
Spectral content of a single non-Brownian trajectory

Diego Krapf,1, 2 Nils Lukat,3 Enzo Marinari,4, 5 Ralf Metzler,6 Gleb Oshanin∗,7 Christine

Selhuber-Unkel,3 Alessio Squarcini,8, 9 Lorenz Stadler,10 Matthias Weiss,10 and Xinran Xu1

1Department of Electrical and Computer Engineering,
Colorado State University, Fort Collins, CO 80523, USA

2School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
3Institute for Materials Science, Biocompatible Nanomaterials,

University of Kiel, Kaiserstrasse 2, 24143 Kiel, Germany
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Time-dependent processes are often analysed using the power spectral density (PSD), calculated
by taking an appropriate Fourier transform of individual trajectories and finding the associated
ensemble-average. Frequently, the available experimental data sets are too small for such ensemble
averages, and hence it is of a great conceptual and practical importance to understand to which
extent relevant information can be gained from S(f, T ), the PSD of a single trajectory. Here we focus
on the behavior of this random, realization-dependent variable, parametrized by frequency f and
observation-time T , for a broad family of anomalous diffusions—fractional Brownian motion (fBm)
with Hurst-index H—and derive exactly its probability density function. We show that S(f, T )
is proportional—up to a random numerical factor whose universal distribution we determine—to
the ensemble-averaged PSD. For subdiffusion (H < 1/2) we find that S(f, T ) ∼ A/f2H+1 with
random-amplitude A. In sharp contrast, for superdiffusion (H > 1/2) S(f, T ) ∼ BT 2H−1/f2 with
random amplitude B. Remarkably, for H > 1/2 the PSD exhibits the same frequency-dependence
as Brownian motion, a deceptive property that may lead to false conclusions when interpreting
experimental data. Notably, for H > 1/2 the PSD is ageing and is dependent on T . Our predictions
for both sub- and superdiffusion are confirmed by experiments in live cells and in agarose hydrogels,
and by extensive simulations.

I. INTRODUCTION

The power spectral density of any time-dependent pro-
cess Xt is a fundamental feature of its spectral content,
dynamical behavior and temporal correlations [1]. It is
an important measure for various processes across many
disciplines, including loudness of musical recording [2, 3],
evolution of climate data [4], time gaps between large
earthquakes [5], retention times of chemical tracers in
groundwater [6], noise in graphene devices [7], fluores-
cence intermittency in nanosystems [8], current fluctua-
tions in nanoscale electrodes [9], stochastic processes with
random reset [10], some extremal properties of Brown-
ian motion [11], diffusion in strongly disordered systems
[12, 13], and ionic currents across nanopores [14], to name
a few diverse examples.

In its standard definition, the power spectral density
(PSD) is the Fourier transform of the autocorrelation
function of Xt over an infinitely large observation time T ,
i.e., it is an ensemble-averaged property taken in the limit
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T →∞. In many situations, however, one cannot create
a sufficiently large statistical sample to achieve a reliable
ensemble average, and even though the limit T →∞ can
be formally taken in mathematical expressions, it cannot
be reached in experiments. Instead, one often deals with
either a single or a few individual finite-length realiza-
tions of the process, particularly, in experimental data
dealing with in vivo systems [15], climate change [16],
or financial markets [17]. In this regard, a question of
immense conceptual and practical importance is whether
one can learn relevant information about the system from
the PSD of just a single or a few finite-length realizations.

Several recent studies examined the PSD from such
single-trajectory data. Power spectra of individual time-
series were examined for a stochastic model describing
blinking quantum dots [18, 19] and also for single-particle
tracking experiments with tracers in artificially crowded
fluids [20]. Notably, the scaling exponent of the power
spectrum computed from a few single-trajectory PSDs
remains very stable. In addition, the power spectra of
the velocity of motile amoeba revealed a robust large-f
asymptotic behavior of the form 1/f2, for all measured
individual trajectories [21, 22].

Without a solid mathematical theory, these observa-
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tions [18–22] may be considered merely as curious coinci-
dences. However, in a recent work [23] (see also the per-
spective [24]), it was proven that for standard Brownian
motion, the single-trajectory PSD S(f, T ) in the large-f
limit and at finite T exhibits the same f -dependence as
its traditional ensemble-average counterpart. This math-
ematical prediction was fully corroborated by numerical
simulations and experiments with polystyrene beads in
aqueous solution [23].

Despite its ubiquitous appearance in nature [25], Brow-
nian motion is just a particular example of a stochastic
process, and there is no evidence that the same behavior
should hold for other naturally occurring transport pro-
cesses. In this regard, it seems highly desirable to have
an analogous proof for anomalous diffusion, with mean-
squared displacement (MSD)

〈X2
t 〉 ∼ tα, (1)

and anomalous diffusion exponent α 6= 1, where the
brackets here and henceforth denote the average over the
statistical ensemble.

Such processes are widely observed in soft matter, con-
densed matter and biological systems, e.g., diffusion in
viscoelastic and crowded systems, the motion of proteins
[15, 26] or sub-micron tracers in living cells [27, 28], in
artificially crowded liquids [29, 30], telomere diffusion in
the cell nucleus [31], diffusion in disordered media [32],
dynamics of ultra-cold atoms [33] and in lipid membranes
[34–37]. Anomalous diffusion is also found in other sys-
tems, including heartbeat intervals [38], DNA sequence
landscapes [39], and even in the daily fluctuations of cli-
mate variables [40] and economic markets [17].

