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Abstract. The assessment of the out-of-plane response of masonry structures has been largely investigated in 17 

literature assuming that walls respond as rigid or semi-rigid bodies, and relevant equations of motion of single-18 

degree-of-freedom and multi-degree of freedom systems have been proposed. Therein energy dissipation has 19 

been usually modelled resorting to the classical hypotheses of impulsive dynamics, delivering a velocity-20 

reduction coefficient of restitution applied at impact. In fewer works a velocity-proportional damping force 21 

has been introduced, by means of a viscous coefficient being constant or variable. A review of such models is 22 

presented, a criterion for equivalence of dissipated energy is proposed, equations predicting equivalent viscous 23 

damping ratios are derived and compared with experimental responses. Finally, predictive equations are 24 

examined in terms of incremental dynamic analyses for large sets of natural ground motions. 25 

1. Introduction 26 

The out-of-plane (OOP) behaviour of unreinforced masonry (URM) structures subjected to ground motion 27 

excitations [1][2][3][4] has been extensively investigated by referring to the rocking dynamics of rigid or semi-28 

rigid wall segments without sliding. Such an interpretation was confirmed for slender walls by several 29 

experimental tests [5][6][7], provided that masonry quality is adequate to avoid disintegration. These rocking 30 

bodies impact against each other and the foundation and energy is lost as shown by Housner [8] who, resorting 31 

to the classical hypotheses of impulsive dynamics, reduced the velocity of an inverted pendulum by means of 32 

a coefficient of restitution (CR) every time it impacted against the foundation. 33 

In the last fifty years the experimental determination of the CR for different masonry block configurations, 34 

and interface conditions has been studied [9][10][11][12][13]. The CR was largely adopted for the study of the 35 

dynamic behaviour of rigid blocks under trigonometric pulses [14][15][16] and earthquake excitations 36 

[17][18][19]. The CR was also employed for simulating the energy dissipation characterising the dynamic 37 

response of walls under one-way (vertical) bending [20], portal frames [21] and multi block systems 38 

representing potential masonry collapse mechanisms [22]. Moreover, recent studies concerning the derivation 39 

of overturning fragility curves of historical masonry façades [23][24] and rocking elements [25][26] also 40 

adopted a CR. 41 
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In fewer works, the energy dissipation involved in the OOP dynamic response of URM walls has been 42 

modelled resorting to a viscous damping force, adopting a constant [27] or a cycle-to-cycle variable [28], 43 

damping ratio.  44 

Additionally, recent experimental studies on the rocking response of free standing rocking members (i.e., on 45 

reinforced-concrete (RC) blocks or steel columns), endorsed by analytical formulations, highlighted that a 46 

significant amount of energy is dissipated continuously other than that lost during impacts [29][30][31][32]. 47 

This continuous dissipation can be attributed to flexural response of the main body as well as to the deformation 48 

of the rocking interfaces. For instance, Kalliontzis and Sritharan [30] have shown that the rocking response of 49 

a RC block can be better predicted endowing the equation of motion with a velocity-dependant viscous force 50 

and an energy gain coefficient.  51 

This paper presents a methodology to simulate the energy dissipation in the rocking response of URM walls 52 

exclusively adopting an equivalent viscous damping (EVD) model. This approach presents several potential 53 

advantages over a CR-based framework, such as: 54 

 the rocking problem is formulated in a fashion very similar to the one of a classic elastic oscillator 55 

(EO), more familiar to engineers, while accounting for the major differences between the two systems 56 

highlighted in [17]; 57 

 its implementation in already available finite-element environments is straightforward and will 58 

simplify a comparison with static-equivalent code procedures; 59 

 modelling both the pre-cracking (i.e. before full development of mechanism) and the post-cracking 60 

response of walls responding in one-way [33] or two-way bending [34][35][36] is possible. During 61 

post-cracking behaviour, the overall dissipated energy is given primarily by impacts and secondary by 62 

some hysteretic dissipation, both accounted for by the proposed EVD models; 63 

 accounting for additional sources of viscous energy dissipation, such as related to the response of 64 

attached horizontal structures, is streamlined [37];  65 

 a reduced computational effort is necessary, allowing to perform large numbers of non-linear time-66 

history analyses, such as those necessary to assess the risk for economic and human losses [38].  67 

Hereinafter, a single-degree-of-freedom (SDOF) system for the analysis of the rocking behaviour of a parapet 68 

wall (PW) and a vertical spanning strip wall (VSSW), modelling the energy dissipation with different velocity-69 

dependent forces acting on the initial or secant stiffness of the system, is presented. Section 2 describes the 70 

dynamic behaviour of PW and VSSW mechanisms assuming a rigid body idealisation and the CR as source 71 

of damping. Section 3 discusses the assumptions commonly adopted to simulate the OOP behaviour of URM 72 

walls accounting for their finite stiffness and strength and EVD models are herein introduced. Differences and 73 

possible relationships available in literature between EVD-based and CR-based approaches are discussed in 74 

Section 4. Section 5 proposes predictive equations for damping ratios. Its validation via comparison with 75 

experimental time histories is discussed in Section 6, wherein proposed models are further examined by means 76 

of incremental dynamic analyses (IDAs). 77 

2. Dynamic behaviour of rigid body systems 78 

This section reviews the dynamic behaviour of rigid-body systems such as the simple-block and the two-block 79 

mechanisms. Initially, the equations of motion for both mechanisms are presented in the form of a classical 80 

oscillator, i.e. without trigonometric functions and in a piece-wise linear fashion. The energy dissipation 81 

associated with the two mechanisms is simulated presenting a CR-based approach. Finally, the response given 82 

by the numerical model solving the presented equations is validated against trigonometric models existing in 83 

literature. 84 

Figure 1 plots a schematic representation of the rocking behaviour of a masonry wall experiencing an OOP 85 

excitation. The wall can behave as a single body (of weight W, mass m, height h, thickness b, and angle ) in 86 

the case of a PW, rocking about base hinges, or as an assembly of two rigid bodies as in the case of a VSSW. 87 

A VSSW responding in rocking is characterised by the formation of pivots at top, bottom and in between. The 88 

resulting top and bottom rigid bodies rotate around such pivot points (A’-B-C’ in Figure 1) impacting each 89 



 

 

 

