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Background: Gastric bypass surgery is a very effective treatment of obesity and type 2 diabetes. However, very
few eligible patients are offered surgery. Some patients also prefer less invasive approaches.
We aimed to study the effects of the Sleeveballoon – a new device combining an intragastric balloon with a
connecting sleeve, which covers the duodenal and proximal jejunal mucosa – on insulin sensitivity, glycemic
control, body weight and body fat distribution.
Methods:Wecompared the effects of Sleeveballoon, Roux-en-YGastric-Bypass (RYGB) and sham-operation in 30
high-fat diet (HFD) fedWistar rats.Whole body and hepatic insulin sensitivity and insulin signalingwere studied.
Transthoracic echocardiography was performed using a Vevo 2100 system (FUJIFILM VisualSonics Inc., Canada).
Gastric emptying was measured using gastrografin.
Findings: Hepatic (P = .023) and whole-body (P = .011) insulin sensitivity improved in the Sleeveballoon and
RYGB groups compared with sham-operated rats. Body weight reduced in both Sleeveballoon and RYGB groups
in comparison to the sham-operated group (503.1 ± 8.9 vs. 614.4 ± 20.6 g, P= .006 and 490.0 ± 17.7 vs. 614.4
± 20.6 g, P = .006, respectively). Ectopic fat deposition was drastically reduced while glycogen content was in-
creased in both liver and skeletal muscle. Gastric emptying (T1/2) was longer (157.7± 29.2min, P= .007) in the
Sleeveballoon than in sham-operated rats (97.1± 26.3min), but shorter in RYGB (3.5± 1.1min, P b .0001). Car-
diac function was better in Sleeveballoon and RYGB versus sham-operated rats.
Interpretation: The Sleeveballoon reduces peripheral and hepatic insulin resistance, glycaemia, body weight and
ectopic fat deposition to a similar level as RYGB, although the contribution of gastric emptying to blood glucose
reduction is different.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Metabolic surgery (MS) is an effective and recommended therapeu-
tic option for the management of type 2 diabetes (T2D) [1,2]. MS im-
proves insulin resistance [3–6], which is a primary component of T2D
[7]. In particular, Roux-en-YGastric Bypass (RYGB) results in T2D remis-
sion and reversion of insulin resistance [8–13]. After RYGB, a large por-
tion of the stomach, the entire duodenum and the initial segment of the
jejunum are bypassed, excluding them from food transit. The bypass of
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study

Roux-en-YGastric Bypass (RYGB) results in type 2 diabetes remis-
sion and reversion of insulin resistance. However only ca. 1% of
eligible patients undergo bariatric surgery. In RYGB bypass, the
gastric volume is reduced to only 30 ml and the duodenum and
the initial portion of the jejunum are bypassed from food transit.
These anatomical changes induce many physiological and endo-
crine modifications that contribute to diabetes remission.

Added value of this study

The Sleeveballoon is a new device combining an intragastric bal-
loon with a connecting sleeve, which covers the duodenal and
proximal jejunal mucosa. We compared the effects of the
Sleeveballoon and RYGB with sham-operation in Wistar rats
under a high-fat diet. The Sleeveballoon reduced peripheral and
hepatic insulin resistance, glycaemia, body weight and ectopic
fat deposition, to a similar level as RYGB.

Implications of all the available evidence

The Sleeveballoon seems to be a safe and effective device mim-
icking the effects of RYGB that can be used to reduce bodyweight
and improve glucose disposal and diabetes complications, such as
non-alcoholic fatty liver. Theoretically, it should stay in place for
6 months to 1 year, however only a safety and efficacy clinical
trial can establish the duration of the Sleeveballoon permanence
in the gastro-intestinal tract.
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the duodenum plays a central role in the improvement of glycaemic
control. The duodenal liner, a fluoropolymer sleeve extending
60–80 cm into the small intestine, improves glycaemic control and insu-
lin resistance in patientswith T2D and obesity [14]. Similarly, thehydro-
thermal ablation of the duodenalmucosa results in improved glycaemic
control in T2D [15].

The Sleeveballoon device consists of an intra-gastric balloon with a
central channel to allow passage of food into the proximal small
bowel which is covered by a sleeve, extending into the duodenum and
proximal jejunum. This reduces gastric volume by 2/3, while the sleeve
bypasses the proximal small bowel, delivering food directly to the mid-
jejunum.We previously demonstrated that the infusion of a liquidmeal
into the mid jejunum significantly improves insulin sensitivity in sub-
jects with obesity and in subjects with T2D [16].

The primary aim of the present study was to compare the effect of
the Sleeveballoon and that of RYGB with sham operation in rats fed a
high-fat diet (HFD) in terms of fasting insulin sensitivity. Secondary
aims were the effects of Sleeveballoon or RYGB on glycaemia, body
weight, body fat distribution, ectopic fat deposition in both liver and
skeletal muscle, heart contractility, gastric emptying and insulin
signaling.
2. Materials and methods

2.1. Animals

The primary aim of our study was to assess the effect of the
Sleeveballoon on insulin sensitivity during HFD. The sample size was
computed on the basis of a preliminary pilot study and under the hy-
pothesis that the HOmeostatic Model Assessment index for Insulin
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Resistance (HOMA-IR) would be 18 mg∙dl−1/ng∙ml−1 in sham-
operated rats (μ1, mean of population 1) and 9 mg∙dl−1/ng∙ml−1 in
ratswith the Sleeveballon (μ2,mean of population 2)with aσ (common
standard deviation) of 6. Assuming a value ofα (type I error rate) of 0.05
and a power of 0.90, the sample size for each sample separately was 10.
We assumed a similar effect of RYGB on HOMA-IR and, thus, we studied
further 10 rats operated of gastric bypass.

