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Abstract.  We consider the spatial correlation function of two-dimensional 
Ising spin glass under out-of-equilibrium conditions. We pay special attention 
to the scaling limit reached upon approaching zero temperature. The field-
theory of a non-interacting field makes a surprisingly good job of describing 
the spatial shape of the correlation function of the out-of-equilibrium Edwards–
Anderson Ising model in two dimensions.
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1. Introduction

The importance of characterizing the spatial range of spin-glass correlations has been 
long recognized, both under equilibrium [1, 2] and out-of-equilibrium conditions [3–22]. 
These correlations may be characterized though the overlap-overlap correlation func-
tion (for definitions, see section 2). However, we still lack analytical control over the 
spatial shape of this correlation function, which is a great nuisance for numerical work.

Here, we study the overlap-overlap correlation function for Ising spin glass in the 
spatial dimension D  =  2 both as a function of time and of spatial separation. Our 
numerical analysis is performed on lattices large enough to be representative of infinite 
system-size limit. The two dimensional (2D) Ising spin glass undergoes a T  =  0 phase 
transition; however, we hope that our results would apply equally in Ising spin glasses 
above the lower critical dimension (which is believed to be D � 2.5 [23]) in the para-
magnetic phase. In fact, recent experiments on a film geometry [17, 21, 24–26] moti-
vated us to undertake a large-scale numerical simulation of the out-of-equilibrium 
dynamics of the D  =  2 spin glass [22]. These systems will occasionally behave as if 
living in a spin glass phase, but most of the time they will cross over to the dynamical 
critical behavior of the 2D Ising spin glass; i.e. paramagnetic phase behavior. Our aim 
here is to present a more field-theoretically minded analysis of the correlation function, 
as compared with our previous phenomenological analysis [22].

It came to us as a real surprise that the Langevin dynamics for the free scalar field 
make an excellent job of describing the spatial dependence of spin-glass correlations. 

https://doi.org/10.1088/1742-5468/aae2e1
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Of course, at least in an equilibrium setting [27, 28], large-distance correlations in a 
paramagnetic phase (and the D  =  2 Ising spin glass has only a paramagnetic phase for 
T  >  0) should be given by free-field theory. What is a surprise is that free-field theory is 
very accurate also at short distances. Furthermore, in the large-time limit of an equili-
brated system, free-field theory can be made virtually exact for the spin glass through a 
logarithmic wave-function renormalization (because of the vanishing anomalous dimen-
sion [29]). In fact, we are able to parameterize in a very simple way the rather heavy 
corrections to scaling found in a previous equilibrium study [30].

The remaining part of this work is organized as follows. In section 2 we shall describe 
the model and the basic spin-glass correlation function that we compute (for further 
technical details, see [22]). In section 3 we elaborate on the implications of scale invari-
ance for the spatial shape of the correlation function. The relationship between the spin-
glass correlations and the free-field propagator is considered in equilibrium (section 4) 
and out of equilibrium (section 5). Our conclusions are presented in section 6. A number 
of results regarding the free-field propagator are derived and discussed in the appendix.

2. Model and observables

Our dynamic variables are Ising spins, sx = ±1, placed in the nodes of a square lattice 
of linear dimension L. Their interaction is given by the Edwards–Anderson Hamiltonian 
[31, 32] with nearest-neighbor couplings and periodic boundary conditions

H = −
∑
〈x,y〉

Jx,ysxsy. (1)

We consider quenched disorder [33], which means that the couplings Jx,y are fixed once 
for all. The couplings are drawn from the bimodal probability distribution (Jx,y = ±1 
with equal probability). Every set {Jx,y} defines a sample. We have simulated L  =  512, 
which is large enough to be insensitive to the finite size eects (see section 4). Notice 
that the T  =  0 phase transition is universal (i.e. it is independent of the type of dis-
order, see for example [29]).

Our numerical protocol is as follows. We start from a fully disordered spin 
configuration (representative of infinite temperature), which is instantaneously placed 
at the working temperature T at the initial time tw = 0. Standard Metropolis dynamics 
at fixed T follow. Our time unit is a full-lattice sweep, which roughly corresponds to 
one picosecond [34]. We have simulated a multi-spin code of an L  =  512 lattice for a 
wide range of temperatures (0.5 � T � 1.1). The number of simulated samples was 96. 
For each sample, we ran 256 replicas (for T � 0.55) or 264 replicas (for T  =  0.5).

The overlap correlation function (see [16] for a detailed discussion) is computed 
from the replica field

qα,β(x, tw) = s(α)(x, tw)s
(β)(x, tw), (α �= β). (2)

The {s(α)(x, tw)} are real replicas (α is the so-called replica index): replicas with dierent 
replica indices evolve under the same set of couplings {Jx,y} but are otherwise statisti-
cally independent. Hence, our correlation function is

https://doi.org/10.1088/1742-5468/aae2e1
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C4(r, tw;T ) = 〈qα,β(x, tw)qα,β(x+ r, tw)〉, (3)

where one first takes the average over the thermal noise and the initial conditions, 
denoted by 〈. . .〉. The average over the random couplings, denoted by an overline, is 
only computed afterwards. We shall restrict ourselves to displacement vectors along 
one of the lattice axes (the choice between r = (r, 0) or r = (0, r) is immaterial, so we 
average over the two), and use the shorthand C4(r, tw) [16, 35].

