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Abstract 

During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, 
especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent 
degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict 
the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation 
company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model 
needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were 
obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D 
rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The 
overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a 
model can be useful in the goal of predicting turbine blade life, given a set of FDR data. 
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Abstract 

All the available “Paris-like” models (analytical relationships between da/dN, crack growth rates, and K, stress intensity factor 
amplitude) are not able to take into account the possible influence of all the parameters that influence the fatigue crack 
propagation process. Among them, the stress ratio R (e.g., Kmin/Kmax) is one of the most investigated and, although in the last 
decades the influence of R on the different propagation mechanisms has been widely investigated (e.g., crack closure effect), this 
parameter is often considered as an independent variable in the “Paris-like” models. A different approach can be followed using 
the Artificial Neural Networks that are able to consider all the possible parameters, with the condition of a satisfactory training 
stage. In this work, an artificial Neural Networks based model is optimized considering the influence of the stress ratio on the 
fatigue crack propagation in a ferritic-pearlitic Ductile Cast Iron. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of IGF Ex-Co. 
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1. Introduction 

Up to the first half of the last century, only malleable irons were able to partially offer a combination of grey iron 
castability and steel mechanical properties (first of all, toughness). These cast irons were obtained as a result of 
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extended annealing treatment of white iron, with a matrix microstructure that was characterized by different ferrite 
and pearlite volume fractions, as a function of the cooling cycle. The main problems of this procedure were the high 
costs and the difficulty to cast sound white iron components. In 1943, in the International Nickel Company Research 
Laboratory, a magnesium addition allowed to obtain a cast iron containing not flakes but nearly perfect graphite 
spheres. In 1948, at the American Foundryman Society Convention, it was announced that a small amount of cerium 
allowed to obtain the same result, Ward (1962), Labrecque (1998), Rundman (2016). After more than fifty years, 
ductile iron should be considered as a family of materials offering a wide range of properties depending on the 
chemical composition and heat treatment and the consequent microstructure modifications. Matrix microstructure 
importance is emphasized by the use of matrix names to commonly designate the different types of ductile irons 
(ferritic, ferritic-pearlitic, pearlitic, austenitic etc).  

Ductile Cast Irons (DCIs) fatigue crack propagation resistance is strongly influenced by the matrix, by the 
graphite elements morphological peculiarities (shape, distribution and dimensions) and by the loading conditions, 
Iacoviello (2016). Focusing on the stress ratio parameter R, it strongly influences the crack closure effect, Elber 
(1971), that can be induced by the crack tip plasticity, by the presence of oxides on the fracture surface and by the 
fracture surface roughness. In DCIs the crack closure effect importance can be also enhanced by the presence of the 
graphite nodules that, near to the Kmin values, can be an obstacle to the complete crack tip closure, Iacoviello (2008).  

Many analytical models offer a relationship between the stress intensity factor amplitude, K, and the crack 
growth rate, da/dN. Starting from the Paris law, Paris (1963), many other empirical or semi-empirical models were 
proposed in order to take into account the influence of the loading conditions (e.g., R values): Forman (1967), 
Yokobory (1969), Collipriest (1972) are among the oldest ones. The most evident limit of these models is their 
impossibility to describe all the possible influences of R on the da/dN-K results, Iacoviello (2004). In fact, da/dN-
DK interpolation curves obtained for different R values can have a “divergent”, “parallel” or “convergent” behavior 
and the proposed models are not able to describe all these behaviors at the same time. A different approach that can 
consider the influence of different parameter is based on the Artificial Neural Networks (ANNs), and in this work a 
model based on ANNs is proposed in order to analyze the influence of the R value on the fatigue crack propagation 
in a ferritic-pearlitic DCI. 

