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Signature of the Leggett mode in the A1g Raman response:
From MgB2 to iron-based superconductors
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The Raman response in a superconductor is a powerful probe to investigate the symmetry of the superconducting
gap. Here we show that in a multiband superconductor it also offers the unique opportunity to establish whether
the driving pairing interaction has an intraband or interband character. In the model with one hole and one
electron band the full gauge-invariant Raman response, obtained by accounting for the fluctuations of both the
density and superconducting phase degrees of freedom, is always dominated by the Leggett mode, regardless its
nature. However, while in the case of intraband-dominated pairing the Josephson-like phase fluctuations of the
two condensates identify a well-defined peak, as observed in MgB2, for dominant interband pairing the Leggett
resonance is pushed at twice the largest gap, resembling apparently a pair-breaking peak. The latter case is in
very good agreement with experimental data in iron-based superconductors, suggesting that an interband pairing
mechanism should be at play in these systems. These results have also interesting implications for the nonlinear
optical response probed by means of intense THz fields.
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I. INTRODUCTION

The inelastic scattering of light represents one of the
most powerful spectroscopic probes for the investigation of
the superconducting (SC) state of a system. In a Raman
experiment the net effect of the photon-in/photon-out process
can be modeled as a perturbation that couples to the electron
density at long wavelength [1,2]. More specifically, the
particle-hole excitations are modulated in the momentum
space by a form factor γk dictated by the polarization of the
incoming/outgoing light and by the symmetry of the band
structure, with γk roughly scaling as the inverse effective mass
1/m∗ of the carriers. In the SC state BCS theory predicts
that the Raman charge response displays a threshold and
a square-root singularity at twice the gap � edge, simply
reflecting the two-particle density of states [1,2]. This result,
along with the polarization dependence of the γk prefactor,
allows one to probe the SC gap at different momenta [3],
giving crucial information on the symmetry of the underlying
SC state. For this reason, Raman has been proven to be crucial
for the spectroscopic investigation of both conventional and
unconventional superconductors [2–5].

While standard BCS theory only predicts the existence of
a quasiparticle pair-breaking peak, several other collective
modes can appear in principle in the Raman response.
Physically, they arise because the two particles created when
a Cooper pair breaks apart continue to interact before then
recombining together. In the usual diagrammatic language for
the computation of the Raman response function this can be
accounted for by including random-phase-approximation-like
(RPA-like) and vertex-correction-like diagrams due to all
the possible intermediate processes coupled to the Raman
density fluctuations [1,2,5]. Since also this coupling is dictated
by symmetry arguments, Raman scattering becomes also a
selective probe of collective fluctuations. A typical example
is provided, e.g., by the so-called screening of the Raman
response in the symmetric A1g channel, where γk is more or
less a constant. In this case the Raman scattering probes the
fluctuations of the electron density, and the Raman response

function coincides with the charge susceptibility at long
wavelength and finite frequency, which is expected to vanish
since it controls the response to a uniform potential. This
requirement is violated by the BCS Raman response, but it
can be restored by adding [1,2] the contribution of the charge
fluctuations, mediated by Coulomb interactions. Even though
this effect is often referred to as “Coulomb screening” the
presence of long-range interactions is not necessary to obtain
it. Indeed, the vanishing of the dynamic charge response is
in general a requirement of charge conservation and gauge
invariance [4]. As is well known [6], the BCS approximation
violates gauge invariance since it lacks the contribution of all
the SC collective modes, which include the fluctuations not
only of the charge, but also of the SC phase, which is its
conjugate variable [7–9].

For a multiband superconductor with bands having opposite
hole/electron character the phenomenology can be even richer.
Considering for example a two-band case, the form factor γ i

k
will turn out to be positive/negative on the electron/hole bands,
so that labeling the respective densities as ρ1 and ρ2 the Raman
response in the A1g channel can access the relative density
fluctuations ρ1 − ρ2 instead of the total ones ρ1 + ρ2. The
consequences of this effect have been discussed so far in the
context of both the MgB2 superconductor [10,11] and iron-
based superconductors (FeSC) [5,12–14]. In the former case it
has been argued that the A1g Raman response, proportional to
the relative ρ1 − ρ2 density fluctuations between the (electron-
like) π bands and (hole-like) σ bands [15], couples to the
relative fluctuations θ1 − θ2 of the SC phases in the two
bands. As originally discussed by Leggett [16], this phase
mode describes the Josephson-like oscillations between the
phases of the two SC condensates. By using parameter values
appropriate for MgB2 the Leggett mode is expected [11,17] to
lie at energies between the two gaps �1 < �2, in agreement
with experimental measurements in the A1g channel [10].

Also in the case of FeSC the band structure is made by
hole-like pockets and electron-like ones, located at the � and
X/Y points of the 1Fe Brillouin zone, respectively [18,19].
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However, in the context of FeSC the role of the Leggett-like
mode for the Raman response has been neglected so far, and
the main focus has been put instead on the effect of the sign
change of the γ i

k factors for the screening in the A1g channel.
Indeed, by coupling the Raman response only to the density
fluctuations the authors of Refs. [12–14] concluded that the
usual screening of the symmetric channel is not operative in
FeSC. This result has been used to understand the experiments
in FeSC [20–23], which reported a pair-breaking-like peak in
the A1g channel, with an overall intensity as large as in the
other nonsymmetric channels, confirming apparently the lack
of screening in FeSC.

Even though specific features of the band structure of
different materials can be quantitatively relevant, the previous
theoretical and experimental results seem to be in contradiction
with each other. Indeed, starting from the same general model
of a two-band superconductor with one hole and one electron
band, in one case (MgB2) the A1g response is claimed to
measure only the Leggett mode; in the other case (FeSC)
it is claimed to measure only the unscreened quasiparticle
response, leading to the usual pair-breaking peak.

In the present paper we show that this apparent contra-
diction arises when charge and phase fluctuations are not
treated on the same footing. While this does not appear
to explicitly violate the total charge conservation, in the
multiband case it does not describe properly the relative
charge fluctuations between the two bands. By computing
the Raman response within a full gauge-invariant effective-
action formalism we show that the A1g Raman response
of a multiband superconductor with bands having opposite
character is always dominated by relative phase fluctuations
θL = θ1 − θ2 of the SC phases of the two order parameters.
However, the resulting Raman susceptibility is drastically
different depending on the nature of the pairing interaction.
Indeed, while in the case of intraband-dominated pairing, as
appropriate for MgB2 [15], θL identifies a true collective mode,
in the sense that it lies below the largest of the two gaps, when
the pairing has dominant interband character θL identifies a
resonance that occurs around twice the largest of the two
gaps, with a typical profile that can be accidentally similar
to a standard pair-breaking peak. Besides solving the paradox
of existing theoretical results, the comparison between our
findings and available experimental data in FeSC provides us
with indirect evidence of a dominant interband pairing glue
in these systems, whose most plausible candidates [18,19] are
spin fluctuations, which naturally connect hole and electron
pockets in FeSC. This result is particularly interesting for those
families of FeSC, such as LiFeAs and FeSe, where the role of
spin fluctuations on the pairing mechanism is still under debate
[18,19,24–27]. From a more general perspective, our findings
show that Raman scattering in multiband superconductors is
a fundamental probe not only of the SC gap modulation in
momentum space but also of the SC pairing mechanism itself.
Finally, we also discuss the relevance of the Leggett mode in
these two classes of materials for the nonlinear optical response
[28] that has been shown to be experimentally accessible
thanks to the use of intense multicycle THz pulses [29].

The structure of the paper is the following. In Sec. II we pro-
vide the derivation of the Raman response in the single-band
case, to clarify the role of phase and density fluctuations. In

Sec. III we derive the general form of the Raman response in a
two-band superconductor, and comment on the simplified case
of two equal bands with opposite (hole/electron) character.
In Sec. IV we show the evolution of the Raman response
in the general two-band case from interband-dominated to
intraband-dominated pairing. The implications of our results,
along with applications to nonlinear optical spectroscopy, are
discussed in Sec. V. The concluding remarks are reported in
Sec. VI. Finally, Appendixes A and B contain the technical
details needed for the derivation of the Raman response in the
single and two-band case, respectively.

