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Nematic pairing from orbital-selective spin fluctuations in
FeSe
Lara Benfatto1, Belén Valenzuela2 and Laura Fanfarillo 3

FeSe is an intriguing iron-based superconductor. It presents an unusual nematic state without magnetism and can be tuned to
increase the critical superconducting temperature. Recently it has been observed a noteworthy anisotropy of the superconducting
gaps. Its explanation is intimately related to the understanding of the nematic transition itself. Here, we show that the spin-nematic
scenario driven by orbital-selective spin fluctuations provides a simple scheme to understand both phenomena. The pairing
mediated by anisotropic spin modes is not only orbital selective but also nematic, leading to stronger pair scattering across the hole
and X electron pocket. The delicate balance between orbital ordering and nematic pairing points also to a marked kz dependence
of the hole–gap anisotropy.
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INTRODUCTION
Soon after the discovery of superconductivity in iron-based
systems, it has been proposed that pairing could be unconven-
tional, i.e., based on a non-phononic mechanism.1,2 This proposal
has been triggered, from one side, by the small estimated value of
the electron–phonon coupling, and, from the other side, by the
proximity in the temperature-doping phase diagram of a
magnetic instability nearby the superconducting (SC) one. Within
an itinerant-electron picture pairing could be provided by
repulsive spin fluctuations (SF) between hole and electron
pockets, connected by the same wavevector characteristic of the
spin modulations in the magnetic phase (see Fig. 1). This
suggestion has been supported and confirmed by an extensive
theoretical work, aimed from one side to establish why inter-
pockets repulsion can overcome the intra-pocket one3 and from
the other side to provide a quantitative estimate of the SC
properties starting from the Random Phase Approximation (RPA)-
based description of the SF susceptibility.4,5

The success of the itinerant scenario as a unified description of
Fe-based materials has been partly questioned by the discovery of
superconductivity in the FeSe system. Recent experiments6–10

detected sizeable SF in FeSe, however, a magnetic phase appears
only upon doping. Superconductivity emerges below Tc ~ 9 K from
the so-called nematic phase.11 Here at temperatures below TS=
90 K, the anisotropy of the electronic properties is far larger than
what expected across a standard tetragonal-to-orthorhombic
transition, suggesting that it is driven by electronic degrees of
freedom.11,12 In particular, Angle-Resolved Photoemission Spectro-
scopy (ARPES) experiments clearly show a dramatic change of the
Fermi surface (FS) across TS, that can be reproduced with an
effective crystal-field splitting of the various orbitals.13–21

In this situation, the explanation of the observed anisotropy of
the SC gaps in FeSe becomes intimately related to the under-
standing of the nematic transition itself. Extensive experimental
studies on the FeSe-based material, ranging from quasiparticle

interference imaging22,23 and ARPES measurements,24–28 to
thermal probes,29,30 suggest that the SC gap in FeSe is highly
anisotropic on both hole and electron pockets. By defining θ the
angle formed with the kx axis measured with respect to the center
of each pocket, one finds that the gap is larger at θ= 0 on the Γ
pocket, where the predominant character in the nematic phase is
xz,19,26,27 and at θ= π/2 on the X pocket, where the dominant
character is yz, Fig. 1b. Thus, accounting for an orbital-dependent
SC order parameter does not reproduce the observed gap
hierarchy, and additional phenomenological modifications of the
pairing mechanism must be introduced22,26,31 to describe the
experiments.
Among the various attempts to theoretically understand the

nematic phase from microscopic models, we have recently
emphasized the outcomes of a theoretical approach which
correctly incorporates the feedback between orbital degrees of
freedom and SF.19,32,33 From one side, the degree of orbital
nesting between hole and electron pockets is crucial to determine
the temperature scale where SF beyond RPA drive the spin-
nematic instability,32 making SF at QX= (π/a, 0) and QY= (0, π/a)
anisotropic below TS.