We characterize the spatial range of correlations through the coherence length:

ξk,k+1(tw) ≡ Ik+1(tw)/Ik(tw), (4)
computed by means of the integrals

Ik(tw) ≡
∫ ∞

0

d r rkC4(r, tw). (5)

Following recent work [14, 16, 19, 20, 22], we shall focus our attention in the k  =  1 
length estimate ξ12(tw).

Eventually, we have been able to equilibrate the system, in the sense that the 
integrals Ik(tw) no longer depend on tw (within errors). Of course, an infinite system 
never fully equilibrates. However, in the paramagnetic phase (and spin glasses in D  =  2 
have only a paramagnetic phase at T  >  0), we can rather think of equilibration up to 
distance r: for any fixed distance r the C4(r, tw) approaches its equilibrium limit Ceq

4 (r) 
exponentially fast in tw, after an r-dependent time threshold is reached; see appen-
dix A.2. Given that the equilibrium propagator decays exponentially with distance, 
we can regard the system as equilibrated for all practical purposes once the C4(r, tw) 
equilibrates up to a distance of say r = 6 ξeq12(T ). It is therefore meaningful to study 
numerically

ξeq12(T ) = lim
tw→∞

ξ12(tw,T ). (6)

In our simulations, ξeq12(T ) ranges from ξeq12(T = 1.1) ≈ 4.3 to ξeq12(T = 0.5) ≈ 39.4: this 
is why we expect that L  =  512 is large enough to accommodate L → ∞ conditions  
[14, 19, 22].

In fact, if one takes first the limit L → ∞ and only afterwards goes to low T, we 
expect a critical point at T  =  0:

ξeq12(T ) ∼ T−ν + . . . , 1/ν = −θ (7)
where the dots stand for (rather complex [29]) subleading corrections to scaling. The 
stiness exponent θ has been computed in a T  =  0 simulation for Gaussian-distributed 
couplings, θ = −0.2793(3) [36] (the identity −θ = 1/ν was already confirmed in former 
Gaussian coupling simulations; see for example [29, 37]). We have checked in [22] that 
equation (7) holds as well, with the same θ, for our J = ±1 couplings.

Some readers may be unfamiliar with our coherence-length estimators, so let us 
relate our ξk,k+1 to the second-moment correlation length which is commonly studied 

in the context of equilibrium-critical phenomena [28, 38]. Let Ĉ4(p, tw) be the Fourier 
transform of C4(r, tw). In the thermodynamic limit L → ∞, the momentum p is a 
continuous variable. In the presence of rotational invariance (a reasonable assumption 

https://doi.org/10.1088/1742-5468/aae2e1
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even for a fairly small ξ12(tw) [16]), Ĉ4 depends on the squared momentum p2. Hence, 
the second moment correlation length is

ξ2nd moment =

√√√√− ∂ log Ĉ4

∂p2

∣∣∣∣∣
p2=0

. (8)

Equation (8) can be conveniently adapted to a finite lattice, hence discrete p [28, 38, 
39], which partly explains its popularity. In real space, and assuming again L → ∞ and 
rotational invariance, equation (8) reads in dimension D

ξ2nd moment,D =

√
1

2D

ID+1

ID−1

=

√
ξD−1,D ξD,D+1

2D
. (9)

The rationale for preferring ξ12 over the more familiar ξ2nd moment,D is a practical one 
[16]: statistical errors grow rapidly with the index k of the requested integrals Ik.

For later use, we note as well that the (equilibrium) spin-glass susceptibility is

χ =
∞∑

x,y=−∞

Ceq
4 (x, y) ≈ 2πIeq1 , (10)

where we have assumed again rotational invariance, as well as ξeq12 � 1, in order to 
approximate the double summation by the integral Ieq1  (in the general space dimension, 
χ ∝ ID−1).

3. On the spatial structure of the correlations

In this section, we shall consider the Edwards–Anderson correlation function C4(r, tw;T ) 
as a function of distance, temperature and time. After some preliminary considerations, 
we shall address two dierent questions related to C4(r, tw;T ): (i) how does the equilib-
rium correlation Ceq

4 (r;T ) relate to the theory of a free field? (section 4); (ii) is the out-
of-equilibrium correlation function C4(r, tw;T ) given by free-field theory? (section 5).

Before addressing the above questions, let us frame the discussion. An underlying 
assumption in our analysis is that our choice of k  =  1 for ξk,k+1, recall equation (4), is 
immaterial [14, 16]. This assumption is plausible because scale invariance suggests that 
the Edwards–Anderson correlation function behaves for large r as

C4(r, tw;T ) ≈
1

rζ
g

[
r

l(tw,T )
,
l(tw,T )

leq(T )

]
, leq(T ) = lim

tw→∞
l(tw,T ). (11)

Unfortunately, we cannot extract the length scale l(tw,T ) because we do not have any 
a priori information on the scaling function g in equation (11). This is why we use the 
integral estimators ξk,k+1(tw), equation (4), that according to equation (11), are propor-
tional to l(tw,T ):

https://doi.org/10.1088/1742-5468/aae2e1
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ξk,k+1(tw) = l(tw,T )

∫∞
0

dx xk+1−ζg(x, l̂)∫∞
0

dx xk−ζg(x, l̂)
, l̂ =

l(tw,T )

leq(T )
. (12)

Equation (11) can be checked in the limiting case of an equilibrated system, tw → ∞. 
Indeed, because we are in a paramagnetic phase (recall equation (7)), the renormaliza-
tion group predicts that the Edwards–Anderson correlations are (asymptotically) given 
by the free-field propagator [27, 28]

Ceq
4 (r;T ) ∼ K0[r/ξexp(T )] for r � ξexp(T ). (13)

In the above expression, which defines the so-called exponential correlation length 
ξexp(T ), K0 is the 0th-order modified Bessel function of the second kind [40]. We remark 
that equation (13) is specific for D  =  2 (see appendix for general space dimension). After 
making the identification

leq(T ) ≡ ξexp(T ), (14)
we see that equation (13) becomes a particular case of equation (11).

