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Abstract—Machine-learned models are often perceived as “black boxes”: they are given inputs and hopefully produce desired outputs.
There are many circumstances, however, where human-interpretability is crucial to understand (i) why a model outputs a certain
prediction on a given instance, (ii) which adjustable features of that instance should be modified, and finally (iii) how to alter a prediction
when the mutated instance is input back to the model.
In this paper, we present a technique that exploits the feedback loop originated from the internals of any ensemble of decision trees to
offer recommendations for transforming a k-labelled predicted instance into a k′-labelled one (for any possible pair of class labels k,
k′). Our proposed algorithm perturbs individual feature values of an instance, so as to change the original prediction output by the
ensemble on the so-transformed instance. This is also achieved under two constraints: the cost and tolerance of transformation.
Finally, we evaluate our approach on four distinct application domains: online advertising, healthcare, spam filtering, and handwritten
digit recognition. Experiments confirm that our solution is able to suggest changes to feature values that help interpreting the rationale
of model predictions, making it indeed useful in practice especially if implemented efficiently.

Index Terms—Machine learning interpretability, Actionable feature tweaking, Recommending feature changes, Altering model
predictions, Ensemble of decision trees.
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1 INTRODUCTION

AN increasing number of companies and organizations
rely on machine learning (ML) techniques to extract

knowledge from the large volumes of data they collect every
day, therefore to run their business more productively.

ML solutions are usually considered as “black boxes”:
they take some inputs and produce desired outputs. As long
as ML models work properly, little attention is devoted to
understand why they achieve such surprisingly predictive
accuracy, or how robust they are when in presence of a
malicious adversary [1]. Still, it is beneficial to have available
techniques supporting humans in interpreting and “debug-
ging” these models, particularly when they fail [2] or lead
to some oddities.1

Excluding recent trends in ML like representation learn-
ing [3], [4], typically the initial effort when designing an
ML solution consists in manually modelling the objects of
a given domain of interest using human knowledge, i.e.,
feature engineering. This step, often time-consuming, aims
to describe each object in the domain using an appropriate
set of properties (features), which define a so-called feature
space. For a given dataset, each object can be considered as
a static point located in the feature space, since each feature
value is deemed fixed; once a model is learned from the
data, each prediction it makes on new objects is irreversible2.

Let us suppose, for example, that we disagree with a
prediction that a model returns for a given object, or that
we would like to enforce switching such a prediction to a
different outcome. Therefore, in this work we address the
following research question: “How can we understand what
can be changed in the input feature vector in order to modify the
prediction accordingly?”

1http://www.telegraph.co.uk/technology/2016/03/24/
microsofts-teen-girl-ai-turns-into-a-hitler-loving-sex-robot-wit/

2The immutability of a model’s prediction on an instance holds at
least until the model is re-trained and updated.

To better clarify this challenge with an example, consider
an ML application in the healthcare domain, where pa-
tients (objects) are mapped to a vector of clinical indicators
(features), such as age, blood pressure, daily carbohydrate
absorbed, etc. Assume next that an ML model has been
designed to accurately predict from these features whether a
patient is at risk of a heart attack or not. If for a given patient
our model predicts that there is a high risk of a heart attack
it would be of great advantage for medical physicians to
also have a tool that suggests the most appropriate clinical
treatment by offering targeted adjustments to specific indi-
cators (e.g., reducing the daily amount of carbohydrate). In
other words, to recommend the clinical treatment to switch
a patient from being of high risk to low risk.

In a past work of ours [5], we introduced an algorithm
for tweaking input features to change the output predicted
by an existing machine-learned model. The mechanism was
originally designed to operate on top of any ensemble of
bagged decision trees [6], yet limited to binary classification.
This paper extends it to the most general case of multiclass
classification task. We exploit specific characteristics of the
model’s internals to generate recommendations allowing
the transformation of an instance whose (predicted) label
is k into another instance whose label is predicted being k′

by the same classifier (k and k′ are possible class labels).
We describe the theoretical framework of the Feature

Tweaking Problem, along with our solution and how to imple-
ment it efficiently. Our approach is then evaluated on four
distinct application domains: online advertising, health-
care, spam filtering, and handwritten digit recognition. The
first three are classical examples of binary classification
tasks, whilst the latter refers to a well-known multiclass
classification problem. More specifically, we use the first
three domains to show how our algorithm can be used
to automatically generate “interpretable” and “actionable”
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suggestions to convert: a low quality advertisement into a
high quality one, a diabetic patient into a healthy one, and
a spam email into a non-spam one. Such insights may in
turn be used to achieve different goals. In the case of online
advertising, advertisers may improve their return on invest-
ment if they implement recommended changes to their ad
campaigns. Medical physicians may subject their patients to
more effective treatment protocols when supported by those
suggestions. On the other hand, malicious entities having
access to a model’s internal structure might take advantage
of our algorithm to carefully craft perturbed instances which
induce an existing classifier to misclassification, i.e., to mas-
querade a spam message as non-spam. This kind of attack is
the typical subject of interest of adversarial learning [7], which
is a branch of machine learning (mostly, deep learning [8])
that studies how to design predictive models that are robust
against manipulations of the input performed by an attacker
whose aim is to coerce prediction errors [1], [9], [10], [11],
[12]. Several approaches to adversarial learning treat ML
models as black boxes; instead, we assume we can access the
structure of the model we are considering. Furthermore, the
focus of this work is on the interpretability and actionability of
generated suggestions rather than their exposure to be used
as adversarial examples, which we leave as future work.

We finally use the last domain (i.e., handwritten digit
recognition) to assess the computational efficiency of our
implementation based on space partitioning data structures.

Overall, with respect to our previous work [5], this paper
contains the following additional contributions:
• We generalise our method to the case of multiclass

classification problem (Section 2);
• We explain in more detail the algorithm we intro-

duced, along with a thorough complexity analy-
sis and the improvements we brought to make it
more computationally-efficient when implemented
in practice (Section 3);

• We further assess the validity of recommendations
generated with our approach on two additional bi-
nary classification use cases, namely healthcare (Sec-
tion 4.2) and spam filtering (Section 4.3);

• We measure the speedup obtained with our efficient
implementation on a third additional use case, which
represents an example of multiclass classification
task, i.e., handwritten digit recognition (Section 5);

• We publicly release on GitHub3 the source code of
the implementation of the methodology proposed.

2 PROBLEM STATEMENT

In our previous work we focus on binary classification [5],
whilst in this work we formulate our problem statement
in the more general case of multiclass classification, i.e., K-
ary classification (K ≥ 2). Still, we consider ensembles of
decision trees [6] as an effective solution to this problem, as
also proved in many Kaggle competitions [13]. Additionally,
we discuss how the internals of an existing ensemble of
decision trees can be used to derive a feedback loop for
recommending how a k-labelled predicted instance can be
turned into a k′-labelled one, where both k and k′ indicate
one of the possible K class labels.

3https://github.com/gtolomei/ml-feature-tweaking

2.1 Notation
Let X ⊆ Rn be an n-dimensional vector space of real-valued
features. Any x ∈ X is an n-dimensional feature vector, i.e.,
x = (x1, x2, . . . , xn), representing an object in the vector
space X . Suppose that each x is associated with a K-ary
class label, and let Y = {1, . . . ,K} be the set encoding all
such possible class labels.

We assume there exists f : X 7−→ Y as an unknown target
function that maps any feature vector to its corresponding
class label. In addition, we let f̂ ≈ f which is learned from
a labelled dataset of m i.i.d. instances D = {(xi, yi)}mi=1.
More specifically, f̂ is the estimate that best approximates f
on D, according to a specific loss function `. Such a function
measures the “cost” of prediction errors we would make if
we replaced the true target f with the estimate f̂ . Eventually,
learning f̂ reduces to solving the following optimization
problem (empirical risk minimization):

f̂ = argminf∗`(f
∗,D).

The flexibility vs. interpretability of the estimate f̂ we
learn depends on the assumptions we make on the family
of functions (i.e., hypothesis space) which f̂ has been picked
from by the learning algorithm, and the loss function `.

In this work, we focus on f̂ represented as an ensemble of
T bootstrap aggregated learners, i.e., bagged decision trees:

f̂ = φ(ĥ1, . . . , ĥT )

where each ĥt : X 7−→ Y is a base decision tree classifier,
and φ is the function responsible for combining the output
of all individual base classifiers into a single prediction.
Several combination rules can be used to implement φ [14].
Assuming such rules operate on class labels output by each
base classifier, φ can reduce to a majority voting strategy,
and the output of the ensemble on the generic input x be
computed as follows:

f̂(x) = arg max
y∈Y

T∑
t=1

1y(ĥt(x)) (1)

where 1y(k) is an indicator function which evaluates to 1 iff
k = y, 0 otherwise.