The study was not designed and powered to assess differences
among Sleeveballoon and RYGB, thus comparisons between the two
procedures are considered as merely indicative.

Secondary aims were the effects of Sleeveballoon or RYGB on body
weight, body fat distribution, ectopic fat deposition in both liver and
skeletal muscle, heart contractility, gastric emptying and insulin
signaling.

All experimental procedures were approved by the Catholic Univer-
sity of Rome Institutional Animal Care Committee. Thirty Wistar rats
aged 10 weeks were housed individually in a controlled room at 22 °C
with a 12-h day/night cycle (lights on 0700–1900 h). The animals re-
ceived a purified tripalmitin-based liquid HFD ad libitum (Rieper AG,
Bolzano, Italy). The HFD was continued for 10 weeks before and
10 weeks after the operation. The animals were randomized 1:1:1 to
RYGB, sleeveballoon placement or sham operation. Survival rates were
90% after sham operation, 90% after sleeveballoon placement and 75%
after RYGB.
2.2. Interventions

Rats were randomly assigned to one of the three intervention
groups. The rats were anesthetized using ketamine (75 mg/kg intra-
muscularly) and xylazine (10 mg/kg intramuscularly). Ten milliliters
of sterile 0.9% NaCl were administered subcutaneously before surgery.
Access to the peritoneal cavity was obtained by 3-cm laparotomy.
2.2.1. Roux-en-Y gastric bypass (RYGB)
The length of the small intestine was measured and the ligament of

Treitz identified. The jejunum was divided into approximately two
halves. A pouch was created by transecting the stomach and an end-
to-side jejuno-jejunostomy and a gastrojejunostomy created with a
7–0 polydioxanone suture. The laparotomywas closed with a 4–0 poly-
propylene suture.
2.2.2. Sleeveballoon
Fig. 1 showshow thedevicewas placed. A 1-cmgastrotomywasper-

formed in order to introduce the device. The sleeve was introduced first
followed by the balloon. Once the devicewas in the correct position, the
gastric wall was sutured similar to the RYGB group.
2.2.3. Sham-operation
Amidline laparotomywas performed and the stomachwas exposed.

A 1-cm gastrotomy was performed and then closed similar to the
sleeveballoon group. The abdominal cavity was kept open for the
same amount of time as required to perform the other operations.
2.3. Postoperative care

At the end of the surgical procedures, all rats received sterile 0.9%
NaCl 10 ml i.p. and 10 ml s.c. to maintain hydration during the postop-
erative period. The animals received ketoprofen 5mg/kg as an analgesic.
They were placed on a heated mat until they recovered and then were
returned to their home cages. The rats were allowed to drink purified
water 12 h after surgery, and a liquid diet containing 5% glucose and
0.2% KCl was provided for the next 48 h. Thereafter, they received the
HFD in liquid formulation until 10 weeks after surgery.
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Fig. 1. Sleeveballoon device. The device consists in a gastric balloon traversed by a channel
that permits the passage of a limited amount of food. The channel continues with a
duodenal sleeve, which prevents the contact of food with the duodenal mucosa.
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2.4. Echocardiography

Ratswere anesthetized in a sedation chamber containing 96%O2 and
4% isoflurane before mask ventilation with a mixture of 98.25% O2 and
1.75% isoflurane. Transthoracic echocardiography was performed
using a Vevo 2100 system (FUJIFILM VisualSonics Inc., Canada). End-
systolic and end-diastolic dimensions, end-systolic and end-diastolic
volumes and stroke volume were recorded in order to calculate the
per cent fractional shortening (FS%) and ejection fraction (EF%). Each
measure was repeated three times.

2.5. Gastric emptying

Gastric emptyingwasmeasured by gastric gavage usingGastrografin
(diatrizoate meglumine and diatrizoate sodium solution). The gastric
emptying scanwas performed by an X-ray camera. After taking consec-
utive X-ray radiographs, rats were returned to their cages, and free ac-
cess to food and water allowed. The gastric emptying scan was
performed at 9 weeks after sleeveballoon placement.

2.6. Oral glucose tolerance test

The oral glucose tolerance test (OGTT) was performed at the end of
the study. Animals were fasted overnight and then received a 50% D-
glucose solution (1 g/kg body weight) by oral gavage. Blood was col-
lected from the tail vein formeasurement of glucose and insulin concen-
trations at 0, 15, 30, 60, 90, and 120 min at the end of the study. At the
end of the OGTT, blood was obtained by cardiac puncture and placed in
tubes containing EDTA, aprotinin, and a dipeptidyl peptidase 4 (DPP-4)
inhibitor and analyzed for GLP-1. After centrifugation, plasma was di-
vided into appropriate subsamples and stored at−20 °C until analyses.

2.7. Analytical methods

Blood glucose levels were analyzed by glucometer (Accu-Chek,
Roche Diagnostics Division, Grenzacherstrasse, Switzerland). Plasma in-
sulin wasmeasured by a rat insulin ultrasensitive ELISA (EMDMillipore
Corporation, Billerica, MA, USA), with a sensitivity of 0.1 ng/ml and an
intra- and inter-assay precision of 1.9% and 7.6%, respectively. Plasma
GLP17–36 was measured by Rat GLP1/Glucagon-Like Peptide 1 ELISA
Please cite this article as: J. Casella-Mariolo, L. Castagneto-Gissey, G. Ange
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Kit (LifeSpan Biosciences Inc., Seattle,WA), sensitivity was 1.17 pg/ml,
Intra-Assay CV b10%.