Here we calculate exactly for any T , f and α the full
probability density function (PDF) of a single-trajectory
PSD S(f, T ) - a random, realization-dependent variable
- for the widely observed process of fractional Brownian
motion (fBm) [41, 42] (see also Sec. II for more details).
Analogous to the parental fBm process, the PDF of the
PSD of its individual realizations appears to be entirely
characterized by its two first moments: we thus derive
an explicit expression for the ensemble-averaged PSD

µ = µ(f, T ) = 〈S(f, T )〉 , (2)

the first moment of the PDF, which is a standard prop-
erty, and also go beyond the textbook definition and de-
termine its variance

σ2 = σ2(f, T ) = 〈S2(f, T )〉 − 〈S(f, T )〉2 . (3)

This permits us to quantify the effective broadness of
the PDF via its coefficient of variation γ = σ/µ. We re-
alize that, (for any f and T and regardless of the value
of the anomalous diffusion exponent), γ always exceeds
the value 1 such that the standard deviation σ of the
single-trajectory PSD is always greater than its ensemble-
averaged value µ. This implies that the PDF is broad and
cannot be characterized exhaustively solely by its first
moment, which justifies a posteriori our quest for the

form of the full PDF. Moreover, we find that the value
achieved by γ in the limit fT → ∞ is very meaningful,
and on this basis we offer a novel and very robust crite-
rion, which will permit to prove the anomalous character
of random motion in situations when the analysis of the
MSD deduced from experimental data leads to ambigu-
ous conclusions.

Our theoretical analysis then culminates at the ob-
servation that for sufficiently large values of f a single-
trajectory PSD S(f, T ) is linearly proportional (with a
universal, dimensionless, random proportionality factor)
to its mean value µ, which embodies the full dependence
on T and f . This generalizes the previous observation
made in Ref. [23] for standard Brownian motion to a
wide class of anomalous diffusion. Here, however, the
value of the anomalous diffusion exponent appears to be
crucially important: for α < 1 (subdiffusion) the PSD at-
tains a stationary form 1/fα+1 for sufficiently large f and
T , while in the superdiffusive case (α > 1) the leading
behavior of the PSD is given by Tα−1/f2, i.e., the PSD is
ageing and is deceivingly proportional to 1/f2, where the
exponent 2 characterizing the f -dependence is the same
as for standard Brownian motion (α = 1) [23], regardless
of the actual value of α > 1. In consequence, one should
exercise a great deal of care in the interpretation of the
data for superdiffusive motion and rather concentrate on
the ageing behavior on T than on the f -dependence.

Further on, we compare a variety of our analytical
predictions against the corresponding analysis of single-
trajectory data garnered from experiments in quite di-
verse systems: the dynamics of telomeres in the nucleus
of live cells, of polystyrene microspheres in agarose hydro-
gels, of motile Acanthamoeba castellanii and their intra-
cellular vacuoles. Some features of the predicted behavior
of the PDF, which we could not access in experiments, are
also verified by an extensive numerical analysis. As we
will show, our analytical predictions on the f -dependence
of the PSD in the subdiffusive case, ageing behavior and
the deceptive 1/f2 dependence in the superdiffusive case,
as well as the corresponding distributions of the univer-
sal random amplitude are fully in line with experimental
observations in biologically relevant systems.

We remark that the four systems used in our exper-
imental analysis are just a few particular examples of
systems with an fBm-type dynamics. In general, fBm
encompasses a broad range of naturally occurring pro-
cesses with continuous paths and long-ranged temporal
correlations, which entail both sub- and superdiffusive
behaviors, depending on whether the increments of par-
ticle displacement are negatively or positively correlated.
In particular, physically fBm processes describe the over-
damped, antipersistent motion of particles in viscoelastic
environments [20, 42, 43], as well as the persistent su-
perdiffusion in actively driven systems [44]. The charac-
teristic antipersistent signature of subdiffusive fBM was
identified in the dynamics of chromosomal loci and RNA-
protein particles in live bacterial cells [45], lipid gran-
ules in yeast cells in the millisecond range [27], tracer
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beads in worm-like micellar solutions [29], lipid molecules
in dilute bilayer membranes in supercomputing studies
[35, 46, 47], and chromatin in Langevin dynamics simu-
lations [48]. With different observables fBm-type motion
was further identified in the dynamics of chromosomal
telomeres in living U2OS cells [49] and nanosized parti-
cles in crowded dextran solutions [20, 30, 50].

FBm is thus a very generic stochastic process, and it
combines both subdiffusive and superdiffusive motion in
a common framework, and therefore we regard it here
as the first prototype example for the study of single-
trajectory PSD. Of course, fBm does not cover all possi-
ble kinds of anomalous diffusion [42]. Moreover, in some
instances, fBm dominates the dynamics of a system at
intermediate time scales and it is tempered to become
standard diffusion at longer times; or dynamical tran-
sitions between different types of fBm may take place
[51, 52]. A systematic analysis of other representative
examples of anomalous diffusion, of combinations of dif-
ferent anomalous diffusions, and of processes with dy-
namical transitions between different types of behavior
is thus ultimately necessary, in order to attain a full un-
derstanding of the spectral content of a single-trajectory
PSD. In turn, such an analysis will provide robust crite-
ria permitting eventually to distinguish between different
types of random motion. Our work thus represents an es-
sential first step in this direction.

The outline of this paper is as follows: In Sec. II we
describe the statistical properties of fractional Brownian
motion, present the definitions of the random variables
of interest here, namely, the power spectral density of in-
dividual trajectories of fBm in case of one-dimensional
dynamics, as well as for a more general case of a d-
dimensional dynamics with projections on the coordinate
axes. We also present the definition of the moment-
generating function of the PSD of individual fBm tra-
jectories. The desired PDF follows from the latter upon
a mere inversion of the Laplace transform. In Sec. III we
describe our experimental systems which exhibit anoma-
lous, non-Brownian dynamics and also briefly recall how
both the MSD and the PSD can be deduced from the
experimental data. At the end of this Section we also
describe the algorithm of our numerical analysis. Sec.
IV presents our main exact analytical results and a dis-
cussion of their asymptotic behavior. On this basis, we
formulate here a robust, novel criterion which will permit
to prove the anomalous or normal (standard Brownian)
character of dynamics. This criterion is based on a sta-
tistical sample and is validated by numerical simulations.
Further on, in Sec. V we compare our analytical predic-
tions against the results of simulations and experimental
data garnered from experiments performed for four dif-
ferent systems exhibiting an anomalous behavior. In Sec.
VI we present a brief summary of our results and a per-
spective.

