. invertible. This holds when the following condition is satisfied:  

[𝜙𝑥𝑥] ≠
(𝑥 − 𝑋)

(𝑥 − 𝑋)
+
(𝑔 + 𝜙𝑥)

(𝑥 − 𝑋)
   →    𝜙𝑥𝑥 ≠ 1 +

(𝑔 + 𝜙𝑥)

(𝑥 − 𝑋)
 

 

        (35) 

 

The system (40) when the condition (41) holds provide the chance to find solution. This solution has 

one limit, in fact it depends on the variable 𝑔 that depends on time 𝑡, this generate a solution for the 

costate 𝜆 that depends on the system’s state 𝑥 but also by the time 𝑡 through the variable 𝑔. This 

solution might be interesting, but for the robustness of the controlled system, it is preferrable to find 

an approximated feedback form of the control 𝑢 =
𝑏

𝑟
𝜆(𝑥, 𝑔0), where the the variable 𝑔 is considered 

to be constant and hence 𝑔(𝑡) = 𝑔0 = 𝑐𝑜𝑠𝑡, now using this solution for the system (36) one obtains: 

{
�̇� = 𝜙 +

𝑏2

𝑟
(𝑞

𝑥 − 𝑋

𝑔0 + 𝜙𝑥
) + 𝑏𝑈 −

1

2
𝑔0
2

�̇�[𝑔0 + 𝜙𝑥 − 𝜙𝑥𝑥(𝑥 − 𝑋)] = 𝑔0(𝑥 − 𝑋)(𝑔0 + 𝜙𝑥)

 
        (36) 

 

This formulation introduces an error, in fact the system’s state 𝑥 is required to satisfy two different 

differential equations. This error appears evident by substituing the first of the (36) into the second: 

[𝑔0 + 𝜙𝑥 − 𝜙𝑥𝑥(𝑥 − 𝑋)] [𝜙 +
𝑏2

𝑟
(𝑞

𝑥 − 𝑋

𝑔0 + 𝜙𝑥
) + 𝑏𝑈 −

1

2
𝑔0
2] = 𝑔0(𝑥 − 𝑋)(𝑔0 + 𝜙𝑥)         (37) 

This formulation can be discussed introducing under the hipothesis: 

|
(𝑔0 + 𝜙𝑥)

(𝑥 − 𝑋)
| ≫ |𝜙𝑥𝑥|         (38) 
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That coupled with the (34) defines the renge of apllicability of the FLOP technique. With the (38) 

the (37) can be simplified as:  

(𝑔0 + 𝜙𝑥) [𝜙 +
𝑏2

𝑟
(𝑞

𝑥 − 𝑋

𝑔0 + 𝜙𝑥
) + 𝑏𝑈 −

1

2
𝑔0
2] = 𝑔0(𝑥 − 𝑋)(𝑔0 + 𝜙𝑥)         (39) 

And considering the condition 𝑔 ≠ 𝜙𝑥 applied in the (39):  

𝜙 +
𝑏2

𝑟
(𝑞

𝑥 − 𝑋

𝑔0 + 𝜙𝑥
) + 𝑏𝑈 −

1

2
𝑔0
2 = 𝑔0(𝑥 − 𝑋)         (40) 

This last equation, supports the choice for the variable 𝑔(𝑡) = 𝑔0 to be constant, in fact this 

approximation holds as long as is possible to admit that the first and the second members of the (40) 

are equal. In fact the (40) states that the first member, that depends on the state 𝑥 nonlinearly, can be 

approximated as a linear function of 𝑥, this hypothesis is supported for specific cases and for specific 

values of 𝑔0. 

This can also be shown performing a first order Taylor series of the first member of the (40): 

𝜙 +
𝑏2

𝑟
(𝑞

𝑥 − 𝑋

𝑔0 + 𝜙𝑥
) + 𝑏𝑈 −

1

2
𝑔0
2  ≅ 

≅ 𝜙(𝑋) −
1

2
𝑔0
2 + 𝑏𝑈 + (𝜙𝑥(𝑋) +

𝑏2

𝑟
(𝑞

1

𝑔0 + 𝜙𝑥(𝑋)
)) (𝑥 − 𝑋) 

Now since the equality of this expression and of the second member of the (40) has to 

hold, 𝑔0 and the function 𝑈 = 𝑈0 that is also assumed to be constant, have to satisfy 

the following conditions: 

        (41) 

{
 

 𝜙(𝑋) −
1

2
𝑔0
2 + 𝑏𝑈0 = 0

𝑔0 = 𝜙𝑥(𝑋) +
𝑏2

𝑟
(𝑞

1

𝑔0 +𝜙𝑥(𝑋)
)

         (42) 

This produce for 𝑈0: 

𝑈0 = − 
𝜙(𝑋)

𝑏
+
𝑔0
2

2𝑏
         (43) 

While the second of the system (42) produces: 

𝑔0(𝑔0 + 𝜙𝑥(𝑋)) = 𝜙𝑥(𝑋)(𝑔0 + 𝜙𝑥(𝑋)) +
𝑏2

𝑟
𝑞 

𝑔0
2 = 𝜙𝑥

2(𝑋) +
𝑏2

𝑟
𝑞 

𝑔0 = ±√𝜙𝑥2(𝑋) +
𝑏2

𝑟
𝑞 

        (44) 

This provides two solutions, but only one of the is correct, the negative one. In fact considering the 

differential equation �̇� = 𝑔𝜆 and the required final condition for the costate 𝜆(𝑇) = 0, defined in the 
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Optimal Control Theory, 𝜆 will be zero for 𝑇 sufficiently high, if and only if 𝑔 = 𝑔0 = 𝑐𝑜𝑛𝑠𝑡 is 

negative. 

𝑔0 = −√𝜙𝑥2(𝑋) +
𝑏2

𝑟
𝑞         (45) 

It has to be noted that the validity of the (43) is supported only in those cases where the state 𝑥 and 

the reference for the state 𝑋, are sufficiently close, otherwise the linearization process described so 

far, wouldn’t hold anymore due to errors 𝑜(𝑥 − 𝑋)2 and higher orders. 

This means that the minimization of the performance index 𝐽 defined in (23) can be performed 

effectively, when the function 𝑔 = 𝑔0 is assumed to be constant, only for reduced intervals, i.e. 

locally. 

This shows that the technique guarantees the minimization of each sub-interval, where 𝑔0 is choosen, 

but this does not guarantee the global minimization, i.e. for the whole interval [0, 𝑇]. 

This explains the local minima provided by the feedback control technique proposed, that provides 

the following control law, when 𝑔 is set to be constant:  

𝑢(𝑥) =
𝑏

𝑟
𝑞
𝑥 − 𝑋

𝑔0 + 𝜙𝑥
+ 𝑈0         (46) 

Moreover the (44) suggests updating periodically the value for 𝑔0, if this update is not performed 

the error increases but the procedure validity is still supported. 

The method described so far can be synthetically summarized and written in more general form, 

introducing the general cost function 𝑞(𝑥) for the state, as follows: minimization of the integral that 

provides the performance index 𝐽 

𝐽 = ∫ [𝑞(𝑥) +
1

2
𝑟(𝑢 − 𝑈0)

2 + 𝜆 (�̇� − 𝜙 − 𝑏𝑢 −
1

2
𝑔0
2)] 𝑑𝑡

𝑇

0

         (47) 

Means that is possible to use the following form of the control law: 

𝑢 =
𝑏

𝑟

𝑞𝑥
𝑔0 + 𝜙𝑥

+ 𝑈0         (48) 

For the dynamic system �̇� = 𝜙(𝑥) + 𝑏𝑢 −
1

2
𝑔0
2, this holds only under the conditions: 

𝜙𝑥𝑥 ≠
𝑞𝑥𝑥
𝑞𝑥

(𝑔 + 𝜙𝑥) + 1   ;    |
(𝑔0 + 𝜙𝑥)

(𝑥 − 𝑋)
| ≫ |𝜙𝑥𝑥|           (49) 

Moreover, the considered time interval [0, T] must be sufficiently small, such that the linearization 

(40) holds. 

Now if the considered dynamic equation is of the form �̇� = 𝜙(𝑥) + 𝑏𝑢 −
1

2
𝑔0
2, i.e. the term −

1

2
𝑔0
2 is 

taken into the account, the minimized integral will be:  

𝐽0 = ∫ [𝑞(𝑥) +
1

2
𝑟(𝑢 − 𝑈0)

2] 𝑑𝑡
𝑇

0

         (50) 

Instead if the considered dynamic is  �̇� = 𝜙(𝑥) + 𝑏𝑢 the locally minimized integral will then be: 
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𝐽1 ≅ 𝐽0 +∫
1

2
𝑔0
2𝑑𝑡

𝑇

0

         (51) 

Here the approximation is related to the fact that since a different dynamic is used, the first term of 

𝐽1 will be exactly 𝐽0 plus an added term due to the choice of the dynamic expression. The error 

𝑒𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 introduced by this assumption can be measured a posteriori through the following ratio: 

𝑒𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 =

1
2∫ 𝑔0

2𝑑𝑡
𝑇

0

𝐽0
         (52) 

The locally nature of the FLOP technique is stated by the equation (40), this demonstrates that the 

effectiveness of the FLOP approach is enhanced whenever the whole-time interval [0, 𝑇] is divided 

into sufficiently small sub intervals [0, Δ𝜏], in fact for each of them |𝑥 − 𝑋| is small and the 

assumption 𝑔(𝑡) = 𝑔0 holds. This means that the overall minimization of 𝐽 is here obtained through 

the minimization of the small sub-intervals, where |𝑥 − 𝑋| is small, and 𝑔0 can be properly choosen 

for each of them. The solutions obtained will also minimize 𝐽. Therefore, the equation (40) supports 

the initial hypothesis in the FLOP technique, related to the local optimality, in the place of the global 

criteria that belongs to the Optimal Control Theory. 

 

 

2.5 A simple 1 DOF case 

In order to show FLOP method capabilities, a simple 1 DOF test case will be discussed, the system 

is highly nonlinear as shown by its dynamic equation 𝑓(𝑥, 𝑢) = �̇� = 𝑥 tanh 𝑥 + 𝑢. The performance 

provided by the FLOP will be compared to that provided by the LQR, this is an interesting 

comparison, since LQR controller class provides, under suitable assumptions, the feedback solution 

to the Optimal control problems, these assumptions constraint the dynamic equation 𝑓(𝑥, 𝑢) to be 

linear and a quadratic cost function 𝐸(𝑥, 𝑢). Given the highly nonlinearity of the system the LQR 

needs the linearization of the system about 𝑥𝑇 , 𝑢𝑇, in order to be applied: 

𝑑𝑓(𝑥, 𝑢)

𝑑𝑥
|
𝑥𝑇,𝑢𝑇

 = 𝑡𝑎𝑛ℎ 𝑥𝑇 − 𝑥𝑇(𝑡𝑎𝑛ℎ
2 𝑥𝑇 − 1) = 𝑎  (53) 

 

such that the linear dynamics is:  

 

�̇� = 𝑎(𝑥 − 𝑥𝑇) + 𝑢𝐿𝑄𝑅 − 𝑢𝑇  (54) 

The variable 𝑢𝑇 can be determined through the dynamic equation, as follows: 

 

𝑥�̇� = 0 = 𝜙(𝑥𝑇) + 𝑢𝑇  ⟹  𝑢𝑇 = −𝜙(𝑥𝑇)  (55) 

A quadratic cost function is defined as: 

𝐸(𝑥, 𝑢) = 𝑞𝑥2 + 𝑟𝑢2  (56) 

The stability of the linearized system depends on the sign of 𝑥𝑇. For 𝑥𝑇 < 0 the real part of system’s 

eigenvalue is negative providing a stable system, while a positive real part of the eigenvalue is given 

when 𝑥𝑇 > 0, leading to an unstable system. The control law provided by the LQR is:  
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𝑢𝐿𝑄𝑅 = 𝐾(𝑥 − 𝑥𝑇) − 𝜙(𝑥𝑇)  (57) 

where 𝐾 is the solution of the steady Riccati’s equation.  The application of the FLOP technique 

described in the previous section through equations                    (84), with 𝑆 = 0, 𝑔(𝑥) = 0, 𝐵 = 1, 

produces:  

 

𝑢𝐹𝐿𝑂𝑃 = 𝑟(𝛷(𝑥) + 𝐺)
−1𝑞(𝑥 − 𝑥𝑇) − 𝜙(𝑥𝑇)  (58) 

where 𝐺 = −
1

∆𝜏
. 

The values for 𝑞 and 𝑟 are identical for both the methods, FLOP and LQR, and the comparison is 

performed for the values reported in table 1. 

 

Symbol Value 

𝑥0 : −1 

𝑥𝑡 : 1 

𝑞 : 1 

𝑟 : 0.1 

Tab 1: Set of values 

The conditions for 𝑥0 and 𝑥𝑇 are chosen such that the system has to go through the origin, passing 

from the stable region (𝑥 < 0) to the unstable region (𝑥 > 0). In Figure , the values of the functional 

𝐽, the state variable, and the control variable both for the LQR and the FLOP cases are compared.  
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Figure 5: Evolution of the system’s state 𝑥, of the control 𝑢 and of cost function, for the LQR 

controller and for two different choice of the tuning parameter 𝑔 for the FLOP controller, the first 

value is selected using the function proposed in the previous paragraph, the second is chosen by 

iterative tests until the best performance is reached. 

 

In Fig. 5 an interesting performance has to be noticed that for the 𝑔𝑜𝑝𝑡𝑖𝑚𝑎𝑙 case 𝐽𝐹𝐿𝑂𝑃(𝑡) <

𝐽𝐿𝑄𝑅(𝑡) ∀ 𝑡 a desired result. Moreover, the system controlled using the FLOP approach, reaches the 

target in advance with respect to the one controlled by the LQR, showing the superiority of the FLOP, 

when a proper value for 𝑔 is selected, with respect to the LQR in this nonlinear case. Moreover, the 

graph related to the control action 𝑢 shows that the FLOP control is sensitive to the presence of the 

nonlinearity, exhibiting a slope variation when passing from the stable to the unstable region, while 

the LQR is insensitive since it is based on a linearized formulation. Even though the performance 

provided by the case in which the parameter 𝑔 is selected using the formula (50) are slightly poorer 

compared to the other two controllers, it’s interesting that the performance is comparable, meaning 

that the guessed value for 𝑔 represents a good starting point for fine tuning the FLOP control. 

This advantage is clearly shown by the Fig. 6, This represent the overall performance index 𝐽 for 

different values of the tuning parameter 𝑔, showing that the guessed value lays very close to the basin 

of 𝑔′𝑠 that provide the best performance, and hence it provides an important indication for the 

controller tuning process, and fasten the whole process. 

 
Figure 6: Performance index 𝐽 provided by different choices of the tuning parameter 𝑔, these are 

compared with the value 𝑔𝑔𝑢𝑒𝑠𝑠 evaluated by the formula (52) and with the LQR technique. 
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2.6 FLOP technique formulation for N-DOF systems 

 

Following the same procedure applied in the 1 DOF case, the method can be easily extended to the 

𝑛-DOF linear case. Starting from the definition (23) of the performance index 𝐽, similar calculation 

of section 3.4 is performed, but this time in 𝑛-DOF case: 

𝐽 = ∫
1

2
(𝒙 − 𝑿)𝑇𝑸(𝒙 − 𝑿) +

1

2
(𝒖 − 𝑼)𝑇𝑹(𝒖 − 𝑼) + 𝝀𝑇(�̇� − 𝝓 − 𝑩𝒖) + 𝝀𝑇�̇�

𝑇

0

+
1

2
𝒈𝑇𝜦𝒈𝑑𝑡 

 (59) 

Where is a diagonal matrix 𝜦 = 𝑑𝑖𝑎𝑔(𝝀) generated by the vector 𝝀 = [𝜆1, … , 𝜆𝑛]
𝑻 with 𝑛 dimension 

of the state of the system 𝒙. 

Analogously, the constant vector 𝒈 = [𝑔1, … , 𝑔𝑛]
𝑻 generates a diagonal matrix 𝑮, that as in the 1 

DOF case represents a gains matrix, 𝑮 = 𝑑𝑖𝑎𝑔(𝒈). 
Therefore, the added scalar term in the integrand of the (59) can be written as: 

𝝀𝑇�̇� +
1

2
𝒈𝑇𝜦𝒈 =∑𝜆𝑖�̇�𝑖

𝒊

+∑𝜆𝑔𝑖
2

𝒊

  (60) 

Applying the variational calculus to this term produces the 𝑛-dimensional counterpart of the auxiliary 

equation �̇� = 𝑔𝜆. 

∫
𝜕

𝜕𝑔𝑟
(∑𝜆𝑖�̇�𝑖

𝒊

+∑𝜆𝑔𝑖
2

𝒊

)𝛿𝑔𝑟 +
𝜕

𝜕�̇�𝑟
(∑𝜆𝑖�̇�𝑖

𝒊

+∑𝜆𝑔𝑖
2

𝒊

) 𝛿�̇̇�𝑟 𝑑𝑡 =
𝑇

0

 

∫ (𝜆𝑟𝑔𝑟 − �̇�𝑟)𝛿𝑔𝑟 + [𝜆𝑟𝛿𝑔𝑟]0
𝑇

𝑇

0

 

 (61) 

Following the same steps performed in the 1 d.o.f. formulation, the third of the set (24) becomes: 

�̇� − 𝝓 − 𝑩𝒖 + �̇� +
1

2
𝑮𝒈 = 𝟎  (62) 

Analogously the (40) is modified into: 

[𝝓 + 𝑩𝑹−𝑇𝑩𝑇[(𝑮 + 𝝓𝒙
𝑇)−1𝑸𝑇(𝒙 − 𝑿)] + 𝑩𝑼 −

1

2
𝑮𝒈] = 𝑮(𝒙 − 𝑿)  (63) 

As in the one-dimensional case optimal values for 𝑮 = 𝑮0 or 𝒈0 can be determined using: 

𝑮0 −𝝓𝒙(𝒙) = 𝑹−1𝑩𝑇(𝒈0 +𝝓𝒙
𝑇(𝒙))

−1
𝑸  (64) 

The (64) represents an implicit matricial equation in 𝑮0, the solution can be determined considering 

𝑮0 to be diagonal, and therefore, in general no exact solution for it can be determined. To simply 

solve this implicit equation, another assumption can be considered, the structure of the matrix 𝑮0 can 

be assumed more than diagonal, i.e. 𝑮0 = 𝒈0𝑰𝑛×𝑛 = −
1

Δ𝜏
𝑰𝑛×𝑛 which means that all the terms of the 

matrix diagonal are assumed to be equal and negative. Under this hypothesis the (64) becomes: 

−
1

Δ𝜏
𝑰𝑛×𝑛 −𝝓𝒙(𝒙) − 𝑹

−1𝑩𝑇 (−
1

Δ𝜏
+ 𝝓𝒙

𝑇(𝒙))

−1

𝑸 = 𝜖(𝒈0) 
 (65) 

With 𝜖(𝒈0) an error matix, the error is due to the simplification on the structure of the 𝑮0 matrix. 
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After fixing a structure for 𝜖(𝒈0) and also a norm for it ||𝜖(𝒈0)|| it is possible to find numerically 

𝒈0 such that : 

𝒈0: min ||𝜖(𝒈0)||  (66) 

The (66) can now be used as a useful instrument to properly select 𝒈0 and hence Δ𝜏 to minimize the 

norm of the error ||𝜖(𝒈0)|| and therefore improve the performance. In general better solutions can be 

otbained from the (64), if some of the assumptions made are removed, for instance, if the elements 

of the diagonal of 𝑮0 are not considered all euqual to 𝒈0. 

One procedure to identify the best value for 𝑮0 taking into the account only the assumptions made 

on its structure can be the following. The equation (70) can be rewritten as: 

𝑰𝒈0 = 𝝓𝒙(𝒙) + 𝑹
−1𝑩𝑇(𝒈0 +𝝓𝒙

𝑇(𝒙))
−1
𝑸  (67) 

Now calling the second member of the () 𝑨(𝒈0): 

𝑰𝒈0 = 𝑨(𝒈0)  (68) 

The technique is iterative, in fact since 𝑨(𝒈0) depends on 𝒈0 it is possible to choose an initial guess 

for it 𝒈0
(1)

, for instance a vector with all elements equal to 1. Then the matrix 𝑨 can be calculated as: 

𝑨(𝒈0
(1)
) = 𝝓𝒙(𝒙) + 𝑹

−1𝑩𝑇 (𝒈0
(1)
+𝝓𝒙

𝑇(𝒙))
−1

𝑸  (69) 

It is possible to evaluate for 𝑨 its matrix of the eigenvalues 𝚲𝐀 that is diagonal. Now because of the 

(68) and because the matrix 𝑮0 = 𝑰𝒈0 is assumed diagonal, the second guess for it will be equal to 

the matrix 𝚲𝐀 : 

𝑰𝒈0
(2)
= 𝚲𝐀(𝒈0

(1)
)  (70) 

The procedure can be performed several times, and can be generalized as follows: 

𝑰𝒈0
(𝑖+1)

= 𝑒𝑖𝑔 (𝝓𝒙(𝒙) + 𝑹
−1𝑩𝑇 (𝒈0

(𝑖)
+𝝓𝒙

𝑇(𝒙))
−1

𝑸)  (71) 

This provide a chance to overcome the assumption that all the elements of the diagonal of 𝑮0 are 

equal, even though the convergence of the technique is not guaranteed, in that case the use of the (66) 

is recommended. 