34 From the other side, SF renormalize the
quasiparticle dispersion, so that the orbital ordering observed
below TS is a consequence of the spin nematicity, thanks to an
orbital-selective shrinking mechanism.19 In this work, we show
that such orbital-selective spin fluctuations (OSSF) provide also the
key pairing mechanism needed to understand the SC properties of
FeSe. Within an orbital-selective spin-nematic scenario, the C4
symmetry breaking of the SF below TS provides a pairing
mechanism that is not only orbital selective but also nematic, in
the sense that inter-pocket pair scattering along the ΓX and ΓY
directions becomes anisotropic. As we show below, accounting
only for the nematic band-structure reconstruction of the FS, the
SC gap of the Γ pocket follows the modulation of the dominant xz
orbital, with a weak relative maximum at θ= π/2, in striking
disagreement with the experiments. The nematic pairing provided
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by OSSF is crucial to enhance the yz component of the SC order
parameter, explaining why the anisotropy of the SC gap at Γ
follows the subdominant yz orbital character of the underlying
FS.26,27 We also discuss its implications for the gap-structure
measured at kz= π (refs. 24,25,28), where hole pocket retains a
larger yz character even in the nematic phase, making the nematic
pairing responsible for an enhancement of the moderate gap
anisotropy triggered already by orbital-ordering effects.35

RESULTS
Model
To compute the SC properties of FeSe, we start from a low-energy
model adapted from ref. 36. The orbital content of each pocket is
encoded via a rotation from the fermionic operators cxz, cyz, cxy in
the orbital basis to the ones describing the outer hole pocket (h)
at Γ and the electronic pockets at X (eX) and at Y (eY):

hk ¼ uΓ;kcyz;k � vΓ;kcxz;k; (1)

eX;k ¼ uX;kcyz;k � ivX;kcxy;k; (2)

eY;k ¼ uY;kcxz;k � ivY;kcxy;k; (3)

where the explicit definition of the coefficients u‘;k; v‘;k with ‘ ¼
Γ; X; Y is given in Supplementary Note 1. For example, for the hole
pocket in the tetragonal phase uΓ;kF � cosθ and vΓ;kF � sinθ,
accounting for the predominant orbital character of the FS
represented in Fig. 1a. By using the identities (1)–(3), one can
establish32,37 (see also Supplementary Note 2) a precise corre-
spondence between the orbital character of the spin operator and
the momenta QX or QY connecting the hole and the X/Y pockets:

SðQXÞ � SyzX ¼
X
k

uΓ;kh
y
k~σuX;kþQX eX;kþQX ; (4)

SðQYÞ � SxzY ¼
X
k

�vΓ;kh
y
k~σuY;kþQY eY;kþQY : (5)

Since xz states are absent at X the Sxzq operator has no component
at the wavevector QX connecting the Γ and X pocket, and vice
versa for the yz states. This leads to OSSF at different momenta, as
depicted in Fig. 1:

hS � SiðQXÞ ) hSyzX � SyzX i; (6)

hS � SiðQYÞ ) hSxzY � SxzY i: (7)

The existence of OSSF provides a natural explanation of the
orbital ordering observed in the nematic phase of FeSe. In fact, the

self-energy corrections due to spin exchange imply a shift in the
chemical potential with opposite sign for the hole and electron
pockets, leading in both cases to a shrinking of the FS19,38 that
explains why experimentally they are always smaller than LDA
predictions.19,39,40 Within the OSSF model, due to the orbital-
selective nature of SF, this mechanism is also orbital-dependent.19

As a consequence, within a spin-nematic scenario, the C4
symmetry breaking of SF along ΓX and ΓY explains also the orbital
ordering observed in the nematic phase. It has been shown19 that,
by assuming stronger SF at QX below TS, the self-energy difference
ΔΣ between the xz and yz orbitals induces an orbital splitting
being positive at Γ and negative at the electron pockets, leading
to the observed deformations of the FS below TS.