II. SCREENING AND GAUGE INVARIANCE
IN THE SINGLE-BAND CASE

To clarify the role of charge and SC phase fluctuations
for the screening of the A1g Raman response we first outline
the derivation of the Raman response for a single-band
superconductor by means of the effective-action formal-
ism. By introducing the Raman density operator 	R(q) ≡∑

kσ γkc
†
k−q/2,σ ck+q/2,σ , where γk is the Raman vertex, the

Raman response is SR = − 1
π

[1 + n(ω)]χ ′′
RR(q = 0,ω), where

n(ω) is the Bose-Einstein distribution and χRR(q) [with q =
(iωn,q)] is the Raman susceptibility after analytical continua-
tion iωn → ω + iδ. To derive χRR we will take advantage of
the effective-action formalism, as detailed in Appendix A. We
start from a microscopic fermionic model including the pairing
U and the Coulomb interaction V (q), plus an external source
field ρR that is coupled to the fermionic Raman operator. As
usual, one can decouple the interacting terms by means of the
Hubbard-Stratonvich bosonic fields representing the collective
fermionic degrees of freedom [7–9,30]. After integrating out
the fermions one is then left with an action expressed in terms
of the relevant bosonic variables, i.e., the SC amplitude, the
SC phase θ , the electron density ρ, and the Raman field ρR .
The amplitude sector is as usual [31,32] decoupled from the
density/phase sector so one can write the effective action in
the long-wavelength limit as

SFL = 1

2

∑
q

{
|ρR(q)|2χ0

RR(q) + 2iρR(−q)χRρ(−q)

× [ρ(q) + iωnθ (q)/2] +
(

1

Vq
− χρρ(q)

)
|ρ(q)|2

+ 1

4

(−χρρω
2
n + Dsq2

)|θ (q)|2

−χρρ(q)ρ(−q)iωnθ (q)

}
, (1)

where Ds denotes the superfluid stiffness, and we introduced
the (bare) Raman-Raman (χ0

RR), the Raman-density (χRρ),
and the density-density (χρρ) correlation functions, given at
q = 0 by

χ0
RR(iωn) = −

∑
k

γ 2
k Fk(iωn), (2)

χRρ(iωn) = −
∑

k

γkFk(iωn), (3)

χρρ(iωn) = −
∑

k

Fk(iωn), (4)
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where

Fk(iωn) = 4�2 tanh(Ek/2T )

Ek
[
4E2

k − (iωn)2
] , (5)

and Ek =
√

ξ 2
k + �2, � being the SC gap. Finally, the full

Raman susceptibility χRR can be computed from Eq. (1) by
the functional derivative with respect to the ρR field, i.e.,

χRR(q) =
[

δ2SFL

δρR(−q)δρR(q)

]
ρR=0

. (6)

As one immediately sees from Eq. (3) for a nonsymmetric
Raman channel, such that

∑
k γk = 0, the coupling χRρ to

the density and phase fluctuations vanishes, and the Raman
response coincides with the bare one, Eq. (2). On the other
hand, in the A1g channel χRρ �= 0 and one must add the effect of
charge/density modes, described by the third and fourth lines of
Eq. (1) [7–9,32]. In particular, the phase mode has a sound-like
dispersion, which is converted into a plasmon-like mode when
the density fluctuations are integrated out. Notice that while in
the usual diagrammatic language the density mode is included
via RPA-like corrections and the phase mode via vertex-like
corrections [1,2], in the effective-action formalism they are
both included by Gaussian integration of ρ,θ in Eq. (1). More-
over, they explicitly appear coupled to the Raman response by
the same mixed susceptibility χRρ , showing that they must be
always treated on the same footing. The final result for the Ra-
man response function can be derived in a straightforward way
in the limit q = 0. Indeed, in this case Eq. (1) can be recast as

SFL = 1

2

∑
q

{
|ρR|2χ0

RR + 2iρRχRρ[ρ + iωnθ/2]

+ 1

Vq
|ρ|2 − χρρ |ρ + iωnθ/2|2

}
, (7)

making explicit the dependence only on the gauge-invariant
combination ρ + iωnθ/2. Since 1/Vq → 0 as q → 0 one can
then shift ρ + iωnθ/2 → ρ so that only the coupling of the
Raman density to the density fluctuations appears explicitly.
Then the integration of ρ is straightforward and leads to the
well-known result [2–4]

χRR = χ0
RR − χ2

Rρ

χρρ

. (8)

For almost parabolic bands, where γk � 1/m, one sees from
Eqs. (2) and (3) that both χ0

RR and χRρ are proportional to χρρ .
In this condition Eq. (8) guarantees that χRR = 0, as expected
since the Raman response becomes proportional to the dy-
namical charge susceptibility, which must vanish at long wave-
length. It is worth stressing that the vanishing of the dynamical
charge susceptibility at q = 0 is not a consequence itself of the
presence of Coulomb interactions, but it is generally expected
as a consequence of charge conservation [4]. Indeed, the charge
susceptibility controls the charge redistribution in the presence
of an external potential. Due to charge conservation, changing
the charge density in one place can only be done by redistribut-
ing it, but this cannot be achieved with a uniform potential. On
more general ground, the violation of this requirement for the
BCS response function χρρ in Eq. (4) can be ascribed to the fact

that in general the BCS approximation is not gauge invariant
[6], due to the fact that it accounts for the modification of the
quasiparticle response in the SC state, but it does not include
the effects of the SC collective modes. Only adding the con-
tribution of the phase and density degrees of freedom one can
restore the gauge invariance of the charge susceptibility, and
in general of all the electromagnetic response functions [7–9].

According to the above discussion, the result (8) must be
independent of the presence of long-range Coulomb forces,
and it must hold also when the interaction in the charge sector
is short-ranged. This can be understood again from Eq. (1)
by replacing 1/Vq with a generic short-range interaction 1/V

(with V ≷ 0 for repulsive/attractive interaction). In this case
the |ρ|2 term in Eq. (7) is finite, and one must integrate out both
the density and the phase field. Indeed, after integrating out
only ρ one obtains (see Appendix A) for the Raman response
χ̃RR the result

χ̃RR = χ0
RR − χ2

Rρ

χρρ − 1/V
, (9)

being finite also when γk = constant. On the other hand, by
adding also the contribution of phase modes one immediately
finds back the gauge-invariant result (8). This example
clarifies that in the computation of the Raman response
in the symmetric A1g channel the coupling to density and
phase fluctuations must be treated on the same footing. In
this respect, the approach used in the present work, based
on the construction of the effective action including all the
collective fluctuations coupled to the Raman response, is
completely equivalent to the diagrammatic derivation of the
vertex corrections discussed, e.g., in Refs. [1,2], but with
one additional advantage. Indeed, it allows one to recognize
immediately that the vertex corrections in the particle-particle
channel account for the fluctuations of the SC phase. Since the
phase is conjugate to the density, their effect must be always
included along with RPA-like corrections in the particle-hole
channel, which account for density fluctuations. While for
the single-band case the presence of long-range Coulomb
forces allows one to gauge away the phase mode [4], making
apparently its presence irrelevant, for a multiband system
additional care should be used, since several phase modes
appear. As we shall see in the next section, this crucial fact
explains the difference between the results discussed so far
in the literature within the context of MgB2 [10,11] or FeSC
[12–14] for a multiband model with hole and electron pockets.