II. FRACTIONAL BROWNIAN MOTION AND
ITS POWER SPECTRAL DENSITIES

FBm is a Gaussian stochastic process and hence, is
entirely characterized by its first moment and the covari-
ance, which defines its auto-correlation at two different
time instants t1 and t2. FBm has zero mean value and
its covariance function is given by

〈Xt1Xt2〉 = D
[
t2H1 + t2H2 − |t1 − t2|2H

]
, (4)

where H ∈ (0, 1) is the so-called Hurst index [41, 42].
Comparing the expression in Eq. (4) for t1 = t2 with
Eq. (1), one infers that for fBm the anomalous diffusion
exponent α is simply related to H, α = 2H.

Standard Brownian motion, on which the analysis in
Ref. [23] was concentrated is recovered for a particular
case H = 1/2 only. In this case, the increments of the
process are independent and D is the standard diffusion
coefficient. When H > 1/2 (corresponding to α > 1), the
increments are positively correlated such that if there is
an increasing pattern in the previous steps, it is likely
that the current step will be increasing as well, resulting
ultimately in a superdiffusive motion. For H < 1/2 the
increments are negatively correlated, such that it is most
likely that after an increasing step a decreasing one will
follow. This ultimately entails a subdiffusive motion. In
the two latter cases D can be thought of as a proportion-
ality factor with units length2/time2H .

We focus here on the single-component single-
trajectory PSD

S(f, T ) =
1

T

∣∣∣∣∣
∫ T

0

exp(ift)Xtdt

∣∣∣∣∣
2

, (5)

which is a random variable dependent on a given realiza-
tion Xt of a one-dimensional fBm and is parametrized
by the observation time T and the frequency f . For
its generalization over the d-dimensional case, we rep-
resent a trajectory Rt of a d-dimensional fBm as Rt =

{X(1)
t , X

(2)
t , . . . , X

(d)
t } [53]. Here X

(j)
t is the projection

of Rt onto the axis xj and is statistically independent of
other components. With this definition we consider the
k-component version of a d-dimensional single-trajectory
PSD,

Sk(f, T ) =
1

T

k∑
j=1

∣∣∣∣∣
∫ T

0

exp (ift)X
(j)
t dt

∣∣∣∣∣
2

, (6)

where k = 1, . . . , d, is the number of the tracked compo-
nents. For k = 1 Eq. (6) reduces to S(f, T ).

We note that the standard text-book definition of the
PSD is based on the ensemble-averaged expressions in
Eqs. (5) and (6). Our aim here is much more ambitious:
we proceed to calculate exactly the full PDF of the ran-
dom variable Sk(f, T ) for arbitrary H, k, f and T . This
can be done rather straightforwardly, if we manage to de-
termine the moment-generating function of the random
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variable Sk(f, T ), defined formally by

Φλ =

〈
exp

− λ
T

k∑
j=1

∣∣∣∣∣
∫ T

0

exp (ift)X
(j)
t dt

∣∣∣∣∣
2
〉 , (7)

with λ ≥ 0. The desired PDF P (Sk) follows from Eq. (7)
by a mere inversion of the Laplace transform with respect
to the parameter λ. Exact results for both the moment-
generating function and the PDF, as well as asymptotic
expressions of the first two moments of the PDF are pre-
sented in Sec. IV. Details of the derivations, which are
rather lengthy, and also quite cumbersome exact expres-
sions for the first two moments of the PDF (valid for
arbitrary values of the parameters f and T , and for ar-
bitrary H ∈ (0, 1)) are presented in the Supplemental
Material (SM).

III. EXPERIMENTAL AND NUMERICAL
ANALYSES

A. Experimental systems

We study experimentally the dynamics of polystyrene
microspheres in agarose hydrogels, of telomeres in the
nucleus of live cells, of motile Acanthamoeba castellanii
amoeba and of their intracellular vacuoles.

Agarose hydrogel

We recorded the motion of 50-nm microspheres in
agarose hydrogel. A 1.5% agarose gel was prepared
from agarose powder (Cat. 20-102GP, Genesee Scien-
tific, San Diego, CA) without further purification by
dissolving it in phosphate-buffered saline. Carboxylate-
modified polystyrene microspheres with 50-nm nominal
diameter (Cat. PC02002, Bangs Laboratories, Fishers,
IN) were first heated to 60◦C in 0.5% Tween20 and in-
troduced into the agarose solution also at 60◦C. The
agarose/microsphere solution was allowed to mix at 60◦C
for 15 min and then transferred to a hot glass-bottom
petri dish and left to slowly cool to room temperature.

The microspheres were imaged in an inverted micro-
scope equipped with a 40x objective (Olympus PlanApo,
N.A. 0.95) and a sCMOS camera (Andor Zyla 4.2) op-
erated at 71 frames per second. The first 2,048 images
were used for further tracking and analysis. Tracking of
the microspheres in the plane was performed in LabView
using a cross-correlation based tracking algorithm [54].
Immobile particles and particles that exhibited very lit-
tle motion were discarded. A total of 20 trajectories were
analysed in terms of their PSD.

Telomeres

Trajectories of telomeres in the nucleus of untreated
U2OS cells were acquired at 8 frames per second and
evaluated as described before [55]. It was shown previ-
ously that the time-averaged mean squared displacement
(TA-MSD) of these trajectories featured an fBm-like sub-
diffusive scaling for short and intermediate times with a
mean exponent 〈α〉 ≈ 0.5. From these previously anal-
ysed data, we selected 19 individual trajectories, each of
2,500 frames length, with scaling exponents in the range
α = 0.5± 0.05 for PSD analysis.