11,15,17,19–21 Even
though this orbital-selective shrinking mechanism is generic, its
effect can be quantitatively different in the various family of iron-
based superconductors. For example, in the 122 family the survival
of the inner hole pocket enhances the degree of orbital nesting
between hole and electron pockets favoring magnetism, this
explains why in 122 the nematic transition is immediately
followed by the magnetic one.32 The quantitative determination
of the nematic splitting induced by the nematic spin modes
requires a direct comparison with the low-energy band dispersion,
as done explicitly for FeSe in ref. 19. Here, we take these results for
granted and we start from a low-energy model that includes
already the effective masses, isotropic shrinking, and nematic
splittings needed to reproduce the ARPES FS measured in the
nematic phase above Tc, and the kz dependence of the hole
pocket between the Γ (kz= 0) and Z (kz= π) point (see
Supplementary Note 3). The resulting FS at kz= 0 is shown in
Fig. 1.
The effect of the nematic orbital splitting on the orbital factors

below TS is shown in Fig. 2. Here, ΔΣh ¼ ðΣΓxz � ΣΓyzÞ=2 denotes the
nematic splitting at Γ and ΔΣe ¼ ðΣXyz � ΣYxzÞ=2 is the nematic
splitting at M= (X, Y) with Σ‘yz=xz being the yz/xz orbital component
of the real part of the self-energy for the ‘ pocket (see
Supplementary Note 1). The maximum values are chosen to
match the experimental ones,11,19–21 i.e., ΔΣh=e ’ 15meV. The
most dramatic changes due to the nematic order are found in the
orbital occupation of the hole pocket (Fig. 2a, d). The presence of a
relatively large spin–orbit coupling (≃20meV) implies a mixing of
the xz and yz orbitals on all the FS. However, below TS the yz
character of the hole pocket is strongly suppressed, and the
pocket acquires a dominant xz character even at θ= 0, as
observed by the polarization dependent ARPES measure-
ments.17,19,26,27 At the same time, the nematic splitting enhances
the yz occupation at X (Fig. 2b, e), and suppresses the xz at Y (Fig.
2c, f). As a consequence, one easily understands that considering
the orbital character of the SC order parameter is not enough to
explain the observed gap hierarchy. In fact, on the X pocket the
gap is maximum at θ= π/2, where the band has strong yz
character, while on the Γ pocket it is larger at θ= 0, where a
dominant xz character is found. The crucial ingredient required to
account for the SC properties of FeSe comes indeed from the
nematic pairing provided by OSSF, as we show below.
By building up the spin-singlet vertex mediated by the SF, (6)

and (7), one obtains (see Supplementary Note 2) a pairing
Hamiltonian involving only the xz/yz orbital sector:

Hxz;yz
pair ¼ �gX

X
k;k0

u2Γ;kh
y
kh

y
�ku

2
X;k0eX;�k0eX;k0

�gY
X
k;k0

v2Γ;kh
y
kh

y
�ku

2
Y;k0eY;�k0eY;k0 þ h:c:

(8)

The coefficients u‘;k , v‘;k , accounting for the pockets orbital
character, preserve the C4 band-structure symmetry above TS and
reproduce the nematic reconstruction below TS. The gX/Y couplings
control the strength of the pair hopping between the Γ and X/Y
pockets. Within a spin-nematic scenario, OSSF below TS are

Fig. 1 FeSe Fermi surfaces at kz= 0. a Paramagnetic phase. b
Nematic phase. The colors represent the main orbital character of
the Fermi surface. The green/red arrows denote the orbital-selective
spin fluctuations (OSSF), connecting hole and electron pockets at
different momenta, see Eqs. (6) and (7). The spin fluctuations along
ΓX and ΓY are equivalent in the paramagnetic phase a and become
anisotropic in the nematic one b
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stronger along ΓX than along ΓY leading to a nematic pairing
anisotropy with gX > gY. Within the present itinerant-fermions
picture, the SF are peaked at the wavevectors connecting hole-like
with electron-like pockets. Thus, due to the absence in FeSe of the
hole-like xy band at Γ one can neglect the spin-mediated pairing
in the xy channel. However, SF at RPA level was found31 to be
most prominent at Q= (π, π). While this could be consistent with
inelastic neutron scattering measurements at high temperatures,
it does not account for the predominance of stripe-like SF at (π, 0)
in the nematic phase.7 In addition, a predominant Q= (π, π)
pairing channel implies a maximum gap value on the xy sector of
the electron pocket, that is in sharp contrast with the experiments.
This led the authors of refs. 22,31 to phenomenologically introduce
orbital-dependent spectral weights to suppress this channel (see
Discussion section). In general, one can still expect that a smaller
pair hopping between the X, Y pockets is present in the xy sector.
For the sake of completeness, and with the aim of reducing the
number of free parameters, we considered also in this case only an
interband xy pairing term, acting between the two electron-like
pockets:

Hxy
pair ¼ �gxy

X
k;k0

v2X;ke
y
X;ke

y
X;�kv

2
Y;k0eY;�k0eY;k0 þ h:c: (9)

The set of Eqs. (8) and (9) is solved in the mean-field
approximation by defining the orbital-dependent SC order
parameters for the hole Δyz

h ;Δ
xz
h

� �
and electron

Δyz
e ;Δ

xz
e ;Δ

xy
X ;Δ

xy
Y

� �
pockets. The self-consistent equations at T= 0

reads:

Δyz
h ¼ �gX

X
k

u2X;kðu2X;kΔyz
e þ v2X;kΔ

xy
X Þ=EX;k (10)

Δxz
h ¼ �gY

X
k

u2Y;kðu2Y;kΔxz
e þ v2Y;kΔ

xy
Y Þ=EY;k (11)

Δyz
e ¼ �gX

X
k

u2Γ;kðu2Γ;kΔyz
h þ v2Γ;kΔ

xz
h Þ=EΓ;k (12)

Δxz
e ¼ �gY

X
k

v2Γ;kðu2Γ;kΔyz
h þ v2Γ;kΔ

xz
h Þ=EΓ;k; (13)

Δxy
X ¼ �gxy

X
k

v2Y;kðu2Y;kΔxz
e þ v2Y;kΔ

xy
Y Þ=EY;k (14)

Δxy
Y ¼ �gxy

X
k

v2X;kðu2X;kΔxz
e þ v2X;kΔ

xy
X Þ=EX;k (15)

Here, E‘;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2‘;k þ Δ2

‘;k

q
is the dispersion in the SC state, where

ε‘;k is the band dispersion on each pocket ‘ ¼ Γ; X; Y above Tc and
Δ‘;k is the band gap defined as:

ΔΓ;k ¼ u2Γ;kΔ
yz
h þ v2Γ;kΔ

xz
h ; (16)

ΔX;k ¼ u2X;kΔ
yz
e þ v2X;kΔ

xy
X ; (17)

ΔY;k ¼ u2Y;kΔ
xz
e þ v2Y;kΔ

xy
Y : (18)

Superconducting gaps anisotropy
The overall momentum dependence of the band gaps is
determined by the interplay between the momentum depen-
dence of the orbital factors and the hierarchy of the orbital SC
order parameters. In the absence of nematic order, Eqs. (10)–(18)

Fig. 2 Orbital content of the FS. a–c Color maps of the orbital content of the Γ (a), X (b), Y (c) pockets FS as a function of the angle and of the
nematic splitting ΔΣh/e. The color code is the same as in Fig. 1. d–f Orbital content of the same pockets as a function of θ at ΔΣh/e= 0, i.e., in
the tetragonal phase (dashed lines) and in the nematic phase ΔΣh/e= 15meV (solid lines)
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preserve the symmetry in the exchange of the xz/yz orbitals. Thus,
Δxz
h ¼ Δyz

h and the gap on the Γ pocket, Eq. (16), is constant, since
u2Γ;k þ v2Γ;k ¼ 1. In the nematic state, the band structure breaks the
C4 symmetry, making v2Γ;k � u2Γ;k (see Fig. 2d), and also the SC
orbital parameters Δxz

h and Δyz
h are in general different. However,

as we shall see below, for isotropic pairing gX= gY, the gaps
anisotropy is the wrong one. The experimentally-observed
anisotropy can only be achieved making Δh

yz � Δh
xz , that follows

from the nematic pairing mechanism gX > gY provided by spin-
nematic OSSF.