III. RAMAN RESPONSE IN THE TWO-BAND MODEL

The procedure discussed in the previous section can be
easily extended to a generic SC two-band model, as detailed
in the Appendix B. The microscopic starting point is the
Hamiltonian

H =
∑
k,σ,i

ξ i
kc

i,†
k,σ ci

k,σ + HP + HC, (10)

HP = −
∑
i,j,q

Uij	
i,†
� (q)	j

�(q), (11)

HC =
∑

q

V (q)	†
ρ(q)	ρ(q), (12)
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where i,j are the band indexes, 	i
�(q) = ∑

k ci
−k+q/2,↓

ci
k+q/2,↑ and 	ρ(q) = ∑

k,i,σ c
i,†
k−q/2,σ ci

k+q/2,σ are the pairing
and density operators, respectively, V (q) is the Coulomb
potential, and Û ≡ Uij is the matrix of the SC couplings.
Notice that the interaction (11) always assumes pairing of
carriers within the same band, with opposite momenta at
q = 0. In addition, the pairing mechanism is intraband dom-
inated when detÛ = U11U22 − U 2

12 > 0, while it is interband
dominated when detÛ < 0. The derivation of the Raman
response follows the same strategy outlined for the single-band
case. In particular by adding to the Hamiltonian (10) a
source field ρR coupled to the total Raman density operator
	R(q) = ∑

i,kσ γ i
kc

i,†
k−q/2,σ ci

k+q/2,σ one can derive the effective
action in terms of all the relevant collective modes coupled
to the Raman density, equivalent to Eq. (1) above. As has
been discussed in Ref. [33], some special care has to be
used to implement the Hubbard-Stratonovich transformation
in the case of interband-dominated pairing, i.e., detÛ < 0.
The technical details of the derivation are given in Appendix
B, while we limit here the discussion to the main results and
their physical implications.

For the multiband case the various susceptibilities (2)–(4)
depend now on the band index i via both the Raman vertexes γ i

k
and the functions F i

k, computed on each band with dispersion
ξ i

k and SC gap �i . As shown in Eq. (B7) of Appendix B, the
Raman density ρR is coupled both to the electron density and
to the SC phase fluctuations in each band. By retaining only
the coupling to the density fluctuations and integrating them
out one recovers again the equivalent of the result (8), which
now reads

χD
RR =

∑
i

χ0
RiRi

−
(∑

i χRiρi

)2∑
i χρiρi

. (13)

This result, and its extension to more bands, has been used so
far to interpret the experimental data in pnictides [12–14,22].
To get a deeper insight into the behavior of the expression (13)
let us first focus on the simplified case of one hole and
one electron band, with parabolic energy dispersions, an
approximation that can be good for FeSC. In the symmetric
A1g channel the Raman vertex depends only on the electronic
dispersion, so one has γ i

k = 1/mi ≡ γi , with γ1 < 0 (hole
band) and γ2 > 0 (electron band). Even though the real band
structure of FeSC has more than two bands, here we just model
the main effect of having hole pockets at �, and electron
pockets at X/Y (or at M in the 2Fe unit cell notation).
Equation (13) can then be written [14] as

χD
RR = −(γ1 − γ2)2 N1F1N2F2

N1F1 + N2F2
, (14)

where Ni is the density of states (DOS) in each band and Fi is
the function obtained by integration over momenta in Eq. (4),
i.e.,

Fi(iωn) = 4�2
i

∫ ωD

−ωD

dξ
tanh[Ei(ξ )/2T ]

Ei(ξ )[4Ei(ξ )2 − (iωn)2]
, (15)
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FIG. 1. (a) Real part and (b) imaginary part of the function F (ω)
of Eq. (15) computed with δ → 0 (red thin lines) and δ = 0.01�0

(blue thick lines). According to Eq. (2) the ImF (ω) is proportional to
the unscreened (bare) Raman response for a single-band supercon-
ductor. Its square-root divergence at ω = 2� signals the proliferation
of the Cooper pairs broken apart by the electromagnetic field. (c)
Typical A1g spectrum for FeSC, as taken from Ref. [22]. The strong
enhancement of the signal at ω � 150 cm−1 resembles the behavior
of the unscreened Raman response, as would be predicted by Eq. (18).

where Ei(ξ ) =
√

ξ 2 + �2
i and ωD is a typical cutoff for the

SC interactions. In the limit where ωD 
 �i Eq. (15) admits
an analytical expression at T = 0:

ReFi(ω) = 2�(2�i − ω)

xn

√
1 − x2

i

arctan
xi√

1 − x2
i

−�(ω − 2�i)

xn

√
x2

i − 1
ln

xi +
√

x2
i − 1

xi −
√

x2
i − 1

, (16)

ImFi(ω) = �(ω − 2�i)π

xi

√
x2

i − 1
, xi = ω

2�i

. (17)

The real and imaginary parts of the function Fi(ω) are shown
in Fig. 1. According to Eq. (2), the bare Raman response
is proportional to ImF (ω). Its square-root divergence at
ω = 2�i signals the proliferation of Cooper pairs above this
threshold. The behavior of the expression (14) is similar. In
particular, when the two bands are equal γ1 = −γ2 = γ and
the two gaps coincide �1 = �2 = � one immediately sees
that Eq. (14) reduces to the unscreened single-band Raman
response [12,14],

χD
RR = −2γ 2NF, (18)

as is evident also from Eq. (13) due to the complete cancellation
in this case of the term

∑
i χRiρi

= 0 responsible for the
screening. According to Eq. (18) the Raman response should
appear as the single-band unscreened case, see Fig. 1(b), in
apparent agreement with the experiments in FeSC [20–23];
see, e.g., the data reported in Fig. 1(c). Indeed, several
experiments have shown so far that in FeSC the Raman
response in the A1g channel is as large as in the other
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nonsymmetric channels, with a shape that resembles the usual
pair-breaking peak at the largest gap.

Despite its apparent agreement with experimental data in
FeSC, the result (13) turns out to be in general incorrect.
As we explained above, in the single-band case the coupling
to the phase and density modes appears only via the gauge-
invariant combination ρ + iωnθ . However, in the multiband
case two different phase/density modes appear [16,17], the

Goldstone mode θG = θ1 + θ2 and the Leggett one θL=θ1−θ2.
Analogously to the the single-band case the Goldstone mode
can be gauged away, and its contribution is already included
in the result (13) obtained by integrating out the total density;
see Appendix B. However, the coupling to the Leggett mode
cannot be gauged away and its contribution must be added to
Eq. (13). When this is correctly taken into account one finds
that the final result is written in general as

χRR = (
χ0

R1R1
+ χ0

R2R2

) − (iωn)2
(
χρ1ρ1χ

2
ρ2R2

+ χρ2ρ2χ
2
ρ1R1

) + κ
(
χρ1R1 + χρ2R2

)2

(iωn)2χρ1ρ1χρ2ρ2 + κ
(
χρ1ρ1 + χρ2ρ2

) , (19)

where

κ = 8�1�2U12

U11U22 − U 2
12

(20)

is a positive or negative constant depending on the nature of the
pairing. The quantity on the numerator, �1�2U12, is always
positive irrespective of the sign of U12. Indeed, for interband
attraction (U12 > 0) the gaps have the same sign, while for in-
terband repulsion (U12 < 0) the gaps must have opposite sign.
On the other hand the quantity on the denominator, i.e., detÛ =
U11U22 − U 2

12, depends on the nature of the pairing, being posi-
tive for intraband-dominated pairing, where detÛ > 0 and κ >

0, and negative in the opposite case of interband-dominated
pairing, where detÛ < 0 and κ < 0. Once more, in the case of
parabolic bands the expression (19) simplifies leading to

χRR = (γ1 − γ2)2 κ

(iωn)2 − FL(iωn)
, (21)

where we introduced the function FL

FL(iωn) = κ
(N1F1 + N2F2)

N1F1N2F2
. (22)

Equation (21) has been derived by means of a standard
diagrammatic implementation of vertex corrections in
Refs. [10,11], and it has been used to interpret the experiments
in MgB2. Its physical interpretation is straightforward: while
for equal bands having same character γ = 1 = γ2 the A1g

Raman response vanishes because of charge conservation,
when the two bands have opposite character, i.e., γ1 = −γ2,
the Raman density scales as the relative density fluctuations
ρ1 − ρ2. As such, it couples to the relative phase Leggett
mode θL = θ1 − θ2, whose energy ωL is identified [16,17] by
the vanishing of the denominator of Eq. (21):

ω2
L − FL(ωL) = 0. (23)

When the interband coupling U12 is small the solution of
Eq. (23) can be found by taking the limit FL(ω → 0). Since
Fi(0) � 2, see Eq. (15), one sees that the energy ω2

L of the
Leggett mode is

ω2
L = FL(0) � κ

N1 + N2

2N1N2
= 4�1�2U12

detÛ

N1 + N2

N1N2
, (24)

in agreement with the result found by Leggett [16] for
intraband-dominated pairing. For larger interband coupling
ωL is found numerically from Eq. (23), but it always lies

below the largest gap (see next section), giving rise to a sharp
resonance in the A1g channel.