Amoeba and intracellular vacuoles

Trajectories of amoeba and intracellular vacuoles were
recorded using A. castellanii cultured as previously de-
scribed [44]. Imaging was done using a Hamamatsu
ORCA ER2 camera on an Olympus IX71 microscope and
images were recorded with the MATLAB Image Acquisi-
tion Toolbox (Mathworks, Inc.) at 9 frames per second.
In addition, every two seconds the image was segmented
using an edge detection algorithm in MATLAB and the
centre of mass of the amoeba was calculated. To record
over long time periods, the amoeba was kept in the centre
of the image by automatically moving along a scanning
stage (Märzhäuser, SCAN IM 112 x 74). In addition,
the position of intracellular vacuoles was detected using
a home-written segmentation algorithm in MATLAB. In
brief, first edge detection was carried out, followed by a
Hough transformation to find circles and an algorithm
to verify the vacuoles by their light edge. The centre of
the circles in the images was determined and gave the
position of the vacuoles. All trajectories were optically
verified. Previously, it was shown that the vacuole in-
tracellular motion within A. castellanii is super-diffusive
[44].

Four individual amoeba trajectories, each consisting
of 16,384 frames, were analysed in terms of their PSD.
Short vacuole trajectories were discarded and 50 vacuoles
trajectories, all from the same cell, were analysed. In
order to avoid differences in trajectory lengths, only the
first 2,048 frames in each vacuole trajectory were used in
the analysis.

Mean squared displacement (MSD)

The time-averaged MSD of individual trajectories Xp,
where p is an appropriately discretized time variable, is
defined as (see, e.g., Ref. [42])

δ2(∆) =
1

N −∆

N−∆∑
p=1

(Xp+∆ −Xp)
2
. (8)

This property was computed in MATLAB as a function of
the lag time ∆ for all analysed trajectories. The MSD of
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FIG. 1. MSD analysis. (a) Time-averaged MSD (TA-MSD), Eq. (8) as a function of lag time ∆ for 20 individual microsphere
trajectories together with their ensemble average. (b) TA-MSD for 20 individual representative vacuole trajectories together
with the ensemble average from 50 trajectories. (c) TA-MSD for four individual amoeba trajectories together with their
ensemble average. In all three panels the thick black lines show the ensemble averages and the grey dashed lines show power
law behaviour MSD ∼ ∆α.

representative microspheres, amoeba, and vacuole trajec-
tories along with their ensemble mean are shown in Fig.
1. The MSD from the analysed telomere trajectories were
previously reported [55]. The anomalous exponent as ob-
tained from the MSD is for microspheres αS = 0.87 for
short times and αL = 0.61 for longer times (Fig. 1a); for
telomeres α = 0.5 (see Ref. [55]); for vacuoles α = 1.33
(Fig. 1b); and for amoeba α = 1.97 (Fig. 1c).

PSD analysis

Single- and two-component PSDs of individual trajec-
tories (as defined in Eqs. (5) and (6), respectively), were
obtained in MATLAB from the Fourier-transformed com-
ponents X

(1)
t and X

(2)
t of three-dimensional trajectories.

Care was taken that all trajectories of the same type in-
cluded the same number of data points and the same
frame rate.

For analysing the fluctuations of the PSD, i.e., to ob-
tain the empirical distributions of the amplitudes of the
PSD for sub- and super-diffusive cases, the gross scal-
ing 1/fβ was obtained from the ensemble-averaged PSD,
where β = 2H + 1 for the sub-diffusive cases (micro-
spheres and telomeres) and β = 2 for the super-diffusive
ones (vacuoles). From these data sets we extracted val-
ues A′ = S(f, T )fβ in the following frequency ranges: (i)
11Hz < f < 87Hz for microspheres, (ii) 1Hz < f < 10Hz
for telomeres, and (iii) 1Hz < f < 5Hz for vacuoles. We
did not extract the fluctuations of the amoeba because
only four trajectories were used. Then, we normalised the
fluctuations according to A = A′/〈A′〉. The same pro-
cedure was followed to obtain B for the vacuoles. These
data were then compared to the theoretical predictions
as described in Sec. IV below.

Numerical algorithms

Numerical simulations of fBm are far more complicated
than the ones used, for example, for a standard Brownian
motion. FBm is not a Markov process and has long range
correlations. In order to reproduce fBm numerically we
use the exact Davies Harte Circulant method (see, e.g.,
Refs. [56–60]). Due to the use of Fast Fourier Transform
the required CPU time for reproducing a T steps trajec-
tory is of order T log(T ) (and not of order T 2 as a naive
approach would give). The Davies-Harte approach is a
very powerful exact method, and for samples of the size
we use its running time is comparable to the one of ef-
fective approximate methods [59]. We use trajectories of
T = 221 to T = 223 discrete time steps. The total CPU
time we have used for all the numerical runs that have
been useful to prepare this work is of the order of few
months of one core of Intel(R) Xeon(R) CPU E5-2620 0
@ 2.00GHz.

IV. ANALYTICAL PREDICTIONS

Our first step consists in calculating the moment-
generating function Φλ of the k-component single-
trajectory PSD (see Eq. (6)), defined in Eq. (7). We
obtain (see SM for the details of the derivation)

Φλ =
[
1 + 2µλ+

(
2− γ2

)
µ2λ2

]−k/2
, (9)

where µ is the first moment of a single-component single-
trajectory PSD, Eq. (2), σ2 is the variance of this random
variable, Eq. (3), and γ = σ/µ is the coefficient of varia-
tion of the PDF of a single-component single-trajectory
PSD S(f, T ), Eq. (5). Inverting the Laplace transform



6

with respect to λ we readily obtain the PDF of Sk(f, T ),

P (Sk(f, T ) = S) =

√
π

2
k−1
2 Γ (k/2)

√
2− γ2 (γ2 − 1)

k−1
4

× S
k−1
2

µ
k+1
2

exp

(
− 1

2− γ2

S

µ

)
I k−1

2

(√
γ2 − 1

2− γ2

S

µ

)
, (10)

where Iν(z) is the modified Bessel function of the 1st
kind. We emphasise that the expressions in Eqs. (9)
and (10) are exact and hold for any f , T and also for
any value of the Hurst index H. We note that Φλ and
P (Sk(f, T ) = S) are entirely defined by the first two mo-
ments of S(f, T )—and hence, all higher moments of the
k-component single-trajectory PSD Sk(f, T ) can be ex-
pressed solely through the first two moments of S(f, T ).
This is a direct consequence of the Gaussian nature of
the parental process Xt. This suggests, in turn, that the
expressions in Eqs. (9) and (10) may hold, in general,
for arbitrary Gaussian processes, not necessarily for the
fBm only. The dependence µ, σ2 and hence, of γ on the
characteristic parameters will depend, of course, on the
case at hand.