To understand the effect of the band-structure nematic
reconstruction on the SC gap anisotropy, we show in Fig. 3 the
evolution of the orbital-factors overlaps appearing in Eqs. (10)–
(13), where we define the angular average of a given function as
hf ðkÞi � R

dθ=ð2πÞf ðkFðθÞÞ, with kF(θ) FS wavevector of a given
pocket. We can in first approximation neglect the pairing in the
subleading xy channel and consider only what happens in the xz/
yz orbital sector. As mentioned above, the nematic splitting on the
electron pockets leads to a moderate enhancement of the yz
factor appearing in Eq. (10) with respect to the xz in Eq. (11), i.e.,
hu4Xigt; rsimhu4Yi, Fig. 3b. This effect, recently highlighted while
discussing the kz= π FS cut,35 is however too small to account for
the observed hole–gap anisotropy at kz= 0. In fact, the strong
modification of the hole-pocket orbital factors implies that
hu4Γi � hu2Γv2Γ i<hv4Γ i, Fig. 3a. Thus, by neglecting logarithmic
corrections in the gap ratios, from Eqs. (10)–(13) one obtains that

Δyz
e

Δxz
e
’ gX

gY

hu2Γv2Γ i
hv4Γ i

’ 0:1
gX
gY

(19)

and

Δyz
h

Δxz
h
’ gX

gY

hu4Xi
hu4Yi

Δyz
e

Δxz
e
’ 1:8

gX
gY

Δyz
e

Δxz
e
: (20)

Note that Eqs. (19) and (20) are almost unaffected once the xy
pairing channel is taken into account. From Eqs. (19) and (20), it
follows that an isotropic pairing interaction gX= gY (as considered
in ref. 35) would lead to a suppression of the yz gap parameters. At
the Γ pocket, where the yz orbital character is also strongly
suppressed by nematicity (u2Γ � v2Γ , Fig. 3a), the band gap would
have only xz character, ΔΓ;k ’ Δxz

h v
2
Γ;k , leading to a small

modulation with a relative maximum at θ= π/2 (dashed line in
Fig. 3a), in contrast with the experimental findings. On the other
hand, the OSSF-mediated anisotropic pairing with gX=gY � 1
gives a substantial enhancement of the Δyz

h =Δ
xz
h ratio. This leads to

ΔΓ;k ’ Δyz
h u

2
Γ;k , in agreement with the band-gap anisotropy

observed experimentally as shown in Fig. 4a, where the numerical
solutions of Eqs. (10)–(13) are reported along with the experi-
mental data of ref. 22. Here the color code does not refer to the
orbital content of the pocket, as in Fig. 1, but to the orbital content
of the SC gap function, that is determined by the product of the
SC order parameter times the orbital weight in each sector, Eqs.
(16)–(18).
The anisotropy gX/gY= 21 extracted from this analysis is rather

large, since one needs to overcome the strong suppression of the
yz orbital due to nematic reconstruction at the hole pocket: one
needs at least gX=gY ≥ 2 (not shown) to start to see the correct
symmetry of the gap at Γ, i.e., a maximum at θ= 0. The value of
gX/gY obtained by the SC-gaps analysis is compatible with the
anisotropy of the OSSF used to reproduce the orbital-selective
shrinking of the FS in the nematic phase19 as discussed in
Supplementary Note 3. In principle, the nematic-pairing aniso-
tropy could also be estimated by the direct measurements of the
SF. However, while it has been established that in the nematic
phase SF are stronger at (π, 0) than at (π, π),6–8 the different
intensity expected at (π, 0) and (0, π) has not been measured yet in
detwinned samples.
The gap obtained for the X pocket is shown in Fig. 4b. Its value

is also in overall in agreement with the Scanning Tunneling
Microscopy (STM) experimental data.22 To reproduce the experi-
mental value of the xy component, we needed a small
jgxy j � gX
� �

attractive interband interaction between the two
electron-like pockets. In fact, a negative gxy guarantees, from Eqs.
(14) and (15), that the SC xy order parameters on both electron
pockets have the opposite sign with respect to the one at the hole
pockets, as required by the dominant spin-mediated channel. In
contrast, a repulsive gxy induces a frustration that turns out in a
gap with nodes along the FS.41 Even though this has been