For a system with interband-dominated pairing, κ < 0, so
that the expression (24) does not admit a solution, intended
as a sharp resonance below the quasiparticle threshold. Even
though this condition rules out the existence of a true Leggett
mode [33,34], nonetheless it does not rule out the unavoidable
coupling of the Raman response to relative phase fluctuations
θL = θ1 − θ2. As a consequence, the correct expression,
Eqs. (19) and (21), for the Raman response in the A1g

channel must be used irrespectively of the intra/interband
nature of the pairing. The crossover from intraband-dominated
to interband-dominated regime for the Raman response can be
simply understood resorting to the simplified case of two bands
with equal gap and opposite character, γ1 = −γ2 = γ . In this
case Eq. (21) reduces to

χRR(ω) = 4κγ 2

(ω + iδ)2 − 2κ/[NF (ω)]

= −2κγ 2NF (ω)

1 − NF (ω)(ω + iδ)2/2κ
, (25)

which has to be contrasted to the result (18). From Eq. (16)
one immediately sees that ReF (ω) diverges as ω → (2�)−,
where it also changes sign from positive to negative. In this
situation the denominator of Eq. (25) vanishes at ω < 2�

when κ > 0. Since in this regime ImF = 0, see Eq. (17), the
resulting mode is sharp since it is undamped by quasiparticles;
see Fig. 2. On the other hand when κ < 0 the real part of the
denominator of Eq. (25) can only vanish at ω > 2�, where
ReF becomes negative. However, since at ω > 2� also ImF

starts to develop this resonance is always strongly overdamped,
and χ ′′

RR from Eq. (25) is dominated by the imaginary part of
the numerator. This is the reason why the A1g channel displays
a resonance right above the gap that can be qualitatively similar
to the unscreened result obtained with the wrong expression
(18), especially when a small residual damping is taken into
account; see Fig. 2. More importantly, as shown in Fig. 2 this
result is in good agreement with experimental data in FeSC,
even within the simplified case of two equal bands. As we
shall see in the next section, by considering a more general
multiband model with different DOS and gap values in the
two bands the qualitative differences between the two results
(21) and (14) become more evident.
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FIG. 2. Raman response for the case of two bands having the
same density of states and the same SC gap, but opposite character,
γ1 = −γ2 = γ . The solid line is the full gauge-invariant result (25) for
intraband (κ > 0, red line) and interband (κ < 0, blue line) dominated
pairing. The dashed line represents result (18), obtained by including
only the contribution of density fluctuations. Here a residual damping
δ = 0.01� has been used in the analytical continuation of Eq. (15),
that smears out the divergence of the function F (ω) at ω = 2�.
The symbols represent the experimental data of Fig. 1, taken from
Ref. [22]. As one can see, they are consistent with Eq. (25) in the case
of dominant interband pairing.

IV. LEGGETT RESONANCE FROM INTERBAND
TO INTRABAND PAIRING

To analyze the general evolution of the Leggett-mode
resonance from intraband-dominated to interband-dominated
coupling we study the case of two parabolic bands with
opposite character, where the expression (21) holds. In the limit
where only U12 �= 0, i.e., when pairing is provided uniquely by
interband interactions, one can easily sees that the gaps must
satisfy �1/�2 = sgn(U12)N2/N1 at T = 0 [35]. To mimic
the case of FeSC, where an interband repulsion is expected,
we then take U12 < 0. By fixing the value of N1/N2 we can
then vary the SC coupling Uij from detÛ > 0 to detÛ < 0,
by retaining the same values of �1 > �2. If we define the
dimensionless quantity

η = |U12| − √
U11U22

|U12| + √
U11U22

, (26)

one immediately sees that η goes from −1 to +1 as the
interband coupling increases, so that η = −1 is the case where
U12 = 0 while η = 1 is the case where U11 = U22 = 0.

The full Raman response obtained from the expression (21)
is shown in Fig. 3. As one can see, in agreement with the
simplified case of two equal bands, in the range η < 0 the

FIG. 3. Top panels: Color plot of the Raman response in the A1g channel according to Eq. (21) as a function of the interband-coupling
constant, defined by the dimensionless quantity (26). Here η = −1 is the intraband-only case, while η = 1 is the interband-only case. The
dashed lines indicate the (absolute) values of twice the gaps. The green line denotes the analytical expression (24) for the value of the Leggett
mode in the weak-coupling regime. Bottom panels: Cuts of the frequency-dependent Raman response for selected values of the couplings. As
soon as one enters the interband-dominated regime the Leggett resonance appears as a broad feature peaked slightly above 2�1, that resembles
the usual pair-breaking peak of the unscreened, single-band Raman response.
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Leggett mode, given by the solution of Eq. (23), identifies a
sharp resonance below the largest gap, whose spectral weight
is maximum as ωL approaches the smallest gap. For very
weak interband coupling ωL → 0 so it follows the analytical
expression (24); see solid line in Fig. 3. On the other hand
for larger interband coupling one cannot neglect the frequency
dependence (22) of the FL(ω) function appearing in Eq. (23),
reflecting the breaking of Cooper pairs at ω > 2�2, so that ωL

deviates considerably from the low-energy limit (24) and it is
finally limited by the upper bound 2�1 given by the largest
gap. In a recent numerical analysis [36] of collective modes in a
two-band superconductor, this effect has been attributed to the
coupling between the Leggett mode and the amplitude modes,
which is zero in the particle-hole-symmetric q = 0 limit
considered here, but becomes finite in the case of finite external
momentum considered in Ref. [36]. Even though this coupling
can modify the expression (23), we checked that the softening
of the Leggett mode with respect to the low-frequency result
(24) observed in Ref. [36] follows mainly from the interplay
between the Leggett mode and the quasiparticle continuum,
encoded in Eq. (23) and shown in Fig. 3. Notice also that when
η → −1, i.e., the interband coupling goes to zero U12 → 0,
the signature of the Leggett mode in the Raman response
disappears. This can be easily understood from Eq. (21),
considering that κ ∝ U12 as U12 → 0; see Eq. (20). As a
consequence when U12 → 0 the Leggett mode, given by
Eq. (24), scales as ωL ∝ √

κ , so that the imaginary part of
Eq. (21) reads

χ ′′
RR � (γ1 − γ2)2κ

2ωL

δ(ω − ωL) ∝

∝ (γ1 − γ2)2√κδ(ω − ωL) → 0, κ → 0. (27)

This result is again consistent with the fact that when the bands
are decoupled the Raman response in the A1g channel can
only probe the total density fluctuations, which must vanish
by gauge invariance in the long-wavelength limit.

In the regime of interband-dominated coupling, i.e., η > 0,
Eq. (23) cannot have a solution for ω < 2�1. Indeed, by
closer inspection of Eq. (22) one sees that ReFL(ω) becomes
negative only at ω > 2�1 where both ReF1 and ReF2 are
negative, compensating the negative sign of the prefactor
κ < 0. However, since at ω > 2�1 also the two imaginary
parts of F1 and F2 are different from zero, the overall spectral
function has always a maximum at ω � 2�1, i.e., at the largest
of the two gaps, with an overall intensity quite smaller than
in the intraband-dominated regime. When the two gaps have
similar values, see right panels in Fig. 3, the resulting Raman
response resembles qualitatively the case of identical bands
with opposite character shown in Fig. 2 above.