Now the variational calculus provides the following Hamilton-Jacobi-Bellman set of differential 

equations: 

{
 
 

 
 

𝑸𝒙 −𝝓𝒙
𝑇𝝀 = �̇�

𝑹𝑇(𝒖 − 𝑼) − 𝑩𝑇𝝀 = 𝟎

�̇� − 𝝓 − 𝑩𝒖 + �̇� +
1

2
𝑮𝒈 = 𝟎

�̇� − 𝑮𝝀 = 𝟎

 

with:  

𝒙(0) = 𝒙𝟎 
𝝀(𝑇) = 𝟎 
𝑮(0) = 𝑮𝟎 

 

The control 𝑢 can be expressed as: 

𝒖 = 𝑹−𝑇𝑩𝑇𝝀 + 𝑼 

        

(72) 

When the control law is plugged inside the system (72), the set of equations becomes: 

 



35 

 

 

{
 
 

 
 

𝝀 = (𝑮 + 𝝓𝒙
𝑇)−1𝑄𝒙

𝒖 = 𝑹−𝑇𝑩𝑇[(𝑮 + 𝝓𝒙
𝑇)−𝟏𝑄𝒙] + 𝑼

�̇� − 𝝓 − 𝑩𝒖 + �̇� +
1

2
𝑮𝒈 = 𝟎

�̇� = 𝑮𝝀

 
        

(73) 

 

Performing the variations both with the LQR test function and with the FLOP test function, it follows:  

{
 
 

 
 

    

𝑸𝑇𝒙 − 𝑨𝑇𝝀 = �̇�

𝑹𝑇𝒖 − 𝑩𝑇𝝀 = 0
�̇� = 𝑨𝒙 + 𝑩𝒖
𝝀 = 𝑷𝒙 
         

  (74) 

In the LQR case, and:  

{
 
 

 
 

    

𝑸𝑇𝒙 − 𝑨𝑇𝝀 = �̇�

𝑹𝑇𝒖 − 𝑩𝑇𝝀 = 0
�̇� = 𝑨𝒙 + 𝑩𝒖
�̇� = 𝑮𝝀 
         

  (75) 

in the FLOP case. As in the 1 DOF case is interesting to compare the LQR’s gain with the FLOP’s 

one. In order to do that, from set of equations  (74) and  (75) input vectors, respectively 𝒖𝑳𝑸𝑹 and 

𝒖𝑭𝑳𝑶𝑷 are evaluated, so that:  

𝒖𝑳𝑸𝑹 = 𝑲𝑳𝑸𝑹𝒙 = −𝑹−𝑇𝑩𝑇𝑷𝒙  (76) 

and  

𝒖𝑭𝑳𝑶𝑷 = 𝑲𝑭𝑳𝑶𝑷𝒙 = 𝑹
−𝑇𝑩𝑇(𝑨𝑇 + 𝑮)−1𝑸𝑇𝒙  (77) 

By equalizing two gains it follows:  

 

𝑮 = (𝑸𝑇𝑷−1 + 𝑨𝑇)  (78) 

From set of equations  (75) it is possible to obtain  

 

𝑨𝑇𝑮 + 𝑮𝑮 = 𝑸𝑇𝑨𝑸−𝑇𝑨𝑇 + 𝑸𝑇𝑨𝑸−𝑇𝑮+ 𝑸𝑇𝑩𝑹−𝑇𝑩𝑇  (79) 

By plugging in  (79) the  (78) and by doing some evaluation, it results:  

 

𝑷𝑨 − 𝑷𝑩𝑹−𝑻𝑩𝑻𝑷 + 𝑸𝑻 + 𝑨𝑻𝑷 = 𝟎  (80) 

which is exactly the Riccati’s equation. 

Now as already shown, the augmented formulation can be used by introducing: 

�̇�(𝑡) = 𝑮𝝀(𝑡)   (81) 

The solution for the optimal FLOP control and independently of the structure of G, is provided by: 
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�̇� = 𝑨𝒙 + 𝑩𝒖
𝒖𝑭𝑳𝑶𝑷 = 𝑲𝑭𝑳𝑶𝑷𝒙 = 𝑹−𝑇𝑩𝑇(𝑨𝑇 + 𝑮)−1𝑸𝑇𝒙

 
                   
(82) 

Following the same finding of the 1DOF system, i.e. �̇� = −
𝜆

∆𝜏
= 𝐺𝜆 , the form of G can be adopted 

𝑮 = −
𝑰

∆𝜏
, where the value for ∆𝜏 is not provided at this stage of the method, and part of a tuning 

process described later.  

 

 

2.7 Affine systems class, dealing with nonlinearities 

A straight generalization to nonlinear multiple DOF systems is possible, the solution provided  by the 

FLOP approach seen so far is limited to the class of control-affine systems �̇� = 𝝓(𝒙) + 𝑩𝒖 + 𝑪 with 

𝝓(𝒙) general differentiable nonlinear function, this formulation implies that, in general, 

nonlinearities that involve the control vector 𝒖 has to be linearized, further in this section a technique 

to deal with these kind of nonlinearities is proposed. The cost functional is:  

𝐽 = ∫
1

2
𝒙𝑇𝑸𝒙 +

1

2
𝒖𝑇𝑹𝒖 + 𝑔(𝒙) + 𝝀𝑇(�̇� − (𝝓(𝒙) + 𝑩𝒖)) 𝑑𝑡

𝑇

0

                    (83) 

where the cost function 𝐸(𝒙, 𝒖) =
1

2
𝒙𝑇𝑸𝒙 +

1

2
𝒖𝑇𝑹𝒖+ 𝑔(𝒙) includes the very general nonlinear 

differentiable term 𝑔(𝒙), besides the standard quadratic forms. While nonlinear functions of the 

control variables 𝑔(𝒖), provide a set of equation that in general, don’t provide an explicit expression 

for 𝒖. 

Applying the FLOP method to equation (83), one obtains 

 

 
�̇� = 𝝓(𝒙) + 𝑩𝒖

𝒖 = (𝑹𝑇)−1𝑩𝑇[𝜱(𝒙)𝑇 + 𝑮]−𝟏[𝑸𝑇𝒙 + 𝜸𝑇(𝒙)]
                    (84) 

where:  

• 𝑮 = −
1

∆𝜏
𝑰 

• 𝚽(𝒙) = 𝛁𝒙𝝓(𝒙) 
• 𝛄(𝒙) = 𝛁𝐱𝑔(𝒙) 

 

In equation (83), the introduction of 𝒈(𝒙) provides the chance of introducing sharp local variations 

of the cost function, these are suitable to constraint the system’s state into specific and generally 

unstable, regions of the reachable dynamics, moreover they can be used for obstacle avoidance 

purposes as well as for target reaching. 

A more general class of controlled system is represented by �̇� = 𝒇(𝒙, 𝒖) = 𝝓(𝒙) + 𝝍(𝒖) + 𝑪, where 

the function 𝝍(𝒖) is nonlinear in one or more control variables represented by the vector 𝒖, in order 

to apply the FLOP approach, a linearization of 𝝍(𝒖) is required, in order to obtain a dynamic equation 

that belongs to the class of control-affine systems �̇� = 𝝓(𝒙) + 𝑩𝒖 + 𝑪. A chance to consider this 

class of dynamic systems without introducing linearization of the control dependent function is 

obtained by adding to the system, a number 𝑝 of first order linear differential equation, with 𝑝 = 𝑚 −
𝑙 number of degrees of control that affect the system response through a nonlinear function, given 𝑚 

number of control variables i.e. length of the vector 𝒖 and 𝑙 number of control variable from which 

the system linearly depends. This set of differential equation can be designed to mimic the actuators 

dynamic response, or in a more general case to approximate it. The set of the 𝑝 control variables can 
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be grouped in the vector 𝒒, while the 𝑙 variable can be grouped in the vector 𝒕, hence the 𝝍(𝒖) can 

be written as: 

𝝍(𝒖) = 𝑩𝝍𝒕 + 𝝌(𝒒)   (85) 

As stated above the system will result into its augmented form 𝒙𝑎
𝑇 = [𝒙; 𝒒]𝑇 this causes the function 

𝝌(𝒒) that is the nonlinear control part of the 𝝍(𝒖) can be summed to the 𝝓(𝒙) since now 𝒒 is part 

of the augmented state 𝒙𝑎, leading to a new 𝝓′(𝒙, 𝒒): 
 

𝝓′(𝒙, 𝒒) = 𝝓(𝒙) + 𝝌(𝒒)   (86) 

The set of first order linear differential equation are written in terms of the control variables 𝒒 in 

terms of the new control variables 𝒗 as follows: 

 

�̇� = −𝑲(𝒒 − 𝒗)   (87) 

With 𝑲 diagonal matrix 𝑝 × 𝑝 constituted by the positive coefficients, in order to have eigenvalues 

with negative real part, hence stable dynamics for the actuators. Finally, the system can be assembled 

in its augmented form given by in the augmented state 𝒙𝑎 and new control vector 𝒖𝑎 = [𝒕 𝒗]𝑇 

 

�̇�𝑎 = [
𝝓(𝒙) 𝝌(𝒒)
𝟎𝑝×𝑛 −𝑲𝒒

] + [
𝑩𝝍
𝑲
] [
𝒕
𝒗
] + [

𝑪
𝟎𝑝×1

]  (88) 

It is easy to notice that the augmented systems belongs to class of the control-affine systems seen 

previously, hence introducing 𝝓𝑎(𝒙𝑎) in the place of the state dependent matrix, calling 𝑩𝑎 =
[𝑩𝝍 𝑲]𝑇 and 𝑪𝑎 = [𝑪 𝟎𝑝×1]𝑇:  

�̇�𝑎 = 𝝓𝑎(𝒙𝑎) + 𝑩𝑎𝒖𝑎 + 𝑪𝑎  (89) 

Now the FLOP approach can be used, without any linearization for the control variable, moreover 

the actuators dynamic can be considered, but the dimension of the system is growth, causing a higher 

computational effort for simulation. 

 

 

2.8 Inverted Pendulum case 

The inverted pendulum is one of the challenging benchmarks used to test control algorithms [16, 20, 

21, 23, 24]. The system is schematically represented in Figure : 

 

 

  𝑀 

𝑚 
𝜃 

𝑥,  𝑢 

𝐶 

𝑂 
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Figure 7: inverted pendulum 
 

The variable used are described in Table : 

 

Symbol Description 

𝑀 Mass of the cart 0.5 [kg] 

𝑚 Mass of the pendulum 0.2 [kg] 

𝑙 
Length of the pendulum 0.3 

[m] 

𝑥 Position of the cart [m] 

𝜃 Angular rotation [rad] 

𝑢 Force on the actuator [N] 

𝑔 Gravity Acceleration [𝑚/𝑠2] 

Table 2:  Symbols and values used 

The dynamical system is represented by the two coupled equations:  

(𝑚 +𝑀)�̈� + 𝑚𝑙�̈� 𝑐𝑜𝑠 𝜃 − 𝑚𝑙�̇�2 𝑠𝑖𝑛 𝜃 = 𝑢 

𝑙�̈� + �̈� 𝑐𝑜𝑠 𝜃 = 𝑔 𝑠𝑖𝑛 𝜃 
 (90) 

that reduced to the first order canonical form produces:  

�̇� = 𝝓(𝒙) + 𝒉(𝒙)𝑢  (91) 

where:  

𝒙 = [𝑥, 𝜃, �̇�, �̇�]
𝑇
           𝝓(𝒙) = [

�̇�
�̇�

𝑴(𝒙)−1𝑷(𝒙)
]          𝒉(𝒙) = [

0
0

𝑴(𝒙)−1𝒅
] 

𝑴(𝒙) = [
𝑀 +𝑚 𝑚𝑙 𝑐𝑜𝑠(𝜃)

𝑐𝑜𝑠(𝜃) 𝑙
]       𝑷(𝒙) = [

𝑚𝑙�̇�2 𝑠𝑖𝑛(𝜃)

𝑔 𝑠𝑖𝑛(𝜃)
]       𝒅 = [

1
0
] 

 (92) 

The FLOP requires 𝒉(𝒙) linear, and a linearization about the final target position, i.e. 𝒙𝑇 = 𝟎 is 

required, producing the simplified form:  

 

�̇� = �̃�(𝒙) + 𝑩𝑢 + 𝑪 

with: 

𝑩 = 𝒉(𝒙𝑇) 
�̃�(𝒙) = 𝝓(𝒙) +𝓐𝒙 

𝓐 = 𝜵𝒙(𝒉(𝒙)𝑢)|𝒙𝑇,𝑢𝑇 

𝑪 = −𝜵𝒙(𝒉(𝒙)𝑢)|𝒙𝑇,𝑢𝑇  𝒙𝑇 

𝑢𝑇 = 0 

 (93) 

 
 

2.8.1 Swing up controller 

 

The functional to be minimized is: 
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𝐽 = ∫
1

2
𝒙𝑇𝑸𝒙 +

1

2
�̇�𝑇𝑺�̇� +

1

2
𝑅𝑢2 + 𝑔(𝒙) + 𝝀𝑻 (�̇� − (�̃�(𝒙) + 𝑩𝑢 + 𝑪))  𝑑𝑡

𝑇

0

     (94) 

where 𝑔(𝒙) is suitably chosen 𝜃-dependent to better perform the swing up manoeuvre. The 

𝑔(𝒙) shaping is aimed at introducing a local potential-attractive function at the upward position of 

the pendulum, and a local potential-repulsive function at the downward pendulum position. The sum 

of three Gaussian-like functions is useful to obtain this goal: 

𝑔(𝜃) = −𝑘1𝑒
−𝛼1𝜃

2
+ 𝑘2𝑒

−𝛼2(𝜃+𝝅)
2
+ 𝑘3𝑒

−𝛼3(𝜃−𝝅)
2
     (95) 

The last two terms are due to the downward position that can be reached for clockwise or anti-

clockwise rotations, and  𝑘𝑖 and 𝛼𝑖 are used as tuning parameters. 

 

 

Figure 8: inverted pendulum penalty function 
 

 

The FLOP formulation (84) leads to a control feedback:  

𝑢∗ = 𝑓(𝑸, 𝑺, 𝑹,𝑮, 𝑔(𝜃), 𝒙)     (3) 

specifically:  

 

𝑢∗ = (𝑹𝑇 + 𝑩𝑇𝑺𝑩)−1 𝑩𝑇(𝝀 − 𝑺�̃�(𝒙) − 𝑺𝑩𝒖𝑇 − 𝑪) + 𝒖𝑇 

with 

𝒖𝑇 = −𝑩
+[�̃�(𝒙𝑇) + 𝑪] 

𝜱(𝒙) = 𝜵𝒙�̃�(𝒙) 
𝜸(𝒙) = 𝜵𝒙𝑔(𝒙) 

    (97) 

  

𝜃 = −
4

5
𝜋 

  

𝜃 = −
3

10
𝜋 

 

𝜃 =
3

10
𝜋 

  

𝜃 =
4

5
𝜋 

 

𝜃 ≈ 0 
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𝝀 = �̃�−𝟏 [𝑸𝑇(𝒙 − 𝒙𝑻) + 𝜸
𝑇(𝒙 − 𝒙𝑻)

+ 𝜱(𝒙)𝑇𝑺[�̃�(𝒙) − 𝑩[𝑹𝟏
−1𝑩𝑇(𝑺�̃�(𝒙) + 𝑺𝑩𝒖𝑇 + 𝑪) − 𝒖𝑻] + 𝑪]] 

𝑹𝟏 = 𝑹
𝑇 + 𝑩𝑇𝑺𝑩 

�̃� = [𝜱(𝒙)𝑇(𝑰 − 𝑺𝑩𝑹𝟏
−1𝑩𝑇) + 𝑮] 

𝑮 = −
1

∆𝜏
𝑰 

 

 

As usual in optimal control, also the FLOP method needs an optimization procedure to determine the 

best values for 𝑸, 𝑺,𝑹, 𝑮 𝑘𝑖 and 𝛼𝑖, that are tested analysing the control features of the controller, as 

shown in the next sections. 

 

 

 

 

 

2.8.2 Numerical results 
 

In Table  the tuning parameters and their values used in the numerical simulations are listed. 

 

Tuning 

parameters 
Value 

𝑸 [

10 0 0 0
0 0 0 0
0 0 8 0
0 0 0 0

] 

𝑺 [

24 0 0 0
0 100 0 0
0 0 22 0
0 0 0 7

] 

𝑅 1 

𝒌 = [𝑘1, 𝑘2, 𝑘3] [ 80, 4, 4] 

𝜶 = [𝛼1, 𝛼2, 𝛼3] [0.125, 50, 50] 

Table 3:  Parameters used 

 

The FLOP controller is tested by numerical simulations to observe its performances, robustness and 

effectiveness in bringing the pendulum in its upper position. Limitations are imposed on both the 

maximum actuation force 𝑢𝑚𝑎𝑥  .The actuator transfer function is represented by 1/(1 + 𝜏𝑠) with 𝜏 =
0.1𝑠. The monitored variables are the position of the carriage, the angular rotation of the pendulum 

and their derivatives, and the control force 𝑢. 

Figure  shows four different cases of swing up: 

Case 1 uses the FLOP controller for reaching the target position. Once the pendulum holds the target, 

case 4 introduces an additional impulse disturbance to test the robustness of the control. Cases 1 and 

4 show the same trend and are overlapped until about t=15s, when the pendulum disturbance is 

injected. Both start to oscillate around the equilibrium position and carry out the ascent manoeuvre 

that ends after only 7 seconds of oscillation. The cart moves only 20 cm from the origin, exploiting 
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maximum actuator accelerations less than 0.2g. In case 4, the cart reacts quickly to the impulse 

disturbance in such a way it keeps the upper position of the rod stable.  

Case 3 introduces a perturbation in the parameters of the system during the simulations, without 

updating the controller information. In fact, to validate the control robustness, random positive or 

negative variations of 10% are imposed on the mass of the carriage, mass and length of the rod, while 

maintaining constant the tuning parameters of the control logic.  

Case 2 introduces a swing up test starting from the initial pendulum conditions 𝜃 = 𝜋/2. This 

condition is simpler to control because the pendulum, even without an external control action, starts 

naturally to oscillate and is pulled up in less than one second, keeping the carriage travel very limited 

near the origin. 

Finally, to verify further the robustness of the controller, a large set of simulation with random initial 

conditions are performed changing the initial speed of both, the cart and the rod, and assuming 

different angular rod positions Figure . The control has proven to work in all cases bringing both the 

cart and the rod to the desired target position. 

Figure  and 12 show, for different initial conditions, a comparison between FLOP and a nonlinear 

control logic based on energy [16]. This technique uses the fusion of two controls, the first, of 

Lyapunov type, used when the pendulum is at its lower position and the second, LQR-based, 

intervenes when a set threshold of angle near the origin is exceeded. The upper limit for 𝑢𝑚𝑎𝑥 is equal 

to 5N, and the characteristic time of the actuator is 𝜏 = 0.01𝑠. 
The energy-based control is formulated as follows: 

𝑢𝑒𝑛𝑒𝑟𝑔𝑦 = {
−𝑲𝐿𝑄𝑅𝒙

𝑠𝑎𝑡𝑢𝑚𝑎𝑥(𝜇(𝐸 − 𝐸𝑟)𝑠𝑖𝑔𝑛(�̇� 𝑐𝑜𝑠 𝜃))
           

|𝜃| < 𝜀
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     (98) 

 

where 𝑲𝐿𝑄𝑅 , 𝐸,  𝐸𝑟 , 𝜇, 𝜀 are the Riccati gain of LQR, the instantaneous potential and kinetic energy 

of the pendulum, the reference energy of the upward position and the last two terms are tuning 

parameters.  

The switch threshold in the energy method is set to ε = 30°. Both controls behave well, and the energy 

method can pull up the pendulum in a very short time if it starts from the rest condition. In the case 

illustrated in Figure  in which the pendulum starts from rest condition at 𝜋, the energy method, 

although very reactive in the swing up operation, needs to displace the cart of almost 2 meters from 

the origin. The FLOP method, instead, shows a very small cart displacement, about 50cm away from 

the origin. The FLOP control is slow only when starting from the rest condition, but it demonstrates 

an excellent control ability in the swing up maneuver, involving very small movements of the cart 

when compared with the energy method.  
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Figure 9: Swing-up maneuver with perturbed parameters 
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Figure 10: Swing-up maneuver with different initial conditions 
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Figure 11: Swing-up maneuver: FLOP vs energy method, initial condition 𝜃0 = 𝜋 
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Figure 12: Swing-up maneuver: FLOP vs energy method, initial condition 𝜃0 = 𝜋3/4 
 

The FLOP method is applied to control an inverse pendulum showing robustness and effectiveness 

for the swing up maneuver. The control, thanks to its formulation, allows to choose how the pendulum 

is accompanied and maintained in the upper position. In fact, in the objective function it is possible 

to create customized potential functions allowing different control behaviors, such as managing the 

initial oscillations of the pendulum in the downward position, differently from the maintenance of the 

upward position. The comparison with Lyapunov control law method mixed to LQR control shows 

that the FLOP provides better performance.  
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Chapter 3 

 

La Sapienza Autonomous car project 

 
3.1 Autonomous Vehicles research project 

Nowadays, autonomous vehicle (AV) represents a crucial field in intelligent transportation systems. 

In recent years, integrated control of in-wheel motor and assisted-steering is a subject of central 

interest [44-47] in automotive technology, and the introduction of active devices in place of the 

traditional passive components can improve vehicle dynamics as in the case of the semi active 

suspension [33,35,38,40].  

This work is addressed to the analysis of an autonomous vehicle as a first step of an on-going project 

at the Mechatronic and Vehicle Dynamic Lab of Sapienza []. The project is developing an 

experimental setup for a series city car to be equipped with a complete assisted integrated system of 

mechatronic type, controlling the steering and the wheel torques. a bike-model for its dynamic 

response is considered, including the car body dynamics, suspensions and tires that can rely on the 

previous controls and on a control logic that is based on a new strategy, the FLOP control. This kind 

of control, recently developed by the Sapienza team, relies on optimal control theory of Pontryagin 

type [9-16], that has been revisited transforming the global optimality problem into a set of local 

optima along the system trajectory. This method provides a chance for an efficient feedback control 

of the vehicle in an environment in which moving obstacles and external noise are present. 

The FLOP method is here implemented to control the steering radius in a turning maneuver. The goal 

is to track, at the possible maximum speed, the assigned trajectory maintaining a given steering radius. 

The numerical results show the good performances of the new control in a rather complex scenario. 

 

 

3.2 Dynamic Model of the Vehicle 

In this section, a standard three-DOF nonlinear bike model, depicted in Figure 13, is considered. The 

vehicle motion is assumed planar and including the longitudinal forward motion (𝑢), the lateral sway 

(𝑣), and the yaw (𝜓). The equations of motion are expressed in the body reference frame. The rear 

wheel steering angle is set to zero, while the front one is 𝛿. The center of gravity of the vehicle is CG. 

The distances of points A (center of front wheel) and B (center of rear wheel) from CG are 𝑙𝑓 and 𝑙𝑟, 

respectively. The wheelbase is 𝐿 = 𝑙𝑓 + 𝑙𝑟. The velocity of CG is 𝑉, the angle between the velocity 

vector 𝑜𝑓 𝐶𝐺 and the longitudinal axis of the vehicle 𝑢 is 𝛽. 
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Figure 13: Bike model  

 

The state vector is 𝒙 = [𝑋; 𝑌; 𝜓; 𝑢; 𝑣; 𝜔;𝜔𝑟; 𝜔𝑟], where 𝑋, 𝑌 are the coordinates of CG in the road 

reference, while 𝜓 is the yaw rotation angle, 𝑢, 𝑣, 𝜔, are the speed components measured in the body 

fixed reference, representing the surge, sway, and yaw motions. The longitudinal and lateral slips of 

the wheels depend both on the spin speeds 𝜔𝑟 , 𝜔𝑟 , for the rear and front wheel, respectively. The 

equations of motion of the vehicle can be written in terms of the state defined above. The system has 

three degrees of control, the steering angle of the front wheel 𝛿, the rear torque 𝐶𝑟 and the front torque 

𝐶𝑓. The inertia matrix can be written in terms of the body mass 𝑚𝑏 summed with wheels masses 𝑚𝑤 

in 𝑚, the yaw moment of inertia 𝐼𝑧, the wheels inertia moments 𝐼𝑤 

𝑴 = 𝑑𝑖𝑎𝑔[1; 1; 1;𝑚;𝑚; 𝐼𝑧; 𝐼𝑤; 𝐼𝑤]  (99) 

This leads to the following expressions for the �̇� = [�̇�; �̇�; �̇�; �̇�; �̇�; �̇�; 𝜔�̇�; 𝜔�̇�]
𝑇
. The speeds of the 

vehicle, in the fixed reference can be written through the 2D rotation matrix which is function of the 

yaw angle 𝜓 that converts the speeds of the vehicle from the body reference frame to the fixed 

reference frame. 