In order to investigate further equation (11), figure 1 shows the ratio of characteris-
tic lengths ξ23/ξ12. Using equation (12) we obtain the expected behavior of the dimen-
sionless ratio in the scaling limit (i.e. ξexp(T ) → ∞ at fixed l(tw,T )/ξexp(T )):

ξ23(tw,T )

ξ12(tw,T )
=

[∫∞
0

dx x3−ζg(x, l̂)
] [∫∞

0
dx x1−ζg(x, l̂)

]
[∫∞

0
dx x2−ζg(x, l̂)

]2 , l̂ =
l(tw,T )

ξexp(T )
. (15)

The above expression unveils the role of l(tw,T )/ξexp(T ). In fact, should the shape 
of the r-dependence in C4(r, tw;T ) be independent of time (thus, independent of 
l(tw,T )/ξexp(T )), then ξ23/ξ12 would also be time-independent. Instead, we see in figure 1 
that ξ23/ξ12 varies significantly as ξ12(tw) grows.

Of course, we knew beforehand that the shape of C4(r, tw;T ) must change with time: 

equation (13) tells us that Ceq
4 (r;T ) decays exponentially: Ceq

4 (r;T ) ∼ e−r/ξexp/
√

r/ξexp . 

Instead, the general arguments in appendix A.2 imply a super-exponential decay for the 

out-of-equilibrium correlation function, C4(r, tw;T ) ∼ e−(r/ξ̂)β , with β > 1. What figure 1 
tells us is that the change in the functional form of C4(r, tw;T ) happens gradually.

However, there is something surprising in the large-tw limit in figure 1. Barring 
high-temperature corrections, the equilibrium ξ23/ξ12 turns out to be compatible with 
16/π2, which is its free-field value (A.17). This is the first indication suggesting that 
equation (13) might work for r � ξexp as well, way before its natural validity range.

Let us now find a workaround on the annoying dependence on l(tw,T )/ξexp(T ) in 
equation (12) (this dependency is a nuisance because, although ξexp(T ) can be obtained 
from our data, see section 4, l(tw) remains a mystery). Fortunately, equation (12) sug-
gests that the (computable) dimensionless ratio ξ12(tw,T )/ξ

eq
12(T ) is a one-to-one func-

tion of l(tw,T )/ξexp(T ). Hence, we can compare out-of-equilibrium data at dierent 
temperatures by plotting ξ23/ξ12 as a function of ξ12(tw,T )/ξ

eq
12(T ), see figure 1. Barring 

corrections for small ξeq12(T ) it is clear that the data collapse to a master curve, which 
is exactly what we expect from equation (12). We note as well that the same curve 
can be computed analytically for the free field (full curve in figure 1). The free-field 

https://doi.org/10.1088/1742-5468/aae2e1
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master curve turns out to be fairly close to the limiting master curve for the Edwards–
Anderson model.

We are now ready to address the questions posed at the beginning of this section.

4. Equilibrium Edwards–Anderson correlations and the theory of a free field

Let us consider the paramagnetic phase of a typical D-dimensional spin system in ther-
mal equilibrium. The asymptotic behaviors of the correlation function are

Ceq(r � ξexp) ∼
1

rD−2+η
, Ceq(r � ξexp) ∼ ξD−2−η

exp

KQ(r/ξexp)

(r/ξexp)Q
, (16)

where η is the anomalous dimension, Q = (D − 2)/2 and KQ is the Qth-order modified 
Bessel function of the second kind [40]. The normalizations in equation (16) ensure that 

Figure 1. As time evolves (i.e. ξ12(tw;T ) grows until it reaches its equilibrium 
value ξeq12(T )), the scale-invariant ratio ξ23(tw,T )/ξ12(tw,T ) varies, which unveils 
the dependency on the unknown length scale l(tw) in equations (11), (12) and 
(15). The figure shows that (barring small ξeq12(T ) corrections) the temperature 
dependence can be absorbed by plotting the data as a function of the scale-
invariant ratio ξ12(tw,T )/ξ

eq
12(T ). Indeed, in agreement with equation (15), our data 

collapse to a master curve when ξeq12(T ) grows upon lowering the temperature. An 
analogous master curve can be computed analytically for a non-interacting field 
(full line), see equations (A.15) and (A.17) in appendix A.1. Surprisingly, the master 
curve for the free field is a very good approximation for the Edwards–Anderson 
model. In fact, the free-field prediction might even be exact if the equilibrium 
limit ξ12(tw,T )/ξ

eq
12(T ) → 1 is taken first, and the scaling limit ξeq12(T ) → ∞ is taken 

afterwards.

https://doi.org/10.1088/1742-5468/aae2e1
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(i) Ceq(r = 1) ∼ 1 (which is certainly the case for the Edwards–Anderson Ceq
4 (r;T )), 

and (ii) the asymptotic behavior for small and large r connects smoothly at r = ξexp
7.

However, let us take seriously for one minute the suggestion that the large-distance 
asymptotic behavior holds all the way down to r ∼ 1. Now, specializing to D  =  2 and 
recalling that K0(y → 0) ∼ log 1/y , we see that the condition Ceq(r = 1) ∼ 1 implies 
that

Ceq
2D,non-standard(r) ∼

K0(r/ξexp)

log ξexp
. (17)

Funnily enough, figure 1 suggests that the (equilibrium) 2D Ising spin glass could really 
follow the non-standard behavior in equation (17), even for r < ξexp. Our aim here will 
be to further explore this hypothesis.