In the remainder of this work, we assume f̂ is learned
once for all, and never gets re-trained and updated; this is
to guarantee that the prediction output by the model on an
instance x never changes over time, i.e., f̂(x) is constant.

2.2 Enforcing Prediction Switch
The aim of this work is to identify how to transform an
instance into another one, such that its original class label
predicted by the ensemble turns into a different prediction.
More formally, let x ∈ X be a k-labelled predicted instance,
such that f̂(x) = k. The task can now be defined as
transforming the original input feature vector x into a new
feature vector x′ (x  x′), such that f̂(x′) = k′ 6= k.
Moreover, we accomplish an optimised form of the problem
by choosing x′ as the best transformation among all the
possible transformations x∗, according to a cost function
δ : X × X 7−→ R. This is defined as follows:

x′ = arg min
x∗

{
δ(x,x∗) | f̂(x) = k ∧ f̂(x∗) = k′

}
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Intuitively, the cost function measures the “effort” of trans-
forming x into x′. For example, if δ(x,x′) = ||x − x′||0
this will correspond to the number of features affected by
the transformation. Alternatively, δ(x,x′) = ||x − x′||2 will
measure the Euclidean distance (also known as L2-norm)
between the original and the transformed vector.

More complex functions which takes into account the
cost of transforming each individual feature can also be
designed. This is to reflect all those situations – indeed very
common in practice – where the value of some features
may be relatively easy to change (e.g., increase the daily
dosage of a drug), whilst for others it would rather be
much harder, or even impossible (e.g., decreasing the weight
or the age of an individual, respectively). Formally, this
means introducing a set of functions {δi}ni=1, where each
δi : Ri × Ri 7−→ R measures the cost of transforming the
feature indexed by i, and Ri denotes its domain of values.
Note that the definition above is still valid when the value
of a feature xi cannot be actually modified, as in such a case
it will be δi(xi, x′i) = +∞ for any x′i 6= xi. Overall, δ will be
responsible for combining each individual δi into a single-
valued cost, i.e., δ = δ1 ⊕ . . . ⊕ δn, where ⊕ can be any
aggregating function, such as the sum or the mean.

Finally, note that we do not make any assumptions on
f(x) and f(x′), i.e., we are not demanding f(x) = k nor
f(x′) = k′ since, in general, this can only be stated for
training labelled instances. Still, if the learned model f̂ is
highly accurate we can also be quite confident that predicted
labels very likely match with the true ones.

2.3 k-leaved Paths

Any root-to-leaf path of a single decision tree ĥt in f̂ can
be interpreted as a cascade of if -then-else statements, where
every branch node (i.e., non-leaf) is a boolean test on a
specific feature value against a threshold. We restrict the
tree decisions to be binary representations as any multiway
decision can be represented in a binary form and there
is little performance benefit in n-ary splits. An instance’s
feature value is then evaluated at each node to determine
which branch to traverse. This is repeated until the leaves
are reached, whereby one of the K classification labels (i.e.,
k ∈ {1, . . . ,K}) are defined and assigned.

In the following, we provide more formal definitions
which will be used hereinafter in the paper.

Definition 1 (root-to-leaf path). Let ĥt be a non-empty
binary decision tree and Nt 6= ∅ denote the set of its
nodes, where rt ∈ Nt is the root. Moreover, let Lt ⊆ Nt

be the set of all leaves of the tree (i.e., the set of all nodes
with no children). Let us enumerate all the elements of
Lt using a pre-order depth-first traversal of ĥt, so that we
obtain a mapping λ : Lt 7→ N. Since 1 ≤ |Lt| ≤ |Nt|+1

2 ,
we let λ : Lt 7→ {1, . . . , |Nt|+1

2 }. Thus, we define the
sequence pt,j = (nt,1, . . . , nt,|pt,j |) as the j-th root-to-leaf
path of ĥt, such that:

• nt,i ∈ Nt, ∀i ∈ {1, . . . , |pt,j |};
• nt,i+1 is the child of nt,i, ∀i ∈ {1, . . . , |pt,j | − 1};
• nt,1 = rt, i.e., the first node of the sequence is the

root;

• nt,|pt,j | ∈ Lt and λ(nt,|pt,j |) = j, i.e., the last node of
the sequence is the j-th leaf.

Definition 2 (root-to-leaf path length). Given the j-th root-
to-leaf path of ĥt as pt,j = (nt,1, . . . , nt,|pt,j |), we define
its length as the number of its branch nodes, i.e., |pt,j |−1.

Note that the number of leaves of a tree is equal to the
number of its root-to-leaf paths. Therefore, Pt =

⋃|Lt|
j=1 pt,j

is the set of all root-to-leaf paths of ĥt. Furthermore, the
above two definitions are still valid when ĥt has just one
node and this is both the root and the only leaf, i.e., when
Nt = Lt = {rt}. Indeed, in this edge case there exists only
one root-to-leaf path pt,1 = (rt), whose length is equal to
|pt,1| − 1 = 0.

In the following, we assume that the length of each path
of a decision tree is at most n, i.e., |pt,j | − 1 ≤ n, which
corresponds to n branch nodes (boolean conditions), one for
each distinct feature.4 This also means that each ĥt is at most
a depth-n binary tree.

It is worth noticing that, in general, we cannot ensure a
bound to the depth of each tree of the ensemble. In practice
though, we can specify such a bound at training time by
capping the value of the hyperparameter of the model that
regulates the maximum depth d of all trees to the number n
of features, i.e., by setting d = n.

Definition 3 (k-leaved path). Let Pt be the set of all root-to-
leaf paths of ĥt. A k-leaved path pkt ∈ Pt is a root-to-leaf
path that leads to a leaf node labelled as k.

Definition 4 (feature predicate). Let i be a feature identifier,
and Ri ⊆ R be the domain of values of i. A feature
predicate is a function πi : Ri 7−→ {true,false}. Each
branch node of a decision tree encodes two possible
feature predicates, i.e., either πi(xi) = (xi ≤ θi) or
πi(xi) = (xi > θi), with θi ∈ R.

Putting together all the definitions above, we charac-
terise the encoding of each k-leaved path as follows.

Definition 5 (k-leaved path encoding). Let pkt,j be the j-th
root-to-leaf path of ĥt ending up in a k-labelled leaf. We
represent this with a boolean expression made of up to
n clauses, as follows:

pkt,j = X1 ∧X2 ∧ . . . ∧Xn (2)

where each Xi = πi(xi) is a boolean variable whose
value is determined by the output of the predicate on
the feature indexed by i.

Clearly, there exists only one assignment which satisfies
a path, namely the one where all the clauses are satisfied
(Xi = true, ∀i ∈ {1, . . . , n}). More generally, we provide
the following definition.

Definition 6 (path-satisfactory instance). Let pkt,jbe the j-th
k-leaved path of ĥt encoded as specified in Definition 5.
We denote by xSAT

t,j any input whose feature values satisfy
all the predicates encoded by the path pkt,j , and we call it
a path-satisfactory instance of pkt,j . As such, ĥt(xSAT

t,j ) = k.

4In general, there can be multiple boolean conditions associated
with a single feature along the same path.
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Of course, there can be several (possibly, infinitely many)
path-satisfactory instances for the same path pkt,j . In the next
section, we discuss how we select among those candidates.

So far, we have considered only a single k-leaved path of
one decision tree ĥt; however, in general, the same tree may
contain multiple k-leaved paths. We denote by P k

t ⊆ Pt the
set of all the k-leaved paths in ĥt, and P k =

⋃T
t=1 P

k
t the

set of all the k-leaved paths in the ensemble f̂ . Note that we
can encode P k as a disjunctive normal form (DNF) boolean
expression.

2.4 Tweaking Input Features

Given our input feature vector x, we know from our hy-
pothesis that f̂(x) = k. If the overall prediction output by
the ensemble is obtained using a majority voting strategy as
described in Equation 1, it follows that:

f̂(x) = k ⇐⇒ k = arg max
y∈Y

T∑
t=1

1y(ĥt(x))

Therefore, if we denote by T (x,k) =
⋃T

t=1{t | ĥt(x) = k} the
set of indices of base decision trees which output k when
input with x, it must hold that:

|T (x,k)| ≥ |T (x,k′)| ∀k′ 6= k

Our goal is to tweak the original input feature vector x
so as to adjust the prediction made by the ensemble from k
to k′. To achieve this, we operate as follows. For each tree ĥt
of the ensemble, we consider the set P k′

t of all its k′-leaved
paths. Then, with each pk

′

t,j ∈ P k′

t we associate a crafted
path-satisfactory instance xSAT

t,j = x′t,j ∈ X that satisfies
that path – i.e., an instance whose adjusted feature values
satisfies the boolean expression encoded in pk

′

t,j , therefore
finishing on a k′-labelled leaf, so that ĥt(x′t,j) = k′.