[
 
 
 
 
 
 
 
�̇�
�̇�
𝜓
�̇�
�̇�
𝜔
𝜔�̇�
𝜔�̇�

̇

̇

]
 
 
 
 
 
 
 

= 𝑴−1

[
 
 
 
 
 
 
 
 
 

cos(𝜓) 𝑢 − sin(𝜓)𝑣

sin(𝜓) 𝑢 + cos(𝜓)𝑣
𝜔

𝐹𝑙𝑜𝑛𝑔𝑓 cos(𝛿) − 𝐹𝑙𝑎𝑡𝑓 sin(𝛿) + 𝐹𝑙𝑜𝑛𝑔𝑟 +𝑚𝑣𝜔 − 𝐹𝑎𝑒𝑟𝑜

𝐹𝑙𝑜𝑛𝑔𝑓 sin(𝛿) + 𝐹𝑙𝑎𝑡𝑓 cos(𝛿) + 𝐹𝑙𝑎𝑡𝑟 −𝑚𝑢𝜔

𝐹𝑙𝑜𝑛𝑔𝑓 sin(𝛿) 𝑙𝑓 + 𝐹𝑙𝑎𝑡𝑓 cos(𝛿) 𝑙𝑓 − 𝐹𝑙𝑎𝑡𝑟𝑙𝑟

𝐶𝑟 − 𝐹𝑙𝑜𝑛𝑔𝑟𝑅𝑤 − 𝐹𝑟𝑜𝑙𝑙𝑖𝑛𝑔𝑟𝑅𝑤
𝐶𝑓 − 𝐹𝑙𝑜𝑛𝑔𝑓𝑅𝑤 − 𝐹𝑟𝑜𝑙𝑙𝑖𝑛𝑔𝑓𝑅𝑤 ]

 
 
 
 
 
 
 
 
 

 

 

(100) 

The terms 𝐹𝑙𝑜𝑛𝑔𝑓  and 𝐹𝑙𝑜𝑛𝑔𝑟 represent the Pacejka longitudinal front and rear forces evaluated in 

function of the normal force acting on the tires and of the longitudinal slip ratio 𝜎𝑓 and 𝜎𝑟 

𝐹𝑙𝑜𝑛𝑔𝑓 = 𝑓(𝐹𝑁𝑓 , 𝜎𝑓(𝑢𝑓 , 𝜔𝑓 , 𝛿))   (101) 

𝐹𝑙𝑜𝑛𝑔𝑓
 

𝐹𝑙𝑎𝑡𝑓 

𝐹𝑙𝑜𝑛𝑔𝑟
 

𝐹𝑙𝑎𝑡𝑟 

𝑉 𝛽 
𝜓 

𝛿 
𝑂 

𝑌 

𝑋 

A 

B 
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𝐹𝑙𝑜𝑛𝑔𝑟 = 𝑓(𝐹𝑁𝑟 , 𝜎𝑟(𝑢𝑟 , 𝜔𝑟))   

𝜎𝑓 = −
𝑢𝑓 − 𝜔𝑓𝑅𝑤

|𝑢𝑓|
   

𝜎𝑟 = −
𝑢𝑟 − 𝜔𝑟𝑅𝑤

|𝑢𝑟|
   

 

 

 

Figure 14: Pacejka longitudinal force model  

The aerodynamic drag is expressed through the following model: 

 

𝐹𝑎𝑒𝑟𝑜 =
1

2
𝜌𝑎𝑖𝑟𝐴𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐶𝑑𝑢

2 
(102) 

 

The rolling resistance of the tires are represented by two forces, 𝐹𝑟𝑜𝑙𝑙𝑖𝑛𝑔𝑓 and 𝐹𝑟𝑜𝑙𝑙𝑖𝑛𝑔𝑟  defined as: 

𝐹𝑟𝑜𝑙𝑙𝑖𝑛𝑔𝑓 = (𝜇0 + 𝜇1𝑢𝑓
2) 𝐹𝑁𝑓   

𝐹𝑟𝑜𝑙𝑙𝑖𝑛𝑔𝑟 = (𝜇0 + 𝜇1𝑢𝑟
2) 𝐹𝑁𝑟    

(103) 

 

where 𝑢𝑓 and 𝑢𝑟 are the longitudinal speed of the front and rear wheels, respectively, in the body 

fixed reference frame:  

𝑢𝑓 = cos(𝛿) 𝑢 − sin(𝛿)(𝑣 + 𝑙𝑓𝜔)  

𝑢𝑟 = 𝑢   
(104) 
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Figure 15: Rolling resistance and aerodynamic drag acting on the vehicle 

 

The lateral sway motion forces are 𝐹𝑙𝑎𝑡𝑓 and 𝐹𝑙𝑎𝑡𝑟. They depend on the lateral slip ratios 𝛼𝑓 and 𝛼𝑟  

 

𝐹𝑙𝑎𝑡𝑓 = 𝑓(𝐹𝑁𝑓 , 𝛼𝑓(�̂�, 𝑣, 𝜔, 𝛿))   

𝐹𝑙𝑎𝑡𝑟 = 𝑓(𝐹𝑁𝑟 , 𝛼𝑟(�̂�, 𝑣, 𝜔))   

𝛼𝑓 = −atan(
(𝑣 + 𝜔𝑙𝑓) cos(𝛿) − �̂� sin(𝛿)

�̂� cos(𝛿) + (𝑣 + 𝜔𝑙𝑓) sin(𝛿)
)  

𝛼𝑟 = −atan(
(𝑣 − 𝜔𝑙𝑟)

�̂�
)  

(105) 

 

 

 

Figure 16: Pacejka lateral force model  
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The estimation of the tire’s grip and rolling resistance, can be performed even in feedback by using 

advanced intelligent tires provided with sensors. Finally, the vertical forces 𝐹𝑁𝑓 and 𝐹𝑁𝑟are: 

𝐹𝑁𝑓 =
𝑚

𝐿
(𝑔𝑙𝑟 − (�̇� − 𝑣𝜔)ℎ𝑔) −

𝐹𝑎𝑒𝑟𝑜ℎ𝑔

𝐿
−
(𝐶𝑟 + 𝐶𝑓)

𝐿
  

𝐹𝑁𝑟 = 𝑚𝑔 − 𝐹𝑁𝑓 = 𝑚𝑔 −
𝑚

𝐿
(𝑔𝑙𝑟 − (�̇� − 𝑣𝜔)ℎ𝑔) +

𝐹𝑎𝑒𝑟𝑜ℎ𝑔

𝐿
+
(𝐶𝑟 + 𝐶𝑓)

𝐿
   

 

 

(106) 

3.3 Cruise Control, a test case to introduce control limits 

The first application of the FLOP control law considered in this project is the cruise control, this kind 

of actuation provides the car with a system, that acting on control of fuel permits to it to reach and 

maintain the specified value of the forward speed 𝑢, since it doesn’t require specific hardware it is 

diffused on most of the actual production car, but in general commercial solutions aren’t based on 

optimal control law, Optimal control class can lead to a more efficient systems in terms of fuel 

consumption hence less pollutions. This case represents a suitable candidate to introduce a nonlinear 

penalty function 𝑔(𝒖) on the control variable 𝒖, to introduce actuators limits i.e. the maximum 

driving torque and the maximum braking torque, that can be provided to the wheels. As shown in the 

following is not easy to solve analytically for the variable 𝒖 hence a numerical solution will be 

employed in the place of the analytical one. The bike model previously defined reduced by 

considering only the differential equation of the forward motion of the vehicle, and the differential 

equation that describe the wheel dynamic, given the fact that the cruise control regards only the 

forward motion of the vehicle, hence the state of the system is represented by 𝒙 = [𝑢;𝜔𝑟; 𝜔𝑓], 

neglecting the lateral motion of the vehicle hence the lateral forces: 

 

�̇� =
1

𝑚
(𝐹𝑙𝑜𝑛𝑔𝑓 + 𝐹𝑙𝑜𝑛𝑔𝑟 − 𝐹𝑎𝑒𝑟𝑜) 

𝜔�̇� =
1

𝐼𝑤
(𝐶𝑟 − 𝐹𝑙𝑜𝑛𝑔𝑟𝑅𝑤 − 𝐹𝑟𝑜𝑙𝑙𝑖𝑛𝑔𝑟𝑅𝑤)  

𝜔�̇� =
1

𝐼𝑤
(𝐶𝑓 − 𝐹𝑙𝑜𝑛𝑔𝑓𝑅𝑤 − 𝐹𝑟𝑜𝑙𝑙𝑖𝑛𝑔𝑓𝑅𝑤)  

 

(107) 

The control vector 𝒖 is represented by the two torques 𝐶𝑟 , 𝐶𝑓 represent the two degrees of control of 

the system, hence the vehicle is supposed to be four-wheel drive, while the inertia terms, the contact 

forces, the rolling resistance model and the aerodynamic drag are identical to those provided in the 

previous section. 

Now the performance index 𝐽 contains in this case, both the quadratic cost function written in terms 

of the state target state 𝒙𝑇 i.e. [𝑢𝑇; 𝜔𝑟𝑇; 𝜔𝑓𝑇], and in terms of the penalty function on the control 

variables 𝑔(𝒖) 
 

𝐽 = ∫
1

2
(𝒙 − 𝒙𝑇)

𝑇𝑸(𝒙 − 𝒙𝑇) +
1

2
(𝒖 − 𝒖𝑇)

𝑇𝑹(𝒖 − 𝒖𝑇) + 𝑔(𝒖) + 𝝀
𝑇(�̇� − (𝝓(𝒙) + 𝑩𝒖)) 𝑑𝑡

𝑇

0

   (108) 
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The 𝑔(𝒖) function is represented by sum of potential gaussian function centered on the limits of 

actuation for the driving torque and for the braking torque: 

 

𝑔(𝒖) =
𝑎𝑚𝑝𝑏𝑟𝑎𝑘𝑖𝑛𝑔

√2𝜋𝜎𝑏𝑟𝑎𝑘𝑖𝑛𝑔
𝑒
(−
1
2
(
𝐶𝑟−𝐶𝐵𝑙𝑚𝑖𝑡
𝜎𝑏𝑟𝑎𝑘𝑖𝑛𝑔

)
2

)
+
𝑎𝑚𝑝𝑏𝑟𝑎𝑘𝑖𝑛𝑔

√2𝜋𝜎𝑏𝑟𝑎𝑘𝑖𝑛𝑔
𝑒
(−
1
2
(
𝐶𝑓−𝐶𝐵𝑙𝑚𝑖𝑡
𝜎𝑏𝑟𝑎𝑘𝑖𝑛𝑔

)
2

)

+
𝑎𝑚𝑝𝑑𝑟𝑖𝑣𝑖𝑛𝑔

√2𝜋𝜎𝑑𝑟𝑖𝑣𝑖𝑛𝑔
𝑒
(−
1
2
(
𝐶𝑟−𝐶𝐷𝑙𝑚𝑖𝑡
𝜎𝑑𝑟𝑖𝑣𝑖𝑛𝑔

)
2

)
+
𝑎𝑚𝑝𝑏𝑟𝑎𝑐𝑘𝑖𝑛𝑔

√2𝜋𝜎𝑏𝑟𝑎𝑐𝑘𝑖𝑛𝑔
𝑒
(−
1
2
(
𝐶𝑓−𝐶𝐷𝑙𝑚𝑖𝑡
𝜎𝑑𝑟𝑖𝑣𝑖𝑛𝑔

)
2

)
 

  (109) 

 

The limit for braking torque is represented by 𝐶𝐵𝑙𝑚𝑖𝑡, the one for driving torque is represented by 

𝐶𝐷𝑙𝑚𝑖𝑡, while the parameters 𝑎𝑚𝑝𝑏𝑟𝑎𝑐𝑘𝑖𝑛𝑔, 𝑎𝑚𝑝𝑑𝑟𝑖𝑣𝑖𝑛𝑔, 𝜎𝑏𝑟𝑎𝑐𝑘𝑖𝑛𝑔, 𝜎𝑑𝑟𝑖𝑣𝑖𝑛𝑔 are to be suitably chosen 

in order to get the best performance. 

The set of equation obtained by applying the variational calculus becomes: 

 

{
 
 

 
 

    

𝑸𝑇(𝒙 − 𝒙𝑇) − 𝛁𝝓(𝒙)
𝑇𝝀 = �̇�

𝑹𝑇𝒖 − 𝑩𝑇𝝀 + 𝛁𝑔(𝒖)𝑇 = 0

�̇� = 𝝓(𝒙) + 𝑩𝒖

�̇�  = 𝑮𝝀 
         

 (110) 

 

That in general, cannot provide an explicit expression for the control vector 𝒖, hence in this case only 

a numerical solution  can provide the desired control.  

 

 

3.4 Steering control strategies, kinematic vs potential approach  

In order to investigate the steering capabilities of the FLOP approach, two different strategies were 

investigated, the first strategy relies on the actual turning radius performed by the vehicle, by 

introducing it through a 𝑔(𝒙) penalty function centered at a reference value for the turning radius. 

The cost function in the FLOP method is assumed to be: 

𝐽 ̅ = ∫
1

2
𝒖𝑇𝑹𝒖 + 𝑔(𝒙) + 𝝀𝑇(�̇� − 𝒇(𝒙, 𝒖)) 𝑑𝑡

𝑇

0

 (111) 

where 𝑔(𝒙) can represent any kind of possible nonlinear and continuous function. This permits the 

user to define 𝐽 ̅𝑎𝑠:  

𝑔(𝒙) = 𝑔𝑟(𝒙) + 𝑔𝑠(𝒙) + 𝑔𝑐(𝒙)

= 𝑘𝑟(𝑡𝑟(𝒙) − 𝑡𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒)
2
+
𝑎𝑚𝑝𝑆

𝜎𝑠√2𝜋
exp (−0.5(

𝑉(𝒙) − 𝑉𝑚𝑖𝑛
𝜎𝑠

)

2

) 

 
(112) 

 

𝑔𝑟(𝒙) shown in fig 18 is a quadratic form of the 𝑡𝑟(𝒙); 𝑡𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 these represent the actual turning 

radius and its reference value. 𝑡𝑟(𝒙) is function of the state 𝒙, and can be easily evaluated in term of 

the absolute speed 𝑉 of the vehicle and the yaw rate �̇� using the following formula: 

𝑡𝑟(𝒙) =
𝑉

�̇�
 (113) 
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Figure 17: Actual turning radius  

 

 

 

Figure 18: 𝑔𝑟(𝒙) function for various turning radius  

 

The function 𝑔𝑆(𝒙) shown in fig 19 is a gaussian function of the vehicle absolute speed 𝑉 and of a 

minimum speed 𝑉𝑚𝑖𝑛.  
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Figure 19: 𝑔𝑠(𝒙) function for various speed  

The second strategy uses a pre-defined trajectory (an information provided by sensors). More 

precisely, given a desired trajectory (for example the shape of a circuit, as in figure 20) a potential 

function can be shaped (for example using Gaussian-like functions) that introduces a high penalty 

when the vehicle position approaches the boundaries of the track.  

 

 

Figure 20: Potential surface track strategy   

In this case the penalty function 𝑔(𝒙) is written in terms of the actual vehicle position on the track 

and it is centered on the pre-defined trajectory, for example in the case of simple turn, it might be 

written as:  

𝑋𝑡𝑢𝑟𝑛 = 𝑥𝑐𝑒𝑛𝑡𝑒𝑟 + 𝜌 cos(𝜃)

𝑌𝑡𝑢𝑟𝑛 = 𝑦𝑐𝑒𝑛𝑡𝑒𝑟 + 𝜌 sin(𝜃)

𝜌 = √(𝑥 − 𝑥𝑐𝑒𝑛𝑡𝑒𝑟)
2 + (𝑦 − 𝑦𝑐𝑒𝑛𝑡𝑒𝑟)

2     ,     𝜃 = atan(
𝑦 − 𝑦𝑐𝑒𝑛𝑡𝑒𝑟
𝑥 − 𝑥𝑐𝑒𝑛𝑡𝑒𝑟

)

𝑔(𝒙) =
𝑎𝑚𝑝𝑇𝑟𝑎𝑐𝑘

𝜎𝑡𝑟𝑎𝑐𝑘√2𝜋
exp(−0.5(

√(𝑋𝑡𝑢𝑟𝑛 − 𝑥𝑐𝑒𝑛𝑡𝑒𝑟)
2 + (𝑌𝑡𝑢𝑟𝑛 − 𝑦𝑐𝑒𝑛𝑡𝑒𝑟)

2 − 𝜌𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝜎𝑡𝑟𝑎𝑐𝑘
)

2

)

 

 

 

(114) 

 

Where 𝑋𝑡𝑢𝑟𝑛, 𝑌𝑡𝑢𝑟𝑛 represents the actual position of the vehicle on the turn centered in 

𝑥𝑐𝑒𝑛𝑡𝑒𝑟 , 𝑦𝑐𝑒𝑛𝑡𝑒𝑟. 𝜌 and 𝜃 are the actual radial and angular positions of the vehicle in that specific turn 

while 𝑎𝑚𝑝𝑇𝑟𝑎𝑐𝑘, 𝜎𝑡𝑟𝑎𝑐𝑘 parameters that must be chosen. 
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Reducing 

speed 
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𝑔
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3.5 Results, high speed cornering 

In this section some numerical simulations are shown. The first set shows the cornering capability 

and the obstacle avoidance performance, this last being the most challenging and critical for an 

autonomous vehicle.  

Fig. 21 illustrates the capability of the vehicle to follow a corner with specific turning radius, fixed 

by the user to 70 m.  

 

 

Figure 21: Trajectory analysis  

 

Fig. 22 visualizes small perturbations of the position of the center of instantaneous rotation in 

comparison with the radius of curvature. 

 

 

Figure 22: Center of instantaneous rotation  

Fig. 23 reports the highest speed reached by the vehicle for various steering angles. Moreover, the 

time history of the speed for one of the vehicle’s maneuver is represented with the black curve to 

show the stability of the controlled vehicle. The blue curve represents the highest speed reached by 

the controlled vehicle and it is compared to the maximum speed obtained equating the maximum 

lateral adherence force reachable by the Pacejka’s forces with the centrifugal force, for various 

turning radius: 
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𝐹𝑙𝑜𝑛𝑔𝑓 sin(𝛿) + 𝐹𝑙𝑎𝑡𝑓 cos(𝛿) + 𝐹𝑙𝑎𝑡𝑟 =
𝑚𝑉2

𝑅
 (115) 

 

 

 

 

Figure 23: 𝑔𝑠(𝒙) function for various speed  

 

The following figures illustrate the reaction in case of an obstacle placed along the trajectory of the 

vehicle, this is compared to the free-way case (compare figures 24 and 25). This shows the different 

trajectories, different turning radius, longitudinal and lateral speeds, lateral slip angles of the body 

and tires and in terms of Pacejka’s forces. 

The starting point of the variation is represented by the magenta marker placed within the plot. It is 

interesting to notice that the system, after the corrections and due to the presence of the obstacle, 

returns to the initial maneuver.  
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Figure 24: Trajectory comparison  

It is interesting to notice in figure 25 the behavior of the control input represented by steering, rear 

torque and front torque when the vehicle reaches the obstacle, in fact it is noticeable that after a first 

braking phase the vehicle steers to avoid the collision, then it returns to accelerate and while 

proceeding to the original turning radius, this particular behavior is due to the functions (112) that 

request to maximum speed of the vehicle while following a specific trajectory and to avoid the 

obstacle by varying the orientation of the speed and not only its modulus showing a great performance 

in terms of vehicle maneuverability.  
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Figure 25: Control and Pacejka’s forces comparison  

the first strategy is compared with the LQR control logic. The equations of motion in this last case 

are rewritten using as a state variable the turning radius r:  
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(116) 

This makes possible, for the LQR, to reduce the cost function state dependence to a simple quadratic 

form in terms of the turning radius. However, this formulation is used for both the LQR and the FLOP 
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method to perform the comparison. The objective function is completed, for both cases, with a 

velocity dependent quadratic term, trying to force the vehicle to proceed at high speed.  

Fig. 26 shows the example of simulation results for two different tracked values of the radius: 40m 

and 140m.  

 

 

Figure 26: Flop Vs LQR comparison 

 

Figure 27: FLOP Vs LQR comparison 

In Fig. 27, the evolution of the vehicle speed for each turning radius is shown. The FLOP approach 

shows better results, characterized by a higher asymptotic speed with a shorter transient.  For the 

larger radius, the advantage of the FLOP method is even more evident.  

 

3.6 Obstacle Avoidance 

In this section, the collision avoidance performances of the FLOP control are investigated. A first 

example considers the collision avoidance when the car is travelling along a given circular trajectory, 

where an obstacle appears, as shown in Fig. 28-29.   
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Figure 28: Obstacle avoidance 

 

Figure 29: FLOP steering and torques 

In Fig. 28-29 the FLOP controlled vehicle is first tested on following a curved trajectory without 

obstacle, then an obstacle is placed on the trajectory. The FLOP guided vehicle succeeds in 

performing the braking phase, the steering phase and in following back to the previous condition, i.e. 

following a designed turning radius.  

The robustness of FLOP control on collision avoidance is also tested in other three different scenarios:  

• Frontal collision avoidance. 

• Rear-end collision avoidance. 

• Cross collision avoidance.  

These three scenarios are used on one hand to prove the robustness of FLOP approach in different 

environments simulation. On the other hand, one of the main fundamental aspect of the autonomous 

vehicle project is to assure a high level of safety for people inside the AVs. Therefore, these three 
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scenarios are chosen to prove FLOP guided vehicle is a safe system. In these simulations, sensors 

emulation is added in the dynamical vehicle model. Sensors are divided in two main categories:  

• State estimation  

• Obstacle detection 

For the state estimation, list of emulated sensors includes GPS, Inertial Measurement Unit (IMU) and 

wheel encoder. Regarding the obstacle detection, emulated sensors includes radar and ultra-sound, 

for long-range and short-range detection, respectively. Sensors emulation is performed in real-time 

simulation in MATLAB and Simulink environment, and it provides reliable results for the real 

experimental phase of the autonomous vehicle project.  