Equation (17) suggests to start by fitting our equilibrium correlation function to

Ceq
4 (r;T ) = A(ξexp)

[
K0

( r

ξexp(T )

)
+ K0

( L− r

ξexp(T )

)]
, L = 512, (18)

where A(ξexp) is an amplitude depending on temperature through ξexp(T ). We have 
included in (18) the first image term, K0[(L− r)/ξexp] (mind our periodic boundary 
conditions), as a further control of finite-size eects. In fact, the results turn out to vary 
by less than a tenth of an error bar (one standard deviation) when the image term is 
removed. This agreement confirms that the L = ∞ limit has been eectively reached.

The results of the fit to equation (18) are reported in table 1. As the reader may 
check, even in the most dicult case, namely T  =  0.5, ξexp(T ) is computed with 1% 
accuracy. We find as well, see figure 2 top, that the consistency condition Ceq(r = 1) ∼ 1 
expressed in equation (17) is well satisfied by our data.

A further confirmation of equation (18) comes from the second-moment correlation 
length. Combining equation (9), as applied to D  =  2, with equation (A.14) we see that 
equation (18) implies

ξ2nd moment,eq = ξexp. (19)

Thanks to previous results in [29], we may compare these two characteristic lengths, 
see tables 1 and 2. The agreement is most satisfactory.

Of course, one cannot expect equation (18) to hold for all r. Indeed, the fit works 
only for r � rmin, see table 1. We find that the ratio rmin/ξexp is small, but remains finite 
as ξexp grows upon lowering T. In fact, we have empirically found that

Ceq
4 (r;T )−A(ξexp)K0(r/ξexp) = B(ξexp)

exp[−7r/ξexp]

(r/ξexp)0.2
. (20)

We have checked at T  =  0.5 and 0.55 that equation (20), for which we lack a theoretical 
justification, works for all r � 1 (in the sense of an acceptable χ2/dof). Our standard 
regularity condition Ceq

4 (r = 1,T ) ∼ 1 tells us that

7 The r � ξexp asymptotic behavior in equation (16) has an additional factor ξ−η as compared with the free field, 
equation (A.4). This extra factor is the origin of the wave-function renormalization Zφ ∼ ξη/2 [27, 28], which for 
η = 0 will produce a logarithmic divergence, see also the discussion of equation (17).

https://doi.org/10.1088/1742-5468/aae2e1
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B(ξexp) ∼
[

1

ξexp

]0.2
for ξexp → ∞. (21)

We are finally ready to consider the extrapolation to large ξexp of the ratios ξeqk,k+1/ξexp. 
We shall start by dividing the ξeqk,k+1/ξexp by their free-field value in equation (A.14):

Jk ≡
ξeqk,k+1

ξexp

1

2

Γ2[(k + 1)/2]

Γ2[(k + 2)/2]
. (22)

Our working hypothesis is that Jk → 1 for large ξexp. Then, a straightforward compu-
tation starting from equations (20) and (21) predicts that the finite-ξexp corrections 

for ξeqk,k+1 = Ieqk+1/I
eq
k  take the form of a series expansion in the corrections-to-scaling 

function

v(ξexp) =
1

(ξexp)0.2 A(ξexp)
. (23)

In addition, we have the standard corrections in 1/ξexp, stemming from our consider-
ation of continuous functions of r/ξexp while numerical data can be obtained only for 
integer r. Accordingly, we have fitted our data to

Jk = 1 + ak v(ξexp) +
b
(1)
k

ξexp
+

b
(2)
k

ξ2exp
, (24)

Table 1. For each temperature in our simulations, we report the results of a fit 
to equation (18). Given that the numerical estimates of Ceq

4 (r;T ) are dramatically 
correlated for dierent distances r, we use as the fit’s figure of merit the diagonal 
χ2 (i.e. the χ2 statistics as computed, keeping only the diagonal terms in the 
covariance matrix). These correlations are responsible for the anomalously low 
χ2 that we find. The distances included in the fit are rmin � r � rmax (see [22] 
for details). To compute errors in the fit parameters, namely A(ξexp) and ξexp, 
we employ the jackknife as implemented in [41]: we fit for each jackknife block 
(using for all blocks the diagonal covariance matrix), and compute errors from 
the blocks’ fluctuations. We also report the ratio ξeq12/ξexp (in order to account 

for statistical correlations, errors were computed with the jackknife). In a free-

field theory, ξFF,eq12 /ξexp = π/2 = 1.570 7963 . . ., see equation (A.14), which is fairly 
close to our numerical results for the Edwards–Anderson model. The behavior of 
ξeq12/ξexp in the limit of large ξexp is studied in figure 2 bottom.