Among all the possibly infinite instances satisfying pk
′

t,j ,
we restrict to x′t,j(ε) to be feature value changes with a
“tolerance” bounded by ε: we call this the ε-satisfactory
instance of pk

′

t,j . Without loss of generality, we let ε ∈ Rn
>0,

i.e., an n-dimensional vector of positive thresholds, one for
each feature.

We consider pk
′

t,j containing at most n boolean condi-
tions, as specified by Equation 2. Therefore, for any fixed ε
we define x′t,j(ε) as follows:

x′t,j(ε)[i] =

{
θi − εi if the i-th condition is (xi ≤ θi)
θi + εi if the i-th condition is (xi > θi)

(3)
It is worth noticing that, in general, different features may
have different domains, and therefore different scales. In
case we want to operate with a single, global tolerance –
i.e., with a scalar ε ∈ R>0 instead of the vector ε – we can
standardise/normalise features in advance.

By applying Equation 3 to each pk
′

t,j ∈ P k′

t , we obtain
a set of ε-satisfactory transformations Γk′

t =
⋃

j∈Pk′
t

x′t,j(ε)

associated with the t-th tree ĥt, and overall Γk′ =
⋃T

t=1 Γk′

t

the set of all the ε-satisfactory transformations derived from
all the trees of the ensemble.

Interestingly, the set of ε-satisfactory transformations Γk′

does not depend on the input feature vector x; in fact, Γk′

can be statically computed once for all as soon as we learn
the ensemble f̂ , and therefore once the set P k′ is known.

Anyway, not every transformation in Γk′ is valid to
achieve our goal. Indeed, if we pick a transformation
x′ = x′t,j(ε) ∈ Γk′ induced by a single k′-leaved path of
a specific tree ĥt this may have an impact on other trees
of the ensemble. As such, we cannot simply replace our
original input x with x′, since there might exist l ∈ T (x,k′)

whose corresponding tree by definition already provides the
correct prediction when this is input with x, ĥl(x) = k′,
yet changing x into x′ leads to ĥl(x

′) = k 6= k′. In other
words, by changing x into x′ we are only guaranteed that
the prediction of the t-th base classifier is correctly fixed,
i.e., from ĥt(x) = k to ĥt(x′) = ĥt(x

′
t,j(ε)) = k′. The overall

prediction for x′ may or may not be fixed, whereby f̂(x′)
may still output k, exactly as f̂(x) did.

If the change from x to x′ also leads to f̂(x′) = k′, then
x′ will be a candidate transformation for x. More formally,
we define the set of candidate transformations with respect
to any target class as follows.

Definition 7 (k-labelled ε-satisfactory candidates). Let f̂
be an ensemble of T base classifiers {ĥt}Tt=1, k ∈ Y
be a target class label and Γk be the set of possible ε-
satisfactory transformations derived from the set P k of
all the k-leaved paths of the ensemble. Then:

Γk
c = {x′ | x′ ∈ Γk ∧ f̂(x′) = k}

is the set of k-labelled, ε-satisfactory candidate transfor-
mations.

Our feature tweaking problem can thus be generally
defined as follows.
Definition 8 (Feature Tweaking Problem). Let f̂ be an

ensemble of T base classifiers {ĥt}Tt=1, x an instance
such that f̂(x) = k, k′ ∈ Y , k′ 6= k a target class label,
and δ : X × X 7−→ R a cost function.
The feature tweaking problem aims to find another
instance x′ among all the possible k′-labelled, ε-
satisfactory candidates Γk′

c , so that δ(x,x′) is minimum:

x′ = arg min
x∗∈Γk′

c

{
δ(x,x∗)

}
(4)

In [15], it has already been proven that a problem similar
to the one we define above is NP-hard, as it reduces to DNF-
MAXSAT. Our version, in fact, introduces an additional con-
straint (ε) which further restricts the possible way features
can be tweaked, and thus it is itself NP-hard.

The problem as described in Definition 8 is still valid for
the base case when T = 1; there, in particular, Γk

c = Γk (for
all k). Indeed, in that scenario the ensemble is composed
of a single base classifier (f̂ = ĥ) – i.e., the ensemble
contains a single decision tree and tweaking its prediction
also results in changing the overall prediction. Note that
when there is only one decision tree, our problem can
be solved optimally: we can enumerate all the k′-leaved
paths, choose the one with the minimum cost, and check
if the threshold of tolerance ε is satisfied. Because base trees
are interconnected through the features they share, simply
enumerating k′-leaved paths does not work for an ensemble

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TKDE.2019.2945326

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. Y, MONTH YEAR 5

of trees, since the output of a base tree may affect outputs
of its sibling trees. This motivates why we need to further
restrict the set of all ε-satisfactory transformations to the
subset of candidates, as discussed in Definition 7. Still, it is
worth noticing that there might be cases where the feature
tweaking problem has no solution. For example, consider
the case of a binary classification task where the majority
of decision trees in the ensemble do not have any root-
to-leaf path ending up in a leaf labelled with the target
class. In such an extreme scenario, the set of candidate
transformations will be empty as no perturbation of the
original instance will ever enforce the ensemble to change its
prediction. However, we believe that this is a very peculiar
case as it would shape up a situation where the ensemble is
seriously compromised and flawed in the first place (i.e., if
the majority of decision trees have all their paths leading to
leaves with the very same class label, the model will always
predict the same class, no matter what the input is).

3 THE FEATURE TWEAKING ALGORITHM

In this section, we describe the intuition behind our algo-
rithm to solve the problem defined in Equation 4. More
precisely, we present the naı̈ve solution introduced in our
previous work [5], and a more efficient solution we have
later designed, along with its pseudo-code implementation.

At query time, i.e., online, we are given an input feature
vector x we want to tweak, a target class label k′ ∈ Y ,
and the set of k′-labelled ε-satisfactory candidates Γk′

c . Our
problem thereby reduces to a nearest neighbour search using
the function δ.

So far, we have not made any assumption on the cost
function δ, i.e., we did not specify whether it is a distance
metric or not. However, plausible definitions for it may be
indeed distance metrics, such as: δ = L0-norm (Hamming
distance), δ = L1-norm (Manhattan distance), or δ = L2-
norm (Euclidean distance), just to name a few.

Furthermore, we have already observed that the set of
ε-satisfactory candidates Γk

c (for all k ∈ Y) does not depend
on the input feature vector x we may ultimately want to
perturb, yet it can be computed offline from the k-leaved
paths of the ensemble, once this is learned from data. We
will see how this can be exploited to come up with a more
efficient version of our original, naı̈ve algorithm.

3.1 Naı̈ve Solution

The simplest solution to the feature tweaking problem is
proposed in our previous work [5], and consists of per-
forming a linear search, namely computing the function δ
from the query instance x to every other instance x′ ∈ Γk′

c ,
and keeping track of the “best so far”. This solution has a
running time complexity of O(nm), where n is the dimen-
sionality of X (i.e., the feature space) and m = |Γk′

c | is the
cardinality of the set of candidates.

It is worth noticing that m is related to n, as follows. The
size of valid k′-labelled candidates are bound to the number
of k′-leaved paths in the ensemble, i.e.,m = |Γk′

c | ≤ |P k′ |. In
turn, |P k′ | is bound to the sum of k′-leaved paths of all trees,
i.e., |P k′ | ≤

∑T
t=1 |P k′

t |. According to Definition 2, each pkt,j
of a single decision tree is by design at most a length-n path

then ĥt is a depth-n binary tree, whose number of leaves
is therefore bounded to 2n. As the total number of leaves
coincides with the total number of paths, we can also state
that |P k′

t | ≤ 2n, ∀k′, t. Overall, m ≤
∑T

t=1 |P k′

t | ≤ 2nT .
Assuming 2n � T 5, we can express the worst case time
complexity of the naı̈ve solution in terms of the number n
of features, which is O(2n).

