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Preface

The beginning of the age of artificial intelligence and machine learning has cre-
ated new challenges and opportunities for data analysts, statisticians, mathe-
maticians. cootometricians, computer scientists and many others. At the root
of these techiniques, we find algorithms and methods for clustering and classi-
tving different types of large datasets, including time series data, spatial data,
pancl data. categorical data, functional data and digital data. The emphasis
of this book is on the clustering and classification of time series data, and it
can be regarded as a reference manual on this topic.

The subject of clustering and classification of time series with applica-
tions in fields such as geology, medicine, environmental science, astronomy,
fimance and ceonomics, has attracted substantial attention over the last two
to three decades. Our goal in publishing this baok is to provide research
students and other researchers with a broad spectrum of techniques, all of
which are located in one place. It provides the relevant developments in
observation-based, feature-based and model-based traditional and fuzey clus-
tering methods, feature-based and model-based classification methods, and
machine learning methods, in a concise manner using applied and simulated
studies. Presently, these techniques can be found scattered in articles in many
different journals and book chapters.

In truth, we have been rescarching these tapics for more than 20 years. Onr
research has led Lo numerous publications in scientific journals in several fields,
such as economics, business, management, finance, statistics, data analysis,
marketing, medicine, physics, biology, hydrology and many others. We have
included owr work as well as works of several other authors, thus collecting
as many methods on the clustering and classifying time series as we could.
However, it should be noted that the book contains as many methods as we
were aware of at the time of writing, and clearly new wethods have since been
proposed and published in journals.

We have divided the book into three parts and eleven chapters. Chapter
1 hegins with a very brief overview of the contents of the hook. Chapter 2
introduces some fundamental concepts in time series, spectral and wavelet
analyses that are necessary for understanding the classification and cluster-
ing methods disenssed in the book. Part [ is ahout nunsupervised clustering
techniques for time series and consists of five chapters. Chapter 3 outlines
the basic concepts of traditional cluster analysis. Chapter 4 discusses fuzzy
clustering methods. Chapter 5 considers observation-based clustering meth-
ods. Chapter § deals with feature-hased methods in the time, frequency and

xiii



xiv Preface

wavelet domains. Chapter 7 discusses model-based clustering methods, while
Chapter 8 discusses other time series clustering approaches. Part I1, which
deals with supervised classification techniques for time series. consists of two
chapters. Chapter 9 discusses discriminant analvsis and classification meth-
ods based on time sories features and models. Chapter 10 explores machine
learning methods, such as classification trees, support vectur machines and
nearest neighhour algorithms. Finally, Part 111, which consists of Chapter 11,
presents links to computer programs in Matlah and R. data sets and real
examples through demounstration.

It would not have been possible to complete this project successfully with-
out the unconditional support of several people. Firstly, we arc greatly in-
debted to owr families for their constant support and paticnce. Secondly, we
would like to thank Nuno Crato, Daniel Pefia, Joao Bastos, Andrés Alonso,
Livia De Giovanni, José Vilar and the Taylor & Francis’s team for their help-
ful suggestions and contributions. Finally, we would like to thank some of our
colleagues in our departments at Monash University, Sapienza - University of
Rome and University of Lishon for their support and cucouragenicent.

A comprehensive webpage providing additional material to support this
book can be found at http: - www.tsclustering b MLEPRZC. ]

Elizabeth Ann Maharaj, Melbourne, Australia
Pierpaolo D'Urso, Rame, Italy

Jorge Caiado, Lishon, Portngal

February 2019
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Introduction
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1.1 Overview .o
1.2 Examples ...
1.3 Strueture of the book ..o o
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e————————
1.1 Overview

Time series clustering and classification has relevance in a diverse range of
fields which include geology, medicine, environmental science, finance and eco-
nomics. Clustering is an unsupervised approach to grouping together similar
items of interest and was initially applied to cross-sectional data. However,
clustering time series data has become a popular research tepic vver the past
three to four decades and a rich literature exists on this topic. A sot of time
series can be clustered using conventiomal hierarchical and non-hierarchical
methods, fuzzy clustering methods, machine learning methods and model-
based methods.