2.8. Histology

When the ratswere killed, fresh portions of heart from each ratwere
cut, fixed in neutral buffered formalin (10%), and dehydrated using gra-
dations of ethanol (70%, 80%, 90%, 95%, and 100%). Dehydration was
followed by clearing the samples in two changes of xylene. The samples
were then embedded in paraffin and cut with a microtome (3–4 μm).
Hematoxylin and eosin staining was used.

2.9. Lipid staining and glycogen storage

Liver and skeletal musclewere embedded in cryo-embeddingmedia
(OCT) and immediately frozen in liquid nitrogen. Biopsies were cut
using a cryostat (3–4 μm) and stored a −20 °C until analyses.

Periodic acid Schiff staining was used to evaluate glycogen storage.
Slides were fixed 20 min with 4% formalin, stained in Periodic Acid So-
lution for 5 min and in Schiff's Reagent for 15 min. Counterstain was
performed with Hematoxylin solution. Oil Red O staining was per-
formed to assess intracellular lipid accumulation. Slides were fixed
overnight with 4% formalin, stained with Oil Red O solution for 1 h.
Counterstain was performed with Hematoxylin solution. Photographs
of stained sections were taken with an optical microscope (ZEISS
Primo Star HAL/LED).

2.10. Western blot analysis

Muscle and liver biopsy specimens were homogenized in RIPA
buffer containing a mixture of protease inhibitors. Homogenates were
cleared by centrifugation (13.000 rpm; 30 min, 4 °C). Protein content
was determined using Bradford Protein Assay. Protein lysates (30 μg)
were separated on 10% SDS-PAGE and transferred on PVDF membrane.
Membranes were probed overnight with Plin2, phospho-AktSer473,
phospho-GSK3αβ Ser21/9, and Tubulin. Membranes were stripped for
30 min at 56 °C and re-probed overnight with total Akt or total
GSK3αβ. Detection and analysis were performed respectively with
Chemidoc XRS Image system and Image Lab 5.0 software (Bio-Rad Lab-
oratories, Hercules, CA). Plin2 was normalized by Tubulin, while
phospho-AktSer473 and phospho-GSK3αβ Ser21/9 resulted from the
ratio of phosphorylated to total protein.

2.11. Statistical analysis

Data are expressed as mean ± SEM unless otherwise specified.
HOMA-IR [17] was calculated as fasting blood glucose (mg/dl) × fasting
plasma insulin (μU/mL)/405, where the factor 405 accounts for mea-
surement units. The areas under the curve (AUCs)were computed as in-
cremental over basal by using the trapezoidal rule. Whole body insulin
sensitivity was measured as the ratio AUCgluc/AUCins, which indicates
the glucose cleared per unit of insulin. Early glycaemic response to the
OGTT (blood glucose peak at 30 min) was used as indicative of the gas-
tric emptying. The β-cell function was assessed by HOMA Beta-cell
(HOMA-B) [18]:

HOMA−B ¼ 20 � fasting insulin in μU=mlð Þ= fasting glucose in mmol=l½ �−3:5ð Þ

The disposition index was computed by multiplying 1/HOMA-IR by
HOMA-B. In fact, the inverse of HOMA-IR is an index of insulin
sensitivity.

Intergroup differences were assessed by Mann-Whitney U test,
corrected for multiple comparisons by the Bonferroni's inference
method, due to lack of normal distribution assessed by Shapiro-Wilk
test.
lini, et al., Simulation of gastric bypass effects on glucose metabolism
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To predict the glycaemic response at 30min after the OGTT (depen-
dent variable) we used the GLP1 levels at the same time and the values
of gastric emptying as independent variables in a multiple regression
model.

Differences were considered significant at P b .05. Spearman correla-
tion analysis was performed to detect correlations among variables.

3. Results

3.1. Sleeveballoon improves hepatic insulin sensitivity similar to gastric
bypass

The primary aim of our study was the effect of Sleeveballoon on he-
patic insulin resistance. HOMA-IR, a measure of fasting insulin resis-
tance and thus hepatic insulin resistance, was significantly lower in
the animals with the Sleeveballoon as compared with sham-operated
rats (9.1 ± 2.3 vs. 24.2 ± 5.7, P= .023Mann-Whitney U test, corrected
for multiple comparisons by the Bonferroni's inference method), but
similar to the values found in animals following RYGB (10.4 ± 2.2 vs.
24.2 ± 5.7, P= .042Mann-Whitney U test, corrected for multiple com-
parisons by the Bonferroni's inference method).

3.2. Sleeveballoon induces sustained weight loss and reduction of visceral
and subcutaneous fat

Thirty rats under HFD were randomized 1:1:1 to RYGB,
Sleeveballoon procedure or sham operation.

Baselineweights were comparable among groups: 281.0± 3.05 g in
the sham-operated group, 283.0 ± 3.09 g in the Sleeveballoon group
and 284.5 ± 2.03 g in the RYGB group (P = .649 RYGB vs. sham; P =
.867 Sleeveballlon vs. Sham; P = .923 Sleeveballoon vs. RYGB, Mann-
Whitney U test, corrected for multiple comparisons by the Bonferroni's
inferencemethod). At 10weeks after the operation, the bodyweight re-
duced in both Sleeveballoon and RYGB groups in comparison to the
sham-operated group (503.1 ± 8.9 vs. 614.4 ± 20.6 g and 490.0 ±
17.7 vs. 614.4 ± 20.6 g, P = .006, respectively, Mann-Whitney U test,
corrected for multiple comparisons by the Bonferroni's inference
method), while no difference was found between Sleeveballoon and
RYGB rats (P = .60 Mann-Whitney U test, corrected for multiple com-
parisons by the Bonferroni's inference method), Fig. 2, Panel A.