In the first scenario, two cars are in the same roadway, as shown in Fig. 31. The vehicle controlled 

by FLOP (blue) is on the correct lane. The uncontrolled vehicle (in red) is in the same carriage of the 

blue one, so is in the wrong carriage. FLOP, here, must perform multiple tasks:  

• Obstacle detection  

• Obstacle avoidance 

• Carriage maintenance 

Obstacle detection is performed in the simulation through the emulation of long-range and short-

range obstacle detection sensors, i.e. radar and ultrasound, respectively. Once the uncontrolled 

vehicle is detected, obstacle avoidance is performed by using a highly nonlinear local penalty 

function, centered in the position of the uncontrolled vehicle. Each side of the carriage is 

mathematically expressed as a high penalty function, so that the controlled vehicle succeeds in 

remaining in the correct carriage. Results are shown in Fig. 30-34.  

 

 

Figure 30: No obstacle detection 

 

Figure 31: Obstacle detection 

 

Figure 32: Obstacle avoidance 
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Figure 33: Carriage maintenance 

 

Figure 34: Returning in the previous carriage 

As shown, the FLOP controlled vehicle succeeds in  

• detecting the uncontrolled car (Fig. 31),  

• avoiding the uncontrolled car (Fig. 32), 

• maintaining the correct carriage (Fig. 33), 

• returning in the original carriage (Fig. 34).  

In this example, some of the potentialities of autonomous vehicle controlled by FLOP are exhibited. 

Penalty function 𝑔(𝒙) contains both obstacle avoidance 𝑔𝑂𝐴(𝒙, 𝒙𝒐𝒃𝒔) and carriage maintenance 

𝑔𝑪𝑴(𝒙, 𝒙𝑪) function, as shown in (12) 

 

𝑔(𝒙) = 𝑔𝑶𝑨(𝒙, 𝒙𝑶𝒃𝒔) + 𝑔𝑪𝑴(𝒙, 𝒙𝑪) 

𝑔𝑶𝑨(𝒙, 𝒙𝑶𝒃𝒔) =
𝐾𝑜𝑏𝑠

√2𝜋𝜎𝑂𝑏𝑠
exp (−

1

2
(
𝒙 − 𝒙𝑶𝒃𝒔
𝜎𝑂𝑏𝑠

)
2

) 

𝑔𝑪𝑴(𝒙, 𝒙𝑪) = −
𝐾𝐶𝑀

√2𝜋𝜎𝐶𝑀
exp (−

1

2
(
𝒙 − 𝒙𝑪
𝜎𝐶𝑀

 )
2

) 

 

(117) 

with  

• 𝒙 state of the controlled vehicle 

• 𝒙𝑶𝒃𝒔 state of the uncontrolled vehicle 

• 𝒙𝑪 position of the carriages.  

• 𝐾𝑜𝑏𝑠, 𝜎𝑜𝑏𝑠 gaussian parameter for obstacle avoidance 

• 𝐾𝐶𝑀, 𝜎𝐶𝑀 parameter for carriage maintenance.  

As second scenario, the FLOP controlled vehicle (in blue) is tested on the avoidance of a rear-end 

collision caused by an uncontrolled car (in red). Both cars are in the same carriage. In the initial 

condition, only the controlled vehicle is visible, as shown in Fig. 35.  

 

 

Figure 35: No obstacle detection 

Tasks are the same of the previous case. Next figures show the result of the simulation:  
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Figure 36: Obstacle detection 

 

Figure 37: Obstacle avoidance 

 

Figure 38: Carriage re-entry 

As shown in Fig. 36-38, the controlled vehicle is capable to avoid also a rear-end collision, by 

simultaneously remaining in the assigned carriage. Penalty function used is the same of the previous 

example. As last scenario, FLOP approach is tested on cross collision avoidance. In this test case, 

situation is the one depicted in Fig. 39: the controlled by FLOP vehicle (in blue) is on the left of the 

figure, with green light.  

 

Figure 39: Cross collision scenario 

The uncontrolled vehicle comes from the top of the figure, with red light. Driver of the uncontrolled 

vehicle do not brake the car and cross the intersection. Tasks for the controlled vehicle are the same 

of previous cases:  

• Obstacle detection  

• Obstacle avoidance 

• Carriage maintenance 

Following figures shown the simulation performed in MATLAB and Simulink environment: 

 

Figure 40: No obstacle detected 
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Figure 41: Obstacle detected 

 

Figure 42: Obstacle avoidance 

 

Figure 43: Carriage re-entry. 

A third scenario is represented in Fig. 40-43. Even in this more complex case, the FLOP controlled 

vehicle succeeds in avoiding the collision with the uncontrolled one. These three scenarios prove the 

ability of the FLOP-guided vehicle to react to avoid the collision. 

 
 
3.7 Trajectory optimization 

The first step of the technique is the identification of the set of optimal maneuvers for the vehicle, 

that will guide it properly within its motion. In order to define these maneuvers specific penalty 

functions 𝑔(𝒙) are introduced, these can represent any kind of possible nonlinear and continuous 

function. 

In order to perform the fastest lap time for the considered vehicle a set made of 5 main maneuvers is 

selected, steering maneuver, corner entry, straight alignment, max acceleration, max braking. The 

main ability for an autonomous car, is the steering maneuver, this will give to the vehicle the required 

stability to go around corners safely. 

This function, named 𝑔𝑟(𝒙) is a quadratic form of the 𝑡(𝒙); 𝑡𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 these represent the actual 

turning radius and its reference value. 𝑡(𝒙) is function of the vehicle’s state 𝒙, and can be easily 

evaluated in term of the absolute speed 𝑉 of the vehicle and the yaw rate ω as follows: 
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𝑡(𝒙) =
𝑉

𝜔
 (118) 

The function makes the car perform the desired turning radius and in order to reach the optimal 

performance in terms of time, i.e. minimum time, the vehicle has to perform the corner, at the 

maximum speed allowed for the considered vehicle, and is determined through several simulations 

for different corners. The limit of the vehicle’s state envelope is represented in Fig. 44, where 

maximum speed through the corner versus different turning radius, values are depicted: 

 

 

 

Figure 44: Vehicle maximum cornering speed  

The steering maneuver implies the corner entry maneuver, in fact in order to obtain a stable trajectory 

around the corner, the vehicle has to reach the correct speed and attitude, even when it approaches 

the corner with uneven conditions for these. Hence a function that optimizes the vehicle’s state during 

the corner entry phase is needed, this function 𝑔𝑐𝑜𝑟𝑛𝑒𝑟𝐸𝑛𝑡𝑟𝑦(𝒙) is written in terms of the vehicle state 

𝒙, and guide the vehicle to reach the optimal state 𝒙𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝐸𝑛𝑡𝑟𝑦 in terms of speed and attitude. These 

optimal states are determined, for the specific vehicle here considered, during the optimization 

process repeated for a wide set of corners. The effectiveness of the function is shown in Fig. 45, 

starting from different speeds, the vehicle reaches the optimal cornering speed and turning radius, for 

the considered turn. 
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Figure 45: Vehicle maximum cornering speed from different initial conditions  

Once the vehicle ends the cornering maneuver, a function that will make it come back to the straight 

line is needed, hence a straight alignment maneuver is defined. This function 𝑔𝑎𝑙𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡(𝒙) reduces 

to zero vehicle’s residual lateral and yaw speeds i.e. v and ω. This function helps the vehicle to 

maintain a straight motion with a sideslip angle 𝛽 equal to zero and a speed that is parallel to the 

boundaries of the track. 

The other two functions max acceleration and max braking, act on vehicle’s speed modulus. The max 

acceleration function 𝑔𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝒙) acts on wheel’s torques to provide the maximum traction, 

hence maximum forward acceleration to the vehicle taking into the account the actual state. During 

the braking phases is still necessary to maximize the tires grip, hence an optimal maneuver for braking 

𝑔𝑏𝑟𝑎𝑘𝑖𝑛𝑔(𝒙) is introduced. These two functions maximize the modulus of the forward acceleration, 

this is written considering zero value for the steering control 𝛿. The acceleration formula (119) can 

be written, substituting the expressions of the normal forces acting on rear and front wheels. This 

provides a formula that depends on actual rear and front longitudinal grip coefficients 𝜇𝑟(𝒙), 𝜇𝑓(𝒙), 

obtained by Pacejka’s model, on the aerodynamic resistance and on the torques 𝐶𝑟 , 𝐶𝑓:   

 

�̇� =
𝜇𝑓(𝒙)

𝑝(𝒙)
𝑔𝑙𝑟 +

𝜇𝑟(𝒙)

𝑝(𝒙)
𝑔𝑙𝑓 +

𝐹𝑎𝑒𝑟𝑜(𝒙)

𝑝(𝑥)

ℎ𝑔

𝑚
(𝜇𝑟(𝒙) − 𝜇𝑓(𝒙)) +

𝐶𝑟 + 𝐶𝑓

𝑝(𝑥)𝑚
 (𝜇𝑟(𝒙) − 𝜇𝑓(𝒙)) 

 

𝑤𝑖𝑡ℎ   𝑝(𝑥) = 𝐿 + 𝜇𝑓(𝑥)ℎ𝑔 − 𝜇𝑟(𝑥)ℎ𝑔 

(118) 
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This permits to obtain the maximum acceleration of the vehicle, considering the Pacejka’s model 

introduced. To improve the system’s performance, these coefficients can be measured through 

experimental setup as shown in [38-40]. 

Once the set of optimal maneuvers is ready the technique can be implied to identify the optimal 

trajectory. This procedure starts considering the specific part of the track, i.e. corner or complex 

arrangement of corners, this defines the road’s boundaries that has to be respected by the vehicle 

while moving within that specific part. 

The optimization phase, performed through parameter optimization tools, defines the proper 

arrangement of the optimal maneuvers to make the vehicle go around the considered track part as fast 

as possible, providing the minimum time. The optimization identifies the best time instants, to imply 

each of the optimal maneuvers i.e. it defines the start and end instants for every control and the 

specific sequence of each one. 

An example of this procedure is depicted in Fig. 46, where the technique is implied for a 180° turn, 

with a radius of 100 meters, the corner is filleted by two straights long 200 meters, that guide the car 

inside and out of the corner. 

The algorithm has identified the optimal maneuvers sequence, that are divided in Fig. 4 into the main 

phases of the vehicle motion around the corner i.e. braking phase, cornering phase, and accelerating 

phase.  

The optimization uses multiple combinations of the optimal maneuvers. The process considers 

acceptable only those combinations that make the vehicle perform trajectories fully contained into 

the trackwidth. 

The aim is a vehicle moving as fast as possible. Then, the high speed and a wrong combination of 

maneuvers might lead the vehicle out of track, i.e. assuming the positions represented by red crosses 

in Fig. 46. Each point of these trajectories is checked during the process and eventually the 

combination of maneuvers is discarded. Instead, among the acceptable trajectories, the algorithm 

chooses the one that provides the best performance in terms of time. Since the technique implied 

takes into the account the vehicle dynamics, the trajectory finally identified is surely performable by 

the considered vehicle. 
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Figure 46: Optimal trajectory technique  

In Fig. 46 and even in Fig. 47 is evident how the phases overlap one another in order to reach the best 

time performance, in particular braking phase overlaps corner entry phase till the very first beginning 

of the cornering phase, as much as, once the vehicle reaches the correct attitude to perform the 

required turning radius, the solution provided by the technique makes the acceleration phase overlap 

the turning maneuver, in order to provide the fastest time for the entire simulation. 
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Figure 47: Vehicle speed and steering control  

 

Fig. 47 represents the time evolution of both vehicle’s speed and steering angle, during the entire 

simulation. 

The red circles represent the starting and ending instants of the braking phase, while the vehicle speed 

is decreasing the turning maneuver starts, as indicated by the blue rectangle, it is interesting to notice 

the slight slope’s reduction of the vehicle speed in the same instant, this represents the correlation 

between the two slip coefficients of the tires (9), in fact when the steering value raises, the tire’s grip 

available for braking is reduced, since part of it absorbed by the lateral forces that appear when a 

steering maneuver is performed. 

The same behavior is observed when the braking phase ends, in fact when the brakes stop their action, 

the required longitudinal grip decreases, hence more lateral grip is available. Since the control 
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technique used to generate the optimal path is aware of the vehicle’s dynamic that contains a 

Pacejka’s model, the steering angle can now be raised to the required value for performing the correct 

turning radius. 

Once the vehicle reaches the correct state to perform the corner, the control starts the acceleration 

phase represented by the green star, this demands longitudinal grip, but given the feedback 

formulation of the FLOP technique, it takes into the account the reduced grip available due the 

cornering phase that is still present. This pushes the vehicle to the max accelerations reachable with 

the considered grip model. Given the speed increase, the steering angle required to continue to 

perform the desired turning radius is greater, in fact a slightly increase of the steering angle is 

noticeable till its end point, marked by the second blue rectangle, where the maneuver ends, leaving 

all the grip at disposal for the vehicle acceleration, that is strongly evident in the last part of the speed 

profile in Fig. 47. 

The technique used is now applied in simulations in a racetrack. This part of the investigation wants 

to demonstrate the possibility of driving around a circuit, performing for multiple laps, safely and 

reliably. For this purpose, the Monza circuit is considered Fig. 48 

 

 

Figure 48: Monza racetrack  

 

 

The optimization process, performed for each corner of the track, produced optimal trajectory that 

has to be performed by the considered vehicle, in order to reach the best performance around the 

track, Fig. 49 shows example trajectories. 
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Figure 49: Monza trajectories  

In order to make the vehicle perform multiple laps around the track, checkpoints are introduced at 

corners entry and exit points, in fact the defined control, when implied to perform various laps, 

provides a feedforward solution, since the optimal trajectory found is defined in terms of sequence of 

optimal maneuvers that has to be implied, this weakness does not guarantee a reliable sequence of 

laps. To overcome this, checkpoints are introduced at entry and exit of each corner, so that the vehicle 

is pushed to pass in specific track points. These checkpoints are represented by another 

𝑔𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡𝑠(𝒙) function that takes into the account the actual vehicle’s speed direction and tries to 

orientate it towards the next checkpoint. 

Since this in general cannot guarantee the complete reliability of the controlled system, especially in 

presence of disturbances, different checkpoints for each corner are defined, these differs from the 

others because they are obtained through other optimization process, that provided alternative 

trajectories, that are sub-optimal but augment the robustness of the entire system. hence even if the 

vehicle is not moving on the optimal trajectory due to a small disturbance, the system is able to 

continue the maneuver through the considered corner, safely. 

Since variations in the performed trajectories can still be present, a potential function 𝑔𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠(𝒙) 
that avoid crashes of the vehicle with the limits of the track. This guarantees the vehicle moving safely 

around the track for multiple laps, without going off the track. 

30 laps were performed around the chosen track, the lap times are illustrated in Tab. 4. The lap times 

are all similar, this underline the robustness and repeatability of the results obtained with the described 
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technique. The red highlighted lap time represents the worst performance, while the green one 

represents the best lap time obtained by the controlled system, among the 30 laps. 

 

Lap Time Lap Time 

1 3.09.086 16 3.01.611 

2 3.01.685 17 3.01.621 

3 3.01.615 18 3.01.620 

4 3.01.641 19 3.01.660 

5 3.01.606 20 3.01.604 

6 3.01.647 21 3.01.568 

7 3.01.632 22 3.01.665 

8 3.01.692 23 3.01.658 

9 3.01.597 24 3.01.588 

10 3.01.576 25 3.01.633 

11 3.01.657 26 3.01.624 

12 3.01.627 27 3.01.575 

13 3.01.634 28 3.01.637 

14 3.01.580 29 3.01.599 

15 3.01.599 30 3.01.682 

 
Table 4: Monza Lap times 

 

The laps performed, given a track length of 5789 m provide a mean speed around the track of about 

115 km/h, that represents a good performance considering the small production series car used as 

dynamic system. The significant difference in time, for the first lap is due to an initial condition, for 

the vehicle forward speed, reduced with respect to the reference value set by the optimization process.  

This new method to identify the optimal trajectory relies on the feedback control method based on 

the classical variational approach, named Feedback Local Optimality Principle (FLOP). FLOP 

technique was applied on the control of an Autonomous Vehicle that represents an ongoing project 

of the Mechatronic and Vehicle Dynamic Lab of Sapienza, based on production series city car, 

modelled through a bike-model. FLOP control represents a new approach for optimal feedback 

control of a vehicle, moreover it provides a new solution for trajectory optimization. This represent a 

reliable and robust solution since the resulting trajectory is designed taking into the account the 

vehicle dynamics, instead of the kinematic constraints generally introduced. It must be noticed that 

the performance achieved depend on the tuning process, that represents a crucial step to improve the 

optimality of the solution. Instead, the control flexibility, provide the chance to apply it to challenging 

dynamic systems, avoiding the linearization required by LQR and SDRE techniques. Further 

development will be devoted to the investigation of the sensitivity of the controlled system to 

uncertainties on system parameters, such as mass and its distribution, tire coefficients. Moreover, the 

applied technique will be compared with MPC based approaches to verify in deep details, the 

performance and the robustness compared, to those provided by these techniques. 
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Chapter 4 

 

Secure Platform, Autonomous marine rescue vehicle, research project 

 
 

4.1 “Secure Platform” Joint Research project Introduction 

 

Autonomous vehicles represent the new frontier in rescue applications, the capabilities in terms of 

effectiveness, reliability and efficiency without the direct involvement of human make them the best 

choice in complex and critical situations [30,59]. These performances are strictly related to the 

algorithms that provide their autonomous behavior, even the most advanced platforms are less 

effective and secure if not driven by the best control algorithms [1-29]. This section is addressed to 

the analysis of an autonomous marine vehicle of a joint Industrial Research Project promoted by 

Fincantieri (Leading company in building cruise ships) and developed by La Sapienza, CNR 

(National Research Council) INM, CNR ISSIA and CNR IREA. This drone is meant for rescue 

purpose, here the application of the FLOP algorithm for the autonomous navigation [53] is discussed 

and some results are presented, the data collected during the experimental activity cannot be presented 

in this work, because of the restrictions due to the agreement with Fincantieri of non-disclosure.  

The marine surface craft here presented Fig. 50 is a double hull catamaran vessel, its overall length 

is 4 meters with a width of 2.7 meters, these dimensions enhance the hiding capabilities of the vehicle 

even under region scanned by satellites, this augment the probability of success of any mission. The 

catamaran design provides more stability to the vehicle for better maneuvering, that is even enhanced 

by the propulsion system choice, in fact this vessel uses two jet drive pump with steering nozzle and 

thrust reversers, the double propulsors configuration guarantee a higher yaw rate during navigation 

hence enhanced dynamic performance, this coupled with the used of the advanced FLOP control 

algorithm gives to the vehicle the necessary agility to operate in complex environment or during 

avoidance maneuvers as will be shown in the following sections. 

 

 

 

 

Figure 50: Secure platform prototype  
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The vehicle standard mission is structured as follows: 

• Vehicle in stand-by monitoring all the on-board systems, to guarantee the full efficiency in 

any moment. 

• Receives the alarm 

• Vehicle, launch, ditch into the water, systems check. 

• Receives GPS coordinates of the man within a range of 5 miles from its actual position 

• Autonomous navigation in any environment and in any complex situation thanks to its 

advanced control algorithm. 

• Perform the rescue action. 

• Return to the main ship, or navigation to any other recovery point. 

 

The following table summarize the principal characteristics of the vehicle:  

 

 Vehicle  

type catamaran 

mass 800 [kg] 

𝐿𝑤𝑙  4 [m] 

𝑤𝑖𝑑𝑡ℎ 2.7 [m] 

payload 150 [kg] 

𝑉𝑚𝑎𝑥 10 [m/s]  

propulsion electric 

Table 5: Vehicle characteristics  

 

 

4.2 Surface marine craft vehicle dynamics  

 

The equations of motion of the vehicle are represented by a six-DOF differential equation system, 

written in the body fixed reference system in terms of the surge speed 𝑢, the sway speed 𝑣, the heave 

speed 𝑤 and in terms of three rotational speed represented by the roll motion 𝑝, the pitch motion 𝑞 

and the yaw motion 𝑣, these lead to the following set of equation: 

𝑚[�̇� − 𝑣𝑟 + 𝑤𝑞 − 𝑥𝑔(𝑞
2 + 𝑟2) + 𝑦𝑔(𝑝𝑞 − �̇�) + 𝑧𝑔(𝑝𝑟 + �̇�)] = 𝐹𝑥 

𝑚[�̇� − 𝑤𝑝 + 𝑢𝑟 − 𝑦𝑔(𝑝
2 + 𝑟2) + 𝑧𝑔(𝑞𝑟 − �̇�) + 𝑥𝑔(𝑞𝑝 + �̇�)] = 𝐹𝑦 

𝑚[�̇� − 𝑢𝑞 + 𝑣𝑝 − 𝑧𝑔(𝑝
2 + 𝑞2) + 𝑥𝑔(𝑟𝑝 − �̇�) + 𝑦𝑔(𝑟𝑞 + �̇�)] = 𝐹𝑧 

𝐼𝑥�̇� + (𝐼𝑧 − 𝐼𝑦)𝑞𝑟 − (�̇� + 𝑝𝑞)𝐼𝑥𝑧 + (𝑟
2 − 𝑞2)𝐼𝑦𝑧 + (𝑝𝑟 − �̇�)𝐼𝑥𝑦

+𝑚[𝑦𝑔(�̇� − 𝑢𝑞 + 𝑣𝑝) − 𝑧𝑔(�̇� − 𝑤𝑝 + 𝑢𝑟)] = 𝑀𝑥 

𝐼𝑦�̇� + (𝐼𝑥 − 𝐼𝑧)𝑟𝑝 − (�̇� + 𝑞𝑟)𝐼𝑥𝑦 + (𝑝
2 − 𝑟2)𝐼𝑧𝑥 + (𝑞𝑝 − �̇�)𝐼𝑦𝑧

+𝑚[𝑧𝑔(�̇� − 𝑣𝑟 + 𝑤𝑞) − 𝑥𝑔(�̇� − 𝑢𝑞 + 𝑣𝑝)] = 𝑀𝑦 

𝐼𝑧�̇� + (𝐼𝑦 − 𝐼𝑥)𝑝𝑞 − (�̇� + 𝑟𝑝)𝐼𝑦𝑧 + (𝑞
2 − 𝑝2)𝐼𝑥𝑦 + (𝑟𝑞 − �̇�)𝐼𝑧𝑥

+𝑚[𝑥𝑔(�̇� − 𝑤𝑝 + 𝑢𝑟) − 𝑦𝑔(�̇� − 𝑣𝑟 + 𝑤𝑞)] = 𝑀𝑧 

(118) 
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That is written in the general form that consider the origin of the reference settled in the general point 

of the vehicle  [𝑥𝑔; 𝑦𝑔; 𝑧𝑔], the terms [𝐹𝑥; 𝐹𝑦; 𝐹𝑧;𝑀𝑥;𝑀𝑦;𝑀𝑧] represents the external forces, such as 

resistance and propulsion forces that act on the vehicle during its navigation, while the inertia of the 

vehicle is described by [𝑚; 𝐼𝑥; 𝐼𝑦; 𝐼𝑧; 𝐼𝑥𝑦; 𝐼𝑥𝑧; 𝐼𝑦𝑧].  

