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Abstract. The U values assumptions for construction components represent a significant source of uncertainty 
when estimating the energy performance of buildings. This uncertainty affects decision-making processes in 
multiple ways, from policy making to design of new and refurbished buildings. The correct estimation of both 
static (e.g. thermal transmittance) and dynamic thermal properties is crucial for quality assurance in building 
performance assessment. Further, while today many sophisticated simulators are available for building 
performance modelling, lumped parameter models can help reducing computational time for parametric simulation 
or optimization and enable inverse estimation of lumped thermal characteristics. A lumped parameter approach 
for construction components is proposed, for example, by the ISO 52016-1:2017 norm, introducing simplifications 
that are intrinsically dependent on component’s stratigraphy. This approach complements ISO 13786:2017 norm 
method, which is limited to steady-state periodic temperature and heat flux boundary conditions. In this research 
we consider these two different approaches, detailed and lumped modelling, comparing them first in idealized 
conditions and then in experimental conditions to analyse the robustness of methods. 

1. Introduction 
The U values assumptions for construction components represent a significant source of uncertainty 
when estimating the energy performance of buildings [1]. This uncertainty affects decision making 
processes in multiple ways, from policy making to design of new and refurbished buildings [2], 
including aspect such as indoor environmental quality [3], technical systems sizing [4] but also critical 
issues such as long-term preservation of historical heritage buildings [5]. Indeed, performance should 
be monitored during building life cycle, for example by using indicators for heating and cooling systems 
[6, 7], electricity and interaction with the grid [8] and primary energy consumption [9], comparing also 
design phase estimates and operation data [10], to learn from feedback and reduce progressively the 
performance gap [11, 12]. Considering the present necessity of linking calculation methodologies that 
are applied for performance assessment in different phases of building life cycle, we report in this paper 
preliminary results from a test facility, following an experimental campaign on different pre-fabricated 
(structural and anti-seismic) opaque construction components for high-efficiency and low-cost 
development in the Mediterranean area. More specifically, the research presented is part of a more 
general activity focused on modelling approaches for simulation and inverse estimation (using reduced 
order models) that could be easily employed in probabilistic simulation strategies [13, 14], to investigate 
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building technologies performance in terms of heat transfer [15], acoustics [16], as well as dynamic 
interaction with other innovative energy technologies [17, 18]. 

2. Methodology 
Many sophisticated simulators are available today for building performance modelling, but a 
performance gap is generally observed empirically [11]. This gap between simulated and measured 
performance is due to the relevant uncertainties of the assumptions introduced in building performance 
assessment. Physical-statistical lumped parameter models can help reducing computational time in 
simulation (forward modelling) and enable also inverse parameter estimation (inverse modelling) [19]. 
In the recently introduce ISO 52016-1 standard [20] (which supersedes the consolidated ISO 13790) a 
lumped modelling approach for walls is proposed, with a classification based on walls’ stratigraphy. 
This approach is part of the strategy of ISO 52000 framework [21] that retains and updates other 
standards, for example ISO 6946 for construction component stationary thermal performance, and ISO 
13786 [22] for dynamic construction components thermal performance. The approach proposed at the 
normative level for building performance simulation (ISO 52016-1) is substantially similar, in 
principles, to research focused on lumped parameter modelling using resistance-capacitance (RC) 
analogy [23] and analytical calculations [24, 25]. The conversion of RC models in state-space form and 
then in time series is described in detail in recent literature [15, 26]. Further, the correct identification 
of the impact of thermal capacity of building fabric (ideally represented as a lumped capacitance) is a 
relevant research issue [27]. Finally, the use of reduced order models for building performance 
simulation is an active research field at present, with multiple possible applications [28]. 

3. Case study analysis 
In this research we analyse two approaches, detailed and lumped parameters modelling, comparing them 
first in standard conditions and then in experimental conditions, considering the issues highlighted in 
Section 2. The experimental setup and the related lumped model are depicted in Figure 1. 

 
Figure 1. Experimental setup and simplified model considered for the analysis 

 
The research is split into two parts, the first part, described in Section 3.1 involves the use of standardized 
calculation methodologies both for design (ISO 6946 [29], ISO 13786 [22]) and experimental activity 
(ISO 9869 [30]). The second part of the research, depicted in Section 3.2, is focused on testing a 
simplified time series model for the dynamic simulation of wall heat flux. The development of this 
model has been conducted starting from recent advances in the field [23, 26]. However, as outlined in 
Section 2, our goal was also to create a modelling formulation compatible with the ongoing normative 
evolution in building performance assessment (ISO 52016-1 [20]). Therefore, model formulation is 
defined as follows: 
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where U (W/m2K) is thermal transmittance experimentally determined using ISO 9869, qin (W/m2) is 
the heat flux entering in the lumped capacity of wall, qout (W/m2) is the heat flux exiting from the lumped 
capacity of wall, n is the number of data points, U1 and U2 (W/m2K) are conductances on the internal 
and external side, R (m2K/W) is the total resistance, R1 and R2 (m2K/W) are thermal resistances on the 
internal and external side, Ti (°C) is internal air temperature, Te (°C) is external air temperature, ΔT= Ti 
- Te, Cm (J/m2K) is the lumped thermal capacity per unit of wall area, t (s) is time, i is a time index in the 
time series. 
The time series model used for calculation (Equation 6) corresponds to the explicit discretization of 
Equation 5 in ARX (Autoregressive with Exogenous Input) form. Assumptions for the calculation of U1 
has been made considering the thermal mass lumped on the internal side, as prescribed by ISO 52016-
1 for the specific stratigraphy of our component (with insulation on external layer). Further, the lumped 
thermal capacity Cm assumed in simulation (estimated from regression coefficients) is very near to the 
internal areal heat capacity k1 calculated using ISO 13786, i.e. assuming sinusoidal periodic steady-state 
conditions. A detailed explanation on this assumption can be found in [26] and extensions in [31]. 