1.1. Artificial Neural Networks 

Warren Mc Culloch (a neurophysiologist) and Walter Pits (a mathematician) first introduced the Artificial Neural 
Network (ANN) on 1943 to emulate the training and generalization processes of the human brain, Khanna (1990). In 
the years to come, the development of the computer performances boosted the use of the ANN in modeling and data 
analysis in many fields of application, where a traditional modeling based on constitutive equations was either not 
available or clumsy. Few examples can be the control of industrial plants and of complex systems in general, 
telecommunications, biology, Guyon (1990). 

ANN has a structure that mimics the human brain one. The basic unit is the neuron (see fig. 1), each neuron 
receives different input signals , 1,2,....,ix i n  and performs a weighted sum with weights niiw ,....,2,1,  ; if this 
sum is over a threshold value b (called bias), then an output signal y is generated  
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otherwise the unit stays idle.  Function f is called the neuron activation function; it is usually chosen as a logsig 
(see fig. 2)  
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to ensure a bounded output. Other choices are of course possible: 
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Fig.1. Neuron computational scheme. Fig.2. Sigmoid function. 
 

The activation function formula (1) suggests that the structure of the computational scheme of the neuron depicted 
in fig.1 can be simplified by adding an extra input 11 nx  and an extra weight bnw 1 , obtaining the same 
value of y. This will be the case hereinafter. 

An ANN is typically composed of an input layer, one or more intermediate or hidden layers, and an output layer. 
Fig. 3 shows a typical network with just one hidden layer. This particular structure is a feedforward network or a 
multilayer perceptron, where signals can travel only in one direction from the input layer to the output layer. In 
general each neuron in a hidden layer could be assigned a different activation function, but usually neurons in the 
same layer have the same activation function.   

The weighted sum of the outputs of any layer is the input of the next  layer. In fig.3, 1W is a weight matrix of size 
nq  , the i-th row contains the weights of the inputs nxx ,...,1  to enter the i-th neuron of the hidden layer (the last 

weight is indeed the bias of the activation function of the i-th neuron); 2W is a weight matrix of size qm  , the i-th 
row contains the weights of the inputs qzz ,...,1  to enter the i-th neuron of the output layer. 

The setting of a feedforward ANN requires three steps 
 design: given the number of inputs and the number of outputs, the number and size of the hidden layers 

is chosen; then the available input and output data are partitioned into two subsets of training, and 
validation; sometime a third set of test data may be required.  

 Training (learning): the weights 1W and 2W  are modified so that the ANN outputs fit well the real 
outputs. This process is accomplished by minimizing the network fit error over the training set; as the 
input and output instances are defined by the experimenter, the training is said to be supervised. 

 generalization: the ANN performance is evaluated over the validation set; if not satisfying, the design 
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step must be reconsidered to update the hidden layers structure, trying to avoid overfitting problems.  
 

 

 
Fig. 3: Multilayer perceptron with one hidden layer 

 
 

There is a large number of training algorithms whose basic task consist in adjusting the ANN weights so that a 
chosen loss function  WeL ;  of the ANN prediction error e  and parametersW  is optimized. Let te denote the 

ANN prediction error, i.e. the difference between the real output ty  and the network output tŷ , common loss 
functions are 
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Therefore the training is accomplished by solving the following optimization problem 
 

 WeLW ;minarg*   
 

Any training algorithm recursively updates the weights value  
 

1k k k kW W W W dk k                                                                       (3) 
 
thus generating a sequence of points converging to the minimum of the loss function. Vector kd determines in the 
parameter space a decreasing direction of the loss function; it is usually taken as the loss function anti-gradient 

   WeLWWeL ;;   computed at kWW  . Scalar k is the step size of the point update, and is responsible 
of the algorithm convergence rate. In the ANN framework, equation (3) goes by the name of back propagation 
algorithm (BP), meaning that the updated weights 1kW are fed back (propagated) into the network to compute new 
outputs to compare to the real ones; then a new value of the loss function gradient is computed at 1 kWW and by 
(3) a new update is obtained. The scalar k  is called learning rate.  
BP has some drawbacks: the rate of convergence strongly depends on the updating learning rates k (indeed, in the 
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basic ANN back propagation the learning rate is constant,  k ), the algorithm may well get trapped in points of 
local minima. Therefore, many modifications to overcome these shortcomings have been proposed, a useful guide 
can be found in Saduf (2013). For instance, the Levenberg-Marquardt method (LM) consists in determining the 
parameter update sequence kW by solving the following equation 
 