For fBm processes, the exact dependence of µ, σ and,
hence, of γ on f and T for any value of H ∈ (0, 1) is
presented in SM. Below we discuss their rather complex
behavior focusing first on the coefficient of variation γ,
which characterizes the effective broadness of the PDF
in Eq. (10).

The coefficient of variation γ, which enters Eqs. (9) and
(10), is a dimensionless numerical factor that depends on
f and T only through the function ω = fT . Figure 2
shows γ as a function of ω for six different Hurst indices
spanning the range 1/4 ≤ H ≤ 7/8. The behaviour of γ
has several characteristic features, which can be clearly
observed in Fig. 2:
(i) In the limit ω → 0, the coefficient γ tends to the

universal value
√

2, regardless of the value of H. Next,
γ is an oscillatory function of ω, and the oscillations are
prominent at moderate values of ω. In the limit ω � 1
the oscillatory terms fade out and γ is given by very
simple asymptotic formula (see SM for derivation)

γ ∼
[
1 +

(
1 + cHω

1−2H
)−2
]1/2

, (11)

with cH = Γ (1 + 2H) sin (πH). This asymptotic form is
depicted by thin solid curves in Fig. 2.
(ii) We see that γ ≥ 1, in the whole range of variation
of ω. This signifies that the standard deviation of the
single-component single-trajectory PSD always exceeds
its mean value. In consequence, the PDF in Eq. (10)
is effectively broad and the analysis of the power spec-
trum using the standard ensemble-averaged PSD µ only
is rather meaningless.
(iii) A most remarkable feature - rendering γ a crucial
and highly practical property for fBm-type processes - is
that it offers the sought criterion for anomalous diffusion,
since the values attained by γ in the limit ω → ∞ are
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FIG. 2. Coefficient of variation γ as a function of ω = fT .
Colored solid curves represent exact values of γ (arrows in-
dicate the corresponding values of H), defined by Eq. (47)
in the SM, while thin solid curves depict the asymptotic ex-
pression in Eq. (11). Horizontal dashed lines correspond to√

2 (top),
√

5/2 (middle) and 1 (bottom). Symbols represent
numerical results averaged over 104 realisations of trajectories
consisting of T = 223 discrete time steps.

distinctly different:
√

2,
√

5/2, and 1, independent of the
exact value of H but solely dependent on whether one
has a superdiffusive (H > 1/2), diffusive (H = 1/2), or
subdiffusive (H < 1/2) behaviour, respectively. These
analytical predictions are fully confirmed by numerical
simulations for a number of H values.

Before we proceed, it may be expedient to dwell some
more on the last point. When dealing with particle-
tracking experiments, one often observes values of α
that are only slightly different from 1. Consequently, in
these cases, it is not obvious whether one is dealing with
anomalous diffusion, or simply if the fitting of the curves
started too early and includes transient behavior. On the
other hand, the asymptotic value of γ at large frequencies
provides, in principle, an immediate answer to this ques-
tion and reveals whether the underlying diffusion pro-
cess is normal or anomalous. Such an unequivocal con-
firmation of anomalous diffusion can provide extremely
valuable evidence to drive efforts into searching for mi-
croscopic mechanisms underlying the dynamics and lead
eventually to a deeper comprehension of the processes in
the system under study.

Note that here, however, we resorted to proof-of-
concept numerical simulations, because the confirmation
of this prediction requires a rather big statistical sample,
which we were unable to create in current experimental
analysis. We nonetheless perform such an analysis be-
low in Sec. V (see Fig. 4): it appears to be instructive
and shows that a small sample containing only few tens
of trajectories can provide a meaningful representation
of the overall trend. Given the current rapid progress
in single particle tracking techniques, sufficiently large
experimental samples are certainly within reach.

Even though γ allows finding whether the process is
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subdiffusive or superdiffusive, it does not permit one to
deduce the value of the anomalous diffusion exponent α.
Below we discuss how one can find this further piece of
the puzzle by analyzing the asymptotic behavior of the
ensemble-averaged PSD µ and the corresponding limit-
ing behavior of the PDF in Eq. (10). Consider first
the case of subdiffusion (H < 1/2). We suppose that
ω is sufficiently large, such that γ − 1 ≤ ε, where ε is
a small parameter. In virtue of relation (11) the above

inequality holds for ω within the interval ω ∈ (ω
(sub)
l ,∞)

where ω
(sub)
l = 1/(2cHε)

1/(1−2H) (e.g., for H = 1/4
and ε = 0.01 one gets ωl ≈ 6.4 × 103). In this limit,
the denominator in Eq. (9) becomes a full square, i.e.,

Φλ ' [1 + µλ]
−k

, with accuracy set by ε. This means, in
turn, that the PDF of Sk(f, T ) becomes, up to terms of
order of ε, the gamma distribution with shape parameter
k and scale parameter µ. Consequently, in this case, the
k-component single-trajectory PSD obeys the equality in
distribution

Sk(f, T )

µ(sub)

d
= A+O(ε), (12)

where the omitted terms are small in ε and A is a random
numerical factor with distribution