The formulation of the control will be addressed by a specific dynamic model usually defined as 

three-DOF control model, this reduction of degrees of freedom relies on two main aspects, the motion 

of surface craft vehicle is represented by a planar motion, hence the DOF that has to be controlled are 

represented by its surge sway and yaw motion, moreover the characteristic times of these motions are 

slow than it is right to admit that the frequency content of the external forces acting on the vehicle 

does not affect these DOF. 

The dynamic system of the vehicle used to evaluate the feedback control law is then rewritten in 

terms of the absolute coordinate fig. 51 of the system that are measured in the world fixed reference, 

the surge, sway and yaw speeds and in terms of the engines speed  𝒙 =
[𝑋; 𝑌; 𝐴𝑧𝑖𝑚𝑢𝑡ℎ; 𝑢; 𝑣; 𝑟; 𝜔1; 𝜔2]

𝑇: 

 

 

 

Figure 51: reference system  

These lead to the following set of non-linear differential equation, that can be written in its compact 

formulation represented by: 

𝑴�̇� = 𝝓𝒕𝒐𝒕(𝒙) + 𝒉𝒕𝒐𝒕(𝒙, 𝒖) (119) 

Where 𝑴 is the inertia matrix 𝑴 = 𝑑𝑖𝑎𝑔[1; 1; 1;𝑚;𝑚; 𝐼𝑧; 𝐼𝑒𝑛𝑔𝑖𝑛𝑒; 𝐼𝑒𝑛𝑔𝑖𝑛𝑒]; the control parameters 

𝒖 = [𝑖1; 𝑖2; 𝜃1; 𝜃2; 𝑟1; 𝑟2] considered are the two currents 𝑖1; 𝑖2 that drive the engines, here considered 

electric, the two steerable nozzle angle 𝜃1; 𝜃2 and finally the thrust reverser 𝑟1; 𝑟2. The terms 𝝓𝒕𝒐𝒕(𝒙) 
and 𝒉𝒕𝒐𝒕(𝒙, 𝒖) are non-linear function of the state 𝒙 and control 𝒖, such that: 

𝝓𝒕𝒐𝒕 = [𝑹(𝑦𝑎𝑤)[𝑢, 𝑣, 𝜔]
𝑇    ;    𝝓(𝒙)] (120) 

Where 𝝓(𝒙) 
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𝝓(𝒙) =

{
 
 
 
 

 
 
 
 

−0.5𝜌𝐴𝑐𝑎𝑟𝐶𝑐𝑎𝑟(𝑢 + 𝜔𝑏)
2 tanh(20(𝑢 + 𝜔𝑏)) − 0.5𝜌𝐴𝑐𝑎𝑟𝐶𝑐𝑎𝑟(𝑢 − 𝜔𝑏)

2 tanh(20(𝑢 − 𝜔𝑏)) − 𝑅1 − 𝑅2

−𝜌𝐴𝑙𝑎𝑡𝐶𝑙𝑎𝑡𝑣
2𝑡𝑎𝑛ℎ(20𝑣)

−𝜌𝐴𝑙𝑎𝑡𝐶𝑙𝑎𝑡𝑣
2𝑡𝑎𝑛ℎ(20𝑣)𝑏𝑦 − −0.5𝜌𝐴𝑐𝑎𝑟𝐶𝑐𝑎𝑟(𝑢 + 𝜔𝑏)

2 tanh(20(𝑢 + 𝜔𝑏)) 𝑏 + 0.5𝜌𝐴𝑐𝑎𝑟𝐶𝑐𝑎𝑟(𝑢 − 𝜔𝑏)
2 tanh(20(𝑢 − 𝜔𝑏))𝑏 − 𝐶1 − 𝐶2

−𝜌𝑉𝑛𝑜𝑧1𝐴𝑛𝑜𝑧 (𝜔1𝑟𝑚𝑒𝑑𝑖𝑜 −
𝑉𝑛𝑜𝑧1𝐴𝑛𝑜𝑧
𝐴𝑖𝑚𝑝

tan(𝑏2)) 𝑟𝑚𝑒𝑑𝑖𝑜

−𝜌𝑉𝑛𝑜𝑧2𝐴𝑛𝑜𝑧 (𝜔1𝑟𝑚𝑒𝑑𝑖𝑜 −
𝑉𝑛𝑜𝑧1𝐴𝑛𝑜𝑧
𝐴𝑖𝑚𝑝

tan(𝑏2)) 𝑟𝑚𝑒𝑑𝑖𝑜

 (121) 

 

 

With 𝑅1, 𝑅2 the residuary resistance forces due to the hulls of the vehicle and 𝐶1, 𝐶2 the torques due 

to the resistance of the hulls evaluated around the yaw axis 𝑍. The 𝒉𝒕𝒐𝒕(𝒙, 𝒖) contains the controls 

variable with non-linear dependence from them: 

𝒉𝒕𝒐𝒕(𝒙, 𝒖) = [[0, 0, 0]
𝑇; 𝒉(𝒙, 𝒖)] (122) 

Where 𝒉(𝒙, 𝒖) 
 

𝒉(𝒙,𝒖)

=

{
 
 
 

 
 
 

𝑟1𝜌𝑉𝑛𝑜𝑧1𝐴𝑛𝑜𝑧(𝑉𝑛𝑜𝑧1 − (𝑢 +𝜔𝑏)) cos(𝜃1) + 𝑟2𝜌𝑉𝑛𝑜𝑧2𝐴𝑛𝑜𝑧(𝑉𝑛𝑜𝑧2 − (𝑢 − 𝜔𝑏)) cos(𝜃2)

 𝑟1𝜌𝑉𝑛𝑜𝑧1𝐴𝑛𝑜𝑧(𝑉𝑛𝑜𝑧1 − (𝑢 + 𝜔𝑏)) sin(𝜃1) + 𝑟2𝜌𝑉𝑛𝑜𝑧2𝐴𝑛𝑜𝑧(𝑉𝑛𝑜𝑧2 − (𝑢 −𝜔𝑏)) sin(𝜃2)

− 𝑟2𝜌𝑉𝑛𝑜𝑧2𝐴𝑛𝑜𝑧(𝑉𝑛𝑜𝑧2 − (𝑢 − 𝜔𝑏)) (cos(𝜃2)𝑏 + sin(𝜃2) 𝑙/2) + 𝑟1𝜌𝑉𝑛𝑜𝑧1𝐴𝑛𝑜𝑧(𝑉𝑛𝑜𝑧1 − (𝑢 + 𝜔𝑏)) (cos(𝜃1)𝑏 − sin(𝜃1) 𝑙/2)

𝑉𝑜𝑙𝑡 ∗ 𝑖1 ∗
𝜂𝑚𝑜𝑡
𝜔1

𝑉𝑜𝑙𝑡 ∗ 𝑖2 ∗
𝜂𝑚𝑜𝑡
𝜔2

 
(123) 

 

 

4.3 FLOP for vehicle GN&C (guidance, navigation & control) 

 

In this section will be shown the development of the FLOP feedback control law for this autonomous 

stealth surface craft, a specific cost function 𝐽 must be formulated in order to obtain, from the 

variational calculus, the relations that provide the control law.  

𝐽 ̅ = ∫
1

2
(𝒙𝑇𝑸𝒙 + 𝒖𝑇𝑹𝒖) + 𝑔(𝒙) + 𝝀𝑇(�̇� − 𝒇(𝒙, 𝒖)) 𝑑𝑡

𝑇

0

 (124) 

The first term represents the quadratic term 𝒙𝑇𝑸𝒙 in the state 𝒙 the quadratic form in the control 𝒖, 

the 𝑹 matrix is positive definite and contains the coefficients that relates the three degrees of control, 

the constraint term represented by the dynamic equations of the model is introduced through the 

Lagrange multipliers 𝝀, it is interesting to notice the non-conventional, non-linear function 𝑔(𝒙) 
introduced here, in fact normal optimal based feedback control law can deal only with quadratic 

nonlinearities, in this case thanks to the FLOP formulation, it is possible to introduce any kind of non-

linear 𝐶1 function, this let the user to modify the potential function represented by the cost function, 

allowing it to modify even locally the shape of the function, in order to produce better performances 

in terms of reliability, robustness and effectiveness of the controlled vehicle. In this case the 𝑔(𝒙) 
function permitted to take into the account additional requirements:  

𝑔(𝒙) = 𝑔𝑜(𝒙) =  𝐾𝑒
(−0.5(

𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑎𝑧𝑖𝑚𝑢𝑡−𝑜𝑏𝑠𝑎𝑧𝑖𝑚𝑢𝑡
𝑠𝑖𝑔𝑚𝑎

)
2

)
 

 
(125) 
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Where the 𝑔𝑜(𝒙) represents a non-linear function of the state 𝒙 used to avoid obstacles or forbidden 

zone fig. 52, expressed in terms of the vehicle azimuth and of the angular position of the obstacles.  

 

 

 

Figure 52: Obstacle avoidance  

 

{
𝛻𝒙𝑔(𝒙) − �̇� − (𝛻𝒙𝝓(𝒙))

𝑇
𝝀 − 𝑨𝑇𝝀 = 𝟎

𝑹𝑇𝒖 − 𝑩𝑇𝝀 = 𝟎
𝑴�̇� = 𝝓𝒕𝒐𝒕(𝒙) + 𝒉𝒕𝒐𝒕(𝒙, 𝒖) 

 

    
(126) 

 

The FLOP approach leads to the following non-linear formulation of the control law, since its 

complexity compared to those usually provided by the classical feedback control law, the algorithm 

will be more conscious of all the systems non-linear behaviors, local variation of the potential field, 

leading to a more advanced autonomous marine vehicle.  

𝒖𝑭𝑳𝑶𝑷 = 𝝌(𝒙) (127) 

 

4.4 results 

 

The following section presents the results of the FLOP control, applied to the vehicle, showing how 

it can avoid obstacles or forbidden zone and reach the target position provided by an external source. 

This test case represents one of the most important and challenging, in fact the capability of moving 

autonomously with confidence in a complex scenario enhance the probability of success in any 

mission.  

Figure 53 illustrates the evolution of the trajectory, performed by the vehicle, in this case the vehicle 

must reach the target represented by the orange dot, while avoiding the ship present on the path. The 

vehicle starts the navigation reaching a cruise navigation speed, as shown by the fig. 54, this is very 

close to the highest speed achievable by the vehicle, because it was designed to provide the best 

efficiency within that range of speed. 

Target 
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When the vehicle approaches one the obstacles its forward speed decreases in favor of the lateral 

speed as shown in fig. 55, in fact when this increases a variation in the longitudinal speed is observed, 

once the first obstacle is avoided the lateral speed is reverted, the vehicle passes through the two 

ships, and then performs the avoidance of the second obstacles.  
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Figure 53: Trajectory evolution, obstacle avoidance capabilities, target reaching  
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Figure 54: Navigation speed  

 

 

Figure 55: Lateral speed through the obstacles  
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Figure 56: Azimuth evolution   

 

 

 

Figure 57: Jet pumps thrusts  
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The vehicle is guided towards the target using the azimuth formulation (125); the azimuth evolution 

is shown in fig. 56, two oscillation is observable and are due to the avoidance maneuvering performed 

to skip the two obstacles, once this maneuver is complete the vehicle points to the target to reach it. 

Figures 57 illustrate the commands sent to the actuators, by the FLOP, to vary the thrust of the two 

waterjets.  

The results obtained through this simulation were investigated and confirmed by the experimental 

campaign performed in the lake of Nemi near Rome (Italy), the following figure 58 illustrates the 

activity. 

 

 

 

Figure 58: Experimental activity  

The project at this time is completed, the experimental findings in terms of autonomous navigation, 

ditching capability, and ability of performing the rescue maneuver were deeply investigated and 

satisfied all the requirements set by Fincantieri. 
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Chapter 5 

 
Rocket vertical landing VTVL 

 
 
5.1 The rocket vertical landing problem 

 

Vertical landing is becoming popular in the last fifteen years, a technology known under the acronym 

VTVL, Vertical Takeoff and Vertical Landing [54-56]. The interest in such landing technology is 

dictated by possible cost reductions [57], that impose spaceship’s recycling. The rockets are not 

generally designed to perform landing operations, rather their design is aimed at takeoff operations, 

guaranteeing a very high forward acceleration to gain the velocity needed to escape the gravitational 

force. Landing, as for the Apollo 11 mission to the Moon, is an operation deputed to a lander module 

of the rocket body, the LEM, Lunar Excursion Module. As a new frontier of space discovery, space 

vehicles are today required to be able to land with reliability on different surfaces. Among the multiple 

complexities implied by the vertical landing, the control strategy plays a determinant role to obtain 

reliability and robustness. While take-off operations are better predictable and can be specifically 

designed by using suitable launch infrastructures, the landing phase is affected by higher uncertainties 

due to weather disturbances and ground surface imperfections [58]. The launch umbilical tower, 

evacuation vanes, shockwaves dissipation, vibrations insulation and accurately designed attitude 

during the first phases of the launch help much in facilitating the take-off operations. The return 

trajectory is instead weakly stable due to the presence of random disturbances. Hence, to improve the 

landing success probability, a feedback optimal trajectory is to be identified [58]. The “Moon landing 

problem” is one of the prototype problems included in many control books and it is an excellent 

example of a two-boundary optimization problems, that is difficult to approach by a feedback control 

strategy. Moreover, the vertical landing is a nonlinear problem with instabilities, analogous to the 

challenging control of the inverse pendulum.  

The SpaceX successfully performed this task, and this study takes into the account a vehicle based 

on their activity Fig. 59:  

 

 

 

Figure 59: Experimental activity  
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The FLOP approach represents an interesting alternative to more classical solutions, as the LQR. The 

aim of this section is to present a robust and reliable control to land the vehicle safely. The quality of 

the control law is investigated considering the landing approach maneuver, starting from an assigned 

altitude, and varying the initial conditions, namely attitude and speed. The control actions involve the 

magnitude and the direction of the thrust, and orientable grid fins mounted on the top of the vehicle 

controlling the aerodynamic forces. The model of the system includes also actuators saturation 

effects. 

 

 

5.2 Dynamic model 

 

In this section the rocket dynamic model depicted in Fig. 59 is presented. The dynamic of the system 

is described by a 6 DOF rigid body motion with an additional equation describing the fuel mass 

consumption. The origin 𝑂 of the mobile frame is placed in the geometric center of the vehicle body, 

since the 𝐶𝑜𝐺 longitudinal position changes during the flight, due to the mass variation of the system. 

As usual for aerial vehicles, the 𝑥 axis is aligned along the longitudinal axis, the 𝑦 axis is set on the 

wing’s plane, the 𝑧 axis is orthogonal to the previous two Fig. 60 

 

 

 

Figure 60: Rocket main systems, body reference and NED reference 

 

The equations of motion are written within this frame in terms of the vehicle longitudinal, transverse 

and vertical speed components 𝝂 = [𝑢, 𝑣, 𝑤], along x, y and z, respectively, and in terms of the 

angular speed components 𝝎 = [𝑝, 𝑞, 𝑟], along the axes, associated to the roll, pitch and yaw motions, 

respectively. The absolute position 𝜼 = [𝑋, 𝑌, 𝑍] of the 𝐶𝑜𝐺 is described within an earth fixed, NED 

(North-East-Down) reference frame. To avoid gimbal lock when the rocket approaches the vertical 

displacement, the attitude of the vehicle is described in the NED frame using quaternions 𝒒 =
[𝑞0, 𝑞1, 𝑞2, 𝑞3]. Hence the vehicle dynamic equation can be written as: 

𝑴(𝑡)�̇� + 𝑪(𝒙)𝒙 = 𝝉 (128) 

to which the fuel mass consumption equation is added: 
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�̇�𝑓𝑢𝑒𝑙(𝑡) = −𝛾𝑇𝑡𝑜𝑡 (129) 

where the total thrust is 𝑇𝑡𝑜𝑡 = 𝑇1 + 𝑇2 + 𝑇3 + 𝑇4 + 𝑇5, sum of the individual forces provided by the 

main engines (𝛾 is a suitable engine constant). 𝒙 = [𝜼, 𝒒, 𝝂,𝝎,𝑚𝑓𝑢𝑒𝑙(𝑡)] and 𝑴(𝑡), 𝑪(𝒙) are the 

inertia matrix and the generalized Coriolis matrix, respectively.  

The external forces 𝝉 collect the gravity action 𝝉𝐺 , the aerodynamic forces 𝝉𝐴 acting on the vehicle 

body, the main thrusters forces 𝝉𝑇𝑖, the cold gas thrusters actions 𝝉𝑃𝑗 and the forces generated by the 

trimmable grid fins 𝝉𝐴𝐺𝐹𝑘: 

𝝉 = 𝝉𝐺 + 𝝉𝐴 +∑𝝉𝑇𝑖

5

𝑖=1

+∑𝝉𝑃𝑗

3

𝑗=1

+∑𝝉𝐴𝐺𝐹𝑘

4

𝑘=1

 (130) 

Where the generic 𝝉⊠ = [𝟎7,1; 𝑭⊠;𝑴⊠; 0]. The gravity action is 𝑭𝑔 =

𝑱𝑇(𝑞0, 𝑞1, 𝑞2, 𝑞3)[0,0,𝑚𝑓𝑢𝑒𝑙𝑔]
𝑇
, with 𝑱 is the transformation matrix from the vehicle to the NED 

Earth reference. Since the dynamic equations are written in the body frame, the 𝐶𝑜𝐺 position varies 

during the flight, and the gravity action generates torque 𝑴𝑔 = [𝑥𝐶𝑜𝐺 , 0,0] × 𝑭𝑔. Analogously, for 

aerodynamic action 𝑭𝐴𝑒𝑟𝑜,𝑴𝐴𝑒𝑟𝑜. These last depend on the angle of attack 𝛼 = atan (𝑤/𝑢), and 𝛽 =
atan (𝑣/𝑢), the sideslip angle. Drag and Lift coefficients 𝐶𝐷 , 𝐶𝐿 for the forces acting in the two planes 

𝑥𝑦 and 𝑥𝑧 are introduced, together with the effective cross section areas 𝐴, the position of the centre 

of pressure 𝑐𝑝, and are expressed through nonlinear function of the attack and sideslip angles as 

𝐶𝐷𝑥𝑧(𝛼), 𝐶𝐿𝑥𝑧(𝛼), 𝐶𝐷𝑥𝑦(𝛽), 𝐶𝐿𝑥𝑦(𝛽), 𝐴𝑥𝑧(𝛼), 𝐴𝑥𝑦(𝛽), 𝑐𝑝𝑥𝑧(𝛼), 𝑐𝑝𝑥𝑦(𝛽), while dependences from �̇� 

and �̇� are neglected. 

These permit to evaluate the aerodynamic forces due to the airflow around the rocket body, with 𝑖 =
𝑦, 𝑧. 

𝐷𝑥𝑖 =
1

2
𝜌𝑎𝑖𝑟(𝑍)𝐴𝑥𝑖𝐶𝐷𝑥𝑖𝑉𝑥𝑖

2  

𝐿𝑥𝑖 =
1

2
𝜌𝑎𝑖𝑟(𝑍)𝐴𝑥𝑖𝐶𝐿𝑥𝑖𝑉𝑥𝑖

2  

(131) 

The air density 𝜌𝑎𝑖𝑟(𝑍) is a nonlinear function of the height 𝑍. Torque associated to the set of forces 

are: 

𝑴𝐴𝑒𝑟𝑜 = [𝑐𝑝𝑥𝑦 , 0,0] × 𝑭𝐴𝑒𝑟𝑜𝑥𝑦 + [𝑐𝑝𝑥𝑧 , 0,0] × 𝑭𝐴𝑒𝑟𝑜𝑥𝑧  
(132) 

Analogous expressions follow for 𝝉𝑇𝑖 and 𝝉𝑃𝑗, these last due to cold gasses thrusters 𝑃1, 𝑃2, 𝑃3, 

designated to control the vehicle attitude in the LEO (Low-Earth-Orbit).  

When the vehicle approaches the atmosphere during the descent phase, the cold gasses thrusters have 

not enough power to control the vehicle attitude. Hence, the actions 𝝉𝐴𝐺𝐹𝑘  become predominant that 

through suitable variations of their angles of attack 𝛿𝑘 modify the aerodynamic forces to stabilize the 

vehicle’s flight. 

The forces and torques 𝑭𝐴𝐺𝐹 ,𝑴𝐴𝐺𝐹  are born because of the trimmable fins and they are: 

𝐷𝑓𝑖𝑛𝑘 = −
1

2
𝜌𝑎𝑖𝑟(𝑍)𝐴𝑓𝑖𝑛𝑘𝐶𝐷𝑘(𝛿𝑘 + 𝜙)𝑉𝑘

2𝑞(𝜙) 

𝑭𝐴𝐺𝐹 =∑𝑭𝐴𝐺𝐹𝑘(𝐷𝑓𝑖𝑛𝑘)

4

𝑘=1

 

(133) 
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𝑴𝐴𝐺𝐹 =∑𝒃𝑘 × 𝑭𝐴𝐺𝐹𝑘(𝐷𝑓𝑖𝑛𝑘)

4

𝑘=1

 

where for the 𝑘 − 𝑡ℎ fin, 𝐴𝑓𝑖𝑛𝑘  is the wing section area, 𝐶𝐷𝑘(𝛿𝑘 + 𝜙) is its drag coefficient, depending 

on 𝛿𝑘 and on the angle 𝜙 equal to 𝛼 or 𝛽 depending on the considered fin. 𝑉𝑘 represents the component 

of the CoG velocity along the 𝑥 axis, the parameter 𝑞(𝜙) is the shadowing coefficient that varies 

between 0 and 1 depending on its configuration, and finally 𝒃𝑘 is the position vector of the 𝑘 − 𝑡ℎ 

fin. 