Actual time serics observations can be clustered (e.g., D'Urso, 2000; Cappi
and D*Urso. 2001, D’Crso, 2005). o features extracted from the thne serics can
be clustered. Features are extracted in the time, frequency and wavelets do-
mains. Clustering using time domain features such as autocorrelations, partial
autocorrelations, and evoss-correlations have been proposed by several authors
including Goutte et al. {1999), Galeano and Pefia {2000), Dose and Cincotti
(2005), Singhal and Seborg {2005), Caiado et al. (2006}, Basalto et al. (2007),
Wang et al. (2007), Takayuki et al. (2006), Ausloos and Lambiotte {2007),
Miskiewicz and Ausloos (2008), and D*Urso and Maharaj {2009).

In the frequency dowmain, features such as the periodogram and spectral
and cepstral ordinates are extracted; included in the literature are studies by
Kakizawa et al. (1998), Shumway (2003), Caiado et al. (2006), Maharaj and
D*Urso (2010, 2011).

The features extracted in the wavelets domain are discreet wavelet trans-
furms (DWT), wavelet variances and wavelet correlations and methods have
been proposed by authors such as Zhang et al. (2005). Maharaj et al. (2010),

D'Urso and Maharaj (2012) and D'Urso et al. (2014). As well, time series
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can be modelled and the parameters estimates used as the clustering vari-
ables. Studies on the model-based clustering method include thoge by Piccola
(1990), Tong and Dabas (1990), Maharaj (1996, 2000), Kalpakis et al. (2001},
Ramoni et al.( 2002}, Xiong and Yeung (2002), Boets (2005), Singhal and Sn-
borg (2005), Savvides et al. (2008), Otranto (2008}, Caiado and Crato (2010}
DUrso et al. (2013), Maharaj et al. (2016) and D'Urso et al. (2016},

Classification is a supervised approach to grouping together items of inter-
est and diseriminant analysis and machine learning methods are amongst the
approaches that have been used. Initially classification was applied to cross-
sectional data but a large literature now exists on the classification of time
series which Includes many very useful applications. These time series classi-
fication methods inclnde the ase of feature-based, maodel-based aned machine
learning techniques. The features are extracted in the time domain (Chan-
dler and Polonok, 2006: Maharaj, 2014), the frequency domain (Kakizawa
et al., 1998; Maharaj, 2002; Shumway. 2003) and the wavelets domain (Ma-
haraj, 2005; Maharaj and Alonso. 2007, 2014; Fryzlewicz and Omboa, 2012).
Model-based approaches for time series classification include ARIMA 1mod-
els, Gaussian mixture models and Bayesian approaches (Maharaj, 1999, 2000;
Sykacek and Roberts, 2002; Liu and Maharaj, 2013; Liu et al., 2014; Kotsifakos
and Panagiotis, 2014), while machine learning approaches include classifica-
tion trees, nearest neighbour methods and support vector machines (Douzal-
Chonakria and Amblard, 2000; Do et al., 2017; Gudmundsson et al., 2003
Zhang et al.. 2010).

It should be noted that clustering and classifying data evolving in time is
substantially different frow classifving static data. Henee, the volue of work
o1 these topics focuses on extracting time series foatures or considering speeific
time series models and also understanding the risks of directly extending the
common-use metric for static data to time series data.

L o
1.2  Examples

We discuss three examples to illustrate time series clustering and classifica-
tion before going into detail about these and other approaches in subsequent
chapters. The first example illustrates clustering using time domain features,
the second is observation-based and the third illustrates clagsification using
wavelet features.

Example 1.1 D’Urso and Maharaj (2009) illustrate through simulated data,
erisp clustering (traditional hicrarchical and non-hicrarchical) and fuzzy clus-
tering of time series using the time domain features of autocorrelations. The
aim here is to bring together series generated from the same process in order
to understand the classification succoss. Fig. 1.1 shows the autocorrelation
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FIGURE 1.1: Autocorrelation function of series generated from three pro-
COSROS,

TABLE 1.1: Percentage of correct classifications using autocorrelation.