3.2 Space-Partitioning Solution
One of the novel contributions of this work is a solution to
the feature tweaking problem which is more efficient than
the one already proposed in [5] and described above. At the
core of this new algorithm is the usage of a space-partitioning
strategy to perform the nearest neighbour search. More
precisely, our solution makes use of a spatial index, which
arranges data (i.e., candidate ε-transformations) in a tree-
like structure that allows discarding branches at once if they
do not meet the specific search criteria. Possible examples
of such indices are: R-trees [16], k-d trees [17], and ball
trees [18]. They differ from each other by the way in which
they recursively split data at each tree node: R-trees sort data
into hyper-rectangles; k-d trees divide data into two halves
around a median point; and ball trees partition data into
hyper-spheres. The advantage of using one of the spatial
data structures above is that this would generally allow
us to lower the time complexity of the nearest neighbour
search from linear (as in the case of the naı̈ve solution) to
logarithmic in the size of candidates, i.e., from O(nm) to
O(n logm)6. Of course, this comes at the cost of processing
data into a spatial index first, but this is a fair price to pay
in exchange for quicker searches, since data changes are
usually much less frequent than queries.

Our approach therefore consists of two steps: an offline
step to build the spatial index from the set of all possible k-
labelled ε-satisfactory candidates induced by the ensemble;
and an online step which takes as input a feature vector (i.e.,
a query) and returns the best candidate transformation of it
according to the cost function δ. In the following, we discuss
the two steps above separately.

3.2.1 Offline step: building spatial index from candidates
This step takes as input a learned ensemble f̂ and produces
as output a set of spatial indices, i.e., one for each collection
of k-labelled candidates Γk

c ,∀k ∈ Y . The details of this step
are described in Algorithm 1.

The algorithm starts examining each individual class
label k ∈ {1, . . . ,K} (outer loop, line 3); for each label, it
computes the set of corresponding k-labelled candidates,
which initially is empty (line 4). It therefore considers all
the trees of the ensemble (inner loop, line 5), and for each
tree it retrieves the set of its k-leaved paths P k

t using
the subprocedure GETKLEAVEDPATHS (line 6). Then, for
each k-leaved path it crafts the corresponding ε-satisfactory
instance x′t,j(ε), i.e., an instance that satisfies that path
according to Equation 3 and implemented by subprocedure

5This is indeed reasonable in practice, if we consider that with n =
30 features, 2n = O(109), whilst large ensembles typically contain T =
O(103 ÷ 104) trees.

6The actual time complexity may depend on several factors, which
in turn influence the choice of the spatial index to use.
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Input:
. An estimate function f̂ ≈ f : X 7−→ Y , such that X ⊆ Rn

and Y = {1, . . . ,K}. Moreover, f̂ results from an ensemble
of T depth-n decision trees, each one associated with a base
estimate ĥt, t = 1, . . . , T
. A threshold vector ε ∈ Rn

>0

Output:
. A set I = {I1, . . . , IK}, where each Ik (k = 1 . . .K) is a
spatial index built from the set of k-labelled ε-satisfactory
candidates Γk

c

1: procedure BUILDSPATIALINDICES(f̂ , ε)
2: I = {} // Initialise the collection of spatial indices
3: for k = 1, . . . ,K do
4: Γk

c = ∅ // Initialise the set of k-labelled candidates
5: for t = 1, . . . , T do
6: P k

t ←− GETKLEAVEDPATHS(ĥt, k)
7: for all pkt,j ∈ P k

t do
8: x′

t,j(ε) ←− BUILDKLABELLEDINSTANCE(pkt,j , ε)
9: if f̂(x′

t,j(ε)) == ĥt(x
′
t,j(ε)) then

10: Γk
c = Γk

c ∪ (x′
t,j(ε))

11: end if
12: end for
13: end for
14: Ik ←− BUILDSPATIALINDEX(Γk

c ) // Generate spatial
index from data points in Γk

c

15: I[k]←− Ik // Update the collection of spatial indices
16: end for
17: return I // Return all the spatial indices
18: end procedure

Fig. 1: The procedure used to build the set of spatial indices
from all the candidates Γk

c (k ∈ {1, . . . ,K}).

BUILDKLABELLEDINSTANCE. Before x′t,j(ε) can be added
to the set of candidates Γk

c , the overall prediction of the
ensemble on it must be equal to k (lines 9 and 10).

Once all the trees of the ensemble have been examined
(for a class label k), the algorithm uses the subprocedure
BUILDSPATIALINDEX for creating the spatial index data
structure from the set of candidate data points in Γk

c (line
14), and consequently updates the collection of spatial in-
dices (line 15). Note that, although very unlikely, Γk

c in
general might be empty (i.e., there might be no valid candi-
dates), as discussed at the end of Section 2.4; when this is
the case, the corresponding spatial index Ik will degenerate
to an empty data structure as well. Eventually, when all the
class labels have been considered the final set I is returned.

The procedure described above examines all the paths
of all the trees in the input ensemble. Therefore, the total
number of steps is equal to 2nT , since each depth-n tree has
2n paths and there are T trees in the ensemble. The subpro-
cedure BUILDSPATIALINDEX, instead, can be accomplished
in O(nm logm), where m is the size of candidates to be
indexed (i.e., Γk

c ). Overall, the running time complexity of
Algorithm 1 is O(2n), again assuming 2n dominates over T .
In practice, however, the average path length of each tree
may be significantly smaller than n. In fact, a well-known
approach used in many ensemble learning settings is the
random subspace method [19], which attempts to reduce the
correlation between sibling trees by setting their maximum
depth d = O(

√
n), thereby obtaining sub-exponential time

complexity 2O(
√
n).

3.2.2 Online step: tweaking input query vector
The online step takes as input 4 key components:

• A feature vector x (query) that represents a k-labelled
predicted instance, i.e., f̂(x) = k;

• A target class label, k′ ∈ Y, k′ 6= k;
• A cost function δ measuring the “effort” required

to transform the true k-labelled instance into a k′-
labelled one (i.e., a distance function);

• The collection of spatial indices I built using the
procedure described in Algorithm 1.

The result being the transformation x′ of the original x that
exhibits the minimum cost according to δ, such that f̂(x′) =
k′ 6= k = f̂(x). The detailed description is presented in
Algorithm 2.

Input:
. A feature vector x (query) representing a true k-labelled
instance, such that f(x) = f̂(x) = k
. A target class label k′ ∈ Y = {1, . . . ,K}, k′ 6= k
. A cost function δ
. A collection of spatial indices I

Output:
. The optimal transformation x′ with respect to δ, such that
f̂(x′) = k′

1: procedure TWEAKINGFEATURES(x, k′, δ, I)
2: x′ ←− NULL
3: Ik

′
←− I[k′] // Retrieve the spatial index built from the

set of candidate data points Γk′
c

4: x′ ←− NEARESTNEIGHBOURSEARCH(x, Ik
′
, δ)

5: return x′ // The optimal feature vector transformation
6: end procedure

Fig. 2: The FEATURE TWEAKING ALGORITHM takes advan-
tage of spatial indices to search for the nearest neighbour
perturbation of the input x (i.e., x′), efficiently.

The algorithm operates as follows. First of all, it retrieves
the spatial index built from the candidate points whose
label is the same of the target, i.e., k′-labelled candidates
(line 2). Then, it simply delegates off to the subprocedure
NEARESTNEIGHBOURSEARCH (line 3), which takes as input
the query feature vector, the spatial index, and the cost
function δ and returns the data point among those indexed
by the spatial index that is the closest to the query x. Finally,
it returns x′ as the nearest neighbour to x (if it exists), or
NULL if the spatial index is empty.

The computational time complexity of Algorithm 2 co-
incides with that of NEARESTNEIGHBOURSEARCH (line 4),
since the access to the k′-th spatial index (line 3) can be
easily performed in O(1). Although spatial indices do not
guarantee good worst-case performance, they generally per-
form well on average [20], [21], and are able to lower the
nearest neighbour search complexity to O(n logm), where
m is the number of n-dimensional indexed data points.
More recently, however, Priority R-tree has been proposed
as worst-case optimal variant of R-tree [22]. In addition,
the computation of nearest neighbours has proven efficient
in combination with distance metrics based on any Lp-
norm [23], [24]. However, for distances based on L0-norm
(Hamming distance) another solution specifically tailored
to discrete metric spaces, i.e., BK-tree, works better [25].
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4 EVALUATING RECOMMENDED TWEAKS

We demonstrate the utility of our method when applied
to three use cases. First, in Section 4.1 we show how our
algorithm can be used to solve a real-world business prob-
lem, i.e., to improve the quality of advertisements served
by the Yahoo Gemini7 ad network. This has been already
thoroughly discussed in our previous work [5]; we invite the
reader to refer to that paper for a more detailed description.