 

 

5.3 Application of the FLOP control 

 

 

The control is performed introducing a quadratic penalty function of the state 𝒙 and target 𝒙𝑇: 

𝑔(𝒙) =
1

2
(𝒙 − 𝒙𝑇)

𝑇𝑸(𝒙 − 𝒙𝑇) (134) 

The matrix 𝑸 is suitably chosen with standard criteria. The vehicle flight is composed by three main 

phases as shown in fig. 61: the first is the attitude correction in LEO. The vehicle actuates the FLIP 

maneuver to reach the desired pitch. The state target is referred to a specific attitude and null angle 

rates 𝒙𝑇𝐹𝐿𝐼𝑃 = [𝟎3×1, 𝒒𝑇 , 𝟎3×1 , 𝟎3×1, 0], hence 𝑸𝐹𝐿𝐼𝑃 = 𝑑𝑖𝑎𝑔([𝟎3×1, 𝐾𝒒𝟏4×1, 𝟎3×1, 𝐾𝝎𝟏3×1, 0]). 

In the second phase, the vehicle reaches the re-entry speed and pitch angle. The target is 𝒙𝑇𝑟𝑒𝑒𝑛𝑡𝑟𝑦 =

[𝟎3×1, 𝒒𝑇 , 𝝂𝑇 , 𝟎3×1, 0], and 𝑸𝑟𝑒𝑒𝑛𝑡𝑟𝑦 = 𝑑𝑖𝑎𝑔([𝟎3×1, 𝐾𝒒𝟏4×1, 𝐾𝝂𝟏3×1, 𝐾𝝎𝟏3×1, 0]). 

The third phase is the atmospheric flight terminating with the vertical landing operation. The target 

is 𝒙𝑇𝑙𝑎𝑛𝑑𝑖𝑛𝑔 = [𝟎3×1, 𝒒𝑇 , 𝝂𝑇 , 𝟎3×1, 0], and 𝑸𝑙𝑎𝑛𝑑𝑖𝑛𝑔 = 𝑑𝑖𝑎𝑔([𝟎3×1, 𝐾𝒒𝟏4×1, 𝐾𝝂𝟏3×1, 𝐾𝝎𝟏3×1, 0]). 

 

 

 

Figure 61: Rocket flight phases  
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5.4 Results 

 

 

The simulations consider a rocket with the following characteristics:  

 

Characteristics Value Characteristics Value 

Rocket mass 20000 [kg] Nr. Lateral thrusters 8 

Fuel mass 150000 [kg] Max lateral thrust 400 [N] 

Nr. Main 

thrusters 
5 Nr. Grid fins 4 

Max thrust T 1521.4 [kN] Max grid trim angle ±60 [°] 

 

Table 6. Rocket’s parameter 

 

 

In the FLIP maneuver, the vehicle flies at 100 [km] above the Earth surface at a speed of 10000 

[km/h], with initial pitch 45 [°]. Three major phases can be identified in this maneuver as shown in 

fig 62 and 63, which show the maneuver phases and the evolution of the pitch angle its rate and the 

control provided by the cold gas thrusters commanded by the FLOP. 

In the first phase, the lateral thrusters provide the required force to starts the rotation of the vehicle, 

second, when the vehicle is rotating and it is approaching the desired orientation of 180 [°], the cold 

gas thrusters starts to brake the rotation of the vehicle, slowing it down, third, the vehicle reaches the 

desired horizontal position, with zero residual speed. The aim of this maneuver is to rotate the vehicle 

to make it approaches the atmosphere with the engines pointing forward, because these will slow 

down the vehicle during the powered descent phase and will control the vehicle vertical attitude 

during the final landing. 

 

 

 

Figure 62: FLIP maneuver phases  
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Figure 63: FLIP maneuver angle rate and control  

 

In the second phase, the rocket is still in LEO, flying 100 [km] above earth surface, travelling at 

10000 [km/h], with initial pitch 180 [°]. The value required for the pitch to safely approach the 

atmosphere is 80 [°], the maneuver is shown in fig 64. Moreover, the vehicle approaches the 

atmosphere reducing the effect of gravity using the main engines. 
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Figure 64: reentry maneuver  

Eventually, the landing phase is shown in fig. 65 and 66. Here the vehicle is travelling through the 

atmosphere starting from a height of 30 [km] at 4320 [km/h], thanks to the grid fins and the main 

thrusters, it safely performs the vertical landing. Fig. 66 shows the last part of the landing, the speed 

evolution, the pitch stabilization and the nonlinear behavior of the main central engine of the vehicle. 

 

 

 

Figure 65: Vertical landing maneuver  
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Figure 66: Vertical landing final approach, speed, pitch angle, and thrust  

 

Finally, a landings comparison in presence of wind with different intensities is shown in fig. 67, the 

aim of this investigation was to understand which the limits of the controlled system are, when wind 

affect the vehicle dynamics. 

The figure shows that wind’s speed in the range of 50 − 70 [km/h] can be handled by the controlled 

system, even though some misalignment of the final landing spot is observed, while when the wind 

reaches higher speed the vehicle is fails to land and has to use the engine to gain height, control the 

pitch and try to land in another point distant from the desired landing spot. 

  

 

 

 

Figure 67: Vertical landing final approach, speed, pitch angle, and thrust  
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The FLOP control shows good performances in all the phases that characterize the vehicle flight and 

landing, in a compound complex control operation. These results are possible thanks to the FLOP 

formulation, that allows to consider the nonlinearities, typical of the rocket model.  

The controlled system is also tested in presence of wind disturbances, in this case the results seems 

to be promising even though they might be improved with different tuning or penalty function 

specifically designed to counter react the wind effect.  
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Chapter 6 

 
Micro magnetic robots actuated by an MRI 

 

 

6.1 Micro magnetic robot actuated by an MRI introduction 

 

Recently new techniques for non-invasive treatment of stomach cancers as well as cardiovascular 

system diseases are of high interest, in particular MRI-powered untethered robots, represent an 

interesting technology to this aim. The technology is based on a Magnetic resonance imaging (MRI) 

device used to actuate magnetic robots remotely inside the human body, thanks to their feature of 

generating magnetic field gradients, that are generally used to obtain high-resolution tissue images 

for diagnostic purposes. However, some limitations for robot actuation occur, due to the imaging 

requirements, that affect the number of active degrees of freedom available for magnetic actuation. 

Generally, MRI-powered untethered robots are only translational actuated by being pulled in three 

dimensions using the magnetic gradient fields [76-80].  

A proper vehicle design with the innovative control law FLOP permits to overcome these limitations, 

leading to a controlled system that permits to reach desired position and orientation for these robots.  

The results that are presented throughout this chapter refer to an untethered magnetic robot, moving 

in a liquid volume in presence of a magnetic environments like those in MRI devices, experimental 

setup shows that the vehicle is capable of move and rotate in the volume of the considered fluid 

reaching the desired position and attitude. The tests are carried out inside a commercially available 

MRI gradient coil, in silicon oil fluid. These MRI controlled untethered micro robots represent a 

promising technology for medical applications in which precise control of vehicle position and 

attitude are required [82]. 

The recent advances in imaging provide the chance to perform revolutionary procedures, in fact this 

feature permits the online decision-making that in the past required a direct line of sight to the surgical 

site. This coupled with the advances in surgical robotics permitted an increase in terms of accuracy 

of surgical operations and reduces the post-surgical effects and hence reduce the healing time [76,77].   

MRI systems used in combination with advanced robotics represent a promising field of research 

with interesting perspectives to evolve the actual surgical procedures and reduce the trauma suffered 

by the patients [76-78]. MRI machines provide high-contrast images of tissues without ionizing 

radiation [79-81], moreover it is recently demonstrated that these devices can remotely actuate micro 

magnetic robot through electromagnetic coil that produce magnetic gradients, these system are 

already present within the machine for imaging purposes [76,83-89], these magnetic micro robots 

permit the surgeon to operate in the surgery site, reducing sensibly the invasivity of the procedure, 

while having an accurate sight of the interested site thanks to the imaging capabilities of the MRI 

devices. 

In MRI systems three main magnetic fields act, these are the main uniform high magnetic field, 𝐁0, 

the magnetic field gradients, ∇𝐁, and the radio frequency (RF) magnetic field, 𝐁1. 𝐁0 is 

unidirectional, always present, and is very high (1.5 T and above). Given its high strength, 𝐁0 causes 

all ferromagnetic materials inside the device to become magnetized to saturation and align with it, 

and hence maneuvers that demand high torques generated by large variation of the direction of the 

magnetic field are unfeasible within the device [90-97]. 

Some small forces can be generated using the magnetic field gradients (∇𝐁) as expressed in Appendix 

A, these permitted to the researchers to demonstrate that 3 DOF motion is feasible, and hence position 

control of untethered micro robots is possible [83,84,98,99]. 
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Orientation control may open new possibilities for applications where this becomes strongly 

important, e.g. control of a pill sided camera, small needles for biopsy or injections, by the way 

orientation control of the untethered devices is difficult to be realized because magnetic torques 

cannot be directly applied to magnetic bodies inside the MRI scanner. However properly designed 

robot can achieve the ability to get desired position and orientation, even though some limitations are 

still present due to coupled dynamics. These robot exhibit 5 out of 6 DOF, namely positioning (3 

DOF), pitch and yaw angles (2 DOF), while roll is not achievable by the actual design, but this doesn’t 

represent a restriction to robot tasks, since the robot are usually cylindrically and therefore symmetric 

around the roll axis. 

The Department for Intelligent Physics of the Max Planck Institute for Intelligent systems has recently 

designed a new design for this class of robot, and a remote magnetic actuation for them as well, these 

permit to the robot to achieve position and desired orientation in a magnetically constrained 

environment like the one inside an MRI [100].  This design generates the pulling forces using 

magnetic field gradients, these are applied to a magnet that is free to rotate and is placed away from 

the center of gravity of the vehicle, and hence the forces applied to it generate torques that act on the 

vehicle body, these are also used to generate translation of the robot. Even though the presented 

vehicle is able to perform the desired task in terms of position and orientation, one at time, it also 

exhibits a coupled dynamic for translations and rotations, moreover the peculiar design, i.e. 

displacement of the center of buoyancy with respect to the center of gravity as well as some 

misalignment of this due to fabrication imperfections, cause a natural pitched attitude for it. 

In order to obtain the final desired position as well as the desired orientation together, the new control 

FLOP presented in this work has been applied to this application. The goal of the control is to 

maximize the overall maneuverability of the magnetic robot in a 3D liquid volume. 

The results provided by the controlled system shows good performances, even though some 

limitations due to the vehicle design are still present.  

 

 

6.2 Robot design concept 

 

The aim of the design of the remotely actuated robots, proposed by the department of Physical 

Intelligence of the Max Planck Institute for intelligent systems, is to improve vehicle maneuverability 

when moving in 3D into a viscous fluid and in the presence of a nearly uniform 𝐁𝟎 field. Where 

nearly uniform field means that the spatiotemporal changes of the field are small compared to the 

mean value of the field. The vehicles are remotely actuated by the MRI gradient coil insert, which 

generates the 3D field perturbations. A 1 mm-diameter spherical NdFeB permanent magnet is placed 

in a cavity on the robot body that is offset from the center of mass (COM) of the robot as in Fig. 68. 
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Figure 68: Magnetic resonance (MR) images of an SFNU type robot: (a) MR image of the robot 

without the magnetic sphere, and (b) MR image of the robot with the magnetic sphere, which 

distorts the image. 

 

 

 

Since the magnet is not rigidly connected to vehicle, but it’s just placed into the cavity, it can rotate 

freely with respect to the robot body, but it can transmit the forces, generated by the magnetic 

gradients, to the robot’s body. 

This design permit to the magnet to align itself to the main magnetic field B0, without affecting the 

robot attitude. The position of the magnet into the vehicle body, is out of the overall center of mass 

COM of the vehicle, therefore the pulling forces, generated by the magnetic gradients, applied to the 

small magnet, generate also torques that act on the vehicle orientation, the scope of this design is to 

improve the maneuverability of the vehicle during the 3D motion into a vicious fluid, but some limits 

appear evident, the translational and rotational dynamics of the vehicle are coupled, therefore any 

force generate linear motion as well as rotation. Since most of the medical applications require a 

motion in confined spaces, a high maneuverability is necessary. To maximize the maneuverability of 

the robot, the coupling between translation and rotation should be minimized. Clearly the distance 

between the magnet and the center of gravity 𝒃𝒎 improve the torques and hence the rotational effect 

of the pulling forces, so maximize this distance augment vehicle maneuverability, anyway the 

undesirable coupling effect is impossible to be avoided.  

Robot design must take into the account the fluid density, in fact, to reduce the magnetic forces effort 

required to lift up the vehicle and to move it through the fluid, the robot has to have a density close 

to the one of the fluid in which it moves. 

The buoyancy force and its torque, 𝑭𝒃𝒖𝒐𝒚𝒂𝒏𝒄𝒚, 𝑴𝒃𝒖𝒐𝒚𝒂𝒏𝒄𝒚, and the gravitational force, 𝑭𝒈𝒓𝒂𝒗𝒊𝒕𝒚, cause 

drifts in the position and orientation of the robot, also in steady state, these actions to be counter 

reacted by the magnetic pulling force in order that the robot can move in any direction. Therefore, 

the following inequalities must be satisfied: 

|𝑭𝒃𝒂𝒍𝒂𝒏𝒄𝒆| < |𝑭𝒎𝒂𝒈𝒏𝒆𝒕𝒎𝒂𝒙
| 

|𝑴𝒃𝒖𝒐𝒚𝒂𝒏𝒄𝒚| < |𝒃𝒎 × 𝑭𝒎𝒂𝒈𝒏𝒆𝒕𝒎𝒂𝒙
| 

(135) 

Where 𝑭𝒃𝒂𝒍𝒂𝒏𝒄𝒆 is the force required to balance the buoyancy and gravity forces acting on the vehicle, 

𝑭𝒎𝒂𝒈𝒏𝒆𝒕𝒎𝒂𝒙
 is the maximum magnetic pulling force and 𝒃𝒎 × 𝑭𝒎𝒂𝒈𝒏𝒆𝒕𝒎𝒂𝒙

 is the maximum induced 

magnetic torque on the robot’s body. 𝑭𝒃𝒂𝒍𝒂𝒏𝒄𝒆 and 𝑴𝒃𝒖𝒐𝒚𝒂𝒏𝒄𝒚 can be tuned during the design of the 

robot varying the robot volume 𝑉𝑣𝑒ℎ𝑖𝑐𝑙𝑒, its mass 𝑀, and the distance between the center of volume 

CoV and the center of mass of the vehicle CoM.  
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The magnetic field gradients that an MRI can generate are relatively weak, therefore the inequalities 

in (135) should be considered carefully for the design of the robot.  

To obtain a neutral buoyant vehicle two major characteristics has to be respected: 

 

• The CoM and CoV should be located at the same position 

• The overall density of the robot should be equal to the liquid’s density 

 

Since some manufacturing error always occur and since the magnet need some space to able to rotate 

freely in the cavity, these conditions are difficult to be matched in a real prototype. Even though the 

prototype got close to the ideal prototype, some magnetic forces are always required to maintain the 

vehicle in the derided position. This result into a vehicle that requires an advanced control logic that 

might take into the account the dynamic model of the system, and hence the dynamic constraints of 

the robot, and all of the consequent nonlinearities, of the system. 

Fig. 69 shows four different configurations of the robot in steady state within a fluid environment. 

The robot is assumed to stay stationary inside a liquid, 𝑭𝒃𝒂𝒍𝒂𝒏𝒄𝒆 is applied to counter react to the 

buoyancy and gravity actions and to maintain the robot at the desired altitude, moreover two torques 

act on the robot: 𝒃𝒎 × 𝑭𝒃𝒂𝒍𝒂𝒄𝒏𝒆 and 𝒃𝒃𝒖𝒐𝒚𝒂𝒏𝒄𝒚 × 𝑭𝒃𝒖𝒐𝒚𝒂𝒏𝒄𝒚.  

 

 

 

Figure 69: Depending on the density of the robot and the position of COM and COV, four different 

configurations can be possible inside stagnant fluids at a resting state when there is no magnetic 

actuation input. 

 

 

To improve the vehicle maneuverability and hence to obtain the desired robot configuration, the terms 

that appear in these equations, have to be minimized. 
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All the designs are axisymmetric and hence CoM and CoV are placed on the longitudinal axis of the 

vehicle, even though some misalignments occur due to the manufacturing process. Anyway in the 

ideal case the torques 𝒃𝒎 × 𝑭𝒃𝒂𝒍𝒂𝒄𝒏𝒆 and 𝒃𝒃𝒖𝒐𝒚𝒂𝒏𝒄𝒚 × 𝑭𝒃𝒖𝒐𝒚𝒂𝒏𝒄𝒚 are parallel and perpendicular to the 

vertical plane that contains the longitudinal axis of the vehicle, this means that a proper choice for 

them might result into a minimization of the effect due to them. 

𝒃𝒎 × 𝑭𝒃𝒂𝒍𝒂𝒄𝒏𝒆 + 𝒃𝒃𝒖𝒐𝒚𝒂𝒏𝒄𝒚 × 𝑭𝒃𝒖𝒐𝒚𝒂𝒏𝒄𝒚 = 𝟎 (136) 

Among the four possibilities shown in Fig. 4, the configurations (b) and (c) result in 𝒃𝒎 × 𝑭𝒃𝒂𝒍𝒂𝒄𝒏𝒆 
and 𝒃𝒃𝒖𝒐𝒚𝒂𝒏𝒄𝒚 × 𝑭𝒃𝒖𝒐𝒚𝒂𝒏𝒄𝒚 are in the same direction, and therefore, the induced torques are 

augmented, causing an increased rotational drift. Instead, configurations (a) and (d) produce parallel 

but inverse torques, and hence the magnetic action helps also to reduce the action due to buoyancy 

force. These designs reduce the rotational drift. The configuration (a) is a slightly floating neutrally 

upward (SFNU) robot type, and the configuration (d) is a slightly sinking neutrally downward 

(SSND) robot type. 

 

 

6.3 Dynamic model 

The FLOP algorithm is a model-based sub optimal control, and hence a model of the controlled 

system is required to generate all the functions needed by the algorithm. The model used here, 

considers two main reference frames, the world fixed reference frame fig. 70 in which the vehicle’s 

position 𝑋, 𝑌, 𝑍 and orientation 𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4 are described. The vehicle attitude is expressed 

using the quaternion formulation to avoid singularities that might occur for some poses of the robot. 

The vehicle configuration is retrieved through image processing of the signals coming from two 

cameras placed in the setup, one of them points toward a mirror placed on top of the pool in which 

the robot moves giving information about its planar motion, the other one records the side of the pool 

giving info about the motion of the vehicle in the vertical plane as shown in fig 70. 
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Figure 70: Experimental setup, top and side camera record the motion of the vehicle placed inside 

the pool, the whole system when active, is placed inside the MRI machine that appear in the left 

part of the figure. The Two cameras retrieve the position of the vehicle and its direction vector that 

permits to calculate the actual orientation of the vehicle. 

 

The signals provide position and orientation of the vehicle, this last is obtained through the direction 

vector, this is mean to belong to the vehicle longitudinal axis, pointing from the back of the robot to 

its head, this convention is the reason why the robot is painted in red and blue color, in fact the image 

processing algorithm assign the direction vector pointing from the blue part of the vehicle to the red 

one fig. Through the components of this vector in the world fixed reference frame is possible to 

retrieve the actual orientation of the vehicle, by evaluating the actual Euler angles and converting 

them back to quaternions. Two major limitations come from this technique: 

• Singularities, when the vehicle points toward one of the cameras, i.e. the longitudinal axis 

of it is parallel to the imaginary axis perpendicular to the image provided by the camera, in 

these conditions the orientation data are strongly affected by fluctuations, this might cause 

high control fluctuations since the jacobians of the FLOP algorithm are affected by this 

noisy signal. 

• The roll angle is undetermined, the cameras cannot provide any information about the roll 

angle of the direction vector, anyway this does not have severe drawbacks on the controlled 

vehicle performance since the vehicle is axisymmetric, although some small misalignment 

and defects can occur due to the manufacturing process. One technique to overcome this 

lack of information might be to add some special painting with markers to the vehicle 

surface. Since this experimental activity is devoted to design a vehicle that might be guided 

only using the MRI imaging feedback this can’t recognize the painted markers, therefore in 

𝑋 

𝑍 

𝑌 

Top view 

Side view 

Direciton vector 



97 

 

real cases, inside a human body there won’t be the possibility to determine the vehicle roll, 

and hence it is not considered according to this limitation of the real scenario. 

The observable Euler angles i.e. pitch 𝜃 and yaw 𝜓, can be evaluated using the spherical coordinates 

formulation and knowing the components of the direction vector measured by the camera through the 

following: 

 

 

 

 

 

 

 

𝜃 = atan (−
𝑍𝑑
𝜌
) 

𝜓 = sin (
𝑌

𝜌
) 

(137) 

 

 

The pitch angle 𝜃 can span through −
𝜋

2
≤ 𝜃 ≤

𝜋

2
 while the yaw angle can range through 0 ≤ 𝜓 ≤ 𝜋. 

Once these angles are evaluated it is possible to convert them to the quaternion that is fed to the 

controller. 

 

 

Figure 71: forces acting on the vehicle, the magnetic forces are generated by three fixed coils, and 

hence they are defined in the world reference frame 𝑋, 𝑌, 𝑍. For the sake of clarity, the torques 

generated by the magnetic, buoyancy and lift forces 𝑴𝑚𝑎𝑔𝑛𝑒𝑡 ,𝑴𝑏𝑢𝑜𝑦𝑎𝑛𝑐𝑦 ,𝑴𝑙𝑖𝑓𝑡, are meant as 

vectors. In the picture the torques due to rolling, pitching, and yawing motions are not reported. 
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The other reference frame is the body fixed frame, this has the 𝑥 axis parallel to the longitudinal axis 

of the vehicle, the 𝑦 axis pointing on the right side of the vehicle and the 𝑧 axis selected to obtain a 

right-handed reference frame, according to the aerospace convention.  

The state of the system is defined as 𝒙 = [𝑋, 𝑌, 𝑍, 𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟] where [𝑋; 𝑌; 𝑍] 
represent the position of the CoG in the fixed reference frame. Since the goal is to control the 3D 

motions and rotations of the vehicle, to avoid any singularity due Euler angles, the quaternion 

[𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4] is used, it provides the attitude of the vehicle in the fixed frame. The speeds 

components [𝑢, 𝑣, 𝑤] describe the surge, sway and heave motions respectively. Then [𝑝, 𝑞, 𝑟] 
represent the three angular speeds of the vehicle around its own axes. The forces and torques acting 

on an untethered magnetic robot in a 3D liquid environment are the magnetic, fluidic, gravity, and 

buoyancy forces and torques. The magnetic forces 𝑭𝑚, represent the actuation of the system, these 

are generated by the coils rigidly connected to the world reference frame coordinate system i.e. 

𝑋, 𝑌, 𝑍. These vary the magnetic field gradient along the directions of the fixed reference, this means 

that to control the vehicle they have to be translated into the body reference frame of the vehicle. 