Food intakewas lower in both Sleeveballoon (877.5±184.9 kcal per
week, P = .04 Mann-Whitney U test, corrected for multiple compari-
sons by the Bonferroni's inference method) and RYGB (1057.0 ±
158.4 kcal per week P = .04Mann-Whitney U test, corrected for multi-
ple comparisons by the Bonferroni's inference method) groups in com-
parison with sham-operated rats (1526.0 ± 14.2 kcal per week), but no
difference was detected between Sleeveballoon and RYGB.

As shown in Fig. 2, Panel B, mesenteric and retroperitoneal fat con-
tent was higher in the sham-operated group than in both Sleeveballoon
and RYGB groups (38.1±3.0 vs. 16.3±1.9 g, P=.002 and 38.1±3.0 vs
13.3 ± 2.1 g, P = .0006, respectively, Mann-Whitney U test, corrected
for multiple comparisons by the Bonferroni's inference method).

Additionally, the difference in subcutaneous fat content was signifi-
cantly higher in sham-operated rats than in both the Sleeveballoon and
RYGB rats (18.1± 1.6 vs 10.2± 0.4 g P= .0004 and 18.1± 1.6 vs 9.6±
0.6, P= .002, respectively, Mann-Whitney U test, corrected for multiple
comparisons by the Bonferroni's inference method).

3.3. Sleeveballoon improveswhole-body insulin sensitivity similar to gastric
bypass

Insulin resistance manifests long before the onset of type 2 diabetes
and it represents the primary defect of this type of diabetes [7].Wemea-
sured whole body insulin sensitivity as the ratio of glucose AUC to insu-
lin AUC after the OGTT. This ratio, in fact represents the glucose
clearance mediated by insulin.
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Then,we calculated hepatic insulin resistance byHOMA-IR and pan-
creatic β-cell glucose sensitivity using HOMA-B. The disposition index,
which indicates how β-cells can adapt to the tissue insulin sensitivity
by modulating the secretion of insulin, was also computed.

The glycemic curve in response to the oral glucose load in rats with
Sleeveballoon shows a lower response level than in sham-operated
rats and a flatter shape in comparison with RYGB rats (Fig. 2, Panel C).
Using blood glucose at 30 min (peak for RYGB) as the dependent vari-
able and GLP1 levels and gastric emptying as the independent variables
at the same time, the multiple regression model had an R2 of 0.83 (P of
the model b0.0001 Mann-Whitney U test, corrected for multiple com-
parisons by the Bonferroni's inference method). Both GLP1 levels
(β = −0.501, P = .003 Mann-Whitney U test, corrected for multiple
comparisons by the Bonferroni's inference method) and gastric empty-
ing (β=−0.303, P= .024Mann-WhitneyU test, corrected formultiple
comparisons by the Bonferroni's inference method) negatively pre-
dicted blood glucose levels.

The profile of the insulin curve resembles that of the glycemic re-
sponse in rats with the Sleeveballoon, while in the rats undergoing
RYGB, there is a peak at 30 min followed by a rapid decline (Fig. 2,
Panel D).

The blood glucose AUC was lower in the rats with Sleeveballoon
than in sham-operated animals (5471.3 ± 2237.6 vs. 15,690.1 ±
2794.7 mg/dl∙min, P = .011 Mann-Whitney U test, corrected for multi-
ple comparisons by the Bonferroni's inference method), as well as in
RYGB rats as compared with sham operation (7877.2 ± 1529.4 vs.
15,690.1±2794.7mg/dl∙min, P=.032Mann-WhitneyU test, corrected
for multiple comparisons by the Bonferroni's inference method).

The plasma insulin AUCwas lowerwith the Sleeveballoon thanwith
sham operation (373.3 ± 53.1 vs. 562.0 ± 61.9 ng/ml∙min, P = .033
Mann-Whitney U test, corrected for multiple comparisons by the
Bonferroni's inference method), while no significant difference was
found between RYGB and sham-operation (498.6 ± 61.6 vs. 562.0 ±
61.9 ng/ml∙min, P = .477 Mann-Whitney U test, corrected for multiple
comparisons by the Bonferroni's inference method).

The ratio of blood glucose AUC to plasma insulin AUC, which is a
measure of whole body insulin sensitivity, was lower in the rats with
Sleeveballoon than in sham-operated rats (9.1 ± 4.8 vs. 27.6 ± 4.8, P
= .014 Mann-Whitney U test, corrected for multiple comparisons by
the Bonferroni's inference method) as well as in RYGB compared to
sham-operated rats (14.6 ± 3.9 vs. 27.6 ± 4.8, P = .049 Mann-
Whitney U test, corrected for multiple comparisons by the Bonferroni's
inference method), consistent with a greater insulin-mediated glucose
clearance.

3.4. Disposition index was significantly higher in the Sleeveballoon or RYGB
than in sham-operated animals

HOMA-B was 73.42 ± 14.86 μU/ml∙(mmol/l)−1 in the sham group,
106.88 ± 15.38 in the RYGB group and 81.33 ± 18.10 in the
Sleeveballoon group. None of the comparisons was significant.