3.1. Initial research activity  
As anticipated, the construction component tested is part of a test facility and has been design to 
adaptable in terms of insulation levels, for code compliance in different conditions. The stratigraphy of 
the component is reported in Table 1, where layers are defined from the internal to the external side. 
 
Table 1. Summary of assumptions on thermo-physical properties of construction component in design 

phase (before experimental activity) 
 Layers Thickness (d) Conductivity (λ)  Density (ρ) Specific heat (c)  
  [m] [W/mK] [kg/m3] [J/kgK] 
1 Internal coating 0.010 0.640 1500 1000 
2 Lightweight brick  0.120 0.600 750 940 
3 Reinforced concrete 0.160 1.800 2500 1000 
4 EPS - thermal insulation 0.100 0.037 35 1480 
5 External coating 0.010 0.640 1500 1000 

Aggregated stationary (U) and dynamic (|Yie|, |Δtf|, k1) thermal properties have been calculated using 
data from Table 1 and ISO 6946 [29] and ISO 13786 [22] methodologies. The results are summarized 
in Table 2. In the same table, we compare the U value estimated in the design phase with the one 
determined experimentally following ISO 9869 [30] methodology. The initial estimate lays within the 
confidence interval of the experimental value. 
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Table 2. Result of performance calculation in design phase and experimental activity conducted using 
standard normative approaches 

Phase Technical 
standards 

Thermal 
transmittance 

(U) 

Periodic 
thermal 

transmittance 
(|Yie|) 

 

Modulus of time 
lag of periodic 

thermal 
transmittance 

(|Δtf|) 

Internal 
areal heat 
capacity 

(k1) 
 

  [W/m2K] [W/m2K] [h] [kJ/m2K] 
Design  ISO 6496, 

ISO 13786 0.31 0.03 10.05 48.58 

Experimental ISO 9896 0.33 ± 0.03 - - - 

3.2. Testing of simplified time series model for dynamic wall simulation 
In this part of the research, the goal is simulating the dynamic behaviour with a simplified time series 
approach (Equation 6). Experimental (external and internal) air temperatures are presented in Figure 2.  

 
Figure 2. External and internal air temperature for the experiment 

 
Figure 3. Lumped mass temperature calculated from measurements and simulated data 

 
As it can be noticed in Figure 2, internal air temperature is kept steadily increasing in our experiment, 
and data are collected for 80 hours (the minimum suggested time span for applying ISO 9869 is 72h, i.e. 
3 days of measurements) with a temporal resolution of 1.5 minutes. In Figure 3 we compare the 
temperature of lumped thermal mass simulated by means of time series model (Equation 6) and 
calculated from filtered heat flux data (more details on heat flux measurement filtering can be found in 
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[32]). The goodness of fit of the time series models proposed is high for the construction component 
considered in this experiment, essentially confirming the validity of the simplification adopted in ISO 
52016-1 standard and in recent research work on dynamic thermal behaviour of walls. Further research 
is will be necessary to improve model fitting by reducing deviations and identifying patterns in time, 
using both time and frequency domain analysis. 

4. Conclusion 
This research aims to present a simplified time series based approach compatible both with dynamic 
performance simulation in design phase and inverse model parameter estimates in operation phase. In 
this case study we conducted our analysis on a pre-fabricated opaque construction component, which is 
part of a test facility. The approach proposed can be used potentially for other types of components 
which present a similar stratigraphy, following the classification given in ISO 52016-1. The 
methodology presented aims to trace a line of continuity between design phase simulation and operation 
phase analysis (in situ measurement in this specific case), including extensions to regression-based 
methods for overall building performance analysis. The continuity in the use of models as well as their 
comparability and ease of use are important factors to reduce the performance gap and to improve the 
ability to learn from technology evolution on continuous base. The approach tested is a simple analytical 
approach using linear algebra and regression and its performance can be improved by further research 
focused on the reduction of deviations and on the identification of patterns in time, using both time and 
frequency domain analysis. In any case, the goodness of fit of the time series models proposed is 
adequate for the level of accuracy normally considered in building performance simulation, essentially 
confirming the validity of the simplification adopted by ISO 52016-1 standard and by recent research 
work on dynamic thermal behaviour of walls. 
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