T rmin rmax χ2/dof A(ξexp) ξexp ξeq12/ξexp

0.50 19 202 13.72/182 0.2295 (34) 24.98 (30) 1.5758 (27)
0.55 14 166 70.53/151 0.2469 (27) 18.10 (16) 1.5757 (24)
0.60 10 142 36.85/131 0.2655 (20) 13.63 (8) 1.5771 (21)
0.65 8 113 47.37/104 0.2812 (19) 10.68 (6) 1.5772 (16)
0.70 8 103 62.60/94 0.2981 (20) 8.59 (4) 1.5815 (22)
0.80 5 66 22.82/60 0.3259 (12) 5.942 (17) 1.5798 (9)
0.90 3 50 35.97/46 0.3566 (7) 4.358 (8) 1.5841 (5)
1.00 4 39 5.38/34 0.3867 (10) 3.355 (6) 1.5893 (8)
1.10 4 31 9.70/26 0.4189 (11) 2.671 (4) 1.5994 (9)
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Figure 2. Top: the consistency condition Ceq(r = 1) ∼ 1, see equation (17), requires 
the amplitude in the fit in equation (18) to scale as A(ξexp → ∞) ∼ 1/log ξexp. Indeed, 
the plot shows that A(ξexp)log ξexp is excellently represented, χ2/dof = 2.2/5, by a 
cubic polynomial in 1/ξexp, implying A(ξexp)log ξexp ≈ 0.8 for large ξexp. Bottom: if 
the non-standard scaling (17) holds true, all the Jk defined in equation (22) should 

tend to 1 when ξexp → ∞ (the Jk are the Edwards–Anderson ξeqk,k+1/ξexp divided by 

their free-field counterparts). We show Jk as a function of 1/ξexp, for k = 1/2, 1, 3/2 

and 2. Lines are fits to equation (24) (note that the function v(ξexp), equation (23), 
is continuous, but has an infinite slope at 1

ξexp
= 0). The corresponding figures of 

merit of these are χ2/dof = 2.4/6 (k  =  1/2), χ2/dof = 4.0/6 (k  =  1), χ2/dof = 3.9/6 
(k  =  3/2) and χ2/dof = 10.0/6 (k  =  2).

Table 2. Second moment correlation length in equilibrium as computed in an 
L  =  128 system by means of a parallel tempering simulation (data from [29]). We 

expect ξ2nd moment,eq = ξexp, see the discussion of equation (19). In fact, leaving aside 

T  =  0.5 (because an L  =  128 lattice is clearly too small to represent the L → ∞ 
limit for that temperature), the agreement with the corresponding values for ξexp 
in table 1 is impressive.

T ξ2nd moment,eq

0.50 23.99(17)
0.55 17.95(11)
0.65 10.753(39)
0.60 13.712(65)
0.70 8.649(26)
0.80 5.968(13)
0.90 4.3854(71)
1.00 3.3657(45)
1.10 2.6782(51)

https://doi.org/10.1088/1742-5468/aae2e1
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with fitting parameters ak, b
(1)
k  and b

(2)
k . We have found fair fits to equation (24), see 

figure 2 bottom, even for k as small as k  =  1/2 (the smaller the k, the more highlighted 
the small-r region). A(ξexp) is promoted to a continuous function of ξexp through the fit 
in figure 2 top (this is needed to compute v(ξexp)). To assess the relative importance of 

the correction terms in equation (24), we may consider b
(1)
k /ak: in figure 2 bottom, these 

ratios of amplitudes are b
(1)
1/2/a1/2 ≈ 40, b

(1)
1 /a1 ≈ 6.6, b

(1)
3/2/a3/2 ≈ 11, and b

(1)
2 /a2 ≈ 52.

Notice that the equilibrium second-moment correlation length was computed in 
[30] (which coincides with ξexp, see equation (19) and table 2), as well as the spin-glass 
susceptibility, recall equation (10). A very large value of ξexp ≈ 200 was reached thanks 
to a combination of parallel tempering, cluster methods and finite-size scaling [30]. 
However, the scaling of χ was barely under control, in spite of the very large ξexp. The 
short-distances behavior identified in equations (20) and (21) explains this diculty. 
Indeed, using the equivalence χ = 2πIeq1 , only valid in D  =  2, one easily finds that

χ = ξ2
[
b0χ + aχ v(ξexp) +

b
(1)
χ

ξexp
+

b
(2)
χ

ξ2exp
+

b
(3)
χ

ξ3exp
+ . . .

]
, (25)

where aχ and the b
(i)
χ  are scaling amplitudes. A fair fit to equation (25) is shown in the 

full line in figure 3. The width of that full line has been chosen to correspond with the 

error bars, while the dotted line in figure 3 is the leading term χ ∼ b
(0)
χ ξ2exp. We see in 

figure 3 that the full and the dotted lines coalesce only for ξexp > 100, in nice agreement 
with the results found in [30].

In summary, in the scaling limit ξeq → ∞, the equilibrium correlation function for 
the Ising spin glass seems to follow the non-standard scaling in equation (17). However, 
some readers may consider far-fetched our parameterization of short-distances correc-
tions to the free-field propagator in equations (20) and (21). These skeptical readers 
may keep the more conservative conclusion that violations to the free-field prediction 
Jk(ξeq → ∞) = 1 are, at most, of 0.3% for k = 1/2, 1, 3/2, and 2.

5. Out-of-equilibrium Edwards–Anderson correlations and the theory  
of a free field

Relating the Langevin dynamics of a free field with spin-glass dynamics may seem 
surprising at first sight. Indeed, the dynamics of a spin glass in its paramagnetic phase 
may be characterized through a scaling function [22]

ξ12(tw,T )

ξeq12(T )
= F

(
tw

τ(T )

)
+ O

(
[ξ12(tw,T )]

−ω, [ξeq12(T )]
−ω

)
, (26)

where exponent ω controls corrections to scaling, τ(T ) is a characteristic time scale, 
and the dynamics at short times are described by a dynamic exponent ẑ:

F(x → 0) ∝ x1/ẑ . (27)

https://doi.org/10.1088/1742-5468/aae2e1
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Figure 3. Equilibrium spin glass susceptibility, χ = 2πIeq1 , see equation (10), as a 

function of ξexp. The full line is a fit to equation (25) (χ2/dof = 2.8/5). One could 

set b
(3)
χ = 0 in equation (25), but at the price of including only data with ξexp > 4 in 

the fit (in such a case, one finds χ2/dof = 3.6/4). The dotted line is the dominant 

term in equation (25), χ ∼ b
(0)
χ ξ2exp. The horizontal and vertical ranges of the plot 

have been chosen to match those of figure 2 in [30].