The disposition index was 2.92 ± 1.81 in sham-operated rats vs.
11.59 ± 1.67 in the RYGB group and 11.44 ± 2.12 in the Sleeveballoon
group (P = .002 Sham vs. RYGB and P = .002 Sham vs. Sleeveballoon,
P = .998 RYGB vs. Sleveballoon, Mann-Whitney U test, corrected for
multiple comparisons by the Bonferroni's inferencemethod). Therefore,
the disposition index was significantly higher in the two groups of rats
with Sleeveballoon or which underwent RYGB.

3.5. GLP1 increases following RYGB and Sleeveballoon

GLP1 secretion is consistently increased after RYGB [19]. We mea-
sured circulating levels of GLP1 after the OGTT in the three intervention
groups to verify whether also the Sleeveballoon stimulates secretion of
GLP1.
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Fig. 2. Sleeveballoon induces sustained weight loss and reduction of visceral fat. Panel a: Body weight was significantly lower in rats with the Sleeveballoon than in sham-operated rats
(614.4 ± 20.6 vs. 503.1 ± 8.9 g, P = .006 Mann-Whitney U test, corrected for multiple comparisons by the Bonferroni's inference method), while no difference was found in
comparison with RYGB rats (490.0 ± 17.7 g, P = .60 Mann-Whitney U test, corrected for multiple comparisons by the Bonferroni's inference method). Panel b: Mesenteric and
retroperitoneal fat (visceral fat) content was higher in sham-operated than in both Sleeveballoon and RYGB groups (38.1 ± 3.0 vs. 16.3 ± 1.9 g, P = .002 and 38.1 ± 3.0 vs. 13.3 ±
2.1 g, P = .0006 respectively, Mann-Whitney U test, corrected for multiple comparisons by the Bonferroni's inference method). Panels c,d: Time courses of blood glucose (c) and
plasma insulin (d) after an oral glucose load (1 g/kgbw) in sham, RYGB and Sleevebaloon rats. Rats undergone RYGB or Sleevebaloon placement significantly reduced both blood
glucose and plasma insulin concentrations (P b .04). Data are expressed as mean ± SEM. Panel e: Time course of GLP1 after an oral glucose load (1 g/kgbw) in sham, RYGB and
Sleevebaloon rats. Rats undergone RYGB or Sleevebaloon placement significantly had a larger GLP1 secretion, although the peak in animals with the Sleeveballoon was anticipated.
Data are expressed as mean ± SEM.
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Fig. 2, Panel E shows the time courses of GLP1 levels after the OGTT.
In RYBG GLP1 levels peaked at 30 min, whereas the peak in rats with
Sleeveballoon was observed at 60 min; in sham-operated rats the
GLP1 curve was flat. The GLP1 AUCs in both RYGB and Sleeveballoon
groups were similar and significantly higher than that in sham-
operated rats (15,458 ± 1604 and 23,396 ± 2542 pg/ml, respectively,
vs. 3660±376 pg/ml; P b .001Mann-WhitneyU test, corrected formul-
tiple comparisons by the Bonferroni's inference method).

3.6. Sleeveballoon delays gastric emptying

We studied the gastric emptying to verify if it was accelerated in rats
with Sleeveballoon, as previously demonstrated with RYGB [20], or if,
instead, it was delayed. Gastric emptying was significantly delayed in
the group of rats with the sleeveballoon as compared with the group
of sham-operated animals (T1/2 157.7 ± 29.2 vs. 97.1 ± 26.3 min
(mean ± SD), P = .007 Mann-Whitney U test, corrected for multiple
comparisons by the Bonferroni's inference method). The gastric half-
time emptying was very fast in the RYGB group (3.5 ± 1.1 vs. 97.1 ±
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26.3 min (mean ± SD), P b .0001 Mann-Whitney U test, corrected for
multiple comparisons by the Bonferroni's inference method). Fig. 3,
Panels A–C, shows that the contrast medium enters the duodenal
sleeves progressing distally over time in the animals with
Sleeveballoon.

3.7. Insulin signaling was more efficient in the liver and in skeletal muscle
tissue of rodents with the Sleeveballon than in sham-operated rats

Insulin resistance is the primary defect of type 2 diabetes [7]. Akt sig-
nal regulates glucose metabolism inmany tissues and organs, including
liver, skeletal muscle and myocardium. The Akt downstream effector is
GSK that, once phosphorylated, loses its inhibitory action on the enzyme
glycogen synthase permitting the accumulation of glycogen in insulin-
sensitive tissue and shifting the metabolism towards glucose utilization
[21].

In both RYGB and Sleeveballoon groups Akt and GSK phosphoryla-
tion were significantly higher than in the sham-operated group. Akt
Ser473 and GSK3αβ Ser21/9 phosphorylation was higher in both liver
lini, et al., Simulation of gastric bypass effects on glucose metabolism
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Fig. 3. Sleeveballoon delays gastric emptying. Panels a, b: Representative image of intestinal transit after 5 (a) and 120 (b) minutes from contrast medium administration in a rat with
Sleevebaloon. Panels c, d: Representative image of intestinal transit after 5 (a) and 120 (b) minutes from contrast medium administration in RYGB rats. Panels e, f: Representative
image of intestinal transit after 5 (a) and 120 (b) minutes from contrast medium administration in a sham-operated rat.
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(Akt Ser473: 0.9 ± 0.2 vs. 0.3 ± 0.1, P = .02; GSK3α Ser21: 0.2 ± 0.04
vs. 0.1 ± 0.01, P = .01; GSK3β Ser9: 0.5 ± 0.2 vs. 0.1 ± 0.03, P = .004
Mann-Whitney U test, corrected for multiple comparisons by the
Bonferroni's inference method) (Fig. 4, Panels A and B) and skeletal
muscle (Akt Ser473: 1.2 ± 0.1 vs. 0.7 ± 0.1, P = .02; GSK3α Ser21:
1.9 ± 0.3 vs. 1.0 ± 0.1, P = .014; GSK3β Ser9: 1.7 ± 0.7 vs. 0.7 ± 0.1,
P = .04 Mann-Whitney U test, corrected for multiple comparisons by
the Bonferroni's inference method) of rats with Sleevebaloon than in
sham-operated rats (Fig. 4, Panels-C and D).