As novel contribution of this work, we further validate
our method on two additional domains: healthcare and
spam filtering (Section 4.2 and 4.3, respectively). We choose
those as they both relate to highly impactful scenarios, with
a clear application to real-life situations.

4.1 Online Advertising
The success of online advertising is highly sensitive to the
quality of advertisements (ads, for short) that third-party ad
networks deliver to users via web/app publishers.

Many factors can affect the quality of an ad: its relevance,
i.e., whether the ad matches the user interest [26]; the pre-
click experience, i.e., whether the ad annoys a user [27]; and
finally the post-click experience, i.e., whether the ad landing
page8 meets the user click intent that brought them to the
landing page [28]. We focus on the latter, the post-click
experience, following from [28], [29].

We know from [28] that ad landing pages exhibiting
long dwell times9 promote a positive long-term post-click
experience. On top of that, we can design an ad quality
prediction model, namely a binary classifier that leverages
ad features to effectively separates between low and high
quality ads, i.e., ad landing pages whose dwell time is below
or above a threshold τ , respectively.

As one of the biggest player in the online advertising
business, Yahoo Gemini – i.e., the newly-integrated Yahoo’s
ad serving platform – has a varying distribution of quality
with many ads being of low quality. Not serving them
may not be an option when supply is exhausted. Therefore,
another approach to positively shift the quality distribution
of the ad inventory is to leverage the interpretability of the
internal machinery of existing ad quality prediction models,
so as to offer actionable recommendations. The intention of
these programmatically-computed recommendations is to
provide advertisers with guidance on how they can improve
their ad quality at scale. Such a system yields value for
all beneficiaries in the advertising ecosystem, ultimately
culminating with a better user experience.

In the remaining of this section, we demonstrate that our
feature tweaking algorithm introduced in Section 3 is able
to achieve the task above by generating helpful suggestions
on how to transform a low quality ad into a set of new
“proposed” high quality ads.

4.1.1 Predicting Ad Quality
To apply our algorithm, we first need to learn a binary
classifier that predicts whether an ad is of high quality or
not, given a feature-based representation of each ad: textual

7https://gemini.yahoo.com
8We refer to ad landing page as the web page of the advertiser that

a user is redirected to after clicking on an ad.
9The dwell time is the time spent by a user on a web page.

Fig. 3: Top-20 most important features of our RF model.

content of the creative, number of images in the landing
page, similarity between the creative and the landing page,
etc. Ad feature engineering has been extensively investi-
gated in our previous work, and we suggest the reader to
refer to [5] for the complete list of 45 ad features extracted.

As our feature tweaking algorithm is designed to work
on any ensemble of bagged decision trees, we train the fol-
lowing learning models to find our best estimate f̂ : Decision
Trees (DT) [30] – which can be thought of as a special case
of an ensemble with a single tree – and Random Forests
(RF) [31].

We collect a random sample of 1,500 ads served by
Yahoo Gemini on a mobile app during one month, which
are labelled as low and high quality, using an estimate of
the threshold of dwell time (τ ≈ 62.5 seconds).

This original dataset D is split into two datasets Dtrain
and Dtest using stratified random sampling. Dtrain is used
for training the models and accounts for 80% of the total
number of instances in D, whilst Dtest contains the remain-
ing held-out portion used for evaluating the models. Dtrain
is also used to perform model selection, which is achieved
by tuning the hyperparameters specific for each.

With every combination of model and corresponding
hyperparameters, we run a 10-fold cross validation to find
the best settings for each model – i.e., the one with the best
cross validation ROC AUC (RF = 0.93 and DT = 0.84). Each
model is in turn re-trained on the whole Dtrain using the
best hyperparameter setting. Finally, the overall best model
is considered the one achieving the highest F1 on the test set
Dtest (RF = 0.84 and DT = 0.75), which turns out to be RF.

4.1.2 Ad Feature Recommendations
We validate the recommendations generated with our ap-
proach, by applying our feature tweaking algorithm to our
learned RF model. Any x′ that results from a valid (i.e., pos-
itive) ε-transformation10 of the original negative instance x
encapsulates a set of directives on how to positively change
the ad features. We compute the vector r resulting from
the component-wise difference between x′ and x, which
is r[i] = x′[i] − x[i]. Then for each feature indexed by i,
such that r[i] 6= 0 (i.e., x′[i] 6= x[i]), this vector provides
the magnitude and the direction of the changes that should
be made on feature i. The magnitude denotes the absolute
value of the change (i.e., |x′[i] − x[i]|), whilst the direction

10Note that here ε is a scalar instead of a vector ε, as features have
been standardised in advance like discussed in Section 2.4.
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indicates whether this is an increase or a decrease of the
original value of feature i (i.e., sgn(x′[i] − x[i])). Finally, to
derive the final list of recommendations, we sort r according
to the feature ranking, as shown in Figure 3.

Our approach depends on a tweaking cost (δ) associated
with transforming a negative instance (low quality ad) into
a positive instance (high quality ad), and a (global) tweaking
tolerance (ε) used to change each individual ad feature. We
first explore how ε impacts on the ad coverage, which is
the percentage of ads for which our approach is able to
provide recommendations. We experiment with five values
of ε: 0.01, 0.05, 0.1, 0.5, and 1. These values can be thought
of as multiples of a unit of standard deviation from each in-
dividual feature mean, assuming features are standardised
using their z-scores, as discussed in Section 2.4. Ad coverage
increases from 58.5% when ε = 0.01 up to its highest
value of 77.4% when ε = 0.5; then, it starts decreasing as
ε approaches to 1.

Although some low quality ads cannot be transformed,
those that can are often associated with multiple trans-
formations. Figure 4a and 4b show the distribution of
ε-transformations across the set of ads, generated when
ε = 0.1 and ε = 0.5, respectively11. Both distributions

(a) (b)

Fig. 4: Distribution of ad ε-transformations at ε = 0.1 (a) and
ε = 0.5 (b).

are skewed, offering a high number of transformations
proposed for few ads. Interestingly, the number of trans-
formations is more evenly distributed across the ads when
ε increases. This is in agreement with the finding above,
where larger values of ε result in a higher coverage before
decreasing again between ε = 0.5 and 1.

To choose the most appropriate transformation for an
ad, we experiment with several tweaking cost functions δ,
each taking as input the original (x) and the transformed
(x′) feature vectors:

• tweaked feature rate: proportion of features affected
by the transformation of x into x′ (range = [0, 1]);

• euclidean distance: Euclidean distance (L2-norm) be-
tween x and x′ (range = R̄≥0);

• cosine distance: 1 minus the cosine of the angle be-
tween x and x′ (range = [0, 2]);

• jaccard distance: one’s complement of the Jaccard
similarity between x and x′ (range = [0, 1]);

• pearson correlation distance: 1 minus the Pearson’s
correlation between x and x′ (range = [0, 2]).

11Similar behaviour is observed for all values of ε.

4.1.3 Assessing Recommendations

To evaluate our method, we asked an internal team of
Yahoo’s creative strategists (CS)12 to validate the recom-
mendations generated by our approach (ε = 0.5, δ =
cosine distance) on a set of 100 low quality ad landing
pages, i.e., the true negative instances in Dtest. Each CS was
assigned a set of ad landing pages with the correspond-
ing ε-transformations, and additional metadata useful for
assessing the recommendations within each transformation.
The same set of ad landing pages – and therefore the
same list of recommendations – was assessed by two CSs,
who were asked to rate each recommendation as helpful,
non-helpful, or non-actionable. A recommendation is deemed
helpful when it is likely to help the advertiser to improve the
user experience of the ad, and non-helpful otherwise. A non-
actionable recommendation is one that cannot be practically
implemented. Whenever a disagreement occurred, a third
CS was called to resolve the conflict.

Overall, 57.3% of all the generated recommendations are
rated helpful with an inter-agreement rate of 60.4% and
only 0.4% result in a non-actionable suggestion. We also
look at the 42.3% non-helpful recommendations, and saw
that about 25% can be considered “neutral”; that is, they
would not hurt the user experience if discarded as well as
not adding any positive value if implemented.

Non-helpful tweaks might occur due to two reasons.
First, the learned model we leverage for generating fea-
ture recommendations – no matter how accurate it is –
is not perfect. Therefore, a negatively-predicted instance
that is transformed into a positively-predicted one does
not necessarily mean it is actually positive (nor even that
it was truly negative in the first place). Second, tuning the
hyperparameters (δ and ε) of our algorithm affects the set
of candidate transformations. Limiting non-helpful tweaks
can be achieved by improving the accuracy of the learned
model and choosing values of the hyperparameters so as to
minimise prediction errors.