In Fig. 4 we summarize the results for the A1g Raman
response for the model with one hole-like and one electron-like
band, as a function of the interband coupling. For the sake
of completeness we also show with dashed lines the result
for χD

RR , Eqs. (13) and (14), where only the contribution of
the density modes is included. As one can see, in the case of
interband-dominated coupling (η = −0.8, red curves) Eq. (13)
completely fails to recover the Leggett resonance. Indeed, χD

RR

is always peaked at the largest gap, the peak at the smallest
gap being removed by the second term of Eq. (13), which is

FIG. 4. Raman response in the A1g for intraband-dominated
pairing (η < 0, red line) and interband-dominated pairing (η > 0,
blue line) for two different values of the ratio N1/N2. As in Fig. 3 the
two gap values �2 < �1 are kept fixed, and identified by the vertical
dashed lines. The dotted blue line represents χD

RR from Eq. (14) for
the same values of the band parameters. As one can see, in the case
(a) where the two gaps are rather different χD

RR differs qualitatively
by the gauge-invariant result (21) for both values of η. On the other
hand, in the case (b) one observes an accidental similarity between
χD

RR and the correct expression, due to the fact that in this case the
Leggett resonance itself resembles an unscreened Raman response.

not zero in this case. We notice that the case N1/N2 = 0.3
and η = −0.8, so that �1 � 2�2, exemplifies the situation for
MgB2 [11,15,17], where the two gaps have rather different
values and the Leggett mode is expected to lie between them,
as indeed observed experimentally [10].

On the other hand, when the system has dominant interband
coupling (η = 0.5) the Raman response is always peaked at
the largest gap, with a tail starting already at the smallest one,
see Fig. 4(a), being also in this case qualitatively different from
the result (14). Even though for similar gap values [panel (b)]
the difference becomes less relevant, making the two results
accidentally similar, the physical mechanisms behind them
are completely different. Indeed, while the expression (14)
attributes the resonance in FeSC to a pair-breaking mechanism,
made visible by lack of Coulomb screening [12–14,22], the
expression (25) always identifies the A1g resonance with a
Leggett mode, whose nature in turn depends on the intra-
vs interband character of the pairing. In this respect, the
comparison with experimental data in FeSC suggests that the
A1g Raman response in FeSC provides indirect evidence on
the interband nature of the pairing in these systems, supporting
the proposal [18,19] that pairing in FeSC is mediated by the ex-
change of spin fluctuations between hole and electron pockets.
Indeed, such a pairing mechanism has a predominant interband
character, so that detÛ < 0 and consequently also κ < 0 in
Eq. (20). This would explain the lack of a sharp subgap mode
in the A1g channel of FeSC, and the observation of a sizable
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signal peaked approximately at twice the SC gap estimated by
other measurements [20–23]. We also notice that as far as the
pairing mechanism is interband dominated this result is also
robust with respect to the presence of accidental nodes [18,19]
of the gaps in one of the bands, even though in this case longer
tails below twice the gap maxima could be expected.

The model (10)–(12) provides a rather general description
of the SC properties of a multiband system. However, addi-
tional interactions could be present, specific to a given system.
For the A1g channel of FeSC it has been suggested [37] that
also short-range density interactions in the ρ1 − ρ2 channel
should be included. In this case, the Raman response in the A1g

channel couples also to relative density fluctuations, whose in-
tegration can lead to a contribution analogous to Eq. (9), where
now V < 0. One can then easily understand that since χρρ from
Eq. (4) is proportional to F (ω), the divergence of its real part at
ω = 2� leads to a sharp subgap mode, as shown in Ref. [37].
This mechanism is somehow analogous to the one discussed in
Ref. [38] for the B1g channel [39], where the Raman response
couples to nematic density fluctuations having the same B1g

symmetry, leading to a subgap resonance. This mechanism can
be responsible for the subgap resonance observed in several
FeSC in the B1g channel [21–23,38], even though it has been
also attributed to a Bardasis-Schrieffer mode [21,22], due to
the presence of an additional subleading pairing channel. For
what concerns the A1g channel the signatures observed in FeSC
have been mainly attributed to an unscreened Raman signal
[12–14,22], even though recent data in 1111 NaFe1−xCoxAs
samples have been interpreted in terms of the sharp subgap res-
onance predicted in Ref. [37]. While this is an open possibility,
one should notice that this interpretation is based mainly on the
fact that the A1g resonance emerges below twice the largest
gap, whose value is estimated by ARPES measurements on
electronic pockets and the outer hole pocket [40]. Indeed, its
profile does not resemble a sharp mode, but it is similar to
previous observations in 122 compounds [21,22]. In particular,
by assuming that a lower gap opens also on the inner α hole
pocket, which barely crosses the Fermi level in the normal
state, the profile of the A1g signal reported in Ref. [23] could be
easily compared with the results of Fig. 4(a), obtained for gaps
with marked different values. This interpretation would allows
one also to estimate the SC gap on the inner α pocket, which
cannot be easily resolved by ARPES measurements [40].

V. THIRD-HARMONIC GENERATION
IN NONLINEAR OPTICS

Finally, we would like to briefly discuss the connection
between the present results, derived in the context of the
Raman response, and the nonlinear optical response in the
THz frequency range of a two-band superconductor. In the last
few years the advances in the generation of intense multicycle
THz fields has shown that nonlinear optical effects become
experimentally accessible. This has been clearly demonstrated
in Ref. [29] by the observation, in a BCS superconductor,
of a component of the electromagnetic field oscillating three
time faster than the incoming light. As has been recently
discussed in Ref. [28], the third-harmonic generation (THG)
can be understood by computing the equilibrium nonlinear
response, which turns out to measure lattice-modulated density

correlations, in close analogy with Raman spectroscopy. More
specifically, one can see that the nonlinear current JNL is given
by

JNL
α (t) = −2e4Aα(t)

∫
dt ′

∑
β

Kαβ(t − t ′)A2
β(t ′), (28)

where A is the electromagnetic gauge field, α,β = x,y denote
the spatial components, and the response function Kαβ is given
by

Kαβ(i�n) = 〈ραρβ〉 (29)

with the operator ρα defined as

ρα(q) =
∑

k

(
∂2εk

/
∂k2

α

)
c
†
k+qck. (30)

As a consequence, the nonlinear response kernel Kαβ in
Eq. (29) probes density fluctuations, with the inverse mass
tensor (∂2εk/∂k2

α)(∂2εk/∂k2
β) accounting for the relative direc-

tion of the incoming electromagnetic field A with respect to
the main crystallographic axes, in full analogy with the Raman
response where the γk vertex accounts for the polarization of
the incoming and outgoing light. In the limit of parabolic
hole/electron bands with mass m, which is the case considered
here, (∂2εi

k/∂k2
α) = ±1/m ≡ γi . In this case it is easy to see

that the multiband nonlinear kernel Kαβ = K is independent
of the spatial indexes αβ and it coincides exactly with the
multiband Raman response in the A1g channel computed so
far. By considering, e.g., an incident monochromatic field
A = A0 cos(ωt)x̂ it is easy to show [28] from Eq. (28) that
the nonlinear current JNL

x has a component oscillating at 3ω,

whose intensity is defined as ITHG(ω) ∝ | ∫ dtJNL
x (t)e3iωt |2

and is given by

ITHG(ω) = I0e
8A6

0|K(2ω)|2 ≡ I0e
8A6

0|χRR(2ω)|2, (31)

with I0 an overall scale factor, and χRR given by Eq. (21),
valid in the case of parabolic bands. The corresponding
evolution of the THG intensity is shown in Fig. 5 for the
same range of parameters as Fig. 3. Notice that in Eq. (31)
appears the modulus of the complex response function χRR(ω),
which differs from the Raman response that only probes χ ′′

RR .
Nonetheless, we still find in Fig. 5 that for a fixed value of the
interband coupling the nonlinear response has a maximum
when 2ω = ωL matches the Leggett-mode frequency. On
the other hand, as already observed in the case of the
Raman response, the overall spectral weight of the Leggett
resonance is rapidly suppressed at small interband coupling
η → −1, and it essentially disappears as soon as one enters the
interband-dominated regime η > 0. As we mentioned above,
the MgB2 superconductor can be very well described by
approximate parabolic bands: we then expect that only the
Leggett mode contributes to the THG, in agreement with the
experimental observation of the single Leggett resonance in
Raman experiments [10]. Indeed, even though in the general
lattice case [28] also the density fluctuations can give a
resonant contribution at 2ω = 2�1,2, corresponding to the
first two terms of Eq. (19), when γi � constant in each band
the only remaining resonance is the Leggett mode. Notice
that this result differs from the conclusions a recent preprint
[41] devoted to the THG in multiband superconductors, since
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FIG. 5. Top panels: Color plot of the intensity of the THG according to Eq. (31) as a function of the interband-coupling constant η, with
the same parameters used in Fig. 3. Since ITHG(ω) is proportional to the Raman response computed at twice the light frequency χRR(2ω), we
marked with dashed lines the (absolute) values of the gaps, and with the green line ωL/2 as given by the analytical expression (24). Bottom
panels: Cuts of the THG intensity for selected values of the interband coupling.