Figure 4. Zoom of data in figure 1. The scaling limit ξexp(T ) → ∞ at fixed 
ξ12(tw,T )/ξ

eq
12(T ) slightly diers for the Edwards–Anderson model (data points) 

and for the non-interacting field (full line). However, disentangling the two models’ 
behavior becomes dicult upon approaching equilibrium, ξ12(tw,T )/ξ

eq
12(T ) → 1. 

The time tw which is explicitly compared with the free-field model in figure 5 is 
marked by a circle (for T  =  0.5).
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We have found empirically ẑ ≈ 7 for the Edwards–Anderson model [22].
The analogous exponent for the free field is ẑFF = 2 (appendix A.1). The obvious, 

hardly surprising conclusion is that spin-glass dynamics are enormously slower than 
free-field dynamics. However, one may synchronize clocks between these two wildly 
diering systems by requiring (superscripts FF stand for free field)

f =
ξ12(tw,T )

ξeq12(T )
=

ξFF12 (t
FF
w )

ξFF,eq12

. (28)

This clock synchronization was implicitly performed in figure 1. We zoom this figure in 
figure 4 making it clear that the clock synchronization works only approximately: the 
free field and the Edwards–Anderson limit behave in the same way only in the limit of 
a system in thermal equilibrium.

In order to further expose the dierence, in figure 5 we compare the Edwards–
Anderson model correlation function C4(r, tw;T ) with its free-field counterpart in 
figure 5, after the appropriate parameter matching. It is clear that, even setting the 
same ξexp for both models and synchronizing the clocks as in equation (28), the free-
field propagator has a higher curvature, as a function of r.

Figure 5. Main: for T  =  0.5, we compare the Edwards–Anderson correlation 
function C4(r, tw) with its free-field counterpart G(r, tFFw ), see equation (A.3). To 

match the parameters for the free field, we fix ξFF12 (t
FF
w )/ξFF,eq12 = 0.824 585, the value 

pinpointed by the circle in figure 4, and take ξexp(T = 0.5) from table 1. The overall 
normalization of the free field is chosen to have C4(r = 1, tw) = G(r = 1, tFFw ). We also 
compare the two propagators with the asymptotic form of the equilibrium Edwards–
Anderson correlation function, A(ξexp)K0(r/ξexp). Top: ratio C4(r, tw)/G(r, tFFw ) as 
a function of r.

https://doi.org/10.1088/1742-5468/aae2e1
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6. Conclusions

We have studied the out-of-equilibrium dynamics of the 2D Edwards–Anderson model 
with binary couplings. We have been able to study the full range of dynamics from the 
initial transients to the equilibrium through numerical simulations with a time span of 
11 orders of magnitude. We have considered the spatial dependence of the Edwards–
Anderson correlation function C4(r, tw), that has been compared with the propagator 
of a free-field theory. Much to our surprise, we found that, after an appropriate clock 
synchronization between the two models, the free-field propagator provides a very good 
approximation to C4(r, tw) in the out-of-equilibrium regime. Furthermore, in the scal-
ing limit ξeq12 for the equilibrium regime, after a logarithmic wavefunction renormaliza-
tion, we find it extremely dicult to distinguish the two models numerically.
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Appendix. The out-of-equilibrium dynamics of the free scalar field

The Edwards–Anderson model in spatial dimension D  =  2 lies within its paramagnetic 
phase at all positive temperatures. Therefore, the relevant renormalization group fixed 
point is the one of the free scalar field (see e.g. [27, 28]). This observation implies that, 
at least in equilibrium, the free-field fixed point rules the system behavior at distances 
r � ξeq.

However, the D  =  2 Edwards–Anderson model and the free-field theory might dier 
for distances r ∼ ξeq. Furthermore, at these length scales, the two theories should be 
compared both under equilibrium and out-of-equilibrium conditions. In order to con-
front the two models, we compute here for the free field the same quantities that were 
studied for the Edwards–Anderson model in the main text.

Our starting point are the Langevin dynamics for a free field [27]. At the initial 
time, the field is fully disordered. The two-body correlation function G(r, tw) is analo-
gous in the free-field theory of the Edwards–Anderson correlation function C4(r, tw), 
recall equation (3). We can compute explictly the free field G in Fourier space

Ĝ(p, tw) =

(
1− exp[−2tw( p

2 + ξ−2
exp)]

)

p2 + ξ−2
exp

. (A.1)
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The above expression defines the so-called exponential correlation length, ξexp (indeed, 

Ĝ(p, tw) tends to the Gaussian propagator 1/( p2 + ξ−2
exp) in the limit of large tw). Note as 

well that there are two characteristic lengths in equation (A.1), namely the correlation 
length ξexp and the diusion length 

√
tw . Thus, before starting our computation, it will 

be useful to introduce dimensionless length (y) and time variables (w):

y = r/ξexp, w = 2tw/ξ
2
exp. (A.2)

Rotational invariance implies that the propagator will depend only on the length y of 
vector y (on a lattice, rotational invariance is recovered only in the continuum limit 
ξexp → ∞ [27]; in the context of out-of-equilibrium spin glasses, the recovery of rota-
tional invariance was investigated in [16]).