Moreover, when we further look into the non-actionable
recommendations we see that these are related to the fea-
tures ADULT SCORE and NUM INPUT DROPDOWN. Our
algorithm suggests to decrease the value of those features;
however, the ad landing pages do not contain adult words
nor drop-downs. Most likely, the ad copies and landing
pages used to generate recommendations have changed
before the CSs performed their assessment.

Finally, we measure the “helpfulness” of each feature
recommendation as follows:

helpfulness(i) =
|helpful(i)|

|helpful(i)|+ |¬helpful(i)|

This computes the relative frequency of recommendations
for feature i as being described as helpful by the CS team. In
Figure 5, we report the ranked list of features involved in the
top-10 most helpfulness recommendations. A similar rank-
ing will be obtained if we weight the helpfulness score on
the basis of the overall relative recommendation frequency.
The majority of the most helpful recommendations were fea-
tures extracted from the HTML DOM structure and content

12Creative strategists work with advertisers’ web masters on strate-
gic choices to help them developing effective advertising messages.
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Fig. 5: Top-10 most helpful feature recommendations ac-
cording to the helpfulness score.

of the ad landing page, indicating that high quality landing
pages should exhibit a good balance between textual content
and hyperlinks. Remarkably, those are also among the most
predictive features according to our RF model (Figure 3).

4.2 Healthcare

We extend our set of experiments by first considering a
public dataset of medical records available on Kaggle13.
This dataset is originally from the National Institute of
Diabetes and Digestive and Kidney Diseases. The initial
reason for this dataset to be collected was to diagnostically
predict whether or not a patient has diabetes, based on
certain diagnostic measurements included in the medical
records [32]. Several constraints were placed on the selection
of these instances from a larger database. In particular, all
patients here are females at least 21 years old of Pima Indian
heritage (i.e., a group of Native Americans living in an area
today known as central and southern Arizona).

The dataset D consists of 768 instances, each one repre-
sented by 8 medical predictor variables (i.e., features) and
one target binary variable, which is whether the patient
has diabetes (indicated by 1, or positive) or not (indicated
by 0, or negative). There is a moderate class imbalance,
with approximately 65% of instances being negative and the
remaining 35% positive. The set of features (all numeric) are
as follows:

• PREGNANCY: Number of times the patient has been
pregnant.

• GLUCOSE: Plasma glucose concentration at 2 hours
in an oral glucose tolerance test (mg/dl). For a 2-
hour test with 75g intake, a value between 140 and
200 mg/dL (7.8 and 11.1 mmol/L) is called impaired
glucose tolerance, and is known as “pre-diabetes”; it
means the patient is at increased risk of developing
diabetes over time. A glucose level of 200 mg/dL
(11.1 mmol/L) or higher is used to diagnose diabetes.

• BLOOD PRESSURE: Diastolic blood pressure
(mmHg); if this is above 90 mmHg there is usually
a high probability of diabetes, whereas if it is
below 60 mmHg it means there is generally a lower
probability of diabetes.

13https://www.kaggle.com/uciml/pima-indians-diabetes-database/
data

• SKIN THICKNESS: Triceps skin fold thickness (mm)
– i.e., a value used as proxy of body fat – which
is usually around 23 mm in women. Higher figures
may lead to obesity and, in turn, chances of diabetes
may also increase.

• INSULIN: 2-hour serum insulin (mcIU/ml). Normal
insulin level ranges between 16 and 166; any value
above can be alarming.

• BMI: Body mass index computed as (weight in
kg)/(height in m)2. Normal BMI ranges between 18.5
and 25, whilst values between 25 and 30 indicate the
patient is overweighted. A BMI of 30 or over falls
within the obese range.

• DIABETES PEDIGREE FUNCTION: It provides infor-
mation about diabetes history in relatives and ge-
netic relationship of those relatives with the patient.
Higher values of this feature indicate patient is more
likely to have diabetes.

• AGE: Age of the patient, expressed in years.

In this use case, we want to show that our method is able
to suggest which features should be perturbed (and how) in
order to turn a patient with diabetes (true positive instance)
into a healthy one (negatively predicted instance). In other
words, we aim to demonstrate that our approach may
help medical physicians taking educated clinical actions to
reduce the risk of diabetes.

As for the first use case discussed earlier in Section 4.1
(online advertising), we start from learning an ensemble of
bagged decision tree classifiers, which is able to predict
if a patient has diabetes or not. To do so, we first split
the original dataset D into two portions – which accounts
for 90% and 10%, respectively – using stratified random
sampling: a training set (Dtrain) used for learning the pre-
dictive model14, and a test set Dtest to assess the set of
transformed instances generated according to our proposed
algorithm. It is worth remarking that, although the predic-
tive model is learned considering all the signals above, our
feature tweaking algorithm only operates on features that
can be “easily” perturbed. More specifically, features like
PREGNANCY, DIABETES PEDIGREE FUNCTION and AGE
cannot be tweaked, as they are inherently historical and
therefore their cost of transformation can be considered as
+∞ (see Section 2.2).

Our best-performing ensemble classifier is a RF, which
able to reach about 77% accuracy using 100 trees. Out of
76 held-out test instances, 51 are negative and 25 positive.
Those 25 positive instances are then transformed into a set
of ε-perturbations, using ε = 0.1 as (global) tolerance and
δ = euclidean distance as cost function.

Figure 6 shows the direction of feature tweaks as com-
puted from the set of transformations above. Generally
speaking, results confirm what one would expect using
domain knowledge on diabetes. In particular, turning a pos-
itive instance into a negatively predicted one translates into
reducing the values of 4 main features, namely GLUCOSE,
BMI, SKIN THICKNESS (maybe positively correlated with
BMI), and BLOOD PRESSURE. This might sound apparently

14We do not report all the details about the learning stage, as this
has been thoroughly addressed when we described the first use case
and in [5]; moreover, it is not the main scope of this section.
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straightforward, purely because we are already backed up
by well-established findings concerning the relationship
between those features and the disease (e.g., it is now
well known that reducing BMI lowers the risk of diabetes).
Chances are, though, that other possibly unexpected sugges-
tions would arise if unconventional features were included
as predictors. Still, there are few additional insights that
may be worth discussing. For example, we are not able to
provide recommendation on how to change the value of
insulin which is valid in general (i.e., some instances may
be suggested to increase it, whilst some others to decrease
it). This is compliant with the fact that there exists multiple
types of diabetes; in some cases, diabetes is caused by
insulinopenia (i.e., deficit of insulin secreted by pancreas),
whereas in some others cells are unable to absorb insulin to
regulate the concentration of glucose, no matter how much
it is secreted by pancreas. In the former case, it might have
sense to increase the value of insulin, so as to compensate
the deficit. In the latter case, instead, adding more insulin
might not help (in fact, it might cause saturation), since the
problem is on its absorption rather than its secretion.

Note that out of the features that are deemed unchange-
able – and therefore not subject to any recommendation –
the number of pregnancies is suggested to be reduced. Of
course, this value cannot be modified on a patient; still, it
might be a good advice for future inmates. Instead, his-
torical feature capturing genetic relationships between the
patient and her/his relatives does not even seem important.

Fig. 6: Direction of feature tweaks for reducing the risk of
diabetes.

4.3 Spam Filtering

The dataset used for this suite of experiments was collected
at Hewlett-Packard Labs, and it is available for down-
load from the UCI Machine Learning Repository15 [33]. It
contains 4,601 emails labelled as spam (denoted by 1, or
positive) and non-spam (denoted by 0, or negative). Also this
collection exhibits some class imbalance, since around 60%
instances are non-spam and the remaining 40% spam.

15https://archive.ics.uci.edu/ml/datasets/spambase

In addition to the class label, each instance is represented
by a set of 57 features, which indicate how frequently
some specific words and characters occur in an email. More
specifically, the following continuous features are defined:

• 48 real-valued features in the range [0, 100] of type
WORD FREQ WORD, each one measuring the per-
centage of words that match the term “WORD”. A
“WORD” is any string of alphanumeric characters
bounded by non-alphanumeric characters or end-of-
string (e.g., “business” or “650”).

• 6 real-valued features in the range [0, 100] of type
CHAR FREQ CHAR, each one indicating the percent-
age of characters in the email that match “CHAR”. The
set of characters considered are: “;”, “(”, “[”, “!”,
“$”, and “#”.

• 1 real-valued feature in the range [1, . . . ,∞] named
AVG CAPITAL LENGTH as the average length of
sequences of (contiguous) capital letters.

• 1 integer-valued feature in the range [1, . . . ,∞]
named MAX CAPITAL LENGTH, which measures
the length of the longest sequence of (contiguous)
capital letters.