the approximated expansion of the band dispersion proposed
in this work misses the correct hierarchy of the various
collective (density-like or SC-like) fluctuations to the non-
linear response, and the possible cancellations between them in
the limit of parabolic band dispersion. The strong suppression
of the Leggett resonance in the case of interband-dominated
interactions suggests that in FeSC the observation of the
Leggett resonance via nonlinear THz optical spectroscopy
is quite unlikely, so that only density-like resonances at
ω = �1,2, triggered by nonparabolic lattice structures, are
possible. To quantify this effect one needs to resort to a specific
lattice band dispersion, which is beyond the scope of this paper.
However, we stress that also in the more general case of a lattice
model the equivalence between the general Kαβ response
function and the general Raman response function (19) still
holds, provided that the γk insertion in Eqs. (2) and (3) is
replaced by the derivatives of the dispersion in each band
according to the general prescription (29).

VI. CONCLUSIONS

In the present work we used an effective-action formalism
to derive the general expression for the Raman response of a

two-band superconductor. We have explicitly shown that even
though in the usual diagrammatic approach the contributions
of density and SC phase modes originate from different
(RPA-like or vertex-correction like) subset of diagrams, their
contributions must be always treated on the same footing, in
order to obtain the correct results. As an example, we discussed
how in the single-band case the so-called notion of “Coulomb
screening” in the symmetric A1g Raman channel is somehow
misleading. Indeed, the vanishing of the Raman response when
the Raman density is proportional to the full density is a general
consequence of charge conservation and gauge invariance, that
can only be restored by adding the contribution of both charge
and SC phase fluctuations. Nonetheless, it is also true that in the
single-band case the presence of long-range Coulomb forces
allows one to gauge away the phase mode, recovering the
gauge-invariant Raman response in the A1g channel by adding
only the RPA-like resummation of density fluctuations.

In the multiband case the same procedure allows one to
eliminate the SC Goldstone phase mode, but not the Leggett
mode, that turns out to dominate the response of the A1g

channel in the case of two bands having opposite (hole and
electron) character. Interestingly, this result has been correctly
pointed out in the context of MgB2 superconductors [10,11],
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but has been completely overlooked so far in the discus-
sion of the Raman response of iron-based superconductors
[12–14,22]. Indeed, by taking into account only the effect of
charge fluctuations the main focus has been put so far on the
lack of Coulomb screening when the two bands have opposite
character. According to this interpretation the large A1g signal
observed experimentally in FeSC [20–23] should be attributed
to the unscreened pair-breaking peak. In this paper we explain
why this result is formally not correct, and we show that
also a Leggett resonance can account for the experimental
data in FeSC, provided that the pairing has a dominant
interband character. Indeed, in this case a true Leggett mode,
intended as a sharp peak below the quasiparticle excitation
threshold, cannot exist, as already discussed previously within
the context of FeSC [33,34]. Nonetheless, the Josephson-like
fluctuations of the SC phases of the two condensates still
identify a resonance pushed right above the largest gap, in
close resemblance with Raman experiments in FeSC.

As we summarize in Fig. 4, the full gauge-invariant result
can be accidentally similar to an unscreened Raman pair-
breaking peak when the pairing is interband dominated and two
gaps are similar. However, this coincidence does not rule out
the profound difference between the two physical mechanisms
discussed here and in previous work on FeSC [12–14,22]. We
notice also that the effects of charge and phase modes are not
simply additive. Indeed, after integrating out the relative phase
modes the divergence of the unscreened response, obtained by
considering only the density modes, is removed in favor of
the Leggett resonance, which is the only one visible in the
A1g channel for two bands having opposite character. As we
discussed above this result is also relevant for nonlinear optical
spectroscopy in multiband superconductors, where the inten-
sity of the so-called third-harmonic generation observed so far
in single-band superconductors [29] is controlled by a response
function analogous to the Rama one. In particular we expect
that in MgB2, where the bands are approximately parabolic,
only the Leggett mode contributes to the THG, while in FeSC
the Leggett contribution appears too small to be detected.

As we discussed in this paper, an interesting outcome of
our results is the possibility to use Raman measurements
to establish the nature (intra- vs interband) of the pairing
mechanism in FeSC. So far, Raman results have been provided
mainly for 122 systems, where quite a wide consensus already
exists that spin fluctuations can provide an efficient mechanism
for interband pairing between hole and electron pockets,
leading in turn to an s± symmetry of the order parameter
[18,19]. On the other end, the situation is more controversial
for other systems, such as LiFeAs or FeSe [24–27], where
alternative gap symmetries have been proposed, eventually
compatible with intraband-pairing mechanisms, as provided,
e.g., by phonons or more unconventional orbital fluctuations
[18,19]. As a consequence, our results for the A1g Raman
response pave the way to an alternative route to investigate the
nature of the pairing interaction, which can be used to assess
the relevant glue mechanism at play in FeSC.
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APPENDIX A: DERIVATION OF THE RAMAN RESPONSE
FOR THE SINGLE-BAND CASE

We model a generic single-band s-wave superconductor via
the following Hamiltonian:

H =
∑
k,σ

ξkc
†
k,σ ck,σ + HP + HC, (A1)

HP = −U
∑

q

	
†
�(q)	�(q), (A2)

HC =
∑

q

V (q)	†
ρ(q)	ρ(q), (A3)

where ξk is the band dispersion, 	�(q) = ∑
k c−k+q/2,↓

ck+q/2,↑ and 	ρ(q) = ∑
k,σ c

†
k−q/2,σ ck+q/2,σ are the pairing

and density operators, respectively, V (q) is the Coulomb
potential, and U > 0 is the SC coupling.

To better describe the SC pairing introduced by HP it is
useful to represent the fermions via the Nambu spinor �k =
(ck↑,c

†
−k↓)

T
. With this formalism the BCS Matsubara Green’s

function in the SC state is the 2×2 matrix:

G0(k,iνn) ≡ −
∫ 1/T

0
dτ 〈T �k(τ )�†

k(0)〉eiνnτ

= iνnσ0 + ξkσ3 − �σ1

(iνn)2 − E2
k

, (A4)

where νn = πT (2n + 1) are fermionic Matsubara frequencies,

the σa are the Pauli matrices, Ek =
√

ξ 2
k + �2, and � is the SC

gap, determined as a solution of the self-consistent mean-field
equation:

1 = UN�, (A5)

with N the density of states evaluated at the Fermi level
and � = ∫ ωD

0 dξ tanh[E(ξ )/2T ]/E(ξ ). Here ωD represents
the Debye frequency for the standard phonon-mediated super-
conductivity, but more generally provides an upper cutoff for
the SC interaction for any pairing mechanism, as, e.g., the one
provided by the exchange of spin fluctuations in FeSC.