P (A) = Ak−1 exp(−A)/Γ(k). (13)

In the superdiffusive case (H > 1/2), we again as-
sume that ω is sufficiently large such that the inequality√

2− γ ≤ ε holds. By virtue of relation (11), this is true

when ω ∈ (ω
(sup)
l ,∞) with ω

(sup)
l = (2

√
2cH/ε)

1/(2H−1)

(e.g., for H = 3/4 and ε = 0.01, we have that ω
(sup)
l ≈

7.1 × 104, i.e., a somewhat bigger value than the one
in the subdiffusive case). In this limit the coefficient
in front of the term quadratic in λ in the denomina-
tor in Eq. (9), (i.e., (2 − γ2)), is less than ε such that

Φλ ' [1 + 2µλ]
−k/2

and, in turn, the PDF of Sk(f, T ) be-
comes the gamma distribution with scale 2µ and shape
parameter k/2. Consequently, the k-component single-
trajectory PSD follows the equality in distribution

Sk(f, T )

µ(sup)

d
= 2B +O(ε), (14)

where B is a random numerical factor with distribution

P (B) = Bk/2−1 exp(−B)/Γ(k/2). (15)

Therefore, the equalities in Eqs. (12) and (14) suggest
that for both the subdiffusive and superdiffusive cases
the single-trajectory PSD should always be linearly pro-
portional to its ensemble-average value µ, (which incor-
porates the dependence on frequency), at large values of
ω. The proportionality factor is merely a random num-
ber with distribution given by Eqs. (13) or (15), which
does not entail any additional dependence on f or T .

Below we specify the spectral content of µ. In the SM
we show that for subdiffusive fBm at sufficiently large

values of T and f , µ has the scaling form

µ(sub) =
2cHD

f2H+1
. (16)

In the superdiffusive case H > 1/2, at large T and f ,

µ(sup) =
2D

f2
T 2H−1 +

2cHD

f2H+1
+ o (1) , (17)

where the Landau symbol o(1) states that the omitted
terms vanish as T → ∞. Result (17) unveils two re-
markable features of the ensemble-averaged PSD in the
superdiffusive case:
(i) First, regardless of the value of H, for large T , the
frequency dependence has the universal 1/f2 form, pre-
cisely that of the PSD for standard Brownian motion.
Therefore, experimental analyses of the frequency depen-
dence of the PSD in the superdiffusive case may lead to
the false conclusion that one deals with Brownian motion
(H = 1/2). Consequently, one should exercise care in in-
terpreting data in this case: while Brownian motion has
a PSD that scales as 1/f2, the observation of exclusively
such a dependence does not guarantee that one indeed
deals with Brownian motion.
(ii) Second, a crucial difference from Brownian motion
is the dependence of the amplitude on the observation
time T . This ageing behavior can be used to distinguish
the T -independent PSD for Brownian motion from the
superdiffusive case: H can be deduced by analysing the
spectrum at some fixed frequency given that one expects
Sk(f, T ) ∼ T 2H−1.

Lastly, we show that the value of H can be deduced
from the spectrum evaluated at zero frequency,

Sk(f = 0, T ) =
1

T

k∑
j=1

(∫ T

0

X
(j)
t dt

)2

, (18)

which represents the sum (divided by T ) of squared areas
under the projections of the random curve Xt on differ-
ent axes. In the SM we show that the ensemble-averaged
PSD at zero frequency is universally (for both subdiffu-
sive and superdiffusive H) described by

µ(f = 0, T ) =
DT 2H+1

(H + 1)
, (19)

(see also the result in Ref. [10] with the reset rate set
equal to zero). On the other hand, the variance of the
single-trajectory PSD obeys (see SM), again for any H,

σ2(f = 0, T ) =
2D2T 4H+2

(H + 1)2
. (20)

This signifies that the coefficient of variation γ =
√

2, re-
gardless of the value of H, such that the PDF of Sk(f =
0, T ) is the gamma distribution with scale 2µ(f = 0, T )
and shape parameter k/2 for any T . In consequence,
Sk(f = 0, T ) obeys exactly the single-trajectory relation
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in Eq. (14) with the correction term O(ε) identically
equal to zero implying that the Hurst index can be de-
duced directly from the PSD at zero frequency.

Below we explore both possibilities to deduce H from
a single-trajectory data, taking advantage of the ageing
behavior of Sk(f, T ) and of the dependence of the PSD
at zero frequency on the observation time T .

V. COMPARISON WITH EXPERIMENTAL
AND NUMERICAL DATA

We tested our predictions for the PSD of single trajec-
tories in four different experimental data sets and multi-
ple numerical simulations. The experimental data consist
of two systems exhibiting subdiffusive behavior and two
systems exhibiting superdiffusion. For subdiffusive dy-
namics, we analysed the motion of 50-nm microspheres in
agarose gels and telomeres in the nucleus of mammalian
cells [55]. For superdiffusive behaviour, we studied the
motion of live amoeba and their intracellular vacuoles.
Representative MSD of individual trajectories in all these
systems are presented in Fig. 1 along with their respec-
tive averages of the time-averaged MSDs. Examples of
PSDs of the single trajectories are shown in Figs. 3a-d.

The time-averaged MSDs of telomeres scale with an
exponent α = 0.5, (i.e., H = 0.25) for short and interme-
diate times [55], predicting a PSD S(f, T ) ∼ A/f1.5. As
shown in Fig. 3a, the individual trajectories agree with
this prediction and the ensemble-averaged PSD from 19
trajectories yields µ(sub) ∼ 1/f1.49. We also show that
the experimentally observed fluctuations in the PSDs
remarkably confirm the predicted universal distribution
Eq. (13) for both one- and two-components PSDs, i.e.,
for k = 1 and k = 2, respectively (Fig. 3e). Similar
agreements are found for the motion of 50-nm micro-
spheres in 1.5% agarose gel. As shown in Fig. 1a, the
MSD of these particles scales with an exponent α = 0.87
(H = 0.43) for short times and α = 0.61 (H = 0.30) for
long times. The PSD yields µ(sub) ∼ 1/f1.76 (Fig. 3b),
and the PSD fluctuations also follow closely a gamma
distribution (Fig. 3f) as predicted by Eq. (13).