 

other every time the system passes through rest condition. Angles 2 and 1 define the height-to-thickness 90 

ratios of the two bodies, h2 and h1 are the related heights, W2 and W1 are the corresponding weights and are 91 

applied at the bodies’ centres of mass, m2 and m1 are the related masses, O is an overburden vertical force (to 92 

which no mass is associated) applied with eccentricity c relative to the centre of the top section. Rotations 2 93 

and 1 are the top and bottom bodies’ angular displacements.  94 

 95 

Figure 1 Masonry walls in rocking behaviour: geometry at rest and displaced configuration for Parapet Wall 96 
and Vertical Spanning Strip Wall.  97 

2.1. Piece-wise linear equation of motion 98 

The equations of motion of these rocking systems can be derived directly from Lagrange’s equation. Usually 99 

the hypotheses of no sliding, no bouncing effect, and simultaneous motion of the supports of the VSSW, are 100 

assumed and the corresponding SDOF equations are written in terms of rotations, as done by Housner [8] for 101 

a rocking block (representing a PW), or Sorrentino et al. [20] and DeJong and Dimitrakopoulos [21] for a 102 

VSSW. However, a slender wall allows a piece-wise linearisation of the equation as follows [39]:  103 

 𝑚𝑒𝑓𝑓 ∙ �̈�(𝑡) + 𝐹𝑟𝑖  (𝑡) = −𝜆 ∙ 𝑚𝑒𝑓𝑓 ∙ �̈�𝑔(𝑡) (1) 

where 𝑚𝑒𝑓𝑓 is the effective mass of the system affected by the rotational moment of inertia of the blocks, 𝑢 104 

represents the horizontal displacement of the wall at mid-height or at intermediate-hinge (shown in Figure 1, 105 

with u ≈  .h/2 or u ≈ 1 
.h1, for PW and VSSW respectively; hence, if O = 0, the instability displacements are 106 

uins ≈ α .h/2 or uins ≈ α1 
.h1), Fri(t) is the rigid-softening (or rigid-linear) restoring force; 𝜆 is the parameter that 107 

allows exciting the entire mass with the ground acceleration �̈�g(t) and t is the time. Table 1 identifies these 108 

parameters for both mechanisms, assuming a uniformly distributed lateral face load, as a consequence of 109 

uniform thickness and density along the wall height. There is experimental evidence that the intermediate hinge 110 

of a VSSW is usually located at a non-dimensional height h1/h = 0.5 to 0.7 [40][10].  111 

 112 
Table 1 Parameters for Parapet Wall and Vertical Spanning Strip Wall mechanisms.  113 

Mechanism 𝒎𝒆𝒇𝒇 𝑭𝒓𝒊 (𝒕) 𝝀 

PW 4 3⁄ ⋅ 𝑚 
2

ℎ
∙ 𝑊 ∙ (

𝑏

2
− 𝑢(𝑡)) +

2

ℎ
∙ 𝑂 ∙ (

𝑏

2
− 𝑐 − 2 ∙ 𝑢(𝑡)) 3 4⁄  

VSSW 
2

3
⋅ (𝑚1 + 𝑚2) 

2

ℎ1
∙ 𝑊 ∙ (𝑏 − 𝑢(𝑡)) +

ℎ

ℎ1 ∙ ℎ2
∙ 𝑂 ∙ (𝑏 + 2𝑐 − 𝑢(𝑡)) +

2

ℎ1
∙ 𝑂 ∙ (𝑏 − 2𝑐) 3 2⁄  

 114 



 

 

 

2.2. Energy dissipation via coefficient of restitution  115 

It is worth emphasising that Equation (1) is undamped. A common approach, relying on the classical 116 

hypotheses of impulsive dynamics, simulates energy dissipation involved in rocking mechanisms by means of 117 

a CR [8][20].  118 

Aslam et al. [41] defined the CR, e, as the ratio between angular velocities after and before an impact. 119 

Assuming an infinitesimal impact duration hence instant velocity variation, no displacement during impact 120 

and imposing the conservation of angular momentum around the rotational hinge (bottom one for VSSW) by 121 

equating the angular momentum after and before the impact, an analytical CR can be derived for a PW 122 

(Equation (2) [8]) and VSSW (Equation (3), from [20] assuming homogenous bodies): 123 

 
𝑒𝑎𝑛,   𝑃𝑊 = 1 −

3

2
sin2𝛼 (2) 

 𝑒𝑎𝑛,   𝑉𝑆𝑆𝑊 = 1 − 2 sin2𝛼1 (3) 

Note that CR does not depend on the system size but depends on the system shape: the squatter the wall (higher 124 

 or 1) the higher the energy dissipation (lower ean). Adopting the aforementioned definition, every time the 125 

horizontal displacement u passes through the null value, the CR (ean) reduces the system velocity after the 126 

impact (�̇�+) to a fraction of the velocity right before the impact (�̇�−): 127 

 128 

 �̇�+(𝑡 + 𝑑𝑡) = 𝑒𝑎𝑛 ∙ �̇�−(𝑡) (4) 

2.3. Validation of the piece-wise linear model 129 

The herein-presented piece-wise linear model of Equation (1) is solved adopting the Newmark linear 130 

acceleration-integration scheme implemented in the non-iterative formulation [42]. Figure 2 shows the good 131 

match between damped free-vibration responses of Sorrentino et al. [20] trigonometric models for a PW and 132 

a VSSW and their implementation by means of Equation (1). For both Sorrentino et al. [20] and Equation (1) 133 

a CR approach is adopted. 134 

 135 

Figure 2 Comparison between coefficient-of-restitution damped free-vibration response time histories of a 136 
Parapet Wall (a) and a Vertical Spanning Strip Wall (b) obtained by trigonometric equations (Sorrentino et al. 137 



 

 

 

 

[20]) and piece-wise linear Equation (1). Details of the walls: b = 0.4 m, h = 4.0 m, O = 0, ePW = 0.985 and eVSSW = 138 
0.955. Initial conditions: 𝒖𝟎 = 0.9∙ 𝒖𝒊𝒏𝒔, �̇�𝟎 = 0. 139 

A further validation of the model is given in Figure 3, wherein the PW amplitude-dependant rocking period of 140 

free vibration, TPW, is compared with that derived by Housner [8] in closed form: 141 