   kk
kT

kk
T
kk EJWJJdiagJJ ****                                                                   (4) 

 
where kJ is the loss function gradient, kE is the vector of the errors both computed at point kW ; 0  is a damping 
parameter that can be dynamically adapted as well. The LM enforces larger displacements of the parameters update 
along the directions where the gradient is smaller, therefore avoiding the local minima trapping.  
 

2. Investigated material. Experimental and numerical procedure 

A ferritic – pearlitic DCI, with analogous ferrite and pearlite volume fractions, was investigated (chemical 
composition and some mechanical properties are shown in Table 1). The microstructure morphology showed a 
peculiar “bull’s eye” morphology and graphite elements were characterized by a high nodularity level. 

 
    Table 1. Investigated ferritic-pearlitic DCI chemical composition (wt%) and mechanical properties. 
 

C Si Mn S P Cr Mg Sn 

3.65 2.72 0.18 0.010 0.03 0.05 0.055 0.035 

UTS [MPa] YS [MPa] A% HB 
500 320 7% 180-230 

 
Fatigue tests were performed using 10 mm thick CT (Compact Type) specimens. According to E647 ASTM 

(2015), using a computer controlled (100 kN) servo-hydraulic testing machine in constant load amplitude 
conditions, with a sinusoidal waveform. Tests were performed in air at room temperature, with a loading frequency 
of 20 Hz, considering eight different stress ratio values (e.g. R = Pmin/Pmax equal to 8.0,7.0,6.0,5.0,4.0,3.0,2.0,1.0 ). 
Crack lengths were measured using a compliance method with a double cantilever crack mouth gauge and were 
controlled using an optical method with a 40x magnification. Fracture surfaces were investigated by means of a 
scanning electron microscope (SEM). 
     Data for the ANN set up are therefore the 8 vectors 821 ,,, yyy  of the crack growth rate da/dN corresponding to 
the 8 different values of the stress ratio R. An ANN with radial basis activation function is able to approximate the 
mapping from R to da/dN. A radial basis network is a network with a hidden layer of radial basis neurons and an 
output layer of linear neurons. The procedure is implemented by the Matlab Neural Networks toolbox. The network 
is trained by selecting as input-output pair the following values 
 

 8.07.05.04.03.02.01.0IN , of size  71  
 8754321 yyyyyyyOUT  , of size  719  

 
Here is the Matlab script for training 
 
eg = 0.02;    % sum-squared error goal 
sc = 0.08;    % spread constant  for the activation function  
net = newrb(IN,OUT,eg,sc); 
 
The network is then applied to estimate the crack grow rate values for the stress ratio value of 6.0 which was not 
included in the training set 
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parameter update sequence kW by solving the following equation 
 

   kk
kT

kk
T
kk EJWJJdiagJJ ****                                                                   (4) 

 
where kJ is the loss function gradient, kE is the vector of the errors both computed at point kW ; 0  is a damping 
parameter that can be dynamically adapted as well. The LM enforces larger displacements of the parameters update 
along the directions where the gradient is smaller, therefore avoiding the local minima trapping.  
 

2. Investigated material. Experimental and numerical procedure 

A ferritic – pearlitic DCI, with analogous ferrite and pearlite volume fractions, was investigated (chemical 
composition and some mechanical properties are shown in Table 1). The microstructure morphology showed a 
peculiar “bull’s eye” morphology and graphite elements were characterized by a high nodularity level. 

 
    Table 1. Investigated ferritic-pearlitic DCI chemical composition (wt%) and mechanical properties. 
 