Percentage of correct

classifications
k-mecans 83.5
Single Linkage 85.5
Complete Linkage 93.0
Average Linkage 92.5
Ward's Methad 97.8
Fuzzy c-means 37.9 - 995

functions (ACFs) over 10 lags for 12 simulated scries. 4 of each generated
from an AR(1) process with ¢ = 0 (a white noise process}), an AR(1) pro-
cess with ¢ = 0.5 and an MA(1) process with § = 0.9. The patterns of the
ACFs associated with each process are clearly distinguishable at the early
lags. Tuble 1.1 show a swnmary of results of clustering the 12 serics, 4 from
each process over 1000 simulations. The fuzzy c-means results are subject to
specific choices of parameter values. It is clear from the results in [ulie 1.1
that the autocorrelations provide good separation features.

Example 1.2 D'Urso (2005) illustrates the application of a fuzzy cluster-
ing model to a set of short svnthetic series consisting of three well-separated
clusters of time series with 4, 2. and 2 time serios each, respectively, and one
switching time series (the 7th time series). This illustration is presented in
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25

20
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FIGURE 1.2: A set of short time series including & switching lime series.

i 1.2 from where it can be observed that the sw itching time series, tor the
initial time period, presents an instantanecus position and slope bnmlal to the
time series belonomu to Cluster 2 (series 5 and 6), while at a later time, it
has an instantancous pumtwn and slopu similar to the time scries belonging
to Cluster 3 (serics 8 and 9). Table 1.2 shows the membership degrees of each
time series in each cluster and it is clf‘ar that series 1-4, 5-6 and %9 have
crisp memberships in Clusters 1, 2 and 3 respoctively, while series 7 has fuzzy
membership in Clusters 2 and 3.

TABLE 1.2: Membership degrees of cach time series in cach cluster.

Cluster 1 Cluster 2 Cluster 3

1 0.973 0.013 0.014
2 0.991 0.005 0.004
3 0.995 (1.003 0.002
4 0.961 0.024 0.015
5 0.003 0.977 0.002
6 0.001 0.997 0.002
7 0.084 0.197 0.419
8 0.004 0.027 (1L.96Y
9 0.601 0.002 0.997

Example 1.3 Maharaj and Alonso (2014) illustrate the classification of mul-
tivariate synthetic time series using the wavelet features of variances and cor-
relations witl: both lincar and quadratic discriminant functions. Fig J.0 shows
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FIGURE 1.3: Synthetic ECG signals.

synthetic electrocardiogram (ECG) signals for three leads based on a three-
dimensional formulation of a single dipole of the heart. Refer to Sameni el al,
(2007) and Clifford ot al. (2010) for more details on the development of these
synthetic signals. The signals shown in Fie. 1.3 could represent. those of an
individual with normal heart heats. One of the parameters, A, can he varied
to siinulate signals of an individual with the heart condition, acute myocardial
infarction (AMI). This is done by setting A > 1. Fig. 1.1 shows a single heat of
a svuthetic ECG that is normal with four scenarios of AMI when X is varied.

For each papulation (Normal and AMT), 100 ECGs, each of length T=4096
were simulated and linear and quadratic diseriminant analysis applied to the
wavelet variances and wavelet correlations extracted from the signals. e,
Lo and 1.6 show the classification rates {from hold-out-one cross-validation)
using scveral wavelet filters with linear and quadratic diseriminant functions,
respectively. The results reveal with the exception of the scenario where A
was set to the smallest value greater than one, the wavelet variances and
the combination of wavelet variance and correlations appuear to be reasonably
good features for discriminating between normal beats and those associated
with AMI.
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Ly
1.3 Structure of the book

After this chapter, time series concepts essential for what is to follow are
discussed in Chapter 2. The rest of the book is divided into three parts. Part 1
consisting of Chapters 3 to 8 is on unsupervised approaches to classifving tine
series, namely, clustering techniques. Traditional cluster analysis and fuzzy
clustering are discussed in Chapters 3 and 4, respectively, and this is followed
by observation-based, featnre-based, model-baged clustering, and ather time
series clustering approaches in Chapters 5 to 8.

Part 2 is on supervised classification approaches. This includes feature-
based approaches in Chapter 9 and other time serics classification approaches
in Chapter 10. Throughout the bock, many examples of simulated scenarios
and real-world applications are provided, and these are mostly drawn from
the rescarch of the three authors. Part 3 provides links to software packages,
some specific programming seripts used in these applications and simulated
scenarios, as well as links to relevant data sets.
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