A straightforward computation (appendix A.3) allows us to transform back equa-
tion (A.1) from Fourier to real space:

G(r, tw) = ξ2−D
exp FD(y,w), FD(y,w) =

1

(4π)D/2

∫ w

0

ds
exp[−s− y2

4s
]

sD/2
. (A.3)

Armed with equation (A.3) we can compute, using the free field analogous theory, the 
Ik(tw) integrals defined in equation (5). This computation is performed in appendix 
A.1. Equation (A.3) also simplifies the discussion of the large y limit taken at fixed w  
(appendix A.2).

The opposite limit, w → ∞ for fixed y, yields the (equilibrium) Gaussian propagator 
(see [27] for further details):

Geq(r) =
ξ2−D
exp

(4π)D/2

∫ ∞

0

ds
exp[−s− y2

4s
]

sD/2
=

ξ2−D
exp

(2π)D/2

KQ(y)

yQ
, (A.4)

where Q = (D − 2)/2 and KQ is the Qth-order modified Bessel function of the second 
kind [40]. The large and small-y behavior for D  >  2 is

Geq(r/ξexp → ∞) ∼ e−y

y(D−1)/2
, Geq(r/ξexp → 0) ∼ 1

yD−2
. (A.5)

The neighborhood of y → 0 for the case D  =  2 deserves special care:

Geq(r/ξexp → 0) ∼ log
1

y
. (A.6)

A.1. Integral estimators of dynamic correlations

In analogy with equation (5), we shall characterize the free-field propagator through its 
moments (the superindex FF stands for free field  )

IFFk (tw) =

∫ ∞

0

dr rk G(r, tw), (A.7)

where we have exploited the isotropy of the free-field propagator. We shall specialize to 
D  =  2, and compute the moments for a propagator of the form
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G(r, tw) = A
∫ w

0

ds
exp[−s− y2

4s
]

s
, (A.8)

recall equations (A.2) and (A.3). In particular, equation (A.3) implies for the amplitude 
A = 1/(4π). However, the main results in this section will be A-independent (in par-
ticular, A could depend on ξexp or w). We find

IFFk (tw) = A ξk+1
exp

∫ ∞

0

dy yk
∫ w

0

ds
exp[−s− y2

4s
]

s
, (A.9)

= A ξk+1
exp 2k Γ[(k + 1)/2] γ[(k + 1)/2,w], (A.10)

by interchanging the ordering of the y and s integrals. In the above expression, Γ(x) is 
Euler’s Gamma function and γ(x,w) is the lower incomplete Gamma function

γ(x,w) =

∫ w

0

ds sx−1e−s, γ(x,w → ∞) = Γ(x) +O(wx−1e−w). (A.11)

For later use, we recall its small-w behavior:

γ(x,w → 0) =
wx

x
+O(wx+1). (A.12)

The ξFFk,k+1(tw) estimate of the size of the coherence length, recall equation (4), is

ξFFk,k+1(tw) ≡
IFFk+1(tw)

IFFk (tw)
= 2

Γ[(k + 2)/2]

Γ[(k + 1)/2]

γ[(k + 2)/2,w]

γ[(k + 1)/2,w]
ξexp. (A.13)

The equilibrium limit, w → ∞, is approached exponentially in w (equation (A.11)):

ξFF,eqk,k+1 = 2
Γ2[(k + 2)/2]

Γ2[(k + 1)/2]
ξexp. (A.14)

In other words, the integral estimators of the coherence length, in equilibrium but also 
out of equilibrium (at fixed w), are proportional to the exponential correlation length 
ξexp.

In the main text, we paid major attention to the approach to equilibrium of ξ12 as 
computed in the Edwards–Anderson model. The free field analogous of equation (26) is

ξFF12 (tw)

ξFF,eq12

=
γ(3/2,w)

Γ(3/2)

Γ(1)

γ(1,w)
. (A.15)

It is remarkable that equation (A.15) conforms exactly to the ansatz expressed for the 

Edwards–Anderson model in equation (26). Furthermore, because w = 2tw/ξ
2
exp(T ), we 

find τFF(T ) = ξ2exp(T )/2 for the free field analogous of the time scale in equation (26).
We can also compute the free-field exponent ẑFF, recall equation (27), from the 

small-w expansion of equation (A.15) (recall equation (A.12)):

ξFF12 (tw)

ξFF,eq12

=
2
√
π

3
w1/2 +O(w3/2), (A.16)

https://doi.org/10.1088/1742-5468/aae2e1


Out-of-equilibrium 2D Ising spin glass: almost, but not quite, a free-field theory

17https://doi.org/10.1088/1742-5468/aae2e1

J. S
tat. M

ech. (2018) 103301

which implies for the free field ẑFF = 2. The reader may check from equations (A.12)–
(A.14) that the small-w behavior is ξFFk,k+1(tw)/ξ

FF,eq
k,k+1 ∼

√
w for any k, hence the result 

ẑFF = 2 is k-independent. Because ẑFF = 2 is rather smaller than the ẑ ≈ 7 value that 
we found numerically for the Edwards–Anderson model, we conclude that the dynamics 
for the Edwards–Anderson model are enormously slower than the free-field Langevin 
dynamics, which is hardly surprising.