ΔΣ ΔΣ

Fig. 3 Angular-averaged orbital-weight overlaps. a, b Nematic-
splitting dependence of the angular-averaged orbital-weight over-
laps appearing in the SC gap equations, i.e., Eqs. (10)–(13)

Nematic OSSF

Δ Γ
(m

eV
)

Δ X
(m

eV
)

π

Δ Y
(m

eV
)

π π π
θ

Fig. 4 Angular dependence of the SC band gaps. a SC gap on the
hole, b on the X electron pocket, c on the Y electron pocket. Dashed
lines are the results for the isotropic pairing gX/gY= 1, while solid
line for nematic pairing gX/gY ~ 21. The color code accounts for the
orbital component of the SC gap (green yz, red xz, blue xy), given by
the product of the SC orbital parameter and the orbital weight,
according to the definitions (16)–(18). For comparison, we reproduce
the experimental gap values with standard deviations from ref. 22

(black circles)
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recently suggested by specific-heat measurements,42 the STM
data22 shown for comparison exclude the presence of nodes and
force us to consider a negative gxy. It is important to stress that,
even though the full set of Eqs. (10)–(15) must be solved self-
consistently, adding or not the xy channel is not relevant for what
concerns the understanding of the gap behavior in the xz/yz
sector, especially for the gap anisotropy at the Γ pocket. For the
sake of completeness, we report in Fig. 4c also the gap on the Y
pocket, that has not been resolved so far in STM.22 As one can see,
for the electronic pockets an isotropic pairing gX= gY would lead
to a strong difference between the absolute gap values at X and Y,
due to the effect of nematic ordering at the electronic pockets, as
one understands from Eq. (19) above. In contrast, nematic pairing
leads to more similar gap values, which can be hardly
disentangled experimentally, explaining why recent ARPES results
claiming to resolve the Y pocket do not report appreciable
significant gap differences on the two electron pockets.28 The
differences between the X and Y gaps due to the nematic pairing
could however have implications for the thermal probes sensible
to single-particle excitations. We leave the analysis of those effects
for future work.
Recently, the kz-dependence of the gap anisotropy on the hole

pocket has been investigated,28 and it has been shown that the
ΔΓ(θ= 0)/ΔΓ(θ= π/2) anisotropy increases as one moves from the
kz= 0 to the kz= π cut. Even though we did not consider a full 3D
model, this effect can be understood by considering the variations
of the hole-pocket orbital content when moving from kz= 0 to kz
= π (Z point). The larger size of the hole pocket at Z makes its
orbital content less sensitive to nematic ordering and spin–orbit
mixing, so that it still preserves a marked yz character around θ=
0 (refs. 24,25,35), with uΓ � cosθ and vΓ � sinθ also in the nematic
phase (Fig. 5a). In this situation, hu4Γi � hv4Γ i so that the
enhancement hu4Xi>hu4Yi of the orbital factors in the electron
pockets is enough to guarantee that Δyz

h >Δ
xz
h , leading to a hole-

pocket gap anisotropy compatible with the measurements even
when gX= gY, as recently shown in ref. 35 (dashed line Fig. 5b). On
the other hand, by retaining the same ratio gX/gY value extracted
from the kz= 0 gap fit (solid line Fig. 5b), we find an increase of
the anisotropy when moving from the Γ to the Z pocket. While this
is consistent with the observations in pure28 and S-doped24 FeSe,
other groups25,26 report instead an overall smaller gap at kz= 0.
The analysis of SC fluctuations above Tc, could provide an
alternative experimental test to clarify the 3D behavior. As shown
in ref. 43, the crossover from 2D to 3D character of the fluctuation
contribution to the paraconductivity is controlled by the kz
dependence of the pairing interactions. This effect, used to explain
the measurements in 122 systems,44 could be tested in FeSe as
well.