To introduce the dynamics in the model (A1) we use
the path-integral formulation, by defining the imaginary-time
action for the fermions:

S[�,�†] =
∫ 1/T

0
dτ [�†

k(τ )∂τ�k(τ ) + H ], (A6)

from which the partition function is given as the functional
integral: Z = ∫

D[�,�†]e−S[�,�†].
In order to perform the integration over the fermions we use

the standard Hubbard-Stratonovich (HS) technique [7–9,30],
which requires the introduction of bosonic fields to decouple
the fermionic interaction terms. In this case, the presence of
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the two-particle interaction terms HP and HC requires us to
introduce a complex field h, which couples to the pairing
operator 	� and represents the fluctuations of the SC order
parameter around �, and a real field, ρ, which couples to the
density operator 	ρ and represents the density fluctuations.
It is worth noting that the choice of the HS decoupling of an
interacting model as in Eq. (A1) is not unique, as it has been
often discussed in the literature [7,8,42]. However, since we
are interested here in deriving the Raman in the SC state, a
natural choice for the pairing term (A2) is a decoupling in
the SC sector, in order to describe both the SC ground state
and the SC fluctuations above it. In addition, as explained
in Sec. II, the divergence of the long-range potential V (q)
plays a crucial role in determining the screening of the Raman
response, so we added explicitly the term (A3) where the
momentum dependence of the density-density interaction,
absent in Eq. (A2), is taken into account. Once the HS
decoupling is performed the action is Gaussian in the fermionic
fields, which can be explicitly integrated out. We are then left
with the effective action for the HS fields only:

Z =
∫

D[h,h†,ρ]e−Seff [h,h†,ρ], (A7)

Seff[h,h†,ρ] = SMF (�) + SFL[h,h†,ρ], (A8)

where

SMF (�) = �2

T U
− Tr ln

(−G−1
0

)
(A9)

is the mean-field action, which is stationary for � satisfying
the BCS equation (A5), and SFL is the fluctuating action of
the HS fields:

SFL[h,h†,ρ] =
∑

q

[ |h(q)|2
U

+ |ρ(q)|2
2V (q)

]
+

∑
n�1

Tr(G0�)n

n
,

(A10)

where q = (iωn,q), ωn = 2πT n are bosonic frequencies and
� is the self-energy of the HS fields. Below the SC critical
temperature TC � 1.13ωDe−1/NU one is always allowed to
represent the h field in polar coordinates: h = |h|eiθ . Since
we are ultimately interested in the Raman response at q →
0, we can neglect from the beginning the fluctuations of the
amplitude of h, since they do not couple to the phase/density
ones in the dynamic limit due to the particle-hole symmetry
[31,32]. Thus the HS self-energy � reads

�(k,k′) = −i
√

T ρ(k − k′)σ3 − i

2

√
T θ (k − k′)

× [(k − k′)0σ3 − (ξk − ξk′)σ0]

− T σ3

2d

∑
q1,q2,l

θ (q1)θ (q2)
∂2ξk

∂k2
l

sin(q1/2) sin(q2/2)

× δ(q1 + q2 − k + k′) + O(θ3), (A11)

with d = 2 the spatial dimension.

By retaining only the harmonic terms we finally obtain the
following low-momentum expansion of SFL [7–9]:

SFL � 1

2

∑
q

{(
1

Vq
− χρρ(q)

)
|ρ(q)|2

+ 1

4

(−χρρω
2
n + Dsq2

)|θ (q)|2

−χρρ(q)ρ(−q)iωnθ (q)

}
, (A12)

where Ds is the superfluid stiffness. Since both the density
and SC phase carry out a σ3 structure in the Nambu space,
see Eq. (A11), the fermionic susceptibilities that appear as
coefficients of the action are all proportional to the charge
susceptibility, defined in general as

χρρ(q) = T
∑

k

Tr[G0(k + q)σ3G0(k)σ3], (A13)

and its q = 0 value is given by Eq. (4).
To compute the Raman response function we introduce in

the model (A1) a source term ρR coupled to the Raman density
operator 	R(q) ≡ ∑

kσ γkc
†
k−q/2,σ ck+q/2,σ :

H → H −
∑

q

ρR(−q)	R(q). (A14)

The dynamic response function can then be obtained as a
functional derivative with respect to the external field ρR; see
Eq. (6) above. In the effective action formalism the field ρR

acts as an additional bosonic field in the self-energy � of
Eq. (A11), which now becomes:

�(k,k′) → �(k,k′) −
√

T ρR(k − k′)γ [(k + k′)/2]σ3. (A15)

Also the Raman field ρR carries a σ3 structure in Nambu
space, a consequence of the fact that the Raman operator is a
momentum-modulated density operator. The only difference
in the fermionic susceptibilities appearing as coefficients in
the effective action is in the γ (k) factors entering the various
bubbles (2)–(4) of Eq. (1) above, giving the action in the
presence of Raman fluctuations. Since V (q) → ∞ at long
wavelengths, the q = 0 component of (1) reads

SFL = 1

2

∑
q

{|ρR|2χ0
RR + 2iρRχRρ[ρ + iωnθ/2]

−χρρ |ρ + iωnθ/2|2}, (A16)

where we highlighted that the density and phase fluctuations
act as a single field, appearing always as the combination
ρ + iωnθ/2. This is an obvious consequence of the gauge
invariance, which allows us to reduce the number of degrees of
freedom by removing the field θ via the gauge transformation
ρ + iωθ/2 → ρ. In this situation one immediately sees that
after integrating out the density fluctuations ρ we are left with
the effective action of the source field ρR only:

S[ρR] = 1

2

∑
q

|ρR|2
(

χ0
RR − χ2

Rρ

χρρ

)
, (A17)

from which the functional derivative with respect to ρR , see
Eq. (6), leads to the gauge-invariant result (8).

064512-11



T. CEA AND L. BENFATTO PHYSICAL REVIEW B 94, 064512 (2016)

To prove that the result (6) is independent of the presence
of long-range Coulomb interaction let us consider again the
expression (1) for the effective action when V (q) → V is
replaced by a short-range repulsive potential. In this case
the gauge transformation ρ + iωθ/2 → ρ does not remove
the coupling to the phase field. Indeed, after integration of the
density field only one recovers the action:

SFL = 1

2

∑
q

{
|ρR|2

(
χ0

RR − χ2
Rρ

χρρ − 1/V

)

− χRρωnθ

1 − V χρρ

− χρρω
2
n|θ |2/4

1 − V χρρ

}
. (A18)

In this case, the coefficient of the |ρR|2 term coincides with
the expression (9), which is manifestly not gauge invariant. On
the other hand, in Eq. (A18) the Raman density is still coupled
to the phase field. If one then integrates θ out it is easy to see
that the gauge-invariant result (8) is once more recovered.

APPENDIX B: DERIVATION OF THE RAMAN RESPONSE
FOR THE TWO-BAND CASE

As a microscopic model for a two-band superconductor we
consider the straight generalization of (A1):

H =
∑
k,σ,i

ξ i
kc

i,†
k,σ ci

k,σ + HP + HC, (B1)

HP = −
∑
i,j,q

Uij	
i,†
� (q)	j

�(q), (B2)

HC =
∑

q

V (q)	†
ρ(q)	ρ(q), (B3)

where i,j = 1,2 are the band indexes, 	i
�(q) = ∑

k ci
−k+q/2,↓

ci
k+q/2,↑ and 	ρ(q) = ∑

k,i,σ c
i,†
k−q/2,σ ci

k+q/2,σ are the pairing

and density operators, respectively, and Û ≡ Uij is the matrix
of the SC couplings.

At mean-field level, the values of the gaps in each band are
given by two coupled self-consistent equations:

�i =
∑

j

Uij�jNj�j , (B4)

with Nj the density of the states of the j th band evaluated at
the Fermi level.

The Hubbard-Stratonovich technique we used in the single-
band model for deriving the effective action of the collective
modes can be straightforwardly generalized to the case of
a two-band system, with the foresight of introducing two
complex HS fields, h1 and h2, representing the fluctuations
of the SC order parameters in each band.