The motion of amoebae and their intracellular vacuoles
are good examples of superdiffusive dynamics. Intracel-
lular vacuoles are subdiffusive at short lag times and su-
perdiffusive with α = 1.33 at long lag times (Fig. 1b).
This behaviour is typical of active motion in the cyto-
plasm [61]. Interestingly, the MSDs of the centre of mass
of the investigated amoebae show almost ballistic motion
with α = 1.97 (Fig. 1c). The PSDs of the motion of both
the amoebae and the vacuoles therein, clearly show the
predicted deceptive 1/f2 behavior (Figs. 3c and d). The
distribution of the PSD amplitudes is also shown for the
vacuoles in Fig. 3g together with the predicted gamma
distributions, Eq. (15), revealing an excellent agreement
with the latter for k = 1. The discrepancy with our
two-component analytical prediction for small B-values
is likely associated with small amplitude antipersistent

motion of the vacuoles, as is evident from the trajecto-
ries.

In Fig. 3h we present the averaged spectra at zero fre-
quency for both subdiffusive and superdiffusive cases (
see eqs. (19) and (20) in Sec. IV). We used 19, 20, 50
and 4 trajectories for the telomeres, microspheres, vac-
uoles and amoeba, respectively, to get directly the Hurst
exponents: H = 0.30, 0.18, 0.67 and 1.92. Despite the
small sizes of our statistical samples, the obtained val-
ues of H agree well with the values deduced from the
corresponding MSDs.

We revisit next the behavior of the coefficient of vari-
ation γ of the single-trajectory PDF (see Fig. 2) and ad-
dress the question whether meaningful information can
already be drawn from small statistical samples of ex-
perimental data. In Fig. 4 we plot the value of γ as a
function of ω = fT obtained from only 19 experimen-
tally recorded trajectories of telomeres, 20 trajectories
of microspheres in agarose hydrogels and 50 intracellular
vacuole trajectories, as well as from a larger number of
trajectories (150) of micrometer-sized beads in an aque-
ous solution [23]. The microspheres in aqueous solution
provide an excellent example of standard Brownian mo-
tion, i.e., H = 0.5. One observes that, indeed, in the
large-ω limit, γ converges to distinctly different values for
superdiffusion, normal diffusion and subdiffusion cases.
For vacuoles, at large ω, the coefficient of variation γ is
observed to converge to 1.55±0.01, for Brownian motion
(beads in aqueous solution), it is observed to converge
to 1.21 ± 0.01, for telomeres to 1.05 ± 0.01 and for the
microspheres in agarose gels to 1.07± 0.01. In line with
our analytical prediction of a universal value of γ for
subdiffusive fBm, the obtained values for telomeres and
microspheres are very close to each other. Overall, the
experimentally determined values for γ are only about
10% larger than our analytical predictions (

√
2 ≈ 1.41

for vacuoles,
√

5/2 ≈ 1.12 for beads in aqueous solution
[23], and 1 for telomeres and microspheres). Given the
small size of the statistical sample, we consider such a
favorable agreement quite remarkable. In comparison,
the perfect agreement of our predictions with γ values
from fBm simulations (cf. Fig. 2) rather represents an
exceptional situation due to the big statistical sample
(104 trajectories). Moreover, in experiments many dif-
ferent, sometimes uncontrollable factors, e.g. detector
noise, may come into play which leads to an increasing
variance of the single-trajectory PSD and hence to ele-
vated values of γ. We plan to examine this important
aspect in more detail in our future work.

We further performed extensive analyses of single-
trajectory PSDs for different values of H using numer-
ical simulations. Figures 5a and b show the results for
single-trajectory PSDs as a function of the frequency (for
sufficiently large T ) for different values of H between 1/5
and 4/5. Namely, the subdiffusive cases (H < 1/2) are
shown in Fig. 5a and other cases (H > 1/2) are shown
in Fig. 5b. One observes excellent agreement between
the predicted behaviour, Eqs. (12) and (16), and the
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FIG. 3. Power spectrum analysis of experimental data sets. (a-d) PSD of representative trajectories along with the ensemble-
averaged PSD for telomeres in the nucleus of HeLa cells, 50-nm microspheres in 1.5% agarose gel, intracellular vacuoles within
amoeba, and the motion of amoeba. The dashed thick lines show the 1/f1.49 trend for panel (a), 1/f1.76 for panel (b) and
1/f2 for panels (c) and (d). In each case, the PSDs of four trajectories are presented (log-sampled with a factor 1.1 for clarity)
together with the ensemble-averaged PSD (thicker black lines, n = 19, 20, 50, and 4 trajectories for telomeres, microspheres,
vacuoles, and amoeba, respectively). (e-g) Distribution of amplitudes of the PSD for one and two components. (h) PSD
evaluated at zero frequency. The zero frequency spectra are shifted for clarity and displayed together with the fitted power-law
functions (grey solid lines). The experimental results throughout agree excellently with the theoretical predictions.
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FIG. 4. Coefficient of variation γ as a function of ω = fT
in small statistical samples of experimental data. Dashed
horizontal lines highlight the analytical predictions made in
Sec. IV with blue, red, and green indicating the values γ =

√
2

(superdiffusive fBm), γ =
√

5/2 (standard Brownian motion
[23]), and γ = 1 (subdiffusive fBm), respectively. Symbols
represent the values of γ drawn from experiments. Blue dia-
monds: vacuoles (50 trajectories); red squares: 1.2-µm beads
in aqueous solution (150 trajectories) [23]; green circles: 50-
nm microspheres in agarose hydrogel (20 trajectories); and
cyan triangles: telomeres in the nucleus of mammalian cells
(19 trajectories).

numerics even for a small statistical sample consisting
of 10 realisations. In Fig. 5c we also demonstrate that
the single-trajectory PSD for a specific subdiffusive case
(H = 1/3) is not ageing. On the other hand, Figs. 5e
and f illustrate the ageing behavior of a single-trajectory
PSD for H = 2/3 and 4/5, at three fixed frequencies.
Here, the straight lines indicate the predicted ageing de-
pendence T 2H−1, Eq. (17), while the symbols represent
the results of numerical simulations averaged over 50 re-
alisations. We again observe a perfect agreement with
our theoretical predictions.