DISCUSSION
The C4 symmetry breaking of paramagnetic SF is a consequence of
SF interactions beyond RPA.32,34 As a consequence, the effects of
the nematic SF pairing gX > gY highlighted in the present work
cannot be captured by microscopic models where the SF are
described at RPA level, even when RPA fluctuations are computed
using the nematic reconstruction of the band structure.31,45 An
alternative route followed in refs. 22,31 amounts to start from band
dispersions fitted to ARPES data and to account phenomenolo-
gically for the role of correlations. The so-called orbital differentia-
tion of the electronic mass renormalization due to local electronic
interactions has been studied in DMFT-like calculations in the
tetragonal phase,46,47 which found in particular a larger renorma-
lization of the xy orbital with respect to the xz/yz ones. In addition,
correlations can also cooperate to enhance the xz/yz orbital
differentiation induced by other nematic mechanisms.48 Inspired
by these results, the authors of refs. 22,31 added phenomenolo-
gically orbital-dependent quasiparticle spectral weights, Zorb, in
the RPA-based calculation of the pairing interaction. By using
Zxy � Zxz<Zyz , they obtain the twofold result to make the Y pocket
incoherent, explaining why it does not show up in the STM
analysis,22,49 and to move the maximum of SF from Q= (π, π) to Q
=QX,

45 explaining the neutron-scattering experiments7,8 and the
observed gap hierarchy. However, this approach presents some
inconsistencies. One issue is methodological: by using indepen-
dent parameters to renormalize the band structure (that is fitted
from the experiments) and to define the residua of the Green’s
functions, one misses the strict relation between these two
quantities. On the other hand, by implementing this relation self-
consistently, as done for example in ref. 50, it is not obvious how
one can reconcile the large Fermi-velocity anisotropy implicit in
the Zxz < Zyz relation with the experimental band structure, that is
well reproduced accounting only for a crystal-field splitting of the
tetragonal band structure having Zxz= Zyz.

11,26,27 A second issue
arises by the comparison with experiments. The route followed in
refs. 22,31 is equivalent to rewrite the SC gap, e.g., on the Γ pocket
as:

ΔΓ;k ¼ Zyzu
2
Γ;kΔ

yz
h þ Zxzv

2
Γ;kΔ

xz
h (21)

In our case, Eq. (16), the predominance of the SC yz orbital
component is achieved via Δh

yz � Δh
xz , as guaranteed by the

nematic-pairing condition gX � gY . Instead in Eq. (21) this is
mainly due to the rescaling of the orbital occupation factors by
the corresponding spectral weights Zyz/xz. By assuming
Zyz � Zxz

22,31 one finds ΔΓ;k � Zyzu2Γ;kΔ
yz
h , consistently with the

measured gap anisotropy. However, the rescaling of the yz orbital
occupation to Zyzu2Γ;k is operative not only on the SC gap function,
but also on the band structure above Tc. This restores the yz

π π π π

Δ
/Δ

m
ax

θ

Orbital Splitting Only
Nematic OSSF

=0

π=

Fig. 5 FS and SC gap for the hole pocket at kz= π. a FS at kz= 0 and kz= π in the nematic phase. At kz= π the hole pocket retains a full yz
orbital character at θ= 0. b Angular dependence of the SC gap ΔZ renormalized to its maximum value obtained using the same gX/gY value
extracted from the kz= 0 gap fit (see Supplementary Note 3). Same color code of Fig. 4. The ΔZ maximum at θ= 0 is obtained already for
isotropic pairing gX= gY (dashed lines), see also ref. 35. The nematic pairing (solid lines) further enhances the gap anisotropy, leading to larger
relative variations on the Z pocket, in agreement with ARPES experiments28
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character of the Γ pocket,45 in contrast with ARPES measurements
which clearly indicate26,27 its predominant xz character.
To reconcile ARPES with RPA-based calculations of the spin-

mediated pairing interactions, the authors of ref. 26 use the
alternative approach to remove intentionally the contribution of
the Y pocket from the RPA-mediated pairing interaction. This is
equivalent to put gY= 0 in Eqs. (10)–(13), so that Δxz