C Si Mn S P Cr Mg Sn 

3.65 2.72 0.18 0.010 0.03 0.05 0.055 0.035 

UTS [MPa] YS [MPa] A% HB 
500 320 7% 180-230 

 
Fatigue tests were performed using 10 mm thick CT (Compact Type) specimens. According to E647 ASTM 

(2015), using a computer controlled (100 kN) servo-hydraulic testing machine in constant load amplitude 
conditions, with a sinusoidal waveform. Tests were performed in air at room temperature, with a loading frequency 
of 20 Hz, considering eight different stress ratio values (e.g. R = Pmin/Pmax equal to 8.0,7.0,6.0,5.0,4.0,3.0,2.0,1.0 ). 
Crack lengths were measured using a compliance method with a double cantilever crack mouth gauge and were 
controlled using an optical method with a 40x magnification. Fracture surfaces were investigated by means of a 
scanning electron microscope (SEM). 
     Data for the ANN set up are therefore the 8 vectors 821 ,,, yyy  of the crack growth rate da/dN corresponding to 
the 8 different values of the stress ratio R. An ANN with radial basis activation function is able to approximate the 
mapping from R to da/dN. A radial basis network is a network with a hidden layer of radial basis neurons and an 
output layer of linear neurons. The procedure is implemented by the Matlab Neural Networks toolbox. The network 
is trained by selecting as input-output pair the following values 
 

 8.07.05.04.03.02.01.0IN , of size  71  
 8754321 yyyyyyyOUT  , of size  719  

 
Here is the Matlab script for training 
 
eg = 0.02;    % sum-squared error goal 
sc = 0.08;    % spread constant  for the activation function  
net = newrb(IN,OUT,eg,sc); 
 
The network is then applied to estimate the crack grow rate values for the stress ratio value of 6.0 which was not 
included in the training set 
 



296	 Laura D’Agostino et al. / Procedia Structural Integrity 3 (2017) 291–2986 Author name / Structural Integrity Procedia  00 (2017) 000–000 

y6 = net(0.6); 
 
The network output is also computed for a stress ratio of 45.0 , an intermediate value between 5.0 and 6.0 , 
 
y4.5 = net(0.45). 

3. Results and discussion 

The results of the fatigue crack propagation tests are shown in Fig. 4. The influence of the stress ratio R on the 
fatigue crack propagation results is quite evident. SEM analysis of the fracture surfaces shows the graphite nodules-
matrix debonding and the evident cleavage around the nodules, corresponding to the ferritic shields (Fig. 5 and 6, 
respectively).  

 

 
Fig. 4. Stress ratio influence on the fatigue crack propagation in a ferritic-pearlitic DCI. 

 

  
 

Fig. 5: Debonding (R = 0.1; K = 11 MPam). Fig. 6: Debonding (R = 0.1; K = 16 MPam). 
 

The ANN features an high predictive power. The output y6 well approximates the experimental values, as shown on 
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Fig. 7. Also the second trial gave a satisfactory result, the network output y4.5 yields values that are quite 
compatible with the experimental ones reported on Fig. 8. 
 

 

 

Fig. 7. Experimental and numerical results (R = 0.6). 

 

 

Fig. 8. Experimental  (R = 0.4 and 0.5) and numerical (R = 0.45) results. 

4. Conclusions 

In this work the influence of the stress ratio on the fatigue crack propagation in a ferritic-pearlitic DCI was 
investigated. Eight different stress ratios were considered, ranging between 0,1 and 0,8, and an Artificial Neural 
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Network based model was developed in order to simulate the influence of the stress ratio on the da/dN-K fatigue 
crack propagation results. Based on the experimental and numerical results, it is possible to summarize the following 
conclusions: 

- stress ratio R influences the fatigue crack propagation in ferritic-pearlitic DCIs; 
- among the main fatigue crack propagation micro-mechanisms, the most evident are the graphite nodules-

matrix debonding and the ferritic shield cleavage; 
- the numerical procedure based on the Artificial Neural Network “radial basis” is able to simulate 

satisfactorily the influence of the stress ratio on the fatigue crack propagation, as shown by the results in the 
da/dN-K diagram on Figs. 7-8. 
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