Moreover, Akt Ser473 and GSK3αβ Ser21/9 phosphorylation
was significantly higher in both liver (Akt Ser473: 1.4 ± 0.3 vs. 0.3 ±
0.1, P = .009; GSK3α Ser21: 0.7 ± 0.1 vs. 0.1 ± 0.01, P = .002; GSK3β
Ser9: 0.5 ± 0.1 vs. 0.1± 0.03, P= .008Mann-Whitney U test, corrected
for multiple comparisons by the Bonferroni's inferencemethod) (Fig. 4,
Panels A and B) and skeletal muscle (Akt Ser473: 1.5± 0.2 vs. 0.7± 0.1,
P = .02; GSK3α Ser21: 4.8 ± 0.9 vs. 1.0 ± 0.1, P= .01; GSK3β Ser9: 2.9
± 0.6 vs. 0.7 ± 0.1, P= .0004 Mann-Whitney U test, corrected for mul-
tiple comparisons by the Bonferroni's inference method) of RYGB than
in sham-operated rats (Fig. 4, Panels C and D). Fig. 5, Panels A-F,
Please cite this article as: J. Casella-Mariolo, L. Castagneto-Gissey, G. Ange
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shows tissue PAS staining confirming that a more efficient insulin sig-
naling leads to an increased glycogen accumulation in the liver and skel-
etal muscle of rats with either Sleevebaloon or RYGB as compared to
sham-operated rats.

However, GSK3α was significantly higher in the liver and GSK3β
was significantly higher in the skeletal muscle of rats undergone RYGB
than in those with the Sleeveballoon.

3.8. Sleeveballoon reduces fat accumulation and Plin2 protein expression in
both liver and skeletal muscle

In many tissues, including the liver, lipid droplet coat proteins,
perilipins, regulate lipid accumulation. Plin2 is an isoform expressed in
the liver where it is the predominant protein surrounding cytoplasmic
lipid droplets [22,23]. Plin2 deletion prevents diet-induced hepatic
steatosis [24].

Therefore, we sought to measure Plin2 expression in rats with diet-
induced obesity, which underwent RYGB, Sleeveballoon implantation
or sham-operation.
lini, et al., Simulation of gastric bypass effects on glucose metabolism
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Fig. 4. Insulin signalingwas significantlymore efficient in the liver and skeletalmuscle tissue of rodentswith the Sleeveballon than in sham-operated rats. Panels a,b:Western blot analysis
of Akt Ser473and GSK3αβ Ser21/9 in the liver. Akt Ser473 and GSK3αβ Ser21/9 phosphorylation was significantly higher in the liver of both Sleevebaloon and RYGB rats. Panels c,d:
Western blot analysis of Akt Ser473and GSK3αβ Ser21/9 in the skeletal muscle. Akt Ser473 and GSK3αβ Ser21/9 phosphorylation was significantly higher in the skeletal muscle of
both Sleevebaloon and RYGB rats. *P b .04, **P b .009, ***P b .0004 Mann-Whitney U test, corrected for multiple comparisons by the Bonferroni's inference method. Data are expressed
as mean ± SEM.

Fig. 5. RYGB and Sleevebaloonmarkedly increased hepatic glycogen depots. Panels a,b,c,: Periodic acid-Schiff staining of liver biopsies from sham, RYGB and Sleevebaloon rats; both RYGB
and Sleevebaloon havemuch larger hepatic glycogen depots. Panels d,e,f: Periodic acid-Schiff staining of skeletal muscle biopsies from sham, RYGB and Sleevebaloon rats; both RYGB and
Sleevebaloon have much larger hepatic glycogen depots.
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Plin2 protein expression in both liver and skeletal muscle was lower
in rats with Sleevebaloon than in sham-operated rats (Liver: 0.2 ± 0.08
vs. 1.7 ± 0.5 P = .0004; Skeletal muscle 0.5 ± 0.1 vs. 1.8 ± 0.2 relative
expression to β-actin, P = .0004 Mann-Whitney U test, corrected for
multiple comparisons by the Bonferroni's inference method) (Fig. 6,
Panels A and B). Also RYGB rats had a lower Plin2 content in both liver
and skeletal muscle tissue than sham-operated rats (Liver: 0.5 ± 0.07
vs. 1.7 ± 0.5 P = .0004; Skeletal muscle 1.1 ± 0.1 vs. 1.8 ± 0.2 relative
expression to β-actin, P= .02Mann-Whitney U test, corrected for mul-
tiple comparisons by the Bonferroni's inference method) (Fig. 6, Panels
A and B). Fig. 6, Panels C–H, shows the ORO staining of liver and skeletal
muscle tissue. Decreased expression of Plin2 is associated with reduced
lipid accumulation in both liver and skeletal muscle of rats with
Sleevebaloon or RYGB as compared to sham-operated ones.
Fig. 6. Sleeveballoon drastically reduces fat accumulation and Plin2 protein expression in both li
skeletal muscle biopsies of sham, RYGB and Sleevebaloon rats. Plin2 protein expression in both
sham-operated rats. Panels c,d,e: Oil RedO staining of liver biopsies from sham, RYGB and Sleev
g,h: Oil Red O staining of skeletal muscle biopsies from sham, RYGB and Sleevebaloon rats. RYG
.03. Data are expressed as mean± SEM,Mann-Whitney U test, corrected for multiple comparis
this figure legend, the reader is referred to the web version of this article.)
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3.9. Sleeveballoon improves cardiac function