 142 

 𝑇PW =
4

𝑝
cosh−1 (

1

1 − 𝜃0 𝛼⁄
) (5) 

where p is the rocking frequency parameter that depends on the size (= √3/4 ∙ 𝑔/𝑅 for a homogeneous body, 143 

with g gravity acceleration), and 𝜃0 is the initial rotation.  144 

 145 

Figure 3 Period of vibration of a Parapet Wall, TPW,  according to closed form solution of Equation (5) and 146 
numerical solution of Equation (1) varying initial rotation θ0, and frequency parameter p = 2, 3, 4, 5 rad/s, and 147 

angle α [rad]. 148 

3. Out-of-plane dynamic behaviour of unreinforced masonry walls 149 

The OOP response of URM walls has been largely investigated by referring to the rocking dynamics of rigid-150 

body systems. Recognising that URM wall segments do not have infinite stiffness and strength, several studies 151 

have proposed modifications of the formulation presented in Section 2 in terms of force-displacement 152 

relationship and dissipated energy. These aspects will be discussed in Sections 3.1 and 3.2, respectively. A 153 

modified equation of motion will be presented in Section 3.3.  154 

3.1. Force-displacement relationship 155 

Before undergoing non-linear rocking behaviour through the development of cracking, URM walls are 156 

characterised by a linear response controlled by masonry flexural strength. A proper consideration of the wall 157 

uncracked response, both in terms of initial stiffness and lateral resistance provided by the tensile strength at 158 

the interfaces, may prevent an erroneous estimation of the OOP displacement demand. This has been largely 159 

confirmed both experimentally [43][44] and numerically [33]. 160 

Once the mechanism is triggered, the rigid-softening (or rigid-linear) restoring force-displacement law 161 

becomes the reference curve. Such curve relies on the assumption of the wall responding as a rigid body, or as 162 



 

 

 

an assembly of two rigid bodies, initially with an infinite stiffness and then with a negative one. The rigid-163 

linear curve is identified by the parameters F0 and uins defined according to Table 2, while the negative 164 

(softening) stiffness, k0, is shown in Figure 4. 165 

 166 
Table 2 Rigid-linear force capacity (F0) and instability displacement (uins) associated with Parapet Wall and 167 
Vertical Spanning Strip Wall mechanisms 168 

Mechanism 𝑭𝟎 𝒖𝒊𝒏𝒔 

PW 
1

ℎ
(𝑊 + 𝑂) ∙ 𝑏 +

2

ℎ
∙ 𝑂 ∙ 𝑐 

2 ℎ⁄ ∙ (𝑊 + 𝑂) ∙ 𝑏 2⁄ − 2 ℎ⁄ ∙ 𝑂 ∙ 𝑐

2 ℎ⁄ ∙ (𝑊 + 2 ∙ 𝑂)
 

VSSW 
2

ℎ1

(𝑊 + 𝑂) ∙ 𝑏 +
𝑂

ℎ − ℎ1

(𝑏 + 2 ∙ 𝑐) 
2 ℎ1⁄ (𝑊 + 𝑂) ∙ 𝑏 + 𝑂 ∙ (𝑏 + 2 ∙ 𝑐) (ℎ − ℎ1)⁄

2 ℎ1 ∙⁄ (𝑊 + 𝑂) + 2 ∙ 𝑂 (ℎ − ℎ1)⁄
 

 169 

In order to account for the actual OOP force-displacement relationship of a URM wall, different simplified 170 

non-linear elastic curves (e.g. bilinear [45], trilinear [46][12] and quadrilinear [47]) constructed from the rigid-171 

linear curve, have been proposed in literature. Figure 4 illustrates two commonly assumed idealisations to 172 

perform non-linear time-history analysis of URM walls: bilinear and trilinear. In case of a bilinear force-173 

displacement relationship, key parameters are u1 (=a1
.uins) controlling the wall’s initial cracked stiffness and u3 174 

(=a3
.uins) that, reducing the displacement associated with zero force, may take into account the masonry 175 

compressive strength and consequently the physical size of the hinges. The trilinear force-displacement 176 

relationship, is further characterised by Fy (= d1
.F0), which identifies the force plateau.  177 

The values for a1, a3 and d1 are affected by aspects such as wall thickness, acting vertical overburden force and 178 

masonry mechanical properties [48]. Refined works on the characterisation of the force-displacement 179 

relationship can be found in [43][12][45][44][48]. Regarding the parameter a1 controlling the initial stiffness, 180 

values of 0.03 [33], 0.04 [33][48] and 0.05 [49] are suggested in literature for the successful numerical 181 

modelling of experimental tests on VSSWs adopting trilinear curves. A value of 0.02 is instead suggested by  182 

Shawa et al. [12] for a PW system built in tuff masonry units.  183 

 184 

 185 

Figure 4 Possible force-displacement curves built on the rigid-linear rigid body idealisation: a) bilinear and, b) 186 
trilinear. 187 

3.2. Energy dissipation via EVD models 188 

The overall damping force acting in URM panels or assemblies responding in OOP rocking is given by energy 189 

dissipated at impacts and by continuous energy dissipation (e.g. thin hysteretic loops). Both need to be 190 

accounted for, but if a CR-only model is assumed the experimental CR, eexp, of rocking URM elements is lower 191 



 

 

 

 

than ean, reasonably because of the additional energy dissipated continuously. Therefore, numerical works 192 

modelling experimental tests proposed to replace ean with eexp = 0.95  ean for a PW [11] and 0.90  ean for a 193 

VSSW [49]. For a VSSW having a height-to-thickness ratio close to 27, Graziotti et al. observed values of eexp 194 

/ ean ranging between 0.91 and 0.84 [10].  195 

Another option is to model the energy dissipation adopting an EVD approach defining a velocity-dependent 196 

damping force through a constant [27][50], variable (with cycle-to-cycle iterations) [28][43] and stiffness-197 

proportional damping ratio [33]. Despite some studies have shown that modelling both CR and EVD is able to 198 

reproduce the laboratory rocking response of RC blocks [30][32], EVD-based models presents the advantages 199 

listed in the introduction.  200 

Three non-iterative EVD models are investigated hereinafter. The first one, a classic in structural dynamics, is 201 

based on a constant damping coefficient (CDC). This model assumes a constant damping ratio, 𝜉, acting on 202 

the system circular frequency, 𝜔1 [27], of the first branch of the force-displacement curve. The model delivers 203 

the following damping coefficient: 204 

 
 𝐶𝐶𝐷𝐶 = 2 ∙ 𝑚𝑒𝑓𝑓 ∙ 𝜔1 ∙ 𝜉 (6) 