Defining θi the phase of the field hi , the effective action of
the phase and density fluctuations reads

Seff[θ1,θ2,ρ] = SMF (�1,�2) + SFL[θ1,θ2], (B5)

where

SMF =
∑
ij

U−1
ij �i�j −

∑
i

Tr ln
[−G−1

0,i

]
(B6)

and

SFL � 1

2

∑
q

(
χ0

R1R1
+ χ0

R2R2

)|ρR(q)|2 + 2iρR(−q)

× (
χR1ρ1 ,χR2ρ2 ,χR1ρ1 + χR2ρ2

)
⎛
⎜⎝

iωn

2 θ1(q)
iωn

2 θ2(q)
ρ(q)

⎞
⎟⎠

+
(

− iωn

2
θ1(−q),− iωn

2
θ2(−q),ρ(−q)

)

×M(q)

⎛
⎜⎝

iωn

2 θ1(q)
iωn

2 θ2(q)
ρ(q)

⎞
⎟⎠, (B7)

M being the 3×3 matrix:

M(q) =

⎛
⎜⎝

−χρ1ρ1 + κ+Ds1q2

ω2
n

− κ
ω2

n
−χρ1ρ1

− κ
ω2

n
−χρ2ρ2 + κ+Ds2q2

ω2
n

−χρ2ρ2

−χρ1ρ1 −χρ2ρ2
1

V (q) − χρ1ρ1 − χρ2ρ2

⎞
⎟⎠, (B8)

with κ ≡ 8�1�2U12/detU . Here we defined the fermionic
susceptibilities as a multiband analogy of Eqs. (2)–(4), so that

χ0
RiRi

(iωn) = −
∑

k

(
γ i

k

)2
F i

k(iωn), (B9)

χRiρi
(iωn) = −

∑
k

γ i
kF i

k(iωn), (B10)

χρiρi
(iωn) = −

∑
k

F i
k(iωn), (B11)

where

F i
k(iωn) = 4�2

i

tanh(Ei,k/2T )

Ei,k
[
4E2

i,k − (iωn)2
] . (B12)

As has been discussed in Ref. [34], in the case of dominant
interband pairing the derivation of Eq. (B7) is more involved,
since in this case the matrix of the SC couplings Û admits
a negative eigenvalue corresponding to the presence of an
antibonding SC channel. In this case one can still implement
the Hubbard-Stratonovich decoupling by introducing first a
combination of the fermionic fields that allows one to impose
a vanishing saddle-point value of the antibonding channel.
Afterwards one can express back the fluctuations in terms of
the collective modes in each band, obtaining the structure (B7)
of the collective-mode action.

In the limit q = 0 one can notice that M(iωn) is always
singular, having (1,1,−1) as an eigenvector corresponding to
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the zero eigenvalue, as one can immediately check by summing
the lines of the matrix (B8). This means that the description
in terms of three degrees of freedom θ1,θ2,ρ is redundant and
we can invoke the gauge invariance to remove one of them. To
show this formally, it is useful to introduce the new variables

θG = θ1 + θ2

2
, (B13)

θL = θ1 − θ2

2
, (B14)

ρ̃ = ρ + iωn

2
θG, (B15)

where the subscripts G and L denote the Goldstone and
Leggett phase mode, respectively, while ρ̃ defines a gauge
transformation of the field ρ.

One can easily check that in the new frame the matrix M

becomes

M(q) =
⎛
⎝0 0 0

0 −χρ1ρ1 − χρ2ρ2 + 4 κ
ω2

n
−χρ1ρ1 + χρ2ρ2

0 −χρ1ρ1 + χρ2ρ2 −χρ1ρ1 − χρ2ρ2

⎞
⎠.

(B16)

Then the field associated with the Goldstone mode θG does
not couple to any other field and SFL reduces to a functional
of the fields θL and ρ̃ only:

SFL � 1

2

∑
n

{(
χR1R1 + χR2R2

)|ρR(iωn)|2 + 2iρR(−iωn)
(
χR1ρ1 − χR2ρ2 ,χR1ρ1 + χR2ρ2

)( iωn

2 θL(iωn)

ρ̃(iωn)

)

+
(

− iωn

2
θL(−iωn),ρ̃(−iωn)

)
M̃(iωn)

(
iωn

2 θL(iωn)

ρ̃(iωn)

)}
, (B17)

where M̃ is the 2×2 matrix:

M̃(iωn) =
(−χρ1ρ1 − χρ2ρ2 + 4 κ

ω2
n

−χρ1ρ1 + χρ2ρ2

−χρ1ρ1 + χρ2ρ2 −χρ1ρ1 − χρ2ρ2

)
, (B18)

which becomes singular at iωn = ωL, where ωL is the Leggett frequency, given by the solution of

ω2
L = FL(ωL), FL(iωn) ≡ −κ

χρ1ρ1 (iωn)χρ2ρ2 (iωn)

χρ1ρ1 (iωn) + χρ2ρ2 (iωn)
� κ

N1F1(iωn) + N2F2(iωn)

N1N2F1(iωn)F2(iωn)
, (B19)

which coincides with Eq. (23) above.
From Eq. (B17) one immediately sees that the coupling to the Legget θL and to the charge ρ fluctuations is dictated by

the same susceptibilities χRiρi
, even though combined with different signs. If one integrates out only the density modes it is

straightforward to see that the coefficient of the |ρR|2 field becomes Eq. (13), as stated in Refs. [12–14]. Thus, for parabolic
bands having equal DOS and opposite character χR1ρ1 = −χR2ρ2 and the coupling to the density mode cancels out. However, the
coupling to the Leggett mode cannot be removed, since it is maximum under the same condition. This is expected on physical
grounds, since in this case the Raman operator is proportional to relative density fluctuations between the two bands, which are
conjugated to the Leggett fluctuations.

To obtain the full Raman response function one should then integrate both the fields θL and ρ̃, obtaining the effective action
of ρR only:

S[ρR] = 1

2

∑
q

|ρR|2χRR, (B20)

with

χRR = (
χR1R1 + χR2R2

) + (
χR1ρ1 − χR2ρ2 ,χR1ρ1 + χR2ρ2

)
M̃−1

(
χR1ρ1 − χR2ρ2

χR1ρ1 + χR2ρ2

)

= (
χR1R1 + χR2R2

) − (iωn)2
(
χρ1ρ1χ

2
ρ2R2

+ χρ2ρ2χ
2
ρ1R1

) + κ
(
χρ1R1 + χρ2R2

)2

(iωn)2χρ1ρ1χρ2ρ2 + κ
(
χρ1ρ1 + χρ2ρ2

) , (B21)

which gives back Eq. (19).
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067002 (2010).

[27] P. M. R. Brydon, M. Daghofer, C. Timm, and J. van den Brink,
Phys. Rev. B 83, 060501(R) (2011).

[28] T. Cea, C. Castellani, and L. Benfatto, Phys. Rev. B 93,
180507(R) (2016).

[29] R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y.
Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, Science
345, 1145 (2014).

[30] N. Nagaosa, Quantum Field Theory in Condensed Matter
Physics (Springer-Verlag, Berlin, 1999).

[31] T. Cea and L. Benfatto, Phys. Rev. B 90, 224515 (2014).
[32] T. Cea, C. Castellani, G. Seibold, and L. Benfatto, Phys. Rev.

Lett. 115, 157002 (2015).
[33] S. Maiti and A. V. Chubukov, Phys. Rev. B 87, 144511 (2013).
[34] M. Marciani, L. Fanfarillo, C. Castellani, and L. Benfatto,

Phys. Rev. B 88, 214508 (2013).
[35] L. Benfatto, M. Capone, S. Caprara, C. Castellani, and C. Di

Castro, Phys. Rev. B 78, 140502(R) (2008).
[36] H. Krull, N. Bittner, G. S. Uhrig, D. Manske, and A. P. Schnyder,

Nat. Commun. 7, 11921 (2016).
[37] A. V. Chubukov, I. Eremin, and M. M. Korshunov, Phys. Rev.

B 79, 220501 (2009).
[38] Y. Gallais, I. Paul, L. Chauviere, and J. Schmalian, Phys. Rev.

Lett. 116, 017001 (2016).
[39] Here we refer to the 1Fe BZ notation, that has been adopted in

Refs. [21,22,38]. Notice that instead in Ref. [23] the notation
is for the 2Fe BZ, that is rotated by π/4, so that the relevant
Raman channel becomes B2g .

[40] Q. Q. Ge, Z. R. Ye, M. Xu, Y. Zhang, J. Jiang, B. P. Xie, Y.
Song, C. L. Zhang, Pengcheng Dai, and D. L. Feng, Phys. Rev.
X 3, 011020 (2013).

[41] Y. Murotani, N. Tsuji, and H. Aoki, arXiv:1511.05762.
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