• 1 integer-valued feature in the range [1, . . . ,∞]
named NUM CAPITALS, which contains the total
number of capital letters in the email.

Differently from the previous two use cases, where the main
goals of using the feature tweaking algorithm were to (i)
increase revenue (online advertising) and (ii) support med-
ical physicians (helthcare), in this setting we aim to show
that our method may help transform a truly spam email
into a non-spam classified one. This is a typical example of
adversarial attack, where a malicious entity is interested in
enforcing an existing classifier to commit prediction errors
by crafting ad hoc manipulation of the input. Such a kind of
attack is the main subject of interest of adversarial learning [7],
which is a branch of machine learning that studies how to
design predictive models that are robust against artificial
perturbations of the input [1], [9], [10], [11], [12]. It is worth
remarking that our method requires knowing the internals
of the model to perform the feature tweaking we describe,
therefore it is quite different from the typical adversarial
setting that considers the model as a black box.

Our original task consists of building an ensemble of
bagged decision tree classifiers, which is able to distinguish
between spam vs. non-spam messages. This step is done
by first splitting the original dataset D into training and
test set, which account for 90% (Dtrain) and 10% (Dtest) of
the total number of instances, respectively. We therefore use
Dtrain for learning the model and Dtest for generating input
perturbations using our algorithm. The accuracy of the best-
performing classifier is around 92% using an RF with 50
trees. Out of 460 held-out test instances, 301 are non-spam
and 159 are spam. Eventually, we generate the set of ε-
transformations from those spam instances with the same
hyperparameter setting used for the healthcare scenario, i.e.,
ε = 0.1 and δ = euclidean distance.

Figure 7 shows the direction of feature tweaks as com-
puted from the set of transformations above, when consid-
ering the top-10 most important features.
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Fig. 7: Direction of feature tweaks for transforming a true
spam message into a non-spam one.

From the box plot, it is quite clear that the vast majority
of feature values need to be reduced whenever the goal is
to transform a spam message into a non-spam one. This
is mostly due to the way in which features have been engi-
neered (i.e., they have been manually chosen so as to best re-
flect properties of spam emails). For example, we know from
common experience that the presence of many exclamation
marks (“!”) is very often a good indicator of spammy
content. Therefore, it should not be surprising our algorithm
suggests to reduce the percentage of this symbol in the
text. The same can be said for MAX CAPITAL LENGTH
and AVG CAPITAL LENGTH. In fact, this confirms that
our technique is able to capture which features encapsulate
spam traits.

On the other hand, terms that might sound spammy,
such as “order” or “money” do not seem to play a cru-
cial role in masquerading spam emails. Interestingly, our
algorithm recommends to increase the percentage of semi-
colon (“;”) in the text. The rationale of this might be that
semicolons more often appear in formal messages, since few
people know how to use them properly. As a consequence
of that, adding more semicolons to a spam message might
induce the classifier to mistakenly label it as non-spam.

5 EVALUATING COMPUTATIONAL EFFICIENCY

In this section, we compare the first, naı̈ve implementation
of our algorithm with the one proposed as a novel contribu-
tion of this work and discussed in Section 3.2. This leverages
efficient space partitioning data structures for computing
NEARESTNEIGHBOURSEARCH rather than just performing
a brute-force linear search over the set of candidate trans-
formations. More specifically, we apply our approach to
the well-known multiclass classification task of handwritten
digit recognition. To this end, we use a sample D of 42,000
instances of the public MNIST dataset16, which is available
from Kaggle17. Each training example is made of a 28x28
pixel black and white image and its associated label, namely
the digit it represents (i.e., one of the set {0, 1, . . . , 9}). Each

16http://yann.lecun.com/exdb/mnist/
17https://www.kaggle.com/c/digit-recognizer/data

image is in turn represented by a 784-dimensional vector,
where each dimension indicates the lightness or darkness of
a pixel as an integer ranging between 0 and 255, inclusive.

We first split D using stratified random sampling into
two portions: Dtrain and Dtest accounting for 90% and 10%
of the total number of instances, respectively. We thus train
an RF model on Dtrain after the best number of trees (100)
has been selected following a 5-fold cross validation run
(average ROC AUC = 0.96). We generate all the candidate ε-
transformations from all the k-leaved paths extracted from
the trained model above, as specified by the BUILDKLA-
BELLEDINSTANCE function defined in Figure1. Since there
are 10 possible class labels (i.e., one for each digit) it turns
out that k ∈ {0, 1, . . . , 9}; overall we extracted a total of
approximately 350,000 candidate ε-transformations, which
are distributed over the 10 classes as shown in Figure 8.

Fig. 8: Distribution of ε-transformations over labels.

We therefore build a set of space partitioning data
structures, each one containing all the candidate ε-
transformations associated with a specific class label. We
repeat this operation using three distinct values of ε, namely
1, 5, and 10, which indicate the maximum “strength” of the
change applicable to any pixel value in order to eventually
satisfy a k-leaved path. More specifically, we use the im-
plementations of k-d tree and ball tree provided by Python
scikit-learn18,19. Note that this step, although compute-
intensive, is done once for all.

To measure the speedup introduced with our new im-
plementation, we proceed as follows. For a fixed value of
ε, we extract a random sample of n instances from Dtest.
Each sampled instance is an image with its associated label
k indicating the digit it represents, which in turn is input to
the TWEAKINGFEATUREALGORITHM described in Figure 2.
This will return the optimal ε-transformation of the input
query vector among the candidates previously computed,
i.e., the top-1 closest to the original input instance w.r.t. a
specific distance function δ and a target class label k′, such
that k′ 6= k. It turns out that each input query vector can
be transformed into 9 optimal ε-transformations, e.g., the
input query vector for “3” can be transformed into 9 new
instances representing the digits “0”, “1”, “2”, “4”, . . ., “9”.

18https://scikit-learn.org/stable/modules/generated/sklearn.
neighbors.KDTree.html

19https://scikit-learn.org/stable/modules/generated/sklearn.
neighbors.BallTree.html
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In our experiments, we use δ = euclidean distance and we
further extend the list of ε-transformations retrieved by the
algorithm to also include the top-5 and top-10 candidates for
each input query vector and target class k′. Figure 9 shows

Fig. 9: Average execution time of NEARESTNEIGH-
BOURSEARCH for different query sample size.

the running time of our TWEAKINGFEATUREALGORITHM
when NEARESTNEIGHBOURSEARCH is implemented using
our first, naı̈ve solution (i.e., brute-force linear scan), or
a more efficient space partitioning data structure (i.e., k-
d tree or ball tree). The plot shows how the average run-
ning time for computing top-1, top-5, and top-10 closest ε-
transformations20 varies when query sample size changes
(i.e., n = {100, 250, 500, 1000, 2000, 2500, 3000, 4000}). Ex-
periments were conducted on a 3,6 GHz Intel Core i7
processor with 16 GB of RAM. Two main considerations can
be made out of this set of experiments. First, our two new
implementations are both significantly more efficient than
brute-force (i.e., ≈10x speedup), making them more conve-
nient to deploy in practice. Second, no remarkable difference
between the usage of k-d trees and ball trees are recorded,
although the latter performs slightly yet consistently better.

We conclude this section by showing the distribution of
the closest target labels for each original label, as follows.
We consider all the n = 4000 query instances sampled
from Dtest as described above; for each of them, we keep
track of its original label (i.e., which digit it represents)
and the target label of the top-1 closest transformation (i.e.,
the digit of the nearest candidate transformation out of
all possible ε-transformations). As it turns out, for each
original label we can compute the distribution of target
labels, as shown in Figure 10. For example, we may observe
that the vast majority (i.e., around 40%) of top-1 closest
transformations of a query vector representing the digit “1”
are instances labeled as “7” (see the second plot on the first
row of Figure 10). This somehow confirms what one would
intuitively guess, as handwritten “1” and “7” may look
indeed similar, and therefore the latter can be obtained from
of a quite straightforward transformation of the former.
Interestingly enough, this is not symmetrical; as a matter of
fact, the closest transformations to query representing “7”
are labelled as “9”, which still seems reasonable.

20We only report the case of ε = 1 as similar trend is observed for
ε = 5 and ε = 10.

6 RELATED WORK

The research challenge addressed in this work is largely
unexplored. Although machine learning has received a lot
of attention in recent years, the focus has been mainly on
the accuracy, efficiency, scalability, and robustness of the
proposed various techniques.