h ¼ 0 and the
modulation of the gap at Γ follows again the yz orbital weight,
even if it is largely subdominant. With respect to these
approaches, the main advantage of our model is to provide, via
the orbital selectivity of the OSSF, a mechanism able to achieve
the gX > gY nematic pairing without affecting strongly the
quasiparticle spectral weights, while the main disadvantage is
the lack of a theoretical justification for the missing Y pocket.
However, we cannot help noticing that this point is also
controversial from the experimental point of view, due to different
reports claiming to observe19,28 or not22,26 the Y pocket.
In summary, our work provides a paradigm for the emergence

of superconductivity in FeSe from an orbital-selective nematic SF
mechanism. By combining the orbital ordering induced by the
nematic shrinking of the FS pockets below the nematic transition
with the anisotropic pairing interaction mediated by nematic SF,
we explain the gap hierarchy reported experimentally on hole and
electron pockets, and its variation with kz. Our findings also offer a
fresh perspective on previous attempts to explain the SC
properties of FeSe, highlighting from one side the crucial role of
spin-mediated pairing, and from the other side clarifying the
importance of spin–spin interactions beyond RPA level. This result
then represents a serious challenge for a full microscopic
approach, that must account self-consistently for the emergence
of Ising-nematic SF below the nematic transition temperature.

METHODS
Pairing by orbital-selective spin fluctuations
The mean-field equations for the pairing Hamiltonian, Eqs. (8) and (9), can
be easily derived by defining the orbital-dependent SC order parameters
for the hole Δyz

h ;Δ
xz
h

� �
and electron Δyz

e ;Δ
xz
e

� �
pockets as:

Δyz
e ¼ �gXhu2Γ;khkh�ki; (22)

Δxz
e ¼ �gYhv2Γ;khkh�ki; (23)

Δyz
h ¼ �gXhu2X;keX;keX;�ki; (24)

Δxz
h ¼ �gYhu2Y;keY;keY;�ki; (25)

Δxy
X ¼ �gxyhv2Y;keY;keY;�ki; (26)

Δxy
Y ¼ �gxyhv2x;keX;keX;�ki; (27)

The corresponding self-consistent BCS equations at T= 0 are the ones
reported in the text, Eqs. (10)–(15). To solve them, we introduce polar
coordinates and we approximate the orbital factors and the density of
states with their values at the Fermi level for each pocket. This implies that
the various integrals can be computed as for example:
P
k
u2X;k

ΔX;k

EX;k
¼ R

kdkdθ
ð2πÞ2 u

2
XðθÞ ΔX ðθÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε2X;kþΔ2
X ðθÞ

p

¼ R
dεdθ
ð2πÞ NXðεF ; θÞu2XðθÞ ΔX ðθÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε2þΔ2
X ðθÞ

p

¼ R
dεdθ
ð2πÞ NXðεF ; θÞu2XðθÞΔX ðθÞlog ωD

ΔX ðθÞ

(28)

where we defined u4XðθÞ � u4XðkFðθÞÞ and ΔXðθÞ � Δyz
e u

2
XðθÞ þ Δxy

X v
2
XðθÞ.

The cut-off ωD represents the range of the spin-mediated pairing
interaction, and it has been taken of order of 0.1 eV. The angular-
dependent density of state is defined as usual as
NXðεF ; θÞ ¼

R ðkdkÞ=ð2πÞδðεF � εX;kÞ ¼ kFðθÞ=2πjvFðθÞj, where kF(θ) and
vF(θ) are the wavevector and velocity at the Fermi level, respectively. For
a parabolic band dispersion, NX(εF, θ) reduces to an angular-independent
constant. Even though in Eq. (28) the angular integration involves both the
orbital factor and the density of states, we checked that the results do not

change considerably if the angular-averaged density of states is taken
outside the integral. For this reason, accounting separately for the angular
averages of the orbital factors alone, as shown in Fig. 3, allows one to have
a rough estimate of the numerical results, as discussed in the text. The
results of the full numerical self-consistent calculations of Eqs. (10)–(13) are
displayed in Figs. 4 and 5 for gX/gY= 21 and |gxy|/gX= 0.076. The numerical
values of the band parameters can be found in Supplementary Note 3.
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