Obesity impairs left ventricular ejection function [25] and is an inde-
pendent predictor of left ventricular hypertrophy and diastolic disfunc-
tion, but also of cardiac failure [26]. For these reasons we performed
echocardiography to study cardiac morphology and function. The cardiac
ejection fractionwas 47.8± 4.3% in sham-operated rats as compared to
82.2 ± 5.5% in the group with Sleeveballoon (P = .006 Mann-Whitney
U test, corrected for multiple comparisons by the Bonferroni's inference
method) and 76.8 ± 3.2% in the RYGB group (P= .026 Mann-Whitney
U test, corrected for multiple comparisons by the Bonferroni's inference
method). The fractional shortening was 26.9 ± 7.8% in the sham group
versus 44.8±8.1% in the Sleeveballoon group (P=.013Mann-Whitney
U test, corrected for multiple comparisons by the Bonferroni's inference
ver and skeletalmuscle. Panels a,b:Western blot analysis of Plin2 protein level, in liver and
liver and skeletal muscle is significantly lower in rats with Sleevebaloon and RYGB than in
ebaloon rats. RYGB and Sleevebaloon drastically reduced hepatic fat accumulation. Panels f,
B and Sleevebaloon drastically reduced skeletal muscle fat accumulation. ***P b .0005, *P b

ons by the Bonferroni's inferencemethod. (For interpretation of the references to colour in
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method) and 42.2 ± 9.7% in the RYGB group (P= .026 Mann-Whitney
U test, corrected for multiple comparisons by the Bonferroni's inference
method).

Fatty infiltration of the myocardium is regarded as an arrhythmo-
genic factor [27] and often preludes to cardiac failure. Consequently,
we have studied the intra-myocytic fat content and Plin2 expression.

Plin2 protein expression in the heart was lower in rats with
Sleeveballoon than in sham-operated rats (0.7 ± 0.1 vs 3.5 ± 0.6 rela-
tive expression to β-actin, P = .014 Mann-Whitney U test, corrected
for multiple comparisons by the Bonferroni's inference method). RYGB
rats also had a lower myocardial Plin2 content (0.5 ± 0.05 vs 3.5 ±
0.6 relative expression to β-actin, P = .014 Mann-Whitney U test,
corrected for multiple comparisons by the Bonferroni's inference
method) (Fig. 7, Panel A).

The ORO staining shows a lower intra-myocytic fat content in rats
with both Sleeveballoon and RYGB as compared to sham-operated ani-
mals (Fig. 7, Panels B–D).

4. Discussion

The Sleeveballoon device mimics the effects of RYGB on insulin sen-
sitivity, glycaemic control, body weight, body fat distribution and ec-
topic fact accumulation. The combination of weight reduction together
with the bypass of the duodenum concur to the net amelioration of
both hepatic and peripheral insulin resistance observed in our study.

The disposition index, a tool to assess the efficiency of glucose ho-
meostasis, i.e. the β-cells ability to regulate insulin secretion in relation
to the degree of insulin sensitivity, was significantly higher in both
RYGB and Sleeveballoon groups than in sham-operated rats. These
Fig. 7. Sleeveballoon reduces myocytic fat accumulation and Plin2 levels and improves left ve
undergone sleeveballoon placement or RYGB. Panel b: Left ventricular ejection fraction (%
controls. Panels c,d,e: Fat accumulation is much lower in the heart sections of rats undergon
SEM, Mann-Whitney U test, corrected for multiple comparisons by the Bonferroni's inference m
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data suggest that β-cells glucose sensitivity was ameliorated with
both RYGB and Sleeveballoon.

It is acknowledged that a high-fat diet induces insulin resistance by
impairing the insulin-Akt signaling pathway [28]. Both Sleeveballoon
and RYGB enhance Akt phosphorylation, which is mainly expressed in
insulin-responsive tissues, such as the skeletal muscle where it pro-
motes the translocation of glucose transporter 4 (GLUT4) to the cell
membrane and glucose uptake [29]. The downstream effector of phos-
phorylated Akt is glycogen synthase kinase 3 (GSK3). Once phosphory-
lated, the action of GSK is inhibited and glycogen production enhanced
[30]. In fact, we found a higher phosphorylation of GSK in both surgical
groups and a concomitant increase of glycogen deposition in skeletal
muscle and liver in comparison with sham-operated rodents.

Interestingly, rats undergone RYGB had a significantly higher GSK3
isoform in both the liver and the skeletal muscle tissue and, in fact, al-
though only a qualitative analysis, the glycogen content seemed to be
higher after RYGB than after Sleeveballoon implantation.

Improved hepatic insulin resistance with Sleeveballoon or RYGB im-
proves also NAFLD through the reduction of liver steatosis. It was previ-
ously shown that drugs that improve insulin resistance, such as
metformin [31] and the GLP1 agonist liraglutide [32] reduce liver
steatosis and even improve inflammation in non-alcoholic steato-
hepatitis (NASH).