A similar approach in the form of a damping coefficient associated with a rotational viscous dashpot was 205 

proposed by Vassiliou et al. [51] to simulate continuous energy dissipation in free-standing rocking blocks. In 206 

that work the rotational damping coefficient is defined through a parameter c̅ non-dimensionalised by the 207 

properties of a block such as mass (m) and semi-diagonal length (R): CVAS = 22.m.g0.5.R1.5. Following this 208 

approach, in the case of an unloaded free-standing rocking block, the CCDC might be obtained by employing a 209 

damping ratio coefficient c̅ removing the dependence on the initial circular frequency of the system, as follows:  210 
 

 𝐶𝐶𝐷𝐶,𝐹𝑆𝑏𝑙𝑜𝑐𝑘 = 𝑚𝑒𝑓𝑓 ∙ √
𝑔

ℎ/2
∙ �̅� (7) 

Once the relationship between the damping ratio and the initial frequency of the system is calibrated (see 211 

Section 5), despite the apparent difference in the way the damping coefficient is normalised, these two 212 

approaches can be used interchangeably, being CCDC = CCDC,FSblock for free-standing blocks. 213 

Additional damping approaches were investigated in order to capture the influence on energy dissipation of 214 

oscillation amplitude or frequency. They act on the instantaneous circular frequency 𝜔(𝑡) defined by the 215 

secant stiffness ksec(t) of the system (Figure 4): 216 

  𝜔(𝑡) = √
𝑘𝑠𝑒𝑐(𝑡)

𝑚𝑒𝑓𝑓
 (8) 

Therefore, a second model associates a constant damping ratio (CDR) with all frequencies, delivering the 217 

following damping coefficient: 218 

 
𝐶𝐶𝐷𝑅(𝑡) ∙= 2 ∙ 𝑚𝑒𝑓𝑓 ∙ 𝜔(𝑡) ∙ 𝜉 (9) 

Finally, a third model assumes a stiffness-proportional damping ratio (SDR), delivering the following damping 219 

coefficient:  220 

 
𝐶𝑆𝐷𝑅(𝑡) ∙= 2 ∙ 𝑚𝑒𝑓𝑓 ∙ 𝜔(𝑡) ∙ 𝜉(𝜔(𝑡)) (10) 

wherein: 221 

 

𝜉(𝜔(𝑡)) = 𝜉1 ∙
𝜔(𝑡)

𝜔1
 (11) 

with 𝜉1 damping ratio at the circular frequency 𝜔1. The above mentioned EVD models were introduced in a 222 

modified equation of motion to damp the response of PW and VSSW systems. 223 



 

 

 

3.3. Modified equation of motion  224 

The SDOF model of Equation (1) can be adapted in light of the above discussed aspects: 225 

  𝑚𝑒𝑓𝑓 ∙ �̈�(𝑡) + 𝐶𝑖 ∙ �̇�(𝑡) + 𝐹𝑖 (𝑡) = −𝜆 ∙ 𝑚𝑒𝑓𝑓 ∙ �̈�𝑔(𝑡) (12) 

where Ci is a damping coefficient selected among CCDC, CCDR(t) and CSDR(t) and Fi is the non-linear restoring 226 

force, either bilinear Fbi(t) (linear elastic branch followed by the negative stiffness one) or trilinear Ftri(t). This 227 

approach reduces the computational effort with respect to an event-based procedure, which shortens the 228 

integration time step close to zero displacement to finely identify the instant of impact and then apply the CR. 229 

The three EVD models can be described by solving Equation (12) for the free vibrations of a specific VSSW 230 

having geometry equal to that tested in [10]. Damping ratio values of 0.015, 0.027 and 0.044 (𝜉1) were adopted 231 

in order to minimise the sum of absolute squared differences for free vibration responses obtained adopting 232 

CDC, CDR and SDR models, respectively. 233 
Figure 5a and Figure 5b show the damping coefficient – non-dimensional displacement (Ci-u/uins) relationship 234 

and the one between damping ratio – circular frequency (𝜉- 𝜔). Figure 5c shows instead the distribution of the 235 

resulting damping force (damping coefficients times system velocity) over the non-dimensional oscillation 236 

amplitude. Independently from the current or secant frequency of the system the damping force given by the 237 

CDC model is obtained by multiplying the velocity with a constant quantity (in Figure 5a CCDC≈300 kg/s in 238 

the case of the wall considered in [10]). This quantity may be obtained employing both approaches presented 239 

in Equations (6) and (7). On the other hand, CDR and SDR models, for oscillations larger than the first corner 240 

point a1, are characterised by a non-linear Ci-u/uins relationship obtained associating a damping ratio according 241 

to a constant or a linear law with the current secant frequency (see 𝜉- 𝜔 plot in Figure 5b). The area within the 242 

loops in Figure 5c represents the dissipated energy and results to be comparable for the three models during a 243 

free vibration response. All models develop larger damping forces around zero displacement, but this 244 

behaviour is more pronounced for the CDR and, more significantly, the SDR model. It is worth emphasising 245 

that in a rocking system an impact occurs at zero displacement, hence CDR and SDR act in a fashion similar 246 

to a CR.  247 

Tomassetti et al. [33] showed the effectiveness of these EVD models in simulating the experimental responses 248 

of single-leaf and cavity VSSWs [10], but no general formulation for estimating the proper damping value to 249 

be assigned to a specific geometry was proposed. In the following section the damping effect on the OOP 250 

response of URM walls produced by these EVD techniques will be compared with that of an approach based 251 

on the CR, which can be estimated given wall geometry according to established formulations. 252 

 253 

Figure 5 Damping coefficient vs non-dimensional displacement for constant-damping coefficient, constant-254 

damping ratio, stiffness-proportional damping ratio models (a); damping ratio vs circular frequency (b); 255 

normalised damping force vs normalised oscillation amplitude of the three models during the decay of the 256 



 

 

 

 

normalised oscillation amplitude (c). Details of the Vertical Spanning Strip Wall: b = 0.10 m, h = 2.68 m, h1 = 257 

1.54 m, O = 0, a1 = 0.04, d1 = 0.85 and a3 = 1; 𝒖𝟎 = 0.9∙ 𝒖𝒊𝒏𝒔, �̇�𝟎 = 0; ξCDC = 0.015, ξCDR =0.027, ξ1, SDR = 0.044. 258 