𝑭𝑚𝑏𝑜𝑑𝑦
= 𝒈(𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4)𝑭𝒎 (138) 

This term will produce a dynamic system in the form �̇� = 𝝓(𝒙) + 𝒉(𝒙)𝒖 that require to be 

manipulated to belong to the class of the affine system �̇� = 𝝓(𝒙) + 𝑩𝒖 that is suitable for the FLOP 

control. Otherwise since the 𝒈(𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4) transformation can also be used to map the 

actuations 𝑭𝑚𝑏𝑜𝑑𝑦
 defined directly into the body reference, into the required 𝑭𝒎 through: 

𝑭𝒎 = 𝒈(𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4)𝑇𝑭𝑚𝑏𝑜𝑑𝑦
 (139) 

This permit to obtain a controlled system that belongs to the class of the affine systems treatable by 

the FLOP, without any approximation, or manipulation, while permitting to map the necessary forces 

described into the fixed frame, anyway, it is better to make the control aware of this peculiarity of the 

experimental setup, and introduce a linearization at each step of this part of the dynamic system as 

will be discussed in next paragraph. These forces generate the torques that permit to the vehicle to 

change its attitude in term of pitch and yaw, while the actual design doesn’t permit to control the roll 

motion, but this is not mandatory for the considered application. 

𝑴𝑚𝑏𝑜𝑑𝑦
= 𝒃𝒎 × 𝑭𝑚𝑏𝑜𝑑𝑦

= 𝒃𝒎 × (𝒈(𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4)𝑭𝒎)𝑭𝒎 (140) 

Where 𝒃𝒎 represents the vector that connect the CoG of the body, to the CoGm of the magnet. The 

fluidic forces are herein considered as the lift and drag forces described in the xy and xz planes of the 

vehicle, the torques generated by these, that are meant to be applied into the CoV of the vehicle, also 

in this case the forces need to be translated from the flow reference to the body reference frame, as 

usual for fluid interactions using the sideslip angle 𝛽 and the angle of attack 𝛼, through the rotation 

matrices 𝑹(𝛽),𝑹(𝛼): 

𝑭𝒇𝒍𝒖𝒊𝒅𝒊𝒄𝒃𝒐𝒅𝒚 = 𝑹(𝛽) [−𝐹𝑑𝑟𝑎𝑔𝒙𝒚
(𝛽);−𝐹𝑙𝑖𝑓𝑡𝒙𝒚

(𝛽); 0]
𝑇
+ 𝑹(𝛼) [−𝐹𝑑𝑟𝑎𝑔𝒙𝒛

(𝛼); 0;−𝐹𝑙𝑖𝑓𝑡𝒙𝒛
(𝛼)]

𝑇
 

𝑴𝒇𝒍𝒖𝒊𝒅𝒊𝒄𝒃𝒐𝒅𝒚 = [𝑥𝐶𝑜𝑉; 0; 0] × 𝑭𝒇𝒍𝒖𝒊𝒅𝒊𝒄𝒃𝒐𝒅𝒚 + [𝑀𝑟𝑜𝑙𝑙, 𝑀𝑝𝑖𝑡𝑐ℎ,𝑀𝑦𝑎𝑤]
𝑇
 

(141) 
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𝑭𝒇𝒍𝒖𝒊𝒅𝒊𝒄𝒃𝒐𝒅𝒚  represents the fluid actions on the vehicle, these are generated by the lift 

𝐹𝑙𝑖𝑓𝑡𝒙𝒚
(𝛽), 𝐹𝑙𝑖𝑓𝑡𝒙𝒛

(𝛼) and drag 𝐹𝑑𝑟𝑎𝑔𝒙𝒚
(𝛽), 𝐹𝑑𝑟𝑎𝑔𝒙𝒛

(𝛼) forces, acting in the 𝒙 − 𝒚 and 𝒙 − 𝒛 planes. 

These depend of the sideslip and attack angles of the vehicle through the lift and drag coefficients 

and through the projection of the cross-section area normal to the fluid relative flow:  

𝐹𝑙𝑖𝑓𝑡⊠
(⊠) =

1

2
𝐶𝑙𝑖𝑓𝑡⊠(⊠)𝜌𝑓𝑙𝑢𝑖𝑑𝐴⊠(⊠)𝑉⊠

2  

𝐹𝑑𝑟𝑎𝑔⊠
(𝛽) =

1

2
𝐶𝑑𝑟𝑎𝑔⊠

(⊠)𝜌𝑓𝑙𝑢𝑖𝑑𝐴⊠(⊠)𝑉⊠
2  

𝐴⊠(⊠) = 𝐴𝑡𝑟𝑎𝑛𝑠𝑣 +
(𝐴𝑙𝑎𝑡 − 𝐴𝑡𝑟𝑎𝑛𝑠𝑣)

2
−
(𝐴𝑙𝑎𝑡 − 𝐴𝑡𝑟𝑎𝑛𝑠𝑣)

2
cos(2⊠) 

(142) 

Where ⊠ refers to the considered plane and therefore the considered relative flow angle with respect 

to the vehicle body reference frame, i.e. ⊠= [(𝒙 − 𝒚, 𝛽), (𝒙 − 𝒛, 𝛼)]. The fluid interaction 

coefficients for the considered vehicle are those provided by [100], [𝑀𝑟𝑜𝑙𝑙 , 𝑀𝑝𝑖𝑡𝑐ℎ, 𝑀𝑦𝑎𝑤] represent 

the three torques generated by the rotational motion of the vehicle. The gravity action is defined in 

the fixed frame and needs to be converted into the body frame using the transformation 

𝒈(𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4) already used for the magnetic forces: 

𝑭𝒈𝒓𝒂𝒗𝒊𝒕𝒚𝒃𝒐𝒅𝒚 = 𝒈(𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4)[0; 0;𝑀𝑔]𝑇 (143) 

With 𝑀 mass of the vehicle and 𝑔 the gravitational acceleration. Since the 𝑍 axis is pointing 

downward the gravity force in the fixed frame is positive. Finally, the buoyancy force, also in this 

case it is possible to define it in the fixed reference frame and then use 𝒈(𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4) convert 

it into the body reference: 

𝑭𝒃𝒖𝒐𝒚𝒂𝒏𝒚𝒃𝒐𝒅𝒚 = 𝒈(𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4)[0; 0;−𝜌𝑓𝑙𝑢𝑖𝑑𝑉𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑔]
𝑇
 (144) 

Where 𝜌𝑓𝑙𝑢𝑖𝑑 represent the density of the considered fluid and 𝑉𝑣𝑒ℎ𝑖𝑐𝑙𝑒 is the volume of the vehicle. 

Since this force in not applied to the CoG of the vehicle it’ll cause a torque that can be expressed 

through the vector that connects the CoG to the CoV of the vehicle: 

𝑴𝒃𝒖𝒐𝒚𝒂𝒏𝒚𝒃𝒐𝒅𝒚 = [𝑥𝐶𝑜𝑉; 0; 0] × 𝑭𝒃𝒖𝒐𝒚𝒂𝒏𝒚𝒃𝒐𝒅𝒚  (145) 

With 𝑥𝐶𝑜𝑉 distance of the CoV from the CoG of the vehicle, along the 𝑥 axis. The equation of motion 

can now be written as: 

𝑴�̇� + 𝑪𝒄𝒐𝒓𝒊𝒐𝒍𝒊𝒔(𝝂)𝝂 = [𝑭𝒇𝒍𝒖𝒊𝒅𝒊𝒄𝒃𝒐𝒅𝒚 + 𝑭𝒈𝒓𝒂𝒗𝒊𝒕𝒚𝒃𝒐𝒅𝒚 + 𝑭𝒃𝒖𝒐𝒚𝒂𝒏𝒚𝒃𝒐𝒅𝒚 + 𝑭𝑚𝑏𝑜𝑑𝑦
;𝑴𝒇𝒍𝒖𝒊𝒅𝒊𝒄𝒃𝒐𝒅𝒚 +𝑴𝒃𝒖𝒐𝒚𝒂𝒏𝒚𝒃𝒐𝒅𝒚 +𝑴𝑚𝑏𝑜𝑑𝑦

] (146) 

With 𝑴 inertia matrix, 𝑪𝒄𝒐𝒓𝒊𝒐𝒍𝒊𝒔(𝝂)𝝂 term that takes into the account the Coriolis actions on vehicle 

and 𝝂 = [𝑢; 𝑣;𝑤; 𝑝; 𝑞; 𝑟]. The system absolute velocity and rate of change of orientation is eventually 

described as follows: 
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[�̇�; �̇�; �̇�] = 𝒈(𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4)𝑇[𝑢, 𝑣, 𝑤]𝑇 

[𝑞0̇, 𝑞1̇, 𝑞2̇, 𝑞3̇, 𝑞4̇]
𝑻
= 0.5𝒔(𝑝, 𝑞, 𝑟)[𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4]𝑇 

(147) 

 

 

6.4 FLOP control formulation 

The model dynamic is described by a full 6d.o.f rigid body motion set of differential equations, plus 

the terms that describe the position and the attitude of the vehicle into the fixed reference frame. Since 

the control actuation, comes from coils fixed into the world reference frame, the actuation provided 

by these, needs to be translated into the body reference frame, through a quaternion transformation. 

Thus, the system dynamic can be described as: 

�̇� = 𝝓(𝒙) + 𝒉(𝒙)𝒖 (148) 

Where 𝒉(𝒙) represent the transformation from fixed reference frame to body reference frame, while 

𝒖 = 𝑭𝑿, 𝑭𝒀, 𝑭𝒁 is the vector that contains the forces generated by the gradients, into the three 

directions of the fixed reference frame. To apply the FLOP formulation a linearization is required, so 

the term 𝒉(𝒙)𝒖 can be rewritten through a Taylor series expansion centered into �̅�, �̅�: 

𝒉(𝒙)𝒖 = 𝒉(�̅�)�̅� + 𝛁𝒙(𝒉(𝒙)𝒖)|�̅�,�̅�(𝒙 − �̅�) + 𝛁𝒖(𝒉(𝒙)𝒖)|�̅�,�̅�(𝒖 − �̅�) =  𝒉(�̅�)�̅� + 𝛁𝒙(𝒉(𝒙))�̅�|�̅�,�̅�(𝒙 − �̅�) + 𝒉(�̅�)(𝒖 − �̅�) (149) 

This can be easily written calling 𝑪 = 𝒉(�̅�)�̅� − 𝛁𝒙(𝒉(𝒙))�̅�|�̅�,�̅��̅� − 𝒉(�̅�)�̅�, 𝑨 = 𝛁𝒙(𝒉(𝒙))�̅�|�̅�,�̅� and 

�̅� = 𝒉(�̅�), this leads to the following system: 

�̇� = 𝝓(𝒙) + �̅�𝒙 + �̅�𝒖 + 𝑪 (150) 

Where �̅�, �̅� are going to be updated at each step of the simulation or might be linearized around a 

specific point �̅�. The considered system, results to be underactuated, in fact a lack of controllability 

is exhibited by it, with a degree of controllability that depends on the actual state of the vehicle. This 

behavior is justified by unobservability of the roll angle as well as its rate and by the strong coupled 

effects on position and rotation due to the control forces applied to the vehicle, in fact once a force 

on the 𝑦 𝑜𝑟 𝑧 axis of the vehicle reference system is applied, it affects the sway and yaw motions or 

heave and pitch motion respectively. The evaluation of the controllability can be done applying the 

following: 

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑟𝑎𝑛𝑘([𝑩 𝑨𝑩 𝑨𝟐𝑩…𝑨𝑛−1𝑩 ]) (151) 

With 𝑛 dimension of the state 𝒙 of the system. For instance, considering the formulation of the 

dynamic equation through Euler angles, if the system is linearized in the following conditions is 

evident the lack of controllability: 

𝒙 = [�̅�, �̅�, −�̅�, 0,0,0,0,0,0,0,0,0]𝑇  =>   𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 8 
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�̅� = [�̅�, �̅�, −�̅�, 0,0,0,0.01,0,0,0,0,0]𝑇  =>   𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 10 

The first case refers to the vehicle in steady state in the �̅�, �̅� position floating at the height −�̅�, the 

controllability analysis produces 8 out of 12, meaning that in steady state the Euler angles and the 

roll rate are not controllable through the magnetic gradients. The second case refers to the vehicle 

placed in the same position, but while moving with longitudinal speed component, here the 

controllability test provide 10 out of 12, which means that vehicle is now able to control its pitch and 

yaw angles as well as its lateral and vertical motion, but it is still unable to control the roll angle and 

the roll rate, as expected. This last result supports the assertion that using a proper designed trajectory, 

an ideally built robot, can achieve the final desired position as well as the desired attitude in terms of   

pitch and yaw angles.  

 

6.5 Experimental setup.  

 

6.5.1 Robot design and build.  

 

The two robot types SSND and SFNU, were fabricated and tested experimentally, these robots are 

made out of four parts: a spherical magnet, main body, mass balance module, and the cap, as shown 

in Fig. 72. The permanent magnet (HKCM Engineering e.K.) is a 1-mm diameter NdFeB sphere with 

a magnetization strength of 0.5 emu. 

 

 

Figure 72: (a) SFNU and SSND type of robot designs consist of four main components: (A) is the 

magnet cap, (B) is the spherical NdFeB permanent magnet. 
 

 

 

Both robot designs are constituted by three main elements: a magnetic actuation cavity where the 

magnet is placed, an air cavity for density tuning, and a mass-balance part for COM-COV tuning. 

The robot type, i.e. SFNU-type or an SSND-type, depends on the proper choice of the sizes of these 

elements. Moreover, the overall design of the robots is meant to be axisymmetric along the major 

axis of the vehicle, this permits to have equal fluidic interactions regardless the roll angle of the robot. 

This will improve the performance of the controlled system and will generate an easier and more 

reliable vehicle’s dynamic while moving in a dynamic flow. 

The built procedure is common for both robot designs, and requires the following steps, the main 

body, mass balance module, and the cap are 3D printed in100% VeroClear material with matte option, 

using a Connex 260 3D printer. These parts are then sonicated in 1 M NaOH bath for 4 hours to 
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remove fine support residuals. After that, the 3D-printed parts are washed with water and dried for 1 

hour under a warm air flow (40°C). After inserting the permanent magnet into its cavity, the separated 

parts are glued together using cyanoacrylate adhesives. The robot sealing is achieved using a clear 

lacquer dip coating (Plastik 70, clear lacquer, 74327), the robot is dived for 0.5 s. To reduce the image 

processing effort while tracking the robot position and orientation, the robot is painted considering a 

color coding that assign Edding 260 red on the magnetic end and blue on the nonmagnetic end. Then 

a second layer of clear lacquer is applied by diving again the robot for 0.5 s this process adds a coating 

sheet on top of the coloring process. After every coating process, the robot is left to dry at room 

temperature for 2 hours.  

Due to the manual manufacturing steps some iterations have been done to determine empirically the 

best tuning for both SFNU and SSND designs, in fact, the overall density of the robot may vary 

slightly, because of the imperfections that may occur during the various steps. An experimental 

characterization is performed over 20 robots, this helps to evaluate the mean mass of the 

manufactured robots. This result in an average mass of 145.09 mg with a ±1.27 mg standard mass 

deviation for the SFNU and 71.57 mg with and ±0.44 mg standard mass deviation for SSND robots. 

The yield rate is around 75% for the aforementioned manufacturing technique. Moreover, the 

characterization highlighted that the major mass variation stems from the mass balance module, the 

main body module, and color-coding and lacquer coating with the highest mass variation of 0.84 mg 

for the main body module of SFNU-type of robot. The mean mass and mass deviations of each 

manufactured component are reported in the following table: 

 

 

SFNU Value Deviations 

Magnet 4.079 [mg] 0.063 

Magnet cap 7.232 [mg] 0.104 

Main body 59.816 [mg] 0.845 

Mass balance 

module 
61.942 [mg] 0.341 

Cyanoacrylate 1.528 [mg] 0.423 

Color coding 

lacquer coating 
10.489 [mg] 0.530 

SSND Value Deviations 

Magnet 4.036 [mg] 0.051 

Magnet cap 3.942 [mg] 0.066 

Main body 27.976 [mg] 0.291 

Mass balance 

module 
25.976 [mg] 0.331 

Cyanoacrylate 0.553 [mg] 0.051 

Color coding 

lacquer coating 
9.088 [mg] 0.488 

 

Table 7: SFNU and SSND components masses 

 

The density values of VeroClear material and the bead magnet are measured and used for the 

marginally balanced robot design. Throughout the various robot shapes that satisfy the previously 

explained design constraints, the final shape of the robot is chosen to ease the manufacturing and 

assembly of the robot. To proper select the mass, volume, and COM and COV positions an iterative 

process is performed done by tuning the length and diameter parameters of upper body, main body, 

and mass-balance module within the range of 50 to 100 micrometers at each iteration.  
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The scope of the iterative process on the upper body and on the mass-balance module was to fine 

locate the position of the CoM and of the CoV, moreover the main body design is defined to tune the 

air gap module to properly set the density of the robot. 

The COM positions are measured by supporting the two ends of the robot and measuring the length 

and reaction load at one of the two ends. The average COM positions are 4.58 ± 0.06 mm and 4.79 ± 

0.07 mm (error reported as standard deviation) for SFNU- and SSND-type robots, respectively. This 

information is fed to the controller to improve its performance while guiding the vehicle. 

Fig. 73 illustrates the robot dimensions that characterize its design, their values both with other major 

parameters of the robots are reported in table 7. 

 

 

 

Figure 73: Cross-section view CAD models, with the parametric design dimensions. (a) represents 

the design for SFNU type of robot, and (b) represents the design for SSND type of robot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol Quantity SFNU SSND 

𝑑𝑢𝑏 Upper body diameter 3.4 [mm] 2.8 [mm] 

𝑙𝑢𝑏 Upper body length 2 [mm] 3.1 [mm] 

𝑑𝑚𝑏 Main body diameter 5 [mm] 3.2 [mm] 

𝑙𝑚𝑏 Main body length 4 [mm] 3.7 [mm] 

𝑑𝑏𝑎𝑙 Mass balance diameter 6 [mm] 5 [mm] 
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𝑙𝑏𝑎𝑙 Mass balance length 2 [mm] 1.2 [mm] 

𝑙𝑐𝑎𝑝 Cap length 0.8 [mm] 0.6 [mm] 

𝑑𝑔𝑎𝑝 Air gap diameter 3.25 [mm] 2.21 [mm] 

𝑙𝑔𝑎𝑝 Air gap length 3 [mm] 3 [mm] 

𝑑𝑐𝑎𝑣 Magnet cavity diameter 1.4 [mm] 1.6 [mm] 

𝑙𝑐𝑎𝑣 Magnet cavity length 1.2 [mm] 1.3 [mm] 

 𝑚 Total mass 0.1383 [g] 0.0667 [g] 

𝑉𝑟 Total volume 153.25 [𝑚𝑚3] 72.41 [𝑚𝑚3] 
𝜎𝑟 Density 902 [𝑘𝑔/𝑚3] 921 [𝑘𝑔/𝑚3] 
𝑝𝑐𝑜𝑚 CoM location 4.76 [mm] 4.73 [mm] 

𝑝𝑐𝑜𝑣 CoV location 4.55 [mm] 4.85 [mm] 

 

Table 8: SFNU and SSND dimensions 

 

 

 

6.5.2 Magnetic actuation system.  

 

The target of the experimental activity is to recreate the typical environment inside an MRI machine, 

including the constant unidirectional field 𝑩𝟎 and the magnetic gradients, that are actuated 

accordingly to FLOP control algorithm, and used to move and turn the robot within the fluid. 

The system is made out of three main parts as shown in Fig. 74: 
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Figure 74: The pseudo-MRI experimental setup consists of a custom-built, water-cooled uniform 

field generator using pancake coils, and the pool filled with silicone oil, in which the robot moves 

 

 

• a commercial MRI gradient coil insert,  

• a uniform field generator, and  

• an experimental stage. 

 

The computer input is fed to the gradient coil insert that generates the magnetic field gradients inside 

the MRI. The MRI gradient coil insert (BioSpec® B-GA12SL, Bruker) can generate 200 mT/m 

maximum instantaneous magnetic field gradients and can provide 66 mT/m maximum magnetic field 

gradient continuously. The maximum continuous magnetic pulling force that can be exerted on the 

robot with the MRI gradient coil unit is 36 μN.  
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The uniform constant field 𝑩𝟎, is generated by a custom-built electromagnet placed around the MRI 

device to generate the environment common to the MRI device. 

The mean value of the magnetic field 𝑩𝟎 generated by this device in the considered workspace is 

31.19 mT, this means that it is strong enough to align the magnetic axis of the permanent magnet 

placed inside the robot to the x-axis.  

The field uniformity is 0.73% around the workspace, and the worst-case gradients generated are less 

than 10% of the maximum continuous gradient strength of the MRI gradient coil insert. The 

experimental stage insert includes two borescope cameras (ViTiny UM07, eheV1-USBpro), two 

mirrors, and a 5 x 5 x 3 cm3 experimental silicone oil pool. 

The pool and the cameras are mounted on a sliding sledge that locate them at the center of the MRI 

gradient coil insert unit, where a proper spatial uniformity of the magnetic field gradients is 

guaranteed. The density of the silicone oil used in experiments is approximately 1000 kg/m3, and the 

viscosity is 100 cSt. The data regarding the vehicle state coming out from the cameras, as well as the 

control actions are recorded by the computer.   

The digital camera feedback of the two borescope cameras is used rather than MR imaging, these 

give feedback of the top and side view of the pool, and hence position and orientation of the robot in 

the horizontal and vertical planes. The color coding is used to detect precisely the position and 

orientation of the robot. Image processing algorithms are used to extract the 3D position and 

orientation of the capsule for measurement of experimental results and as input to the FLOP control 

to generate the control actions. The update rate of the magnetic field gradients is fixed at 10 Hz, which 

is achievable for an MRI-powered system that do use MR imaging for feedback [24, 25]. Image 

processing and control loop computations are done by the external master computer and the desired 

control inputs are sent to the MRI gradient coil insert via an Ethernet connection. 

 

 

 

6.5.3 Response of the system to magnetic actuation.  

 

To improve the overall performance of the controlled systems, and to properly tune the parameter of 

the model provided to the controller, an experimental campaign has been done, this is aimed to 

characterize the behavior of the robot when specific magnetic pulses are applied.  

A rotating magnetic pulling force is applied to the tip of the vehicle to understand the limit of its 

performance during rotation. When this force is applied, the coupling of the rotation and translation 

dynamics, make the vehicle perform a circular trajectory.  

This campaign analyzes the rotational speed of the robot when open-loop actuation inputs with 

different strengths and different frequencies are applied.  