Early works on extracting actionable knowledge from
machine-learned models have focused on the development
of interestingness metrics as proxy measures of knowl-
edge actionability [34], [35]. Another line of research on
actionable knowledge discovery concerns post-processing
techniques. Liu et al. propose methods for pruning and
summarizing learned rules, as well as matching rules by
similarity [36], [37]. Cao et al. present domain-driven data
mining; a paradigm shift from a research-centered discipline
to a practical tool for actionable knowledge [38], [39].

Several works discuss post-processing techniques specif-
ically tailored to decision trees [40], [41], [42], [43]. Yang et
al. study the problem of proposing actions to maximise the
expected profit for a group of input instances based on a
single decision tree, and introduce a greedy algorithm to ap-
proximately solve such a problem [40]. This is significantly
different from our work; in fact, our work is more related
to the one presented by Cui et al. [15]. Here, the authors
propose a method to support actionability for additive tree
models (ATMs), which is to find the set of actions that can
change the prediction of an input instance to a desired status
with the minimum cost. The authors formulate the problem
as an instance of integer linear programming (ILP) and solve
it using existing techniques.

Similarly to Cui et al., we also consider transforming the
prediction for a given instance output by an ensemble of
trees, and we introduce an algorithm that finds the exact
solution to the problem. Our work differs from theirs in
several aspects: (i) we tackle the theoretical intractability
(NP-hardness) of the problem by designing an algorithm
that creates a feedback loop with the original model to
build a set of candidate transformations without the need,
in practice, to explore the entire exponential search space;
(ii) we introduce another hyperparameter (ε) to govern the
amount of change that can be sustained; (iii) we experiment
with five concrete functions describing the cost of each
transformation (δ); (iv) we leverage on the importance of
each feature derived from the model to rank the final list of
recommendations; (v) we focus on the actual recommenda-
tions generated, and how they impact in practice on three
real use cases, if properly implemented.

More recent work on related topics are those of Ribeiro et
al. [44], [45]. In particular, [44] presents LIME, a method that
aims to explain the predictions of any classifier by learning
an interpretable model that is specifically built around the
predictions of interest. They frame this task as a submodular
optimization problem, which the authors solved using a
well-known greedy algorithm achieving performance guar-
antees. They test their algorithm on different models for text
(e.g., random forests) and image classification (e.g., neural
networks), and validate the utility of generated explanations
both via simulated and human-assessed experiments.

Finally, a survey on methods for explaining black-box
models has recently appeared in [46].
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Fig. 10: Distribution of ε-transformations over target labels for each original label.

7 CONCLUSIONS

Machine-learned models are often designed to favour accu-
racy of prediction at the expense of human-interpretability.
However, in some circumstances it is important to under-
stand why the model returns a certain prediction on a given
instance, and how such an instance could be transformed so
that the model changes its original prediction.

We extend our discussion introduced in [5] by proposing
an algorithm for tweaking input features to change the
output predicted by an existing machine-learned model.
This method is designed to operate on the general setting
of multiclass classification, and exploits the feedback loop
originated from the internals of any ensemble of bagged de-
cision trees to generate recommendations for transforming a
k-labelled predicted instance into a k′-labelled one (for any
k, k′ in the set of possible class labels).

The feasibility of our approach has been achieved in
practice by: (i) setting an upper bound to the maximum
number of changes affecting each instance (i.e., at most
equivalent to the number of features), which can be con-
trolled at training time; and (ii) making use of a spatial
indexing data structure (e.g., k-d tree or ball tree) populated
offline once for all when the model is learned, so as to
reduce online computational complexity from exponential
to at most quadratic in the number of features.

Finally, we demonstrate the applicability of our ap-
proach on four real-world use cases: online advertising,
health-care, spam filtering, and handwritten digit recog-
nition. Experiments confirm that our algorithm is able to
suggest changes to feature values that help interpreting the
rationale of model predictions, and would be indeed useful
if implemented efficiently.

In future work, we plan to extend the approach pre-
sented in this work to other learning models, in particu-
lar to Gradient Boosted Decision Trees (GBDT) [47], and
regression models. Another promising direction is that of
formulating the solution within a reinforcement learning
framework, enabling us to operate in the most generic
setting possible and treating the model fully as a black box.

ACKNOWLEDGMENTS

The authors would like to thank Huw Evans, Mahlon Chute,
and all the Yahoo’s internal team of creative strategists for
their invaluable contributions in evaluating the quality of
the method presented in this paper. In addition, a special
mention goes to Satoshi Kato for publicly releasing his
implementation of our framework as an R-package, along
with a convenient visualization tool we used in this work.21

REFERENCES

[1] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. D. Tygar,
“Adversarial machine learning,” in AISec ’11. ACM, 2011, pp. 43–
58.

[2] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Good-
fellow, and R. Fergus, “Intriguing properties of neural networks,”
in ICLR ’14, 2014.

[3] Y. Bengio, A. Courville, and P. Vincent, “Representation Learning:
A Review and New Perspectives,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 35, no. 8, pp. 1798–1828, 2013.

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol.
521, pp. 436–444, May 2015.

[5] G. Tolomei, F. Silvestri, A. Haines, and M. Lalmas, “Inter-
pretable Predictions of Tree-based Ensembles via Actionable Fea-
ture Tweaking,” in KDD ’17. ACM, 2017, pp. 465–474.

[6] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2,
pp. 123–140, 1996.

[7] D. Lowd and C. Meek, “Adversarial Learning,” in KDD ’05.
ACM, 2005, pp. 641–647.

[8] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative Adversarial
Nets,” in Advances in Neural Information Processing Systems, 2014,
pp. 2672–2680.

[9] D. Lowd and C. Meek, “Good Word Attacks on Statistical Spam
Filters,” in CEAS, vol. 2005, 2005.

[10] M. Barreno, B. Nelson, A. D. Joseph, and J. Tygar, “The Security of
Machine Learning,” Machine Learning, vol. 81, no. 2, pp. 121–148,
2010.

[11] B. Biggio, G. Fumera, and F. Roli, “Security evaluation of pattern
classifiers under attack,” IEEE Transactions on Knowledge and Data
Engineering, vol. 26, no. 4, pp. 984–996, 2014.

[12] N. Papernot, P. D. McDaniel, A. Sinha, and M. P. Wellman,
“Towards the science of security and privacy in machine
learning,” CoRR, vol. abs/1611.03814, 2016. [Online]. Available:
http://arxiv.org/abs/1611.03814

21https://github.com/katokohaku/featureTweakR

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TKDE.2019.2945326

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://arxiv.org/abs/1611.03814
https://github.com/katokohaku/featureTweakR


IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. Y, MONTH YEAR 14

[13] F. Chollet, Deep Learning with Python, 1st ed. Greenwich, CT, USA:
Manning Publications Co., 2017.

[14] L. Xu, A. Krzyzak, and C. Y. Suen, “Methods of Combining Mul-
tiple Classifiers and their Applications to Handwriting Recogni-
tion,” IEEE Transanctions on Systems, Man, and Cybernetics, vol. 22,
no. 3, pp. 418–435, 1992.

[15] Z. Cui, W. Chen, Y. He, and Y. Chen, “Optimal Action Extraction
for Random Forests and Boosted Trees,” in KDD ’15. ACM, 2015,
pp. 179–188.

[16] A. Guttman, “R-trees: A Dynamic Index Structure for Spatial
Searching,” in SIGMOD ’84. ACM, 1984, pp. 47–57.

[17] J. L. Bentley, “Multidimensional binary search trees used for
associative searching,” Communincations of the ACM, vol. 18, no. 9,
pp. 509–517, 1975.

[18] S. M. Omohundrol and S. M. Omohundro, “Five balltree construc-
tion algorithms,” 1989.

[19] T. K. Ho, “The Random Subspace Method for Constructing De-
cision Forests,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 20, no. 8, pp. 832–844, 1998.

[20] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm
for finding best matches in logarithmic expected time,” ACM
Transactions on Mathematical Software, vol. 3, no. 3, pp. 209–226,
1977.

[21] S. Hwang, K. Kwon, S. K. Cha, and B. S. Lee, “Performance Evalu-
ation of Main-Memory R-tree Variants,” in International Symposium
on Spatial and Temporal Databases. Springer, 2003, pp. 10–27.

[22] L. Arge, M. D. Berg, H. Haverkort, and K. Yi, “The Priority R-
tree: A Practically Efficient and Worst-case Optimal R-tree,” ACM
Transactions on Algorithms, vol. 4, no. 1, pp. 9:1–9:30, Mar. 2008.

[23] T. Brinkhoff, H.-P. Kriegel, and B. Seeger, “Efficient processing of
spatial joins using r-trees,” in SIGMOD ’93. ACM, 1993, pp. 237–
246.
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