4. Comparison between Coefficient of Restitution-based and Equivalent Viscous Damping-based 259 

models 260 

CR and EVD are rather different damping models: the former reduces the kinetic energy of the system suddenly 261 

at each impact, the latter is characterised by a continuous energy loss presenting a different distribution 262 

according to the selected model (CDC, CDR and SDR, see Figure 5b). 263 

 264 

Figure 6 Matched free vibrations of a Coefficient of Restitution model and a Constant Damping Ratio model in 265 

terms of normalised displacement time history (a) and normalised displacement versus associated velocity. 266 

Details of the Vertical Spanning Strip Wall as in Figure 5. 𝒖𝟎 = 0.9∙ 𝒖𝒊𝒏𝒔, �̇�𝟎 = 0; ξCDR =0.035, e = 0.875. 267 

The comparison in terms of normalised displacement time history, u/uins (Figure 6a) and normalised 268 

displacement and associated velocity history (Figure 6b) for free vibrations decays of a VSSW (same geometry 269 

of Figure 5), allows to highlight strengths and weaknesses of the two approaches. The CR model reduces 270 

suddenly the velocity of the wall whereas the CDR model decreases smoothly the velocity without inducing a 271 

clear discontinuity on it. 272 

Priestley et al. [52] were the first to study fundamental differences and possible similarities between an 273 

equivalent EO and a rocking body, while trying to define an appropriate EVD ratio for the estimation of 274 

displacement demand on damped elastic spectra (i.e., for linear dynamic analyses [17]). They suggested 275 

replacing the ratio between peak amplitude displacements in the logarithmic decay of a damped EO with the 276 

ratio between maximum rotations after and before the impact derived from Housner [8], which delivers:  277 
 

 𝜉 =
1

𝑛𝜋
ln {

𝜃0

𝛼
 [1 − √1 − 𝑒2𝑛 [1 − (1 −

𝜃0

𝛼
)

2

]]

−1

} (13) 

where n is the number of impacts experienced (equal to 2 in a full cycle). Priestley et al. [52] pointed out as 278 

this relation is comparatively insensitive to the initial rotation 𝜃0/𝛼 (or u/uins), and number of impacts, n. 279 

Makris and Konstantinidis [17] proposed therefore the following empirical equation to approximate the 280 

relation between CR and EVD: 281 



 

 

 

  𝜉 =  −0.68 ln (𝑒) (14) 

 282 

Figure 7 shows the free vibrations of a rocking body damped by a CR and those given by damped equivalent 283 

EOs. The effective period selected for the first EO is that of the highlighted cycle in the rocking response (i.e. 284 

the one computed by Equation (5)) while the period of the second one (EOstiff) is halved. The EVD value is 285 

computed from Equation (13) (adopting 4 and 3 impacts, respectively) and is applied assuming a CDC model.  286 

It is possible to notice the good match between the response decays given by the CR model and the first EO 287 

as well as the fundamental difference between the two systems: the period of the EOs remains constant while 288 

the one of the rocking body is, as expected, amplitude dependent. Figure 7 shows also that if the period of the 289 

EO is underestimated (EOstiff) oscillations will be markedly overdamped.  290 

Nevertheless, Makris and Konstantinidis [17] have shown that effective-period methods, based on the adoption 291 

of classical response spectra, cannot accurately predict the response of rocking elements due to the high 292 

nonlinearity of the system. Finally, when interested in performing nonlinear time-history analyses of the OOP 293 

behaviour of URM walls, modelled with the force-displacement relationships presented in Figure 4 (bilinear 294 

or trilinear), the adoption of Equation (13) or Equation (14), never proposed for such a purpose by Makris and 295 

Konstantinidis [17], will result in an overdamped response as shown in Section 6. 296 

 297 

Figure 7 Free vibrations of a rocking body and an elastic oscillator for a coefficient of restitution equal to 0.985 298 
(a) and 0.85 (b). Details of the Parapet Wall: b = 0.4 m, h = 4.0 m, O = 0, a1 = 0, d1 = 1 and a3 = 1; 𝒖𝟎 = 299 

0.8∙ 𝒖𝒊𝒏𝒔, �̇�𝟎 = 0. 300 

 301 

An equivalence between the two damping models in rocking behaviour, given a specific F-u curve, can be 302 

established by equating their energy losses. For a rocking system, the kinetic energy lost in an impact is equal 303 

to the difference, ΔT, of kinetic energies: 304 

 ∆𝑇 = 𝑇+ − 𝑇− =
1

2
∑ 𝐼𝐶𝑀𝑖 ∙ �̇�𝑖

+2
+ 𝑚𝑖 ∙ 𝑣𝐶𝑀𝑖

+ 2

𝑜

1

−
1

2
∑ 𝐼𝐶𝑀𝑖 ∙ �̇�𝑖

−2
+ 𝑚𝑖 ∙ 𝑣𝐶𝑀𝑖

− 2

𝑜

1

 (15) 

where o is the number of bodies composing the system, CM subscript indicates the centre of mass of the i-th 305 

body, I is the polar moment of inertia, �̇� is the angular velocity defined by the rotation in Figure 1, v is the 306 

velocity intensity associated with the horizontal and vertical components (being the problem defined in two 307 

dimensions): �̇� and �̇�. 308 



 

 

 

 

The loss of energy ΔE due to an acting viscous damping force can be computed as the work done by the force 309 

in the considered response and time interval:  310 

 ∆𝐸 = ∫ 𝐶𝑖(𝑡) ∙ �̇�
𝑢𝑝

−

𝑢𝑝
+

(𝑡) ∙ 𝑑𝑢 (16) 

where up is the peak displacement, and Ci is the viscous coefficient associated with the assumed model (CDC, 311 

CDR, SDR). This integral does not have a closed-form solution because the function presents several 312 

discontinuities corresponding to the force-displacement corner points and the law characterising the different 313 

damping force depends on the displacement level achieved by the system.  314 

Considering a rigid-body block and assuming a free vibration response of half cycle having a sine-wave shape, 315 

Giannini and Masiani [53], computed the equivalence between Equations (15) and (16) as follows: 316 

 𝜉 =
2 ∙ (1 − 𝑒)

𝜋 ∙ (1 + 𝑒)
 (17) 

Unfortunately, they do not specify the circular frequency associated to the EVD force. 317 

5. Derivation of the equivalence between coefficient of restitution and equivalent viscous 318 

damping 319 

The damped free vibrations delivered by the EVD models have been matched with the ones associated with a 320 