The results is that the system exhibits an upper limit, in fact when the frequency of the input become 

too high the robot is no more able to track the circular trajectory in phase with the rotating input. This 

frequency is referred to as the step-out frequency [36].  

This open-loop, continuously rotating magnetic gradients are applied with strengths of 20, 30, and 40 

mT/m, and different frequencies of rotation as well. The open-loop pulling force can be described by: 

𝑭𝑚 = 𝐹𝑚 [

cos (2𝜋𝑓0 + 𝜙0)
sin (2𝜋𝑓0 + 𝜙0)

𝐹𝑏𝑎𝑙𝑎𝑛𝑐𝑒
𝐹𝑚

] (152) 
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where 𝑭𝑚 is the open-loop magnetic actuation signal, 𝜙0 is the initial orientation of the robot, which 

determined through image processing, 𝑓0is the frequency of the input signal, and 𝑡 is the actuation 

time. In order to determine the step-out frequency, a frequency sweep from 0.01 Hz to 0.2 Hz with 

step sizes of 0.02 Hz is performed. After determining a rough estimate of the step-out frequency, 𝑓0, 

experiments are then repeated with smaller step sizes (down to 0.005 Hz) to better estimate the step-

out frequency. The condition of step-out is defined as the lowest frequency 𝑓0 for which the robot’s 

observed rotational frequency was below of the input frequency 𝑓0 by at least 3%. The observed 

rotational frequency was calculated as taking a time average of the discretized rotational velocity.  

These rotation experiments are conducted in both horizontal 𝑋 − 𝑌 plane and vertical 𝑋 − 𝑍 plane. 

To balance the position of the robot along the 𝑍 axis, a weight/buoyancy compensation force, 

𝐹𝑏𝑎𝑙𝑎𝑛𝑐𝑒l, needs to be applied. Therefore, pulling force 𝑭𝑚 is superposed to this last. Each experiment 

is repeated 5 times with 5 replicas of each type of robot. The experiment time is set to be the time at 

which five complete rotations of the circular inputs are complete, or anyway the time at which the 

robot accidentally hits one of the boundaries of the experimental pool. 

The model parameters for the simulators and for the controlled are then determined accordingly to 

these results, by applying the same procedure. 

 

 

6.6 Experimental results 

 

6.6.1 introduction to the experimental activity 

 

The FLOP control was applied to the MRI setup, the goal of the experimental activity was to 

demonstrate that position and orientation of the micro magnetic robot can be controlled even though 

the dynamic system presents some limitations due to the overall experimental setup, in fact the 

considered robot exhibits coupled translation and rotation dynamics. This results in a system that 

cannot easily reach any desired pose even though a model-based sub optimal control is applied, in 

fact this class of controllers rely on the minimization of the error described through the hyperplane 

represented by all the elements of the state that have to be controlled. The target for the MRI 

controlled vehicle is to successfully manage 3D position and 2 Euler angles, since the roll cannot be 

observed by the experimental setup, i.e. 5 elements (7 when orientation is described through 

quaternion) of the state have to reach some reference values. 

Direct request of minimization of the whole state error might end up into a local minimum of the 

hyperplane, causing an approximated final pose of the vehicle, that might be far from the desired one. 

For this reason, and considering the limited maneuverability of the vehicle, especially when the 

natural static displacement of it is non-neutral due to manufacturing imperfections, a trajectory that 

properly guides the controlled vehicle toward the desired final configuration is required. The state of 

the robot is computed with visual feedback from two cameras that observe the workspace from top 

and side view. 

Two different tests were performed, in the first case the activity is carried out considering 9 waypoints 

where the vehicle has to pass through, they are also arranged to provide a final desired orientation for 

the vehicle, the aim of this part of the investigation is to understand the ability of the vehicle to pass 

through waypoints and to understand if a properly designed trajectory can guide the vehicle to reach 

the desired orientation, by the way to generalize the results obtained with this test a proper technique 

to define the reference trajectory is required, as will be shown in the second part of the experimental 

activity. 

In the second test a Bezier based trajectories were used, these technique permits to define smoother 

trajectories, with a higher density of waypoints, this approach will guarantee more robustness of the 

controlled system and will provide more general results.  
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6.6.2 experimental test with waypoints 

 

The aim of this experimental activity was to achieve the final pose described in the following table, 

the trajectory was designed fixing 9 waypoints, in terms of position and orientation. 

 

 

Position Value Orientation Value 

X 0.0103 [m] Roll N/A [°] 

Y -0.0351 [m] Pitch 61 [°] 

Z -0.0088 [m] Yaw 211 [°] 

 

Table 9: target point and desired orientation 

 

Two experimental tests were carried out, starting from two different position and orientation, as 

described in the following table: 

 

Position Value Orientation Value 

X1 0.0185 [m] Roll1 N/A [°] 

Y1 -0.0324 [m] Pitch1 88.7 [°] 

Z1 -0.0043 [m] Yaw1 42.8 [°] 

X2 0.0103 [m] Roll2 N/A [°] 

Y2 -0.0351 [m] Pitch2 61 [°] 

Z2 -0.0088 [m] Yaw2 202 [°] 

 

Table 10: Initial conditions 

 

Fig. 75 shows the experimental results in terms of accuracy in tracking the desired trajectory. In both 

tests the vehicle started from the points indicated by the green triangles, the yellow arrows indicate 

the sense in which the robot moves along the path, the red dots indicate the reference trajectory 

waypoints, and the arrival point is indicated with a red dotted cross. 

 

 

Figure 75: experimental test, performed using few waypoints.  
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Regarding the accuracy in tracking the trajectory’s waypoints, the major misplacement of the vehicle 

was around 1mm. It’s evident the repeatability of the desired trajectory, even starting from different 

initial condition, in fact the trajectory performed by the vehicle during the second test exhibits only 

some small deviations from the first trajectory, while tracking the desired waypoints, this support the 

robustness of the controlled system. 

For what regards the orientation, Fig. 76 illustrates the evolution of the yaw and pitch angles during 

the motion along the reference trajectory, as already stated the goal is represented by reaching the 

desired final orientation as well as the desired position. 

In Figure 76 the blue solid lines represent the results referring to the test 1 while the yellow solid lines 

refer to the test 2, the red solid line represents the final desired values for yaw and pitch angles. Yaw 

angle got close to the desired value, with a discrepancy of about 8 [°], the discrepancy is mostly due 

to error in the measurements, parameters uncertainties for the model provided to the controller and 

imperfections of the vehicle that causes instability in pitch, that also affect yaw angle. 

 

 

Figure 76: Yaw and Pitch angle evolution.  

 

For the pitch angle, the vehicle exhibits in both tests a misalignment of roughly 9 [°], in this case the 

major reason of the tracking error, is related to the imperfections in the manufacturing process, in fact 

a misplacement and or a misalignment of the center of buoyancy with respect to the center of gravity 

and to the longitudinal axis of the vehicle, results into a non-neutral pitched configuration of the 

vehicle while in steady state, as shown by the black dotted line in figure 2, that indicates that the 

preferred pitch angle is about 88 [°], for the considered robot, fluid, and temperature. These added to 

the coupling of the rotational and translational dynamics of the vehicle, and with the natural tendency 

of the robot to sink, cause a trade off in reaching the desired height and the desired orientation in 

terms of pitch angle, this is also shown in the green rectangles in figure 1 and 2, where some small 

height and pitch oscillations are observed, these are also due to pulsing actuations to control the 

vehicle, and to fluctuations in state measurements that generate variations in the jacobians involved 

in the controller algorithm and hence create fluctuations of the provided control actions. These 

findings suggest that an ideally build robot can definitely track position and desired final attitude, 

with only some small errors due to noise in the measurements. 
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Finally, it’s interesting to notice the robustness of the controlled system as well as the repeatability 

of the experiments, these are supported, by the evolution of the yaw and pitch angles during the 

motion, in Fig. 74, the double-headed red arrows indicate how the profiles exhibits a similar behavior 

only translated in time, the translation is caused by the different initial point and hence different 

overall time of acquisition. Beside this shifting the profiles are comparable. 

 

6.6.3 path following of Bezier based trajectory 

 
The experiments are conducted for both the robot types, SSND and SFNU. Four different tests are 

performed (1) linear path, (2-3) planar path in horizontal and vertical plane and (4) three-dimensional 

paths, the 2D and 3D path are designed using the Bezier technique, this provides smooth trajectories 

considering the initial orientation, in which the vehicle is meant to be and the final desired orientation 

that the vehicle should reach. Here the path-following capabilities are evaluated for both robots and 

the experimental results are presented in Fig. 77-78-79-80. 

In the linear Fig. 77 case the SSND shows a final mismatch in the position of 2 mm below the 

reference trajectory accordingly to its sinking nature, with a misalignment of 0.17 [°] for the yaw 

angle and −2.45 [°] for the pitch angle. Similarly, the SFNU robots exhibits a 2.1 mm displacement 

error above the desired trajectory, due to its natural buoyant behavior, for the attitude this exhibits 

5 [°] for the yaw angle and 2 [°] for the pitch angle respectively. 

 

 

 

Figure 77: linear trajectory for SSND and SFNU, and attitude.  

 

In the planar case Fig. 78 the SSND’s position mismatch is 3.7 mm below the reference trajectory, 

with a misalignment of 21 [°] for the yaw angle and −2.26 [°] for the pitch angle. While the SFNU 
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robots shows 2 mm displacement mismatch above the desired trajectory, due to its natural buoyant 

behavior, for the attitude this exhibits 20.3 [°] for the yaw angle and 27.7 [°] for the pitch angle 

respectively. 

 

 

 

Figure 78: Planar trajectory for SSND and SFNU, and attitude. 

 

 

 

In the vertical case Fig. 79the SSND position error is 2.66 mm below the reference trajectory, and a 

misalignment of −4.08 [°] for the yaw angle and 9.37 [°] for the pitch angle. While the SFNU robots 

shows 3 mm displacement mismatch above the desired trajectory, due to its natural buoyant behavior, 

for the attitude this exhibits 0.3 [°] for the yaw angle and 5.22 [°] for the pitch angle respectively. 
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Figure 79: Vertical trajectory for SSND and SFNU, and attitude.  

 

3D case shown in Fig. 80 the SSND position error is 2.73 mm below the reference trajectory, and a 

misalignment of 46.7 [°] for the yaw angle and −5.6 [°] for the pitch angle. While the SFNU robots 

shows 2 mm displacement mismatch above the desired trajectory, due to its natural buoyant behavior, 

for the attitude this exhibits 15.12 [°] for the yaw angle and 13.3 [°] for the pitch angle respectively. 
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Figure 80: 3D trajectory for SSND and SFNU, and attitude.  

 

Finally, in Fig. 81 some snapshots of the video of the activity are presented. 

 

 

 

Figure 81: Experimental activity  

 

The FLOP controller is here used for 5-DoF steering of MRI-powered untethered robots. The 

proposed controller was tested in the with trajectory defined by few waypoints and also with four 

different smooth paths generated with cubic Bezier technique. The considered setup uses a 

commercial MRI gradient coil insert. The proposed controller shows the ability to handle the 

nonlinear and underactuated dynamics, while tracking the smooth paths.  

In the first scenario, the vehicle height varies throughout the trajectory due to the lack of waypoints, 

anyway the controller was able to track this trajectory and reach good performance also in reaching 

the final desired attitude. 
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The second part of the experimental campaign wants to investigate the performance in a more general 

set of cases to understand which the overall performance of the controlled system are, also in this 

case some mismatches are observed, but the technique supports the possibility to successfully control 

the 5 d.o.f motion of the vehicle. 

The errors observed in the attitude of the vehicles are mostly due to manufacturing errors, that caused 

the mismatch between the CoM and the CoV locations.  

In fact, this mismatch leads to discrepancy between the ideal and actual robot dynamic model, 

resulting in a natural tendency to assume a pitch angle,−10 [°]for the SSND robot, and 40 [°] degrees 

for the SFNU robot, when the these are placed stationary within the fluid. 

Moreover, the sinking and floating design of the vehicles are responsible for the position mismatch 

in the vertical plane, since it’s not possible to properly control the height of the vehicle independently 

from its pitch angle, because of the lack of controllability of the robots. 

One chance to improve the controller performance is represented by the introduction of time-

parametrized trajectories, which include velocity waypoints. These trajectories should consider the 

robot dynamics and actuation limitations.  

Moreover, it has to be underlined that an actuation limitation was present, since the feedback rate 

used in this study is 10 Hz, which is a conservative choice, a higher feedback rate would potentially 

increase the controller performance, providing a controlled system capable to perform wilder and 

more challenging maneuvers.  
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Chapter 7 

 
 
Thesis Conclusions 
 
 
7.1 Conclusions 

 

In this Ph.d. Thesis a new sub-optimal, model-based, feedback controller applied to nonlinear 

problems is presented. Classical method such Pontryagin’s and Bellman’s techniques exhibit the main 

drawback represented by an open-loop solution form. To overcome this issue, this work presents the 

FLOP method, a new technique which belongs to the family of VFC-Variational Feedback Control. 

FLOP succeeds to obtain a feedback control law by revisiting the optimality principle of the 

Pontryagin’s method. A local optimality criterion is stated that, instead of optimizing the solution 

over the entire time interval of observation, uses a set of sub-optimal solutions each minimizing the 

objective function over a sub-interval of short time duration. The FLOP results, in general, differ 

from those obtained by the Pontryagin optimal principle.  

The FLOP method is tested for different nonlinear dynamic cases to demonstrate the general strategy, 

also in underactuated cases, like the inverted pendulum and the MRI control of pills sized magnetic 

robots.  

The FLOP method is an innovative approach for nonlinear dynamical system that shows interesting 

performances also allowing the addition, in the cost function, of some highly nonlinear functions with 

local effects on the dynamical system. 

Moreover, the FLOP produces a new feedback control at low computational cost (when compared, 

for example, to MPC- Model Prediction Control) even for complex dynamical systems. The method 

can be applied to a large variety of engineering problems. 

The FLOP technique was applied to the control of an autonomous car through emulated through a 

bike-model, this is part of a research project of the Mechatronic and Vehicle Dynamic Lab of 

Sapienza, aimed to realize an autonomous vehicle, starting from a production series city car.  

Since the FLOP formulation provides the chance to add nonlinear penalty function in the cost 

function, so that different and simultaneous tasks can be achieved by the controlled system. In the 

case of the presented bike-model dynamical system, gaussian-like penalty functions are introduced 

to perform the obstacle avoidance and the carriage maintenance.  

One of the main tasks for autonomous vehicle is the steering capabilities, therefore track performance 

optimization, and highspeed cornering capabilities were investigated and compared with classical 

LQR strategy. Comparison results are very promising, since the FLOP approach shows better 

performance respect to the LQR for all the tested velocities. In fact, for each given turning radius, the 

FLOP reaches higher velocities than the LQR approach. In the dynamical system, a list of emulated 

sensors was introduced, so that the FLOP driven vehicle is tested under different environmental 

conditions.  

Then the collision avoidance performance was investigated, and the FLOP control proves to be 

successful when avoiding three different kind of collision with uncontrolled vehicles: (i) frontal 

collision, (ii) rear-end collision, and (iii) cross collision.  

The control performance was also investigated in the case of a marine autonomous rescue vehicle, 

this vehicle is the result of a joint research industrial projects, given the complexity of the autonomous 

and rescue actions that it has to perform, a robust control ins needed, therefore the use of the FLOP 

represents a good chance to take into the account different tasks thanks to the ability to deal with 

different penalty functions and nonlinear dynamics. 
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One of the most challenging tests for the FLOP control is represented by the rocket vertical landing, 

in fact this controlled system, exhibits numerous and strong nonlinear dynamics, such as, 

aerodynamic actions, CoM motion within the rocket structure, forces generated by the actuators. The 

algorithm provided good performances in all the parts of flights and in the final landing, there results 

are also investigated in the presence of wind disturbance and confirmed the good capabilities of the 

proposed control technique. 

Finally, the last test case presented in this thesis, is devoted to investigating the performance of the 

FLOP, when applied to 5-DoF steering of MRI-powered untethered robots. This research project is 

developed by The Max Planck Institute for Intelligent Systems (Stuttgart), and has the aim to create 

a micro magnetic untethered robot for medical applications.   

The proposed controller guided the vehicle along various trajectories defined using the Bezier cubic 

lines, these are meant to bring the vehicle from the initial position and attitude to the final target 

position with the desired attitude. 

The FLOP exhibited good performance in controlling two different types of robots, with 

misplacements and misalignment that are mostly caused by manufacturing errors. 
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Appendix A 

 

A.1 MRI Magnetic action 

The MRI device generates a uniform magnetic field 𝑩0 that aligns the magnet placed in the vehicle 

body. The action of the field acts on both sides of the magnet, i.e. N and S, generating a couple of 

forces, that lie on the same line of application, but with opposite sense. These generates a system 

where, the balances of the total forces acting in the horizontal and vertical directions, are zero, but 

the system results to be unbalanced in terms of rotation. In fact the system rotates until the field of 

the magnet is aligned to 𝑩0. Once the magnet is aligned, the total NET force, acting on the vehicle, 

due to the UNIFORM field 𝑩0, is zero, as well as the total torque since the opposite forces, acting on 

the two poles N/S of the magnet are now aligned, hence the lever arm 𝒃 is zero. In this condition the 

only way to generate forces applied on the magnet, is introduce variation in space of the magnitude 

of the acting field, hence the field won’t be UNIFORM anymore. This is performed, through the use 

of external coils that introduce local variation of the magnetic field, i.e. magnetic field gradients in 

space. 

 

A.2 Magnetism 

A charged object produces an electric field E which perturbates the space. In a similar manner, a bar 

magnet is a source of a magnetic field B. This can be demonstrated by moving a compass near the 

magnet. The compass needle will line up along the direction of the magnetic field produced by the 

magnet, as depicted in Fig. 82  

 

Figure 82: Magnetic field produced by a bar magnet 

The bar magnet consists of two poles, which are designated as the north (N) and the south (S). 

Magnetic fields are strongest at the poles. The magnetic field lines leave from the north pole and 

enters the south pole. When holding two bar magnets close to each other, the like poles will repel 

each other while the opposite poles attract Fig. 83. 
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Figure 83: Magnets attracting and repelling 

Unlike electric charges which can be isolated, the two magnetic poles always come in a pair. When 

you break the bar magnet, two new bar magnets are obtained, each with a north pole and a south pole. 

In other words, magnetic “monopoles” do not exist in isolation, although they are of theoretical 

interest. How it is defined the magnetic field B? In the case of an electric field E, it has already been 

shown that the field is defined as the force per unit charge:  

𝑬 =
𝑭𝒆

𝑞
       (153)  

However, due to the absence of magnetic monopoles, B must be defined in a different way.  

 

A.3 The Definition of a Magnetic Field  

To define the magnetic field at a point, consider a particle of charge q and moving at a velocity v. 

Experimental activity provided the following observations:  

1. The magnitude of the magnetic force FB exerted on the charged particle is proportional to both 

v and q.  

2. The magnitude and direction of FB depends on v and B.  

3. The magnetic force FB vanishes when v is parallel to B. However, when v makes an angle θ 

with B, the direction of FB is perpendicular to the plane formed by v and B, and the magnitude 

of F
 
is proportional to sinθ.  

4. When the sign of the charge of the particle is switched from positive to negative (or vice 

versa), the direction of the magnetic force also reverses.  

 

Figure 84: The direction of the magnetic force 

The above observations can be summarized with the following equation:  
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𝑭𝐵 
= 𝑞𝒗 × 𝑩      (154) 

The above expression can be taken as the working definition of the magnetic field at a point in space. 

The magnitude of FB is given by: 

𝐹𝐵 = |𝑞|𝑣𝐵𝑠𝑖𝑛𝜃     (155)  

The SI unit of magnetic field is the tesla (T):  

1 𝑡𝑒𝑠𝑙𝑎 = 1𝑇 = 1
𝑁𝑒𝑤𝑡𝑜𝑛

(𝐶𝑜𝑢𝑙𝑜𝑚𝑏)(𝑚𝑒𝑡𝑒𝑟/𝑠𝑒𝑐𝑜𝑛𝑑)
  

= 1
𝑁

𝐶𝑚/𝑠
= 1

𝑁

𝐴𝑚
  

Another commonly used non-SI unit for B is the gauss (G), where 1T =104 G. Note that FB is always 

perpendicular to v and B and cannot change the particle’s speed v (and thus the kinetic energy). In 

other words, magnetic force cannot speed up or slow down a charged particle. Consequently, FB can 

do no work on the particle:  

𝑑𝑊 = 𝑭𝐵 ⋅ 𝑑𝒔 = 𝑞(𝒗 × 𝑩) ⋅ 𝒗𝑑𝑡 = 𝑞(𝒗 × 𝒗) ⋅ 𝑩𝑑𝑡 = 0         (156)  

The direction of v, however, can be altered by the magnetic force.  

 

A.4 Magnetic force on a dipole  

As previously shown above, the force experienced by a current-carrying rectangular loop (i.e., a 

magnetic dipole) placed in a uniform magnetic field is zero. What happens if the magnetic field is 

non-uniform? In this case, there will be a net force acting on the dipole. Consider the situation where 

a small dipole μ is placed along the symmetric axis of a bar magnet, as shown in Fig. 83.  

 

 

Figure 85: A magnetic dipole near a bar magnet. 

The dipole experiences an attractive force by the bar magnet whose magnetic field is non-uniform in 

space. Thus, an external force must be applied to move the dipole to the right. The amount of force F 

exerted by an external agent to move the dipole by a distance ∆x is given by 
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𝐹𝑒𝑥𝑡∆𝑥 = 𝑊 = ∆𝑈 = −𝜇𝐵(𝑥 + ∆𝑥) + 𝜇𝐵(𝑥) = −𝜇[𝐵(𝑥 + ∆𝑥) − 𝐵(𝑥)] (157)  

 

For small ∆x, the external force may be obtained as 

𝐹𝑒𝑥𝑡 = −𝜇
[𝐵(𝑥+∆𝑥)−𝐵(𝑥)]

∆𝑥
= −𝜇

𝑑𝐵

𝑑𝑥
    (158) 

which is a positive quantity since dB/dx<0, i.e., the magnetic field decreases with increasing x. This 

is precisely the force needed to overcome the attractive force due to the bar magnet. Thus 

𝐹𝐵 = 𝜇
𝑑𝐵

𝑑𝑥
=

𝑑

𝑑𝑥
(𝝁 ∙ 𝑩)    (159)  

More generally, the magnetic force experienced by a dipole μ placed in a non-uniform magnetic field 

B
 
can be written as  

𝑭𝐵 = 𝛻(𝝁 ⋅ 𝑩)     (160)  

where  

𝛻 =
𝜕

𝜕𝑥
𝒊 +

𝜕

𝜕𝑦
𝒋 +

𝜕

𝜕𝑧
𝒌     (161)  

is the gradient operator. 
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