VI. DISCUSSION

In summary, we here combined theoretical, numeri-
cal and experimental analyses to provide a comprehen-
sive answer to the conceptually and practically important
question: which information can be reliably obtained
from the spectral content of a single realisation of nat-
urally occurring anomalous-diffusion processes. Given
the widespread occurrence of 1/f -type of spectra in the
analysis of experimental systems and signals across al-
most every field of physics, such an analysis is very perti-
nent. Focusing on a wide class of such processes—the so-
called fractional Brownian motion—we derived exactly
the distribution of a single-trajectory power-spectral den-
sity (PSD) and analyzed its asymptotic forms for both
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FIG. 5. Numerical confirmation of our theoretical predictions. (a) Frequency dependence of a single-trajectory PSD in the
subdiffusive case (Eqs. (12) and (16)) for H = 0.42, 1/3, 1/4, and H = 1/5, averaged over 10 realisations. Straight lines have
slope −(2H + 1), as shown in Eq. (16). The symbols represent the results of numerical simulations. (b) Deceptive 1/f2-
dependence (Eq. (17)) in the superdiffusive case. Symbols represent results of numerical simulations for individual trajectories
averaged over 10 realisations. (c) Apparent independence of a single-trajectory PSD in the subdiffusive case on the observation
time for sufficiently large T . (d-e) Ageing behavior of a single-trajectory PSD in the superdiffusive case for three different
values of the frequency. Straight lines have slopes 2H − 1 as shown in Eq. (17). Symbols represent numerical results averaged
over 50 realisations.

subdiffusive and superdiffusive dynamics. On this basis,
we unveiled several striking features:
(i) At a fixed observation time and in the limit of high fre-
quencies, this distribution reduces to simple forms with
a unique scaling given by the ensemble-averaged PSD,
which incorporates the full dependence on f and T . As
a consequence, one expects that for an arbitrary realiza-
tion of the process a single-trajectory PSD should exhibit
the same large-f dependence as a traditional ensemble-
averaged PSD.
(ii) Our experiments and numerical simulations impres-
sively evidence that this is indeed the case for both super-
and subdiffusive fBm-type processes. For subdiffusive
processes, the exponent characterising the spectrum is
equal to 2H + 1 and hence, the anomalous diffusion ex-
ponent can be obtained by evaluating the slope of the
PSD. For superdiffusive processes, in contrast, the ex-
ponent is deceptively universal and equal to two, which
can lead to the false conclusion that one deals with or-
dinary Brownian motion, while in reality the process is
superdiffusive. We find this prediction particularly im-
portant since it will permit to avoid a misinterpretation

of experimental results.
(iii) For superdiffusive processes the amplitude of the
PSD is ageing, i.e., dependent on the observation time.
However, it is difficult to observe this dependence on a
single trajectory since the T -dependence is weaker than
the large fluctuations between nearby frequencies. Here,
a statistical sample (comprising, however, only 50 trajec-
tories) was used in order to observe the ageing trend and
to extract the value of the anomalous diffusion exponent
from the ageing behavior.
(iv) We showed that the coefficient of variation γ of
a single-trajectory PSD provides a novel criterion for
anomalous diffusion. For fBm, its large-f form assumes
only three different values, depending on whether we ob-
serve subdiffusion, normal diffusion, or superdiffusion.
Our analytical predictions are in a perfect agreement
with the results of numerical simulations for a represen-
tative statistical sample (104 trajectories), but are also in
line with the experimental results, obtained from a fairly
small statistical sample (19 to 50 trajectories).
(v) Lastly, our theoretical, numerical and experimental
analysis shows unequivocally that the coefficient of vari-
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ation always exceeds the value 1, meaning that the stan-
dard deviation of a single-trajectory PSD is generically
bigger than its mean value. In standard nomenclature of
the statistical analysis, the distributions which possess
such a property are considered to be effectively broad.
This implies that the analysis of the spectral content
of individual trajectories in terms of only the ensemble-
averaged PSD has limited meaning, which justifies com-
pletely our quest for the full PDF of this important char-
acteristic property.

To conclude, from an experimental perspective, our re-
sults serve as a reliable framework in the interpretation
of noisy data obtained from a single trajectory - it has
become routine to garner few individual particle trajec-
tories of impressive length in the wake of superresolution
microscopy and super- computing. In perspective, our re-
sults will thus play an important role in extracting more
physical information from them.

Finally, we remark that especially in the complex en-
vironment of biological cells, where a vast array of spe-
cific and non-specific interactions transpire, fBm does
not account, of course, for all possible types of observed
anomalous diffusions. Therefore, additional stochastic
mechanisms may be superimposed, such as short-time
or even simultaneous scale-free trapping time dynamics
[27, 28, 62, 63]. In other instances, fBm may be tempered
or there may occur dynamical transitions between differ-
ent types of fBm [51, 52]. Extensions of our analysis over
other possible kinds of anomalous diffusion, such as the
fBm models with dynamical transitions [51], “diffusing
diffusivity” models [64], scaled Brownian motion [65], or
continuous-time random walks with a broad distribution
of waiting times [66] are necessary in order to get a full
understanding of the behavior of the PSD in experimen-
tally relevant systems. We believe that our work presents
an important first step towards such an understanding
and will prompt a systematic case-by-case analysis.
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