CR model for a variety of geometrical configurations in order to propose an equivalence between these 321 

different damping systems. The CR model has been taken as the reference one, since the estimation of e can 322 

be based on the wall geometry and its value can be reduced to account for a continuous source of dissipation 323 

as observed experimentally. In order to determine the proper value of damping ratio, an error metrics Err was 324 

defined related to the difference between CR and EVD free-vibration amplitudes at the j-th time step of a 325 

response having k steps:  326 

 𝐸𝑟𝑟 = ∑(|𝑢𝐶𝑅,𝑗 𝑢𝑖𝑛𝑠⁄ | − |𝑢𝐸𝑉𝐷,𝑗 𝑢𝑖𝑛𝑠⁄ |)
2

𝑘

𝑗=1

 (18) 

The number of k steps is selected large enough to ensure the practically complete decay of the free-rocking 327 

response given by the CR model, delivering displacements smaller than 0.001uins. The selection of such error 328 

metric was intended to give more importance to large oscillation amplitudes rather than small ones. A larger 329 

value of k therefore does not modify the optimal damping ratio.  330 

A similar methodology was already adopted in Tomassetti et al. [54], who derived polynomial -e relationships 331 

exclusively for VSSWs modelled with a trilinear force-displacement curve.  332 

For each EVD model, Figure 8 plots markers indicating the damping ratio values that minimise function Err 333 

for a specific PW configuration, varying CR and initial displacement. The markers are fitted with a logarithmic 334 

function as follows: 335 

 𝜉 = −𝑥 ∙ ln (𝑒) (19) 

Figure 8 shows also the damping ratio-CR relationship proposed by Makris and Konstantinidis [17] and 336 

Giannini and Masiani [53] presented in Equations (14) and (17). 337 

In general, all models present a higher sensitivity to amplitude of oscillation moving towards lower CRs (higher 338 

energy dissipation). The equivalence related to the CDC model is the most sensitive, while CDR and SDR 339 

models are only slightly affected by this variable. This result suggests recommending the CDR and SDR 340 

models in time-history assessment, because in such instances the amplitude of the response is not known a 341 

priori and accounting for it would involve iterative procedures.   342 

In both CDC and CDR models larger oscillation amplitudes are associated with smaller damping ratio values, 343 

while for the SDR model the trend is reversed: slightly smaller damping ratio values are associated with larger 344 



 

 

 

oscillations. This behaviour is due to SDR model associating comparatively small damping ratios to 345 

oscillations close to instability, consequently the damping value necessary to fit the whole target free vibrations 346 

is slightly larger.  347 

 348 

Figure 8 Equivalent Viscous Damping values of Constant Damping Coefficient, Constant Damping Ratio and 349 
Stiffness-proportional Damping Ratio models matching the free vibrations of a Coefficient of Restitution model, 350 
varying coefficient of restitution and initial displacement. Bilinear force-displacement law of the Parapet Wall (b 351 

= 0.4 m and h = 4.0 m) according to the following parameters: a1 = 0.03, a3 = 1.00. 352 

For the following comparisons, a reference initial condition u0/uins = 0.9 was considered. This value is 353 

particularly interesting in assessing the behaviour of the system being in the vicinity of static instability (i.e. 354 

u0/uins = 1) and hence the overturning of the element. For given initial displacement and force-displacement 355 

law, as well as an e value not computed from wall geometry but rather investigated parametrically, Figure 9 356 

shows that the equivalent damping ratio is insensitive to wall shape. 357 

 358 

 359 

Figure 9 Equivalent Viscous Damping values of Constant Damping Coefficient, Constant Damping Ratio and 360 
Stiffness-proportional Damping Ratio models matching the free vibrations of a Coefficient of Restitution model, 361 

varying coefficient of restitution and height/thickness ratio of a Parapet Wall (b = 0.4 and h = 2, 4, 6, 8 m). 362 
Bilinear force-displacement law according to the following parameters: a1 = 0.03, a3 = 1.00. Normalised initial 363 

displacement u0/uins = 0.9.  364 



 

 

 

 

On the contrary, Figure 10 highlights how EVD values matching a CR response are strongly affected by the 365 

chosen initial stiffness parameter a1 (Figure 4). Again, the CDC is the most sensitive to a1, whereas least 366 

affected is CDR. A higher initial stiffness (lower a1) leads to lower values of damping ratio for both CDC and 367 

CDR models, whereas the opposite is true for SDR model. This phenomenon is particularly evident for low 368 

values of e that concentrate the response in the small amplitudes range, wherein the secant stiffness is very 369 

close to the initial one determined by a1. Hence, the lower a1 the quicker the oscillations decay and the higher 370 

the requested SDR damping.  371 

It is worth highlighting that CCDC values required to match free vibrations damped by a specific CR for PWs 372 

having different initial stiffness are approximately equal. This phenomenon because of the definition of CCDC 373 

in Equation (6), introduces a high dependence of 𝜉 on the initial stiffness governed by a1 and, consequently, 374 

on the initial circular frequency 𝜔1. 375 
 376 

 377 

Figure 10 Equivalent Viscous Damping values of Constant Damping Coefficient, Constant Damping Ratio and 378 
Stiffness-proportional Damping Ratio models matching the free vibrations of a Coefficient of Restitution model, 379 
varying coefficient of restitution and initial stiffness of the bilinear force-displacement law. Time histories of a 380 

Parapet Wall (b = 0.4 m and h = 4.0 m) according to the following parameters: a3 = 1.00, u0/uins = 0.9. Parameter 381 
x is the coefficient in Equation (19). 382 

Figure 11 helps in understanding which one of the EVD models is more effective in matching the CR model 383 

by plotting the minimum error defined in Equation (18) associated with the best fit considering a specific PW 384 

configuration. The errors have been displaced in root due to their wide variation with CR: the higher e, the 385 

higher Err is.  386 



 

 

 

 387 

Figure 11 Minimum error associated with Constant Damping Coefficient, Constant Damping Ratio and 388 
Stiffness-proportional Damping Ratio models matching the free vibrations of a CR model, varying coefficient of 389 

restitution. Time histories of a Parapet Wall (b = 0.4 m and h = 4.0 m). Bilinear force-displacement law 390 
according to the following parameters: a1 = 0.03, a3 = 1.00. Normalised initial displacement u0/uins = 0.9. 391 