Nevertheless, equation (A.15) shows that ξFF12 (tw)/ξ
FF,eq
12  is a monotonously increas-

ing function of w. Hence, one can parameterize the free-field dynamics in terms of 

ξFF12 (tw)/ξ
FF,eq
12 , rather than w. In this way, we can obtain a meaningful comparison 

of the free field with the Edwards–Anderson dynamics. The quantities compared are 
dimensionless ratios such as ξk,k+1(tw)/ξexp (its value for the free field is given in equa-
tion (A.13)), or in terms of ratios not involving ξexp such as ξ23(tw)/ξ12(tw), recall 
figure 1. From equation (A.13), we easily find

ξFF23 (tw)

ξFF12 (tw)
=

4

π

γ(2,w)γ(1,w)

γ2(3/2,w)
. (A.17)

The limiting values are ξFF23 /ξ
FF
12 = 9/(2π) (for w → 0), and ξFF23 /ξ

FF
12 = 16/π2 (for w → ∞).

A.2. Asymptotic behavior of FD(y,w) (large y at fixed w)

For any finite fixed-time tw, the free-field propagator in Fourier space, Ĝ(p, tw) see 
equation (A.1), is an analytic function in the whole complex plane of the variable p2. 
It follows that the function FD(y,w), defined in equation (A.3), tends to zero at large 
y faster than e−Ay for any A  >  0 (a simply exponential decay corresponds with a pole 
singularity at p2 = −A2 [27]). This statement is in apparent contradiction with the 
asymptotic behavior in equation (A.5) which is exact, but only for tw = ∞. The way 

out of the paradox is simple: Ĝ( p2 = −ξ2exp, tw) = 2tw which becomes a pole singularity 

only in the tw → ∞ limit. It is clear that, at finite tw, some sort of crossover phenom-
enon is present. In this section we aim to discuss this crossover.

We start from the integral representation (A.3)

FD(y,w) =
1

(4π)D/2

∫ w

0

ds eΨD(s,y), (A.18)

ΨD(s, y) = −y2

4s
− s − D

2
log s. (A.19)

Consider the function ΨD(s, y) at fixed y. ΨD(s, y) tends to −∞ both for s → 0,∞. 
These two asymptotic behaviors of ΨD(s, y) are separated by a maximum at

s∗(y) =
y2

D +
√

D2 + 4y2
. (A.20)

Note that s∗(y → 0) ∼ y2, but s∗(y → ∞) ∼ y/2.
Now, imagine that we hold y fixed (y should be large enough to have s∗(y) ≈ y/2 to 

a good approximation). If w � s∗(y) we can estimate FD(y,w) through a straightforward 

https://doi.org/10.1088/1742-5468/aae2e1


Out-of-equilibrium 2D Ising spin glass: almost, but not quite, a free-field theory

18https://doi.org/10.1088/1742-5468/aae2e1

J. S
tat. M

ech. (2018) 103301

saddle-point expansion around s*( y ) that reproduces the w = ∞ asymptotic behavior 
in equation (A.5):

F
(SP)
D (y,w) ∼ e−y

y(D−1)/2
. (A.21)

The error induced by the finite w is  ∼eΨD(w,y)/|∂wΨD(w, y)|, hence exponentially small.
However, because s∗(y) ≈ y/2 for large y, upon increasing y the saddle point s*( y ) 

eventually exits the integration interval 0  <  s  <  w (i.e. for y � 2w we have s*( y )  >  w). 
Obviously, the saddle-point expansion becomes inaccurate for such a large y. Under 
such circumstances, the integrand in equation (A.18) is maximal at s  =  w, which gives 
the large-y expansion

F
(Extreme)
D (y,w) ∼ eΨD(y,w)

|∂wΨD(w, y)|
=

exp[−w − y2

4w
]

wD/2

4w2

y2 − 2Dw − 4w2
. (A.22)

In summary, for any (dimensionless) time variable w one may identify a (dimen-
sionless) crossover length lco through s∗(lco) = w. If y � lco then FD(y,w) is given to 
an excellent accuracy by its equilibrium limit, equation (A.4). Instead, for y � lco the 
asymptotic behavior is given by equation (A.22). Equation (A.20) provides asymptotic 
estimates for the crossover length,

lco(w → ∞) ∼ 2w, and lco(w → 0) ∼
√
2Dw. (A.23)

A.3. Back to real space: the computation of FD(y,z)

For the sake of completeness, let us sketch the derivation of equation (A.3). We need 
to perform the inverse Fourier transform:

G(r, tw) =

∫
dDp

(2π)D
eip·r

(
1− exp[−2tw( p

2 + ξ−2
exp)]

)

p2 + ξ−2
exp

. (A.24)

After introducing the (dimensionless) length and time variables y and w, recall equa-
tion (A.2), as well as the dimensionless momentum u ≡ p ξexp, we find

G(r, tw) = ξ2−D
exp FD(y,w), FD(y,w) =

∫
dDu

(2π)D
eiu·y

1− e−w(u2+1)

u2 + 1
. (A.25)

Next, we note that the derivative with respect to w of FD(y,w) can be computed by 
derivating under the integral sign (we are left with a Gaussian integral):

∂wFD(y,w) =

∫
dDu

(2π)D
eiu·ye−w(u2+1) =

1

(4π)D/2

exp[−w − y2

4w
]

wD/2
. (A.26)

Finally, because FD(y,w  =  0)  =  0, equation (A.3) is recovered from

FD(y,w) = FD(y,w)− FD(y,w = 0) =

∫ w

0

ds ∂sFD(y, s). (A.27)

https://doi.org/10.1088/1742-5468/aae2e1
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