Weight loss and the reduction ofmyocyte fat deposition contributed
also to the improvement of myocardial contractility. Myocardial lipid
accumulation is, in fact, associated with impairment of cardiac function
[33–35].

However, the shape of the glucose and insulin curves following the
oral glucose load was different in rats with a Sleeveballoon compared
ntricular contractility function. Panel a: Plin2 levels are much reduced in the heart of rats
) is significantly higher in the RYGB and Sleeveballoon groups than in sham-operated
e Seeveballoon placement or RYGB. *P b .03, **P b .009. Data are expressed as mean ±
ethod.
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with RYGB. While RYGB was associated with a rapid increase in both
glucose and insulin, the glucose and insulin responses were attenuated
in rodents with the Sleeveballoon.

As shown by Chambers et al. [20], RYGB, where the anatomy of the
stomach and duodenum is unaltered although functionally excluded,
is characterized by a rapid emptying of nutrients from the gastric
pouch into the jejunum. In contrast, we found that gastric emptying
was delayed in the rats with Sleeveballoon in comparison with sham-
operated animals. The net improvement of glucose disposal in the rats
with Sleeveballoon can be attributed to the combined delayed gastric
emptying and increased GLP1 secretion that explain most of the vari-
ability of the glycaemic peak following the oral glucose load.

Gastric emptying is a major determinant of postprandial glycaemia
in both patients with or without T2D, explaining approximately 35% of
the variance in both peak andAUC of circulating glucose [36,37]. A series
of medical interventions have been employed in an attempt to reduce
the rate of gastric emptying in T2D. Increased dietary fibre intake [38]
or the addition of guar gum to food [39] have been demonstrated to
moderately slow gastric emptying and to reduce postprandial glucose
in patients with T2D. As well as improving β-cell glucose sensitivity,
both GLP1 and GLP1 receptor agonists (GLP1-RA) slow gastric emptying
[40]. Amylin and its synthetic analogue, pramlintide, also reduce gastric
emptying while improving glycaemia [41]. Therefore, the mechanical
slowing of gastric emptying is an important feature of the
Sleeveballoon, contributing to its positive effect on glucose metabolism.

The metabolic effects of the Sleeveballoon share many similarities
with those of RYGB, but the former procedure shows also some relevant
advantages on RYGB. In fact, RYGB determines a rapid rise of post-
prandial blood glucose levels and consequently stimulates early insulin
secretion with possible hypoglycaemia, a side-effect frequently de-
scribed after this type of surgery [42]. In isolate cases, severe
hypoglycaemia with neuroglycopenia can occur requiring drastic mea-
sures, such as partial pancreatectomy [43].

Although several studies show that laparoscopic bariatric surgery is
associated with low mortality and morbidity rates [44,45], surgery still
is a serious intervention, which can be fatal; for this reason minimally
invasive procedures can represent a viable alternative. Indeed, devices
to treat obesity and/or type 2 diabetes can remain in place only for a lim-
ited time, in general up to 1 year. However, alternating the use of de-
vices with anti-obesity drugs can represent a valid alternative to
bariatric surgery at least in high-risk patients for whom gastro-
intestinal surgery can be contraindicated or for patients preferring a
more conservative approach.

Similarly to the EndoBarrier, the Sleeveballoon has a duodenal liner
however it overcomes some safety issues arose from the former device.
The most serious adverse event of the EndoBarrier is an incidence of
liver abscesses ranging from 1.2% to 3.5% [46].

The EndoBarrier has anchorswith barbs nitinol at its proximal end to
take in place the device at the duodenal bulb distal to the pylorus. Le-
sions of the duodenal mucosa may have permitted the translocation of
bacteria through the portal vein system to the liver causing abscesses.
A concomitant cause could be the use of proton pump inhibitors reduc-
ing the efficiency of the gastric acidic barrier.

Sleeveballoon overcomes this problem since it stays in place thanks
to the gastric balloon. In addition, the gastric balloon induces gastric dis-
tention and early satiety.

In spite of the robustness of the results, our study has several limita-
tions. The Sleeveballoon is not designed to stay in place for
N6–12 months with possible weight regain and vanishing of metabolic
benefits. We did not investigate how long could the metabolic benefits
persist after the removal of the device since this would have required
a second operation. Body composition was measured post mortem
and thus we did not followed its changes over time. Dual-Energy X-
ray Absorptiometry (DEXA) or magnetic resonance imaging (MRI),
which are non-invasive and non-destructive techniques, would have
permitted to monitor body composition in the same animals.
Please cite this article as: J. Casella-Mariolo, L. Castagneto-Gissey, G. Ange
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Insulin sensitivity was assessed using a surrogate marker, HOMA-IR,
instead of the golden standard euglycaemic hyperinsulinemic clamp
with stable isotope infusion tomeasure endogenous glucose production
and glucose rate of disappearance. However, changes in HOMA-IR, as a
marker of hepatic insulin resistance, are extensively used to calculate
the sample size in clinical trials and in animal studies [47,48]. Finally,
our study was not designed and powered to assess differences among
Sleeveballoon and RYGB, thus comparisons between the two interven-
tions are considered as merely indicative.

In conclusion, the Sleeveballoon increases peripheral and hepatic in-
sulin sensitivity, reduces body weight, slows gastric emptying and ex-
cludes food from the proximal small bowel thus reducing glycaemia,
decreases ectopic fat deposition and ameliorates cardiac function.
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