Both models acting on the secant stiffness (CDR and SDR) present close error values, considerably lower than 392 

that of the CDC model. The CDR model presents the lowest errors in the range e = 0.82-0.88; outside such 393 

range the SDR model is more effective unless very large values of e are considered. Similar trends were 394 

observed for different PW configurations, not shown here for the sake of conciseness. 395 
Similar analyses were conducted adopting different PWs shapes and trilinear force-displacement curves. 396 

Moreover, they were repeated for different configurations and force-displacements laws of VSSWs, leading 397 

to relationships matching those just presented. Likewise to what already emphasised by Tomassetti et al. [54] 398 

for VSSWs modelled with a trilinear force-displacement curve, the equivalence between CR and EVD is 399 

insensitive to overburden load and wall shape, sensitive to oscillation amplitude and very sensitive to the initial 400 

stiffness. Referring to a CDC model defined according to Equation (7), on the contrary, the required 𝑐̅ will be 401 

strongly dependant on the mechanism and acting overburden load.  402 

Figure 10 suggests that the initial stiffness, controlled by a1, is the system characteristic that affects most the 403 

EVD model matching the CR model. In order to derive a relationship describing the influence of a1 on the 404 

EVD, a nonlinear regression in the form: x = qa1
r, was performed on the coefficient x of Equation (19). Figure 405 

12 shows nonlinear regressions of the points obtained from the CDC, CDR and SDR models of a PW having 406 

a1 > 0.005, because the fitting was performed on PWs having different but finite initial stiffnesses. 407 

Consequently, the regressions cannot be applied to a perfect rigid body system that is characterised by an 408 

infinite initial circular frequency. In such a case a CDC approach according to Equation (7) is recommended. 409 

Almost completely matching results are obtained for VSSWs, highlighting that once the proper force-410 

displacement law has been established regressions are the same. Moreover, a wide variation of the strength 411 

parameter defining the plateau of the trilinear force-displacement curve, d1, ranging between 0.5 and 0.9, has 412 

modified very marginally the regressions.  413 

 414 



 

 

 

 

 415 

Figure 12 Coefficient x in Equation (17) for varying a1 (Figure 4) and Constant Damping Coefficient, Constant 416 
Damping Ratio and Stiffness-proportional Damping Ratio models. Parapet Wall. 417 

Consequently, replacing in Equation (19) the coefficient x and the values of CR for the two mechanisms 418 

(Equations (2) and (3)) together with the calibrated eexp/ean ratio (see Section 3.2), EVD relationships as 419 

functions of the system geometry are presented in Equations (20), (21) and (22) for CDC, CDR and SDR 420 

models, respectively. Moreover, Equations (23) provides the damping ratio coefficient to be associated with 421 

Equation (7) employing a CDC model for a PW, exclusively.  422 

 423 

 424 

 425 

𝜉𝐶𝐷𝐶 = −0.667 ∙ 𝑎1
0.450𝑙𝑛 (

𝑒𝑒𝑥𝑝

𝑒𝑎𝑛

𝑒𝑎𝑛) (20) 

𝜉𝐶𝐷𝑅 = −0.350 ∙ 𝑎1
0.074𝑙𝑛 (

𝑒𝑒𝑥𝑝

𝑒𝑎𝑛

𝑒𝑎𝑛) (21) 

𝜉1,𝑆𝐷𝑅 = −0.218 ∙ 𝑎1
−0.195𝑙𝑛 (

𝑒𝑒𝑥𝑝

𝑒𝑎𝑛

𝑒𝑎𝑛) (22) 

𝑐̅ = −1.55 𝑙𝑛 (
𝑒𝑒𝑥𝑝

𝑒𝑎𝑛
𝑒𝑎𝑛) ; unloaded PW only (23) 

Assuming a specific bilinear force-displacement law, Figure 13 plots the previous relationships against angles 426 

 and 1 of PW and VSSW, respectively. For CDC, CDR and SDR models, EVD ratios are shown considering 427 

analytical and experimentally-calibrated CRs, highlighting that the difference between the two tends to 428 

diminish for decreasing height-to-thickness ratios. Similarly to what observed by Sorrentino et al. [20], the 429 

damping ratio associated with a VSSW is higher than the one associated with a PW of same height-to-thickness 430 

ratio. 431 



 

 

 

 432 
Figure 13 Equivalent viscous damping ratio for Constant Damping Coefficient, Constant Damping Ratio and 433 

Stiffness-proportional Damping Ratio models as function of the system geometry and analytical or experimental 434 
coefficient of restitution. Ratio eexp/ean equal to 0.95 for Parapet Wall and 0.90 for Vertical Spanning Strip Wall. 435 

Bilinear force-displacement law according to the following parameters: a1 = 0.06, a3 = 1.00, h1/h=0.5.  436 

6. Validation of the proposed EVD relationships  437 

The equations predicting the damping ratio of each investigated model are determined in Section 5 on the basis 438 

of free-vibration responses given by a CR. However, the free-rocking response is characterised by a direct 439 

relationship between amplitude of oscillation and reduction of kinetic energy at impact, which might not be 440 

the case during forced vibrations. Consequently, in this section forced vibrations are considered, validating the 441 

proposed predicting equations with experimental responses and further comparing them with the CR approach 442 

at overturning condition, by means of IDAs. 443 

 444 

6.1. Comparison with experimental results  445 

The potential of damping models in capturing the dynamic rocking response of single-leaf and cavity VSSWs 446 

was already suggested by Tomassetti et al. [33]. Their numerical simulations adopted a trilinear configuration 447 

with a1 = 0.03, a3=0.94, d1=0.85 on average and a hardening second branch. The damping ratios proposed after 448 

calibration on the entire set of tests (small and large amplitudes) for all specimens are compared in Table 3 449 

with the ones predicted by Equations (20), (21) and (22) using as input the experimentally measured CRs [10] 450 

and a1 = 0.03. The experimental damping ratio presented in [33] were calibrated minimising a weighted error 451 

metric between laboratory and numerical responses, accounting for both the entire forced-vibration time 452 

history (similarly to Equation (18)) and its peak amplitude. Regarding the single-leaf specimen, the slight 453 

difference between experimentally calibrated, exp, and predicted EVD ratios, , 1, may be related to the former 454 

being obtained, for all-but-one tests, on small-medium peak oscillation amplitude (umax/uins < 0.3) and to the 455 

latter being derived for umax/uins = 0.9.  456 

This difference is consistent for the CDC model, which, as discusses in Section 5, is strongly affected by the 457 

amplitude of the motion and therefore not recommended. Moreover, Tomassetti et al. [33] highlighted that a 458 

CDC cannot capture the dependence of the damping phenomenon on the oscillation amplitude underestimating 459 

large oscillation peaks. As expected for small-amplitude tests, CDR and SDR tend to converge to similar values 460 

of EVD. Regarding the three cavity-wall specimens, for which a higher number of large-amplitude tests was 461 

available, the experimental response in [33] falls within the range of Equations (20), (21) and (22).  462 



 

 

 

 

 463 
Table 3 Equivalent viscous damping ratios for Constant Damping Coefficient, Constant Damping Ratio and 464 
Stiffness-proportional Damping Ratio models obtained from calibration of experimental tests [33] and Equations 465 
20, 21, 22. 466 

 Single Leaf  Cavity wall 

 eexp [-] [33] 

exp [-] 

 or1 (Eqs.) 

[-]  

eexp [-] [33] 

 exp [-] 

 or1 (Eqs.) 

[-] 

CDC 

0.84-0.87 

0.045 0.024-0.019 (20) 

0.61-0.74 

0.060 0.068-0.041 (20) 

CDR 0.060 0.047-0.038 (21) 0.100 0.134-0.082 (21) 

SDR 0.070 0.075-0.060 (22) 0.150 0.213-0.132 (22) 

 467 

The performance of these damping models was further investigated by considering the PWs tested by Giaretton 468 

et al. [55]. The specimens considered hereinafter are P4-(B) and P7-(C), both having h = 1180 mm, b = 230 469 

mm and width equal to 1200 mm. Only the tests with an harmonic motion exciting already cracked specimens 470 

are considered. With reference to Section 3.1, Table 4 specifies the modelling parameters calibrated against 471 

each different record to capture the experimental responses in terms of bilinear force-displacement curve. The 472 

obtained values result to be very similar for all dissipation models. Table 4 provides also the comparison 473 

between calibrated EVD ratios and those obtained from Equations (21) and (22) using the calibrated CRs.   474 

Figure 14 shows the reasonable match between experimental and numerical non-dimensional displacement 475 

time histories, of the CR, CDR and SDR models. The experimental EVD ratios are slightly lower than those 476 

predicted by Equations (21) and (22). This necessity arises because umax/uins < 0.5. The overestimation of the 477 

displacement response in the initial phase (for t < 27 s) might be attributed to the adoption of a bilinear curve, 478 

which at low level of displacement presents a stiffness rather lower than the actual one. The adoption of a 479 

trilinear curve might improve the numerical response in this specific time frame, nevertheless Figure 14 shows 480 

as bilinear curve (characterised by a lower number of parameters) still represents a good approximation for 481 

significant rotations (i.e. overturning collapses intended to be reliably captured by the presented modelling 482 

approaches).    483 

 484 

 485 

 486 

 487 
Table 4 Modelling parameters of tested Parapet Walls 488 

 CR CDR SDR 

Spec. ID 𝑭𝟎 

[kN] 

𝒖𝒊𝒏𝒔 

[mm] 

𝒂𝟑 

[-] 

𝒂𝟏 

[-] 

𝒆𝒆𝒙𝒑 

[-] 

𝒂𝟏 

[-] 

𝝃𝒆𝒙𝒑 

[-] 

𝝃𝐄𝐪.  (𝟐𝟏) 

[-] 

𝒂𝟏 

[-] 

𝝃𝟏,𝒆𝒙𝒑 

[-] 

𝝃𝐄𝐪.  (𝟐𝟐) 

[-] 

P4-(B) 1.24 115 0.95 0.072 0.935 0.072 0.016 0.019 0.074 0.018 0.024 

P7-(C) 1.24 115 0.95 0.070 0.922 0.070 0.022 0.023 0.069 0.026 0.029 

 489 

 490 

 491 



 

 

 

 492 

 493 

Figure 14 Comparison between exp. and num. non-dimensional disp. histories for CR, CDR and SDR models. 494 
Experimental and numerical non-dimensional displacement time-histories for Coefficient of Restitution, 495 

Constant Damping Ratio and Stiffness-proportional Damping Ratio models. 496 

6.2. Comparison at overturning condition via IDA analysis 497 

 498 

The slight mismatch between experimental and predicted EVD ratios suggests a further investigation of their 499 

behaviour at overturning, which is the most important performance level when assessing risk for human and 500 

economic losses. Therefore, IDAs [56] have been computed. 501 
The geometry of the PWs chosen for the comparison is consistent with [45], with height-to-thickness ratios 502 

and thickness values representative of Italian architectonic and artistic assets. A bilinear force-displacement 503 

curve is assumed, with initial stiffness consistent with [45]. Additionally, three VSSWs have been investigated 504 

assuming a bilinear force-displacement curve. Table 5 lists the analysed walls, their geometry, the associated 505 

analytical and experimental CRs, and the damping values given by Equations (20) (CDC), (21) (CDR) and 506 

(22) (SDR). Table 5 shows also the damping ratios according to Equation (14), proposed by Makris and 507 

Konstantinidis [17] for linear dynamic analyses, different from those performed here. In order to use a 508 

meaningful set of records without performing the in-depth selection process necessary when fully-probabilistic 509 

risk analyses are performed, acceleration time histories considered within the framework of the RINTC project 510 

[57] for the city of L’Aquila (Italy) were used as excitation. The record selection was performed according to 511 

AvgSA, defined as the geometric mean of the spectral accelerations within a user-specified period range [58], 512 

in order to account for amplitude-dependent periods of vibration. The selected period range 0.2-1.4 s, with a 513 

0.2 s step, seems appropriate for the analysis of rocking structures, whose period naturally elongates close to 514 

overturning (Figure 3). Forty acceleration time-histories with highest peak value between two orthogonal 515 

components corresponding to return periods of 500 and 1000 years were assumed for the analyses. IDAs were 516 

performed by scaling each record AvgSA till the first attainment of overturning, here taken as the displacement 517 

demand exceeding the static instability displacement: umax/uins > 1.  518 

 519 
Table 5 Details of the analysed walls and associated damping parameters (a3 = 1.00). 520 

Wall # Wall- 

type 

h 

[m] 

b 

[m] 

a1 

[-] 

ean 

[-] 

eexp 

[-] 
𝜉CDC 

 [%] 

𝜉CDR 

 [%] 

𝜉SDR 

 [%] 

𝜉Eq. (14) 

 [%] 

1 PW 6.00 1.20 0.0048 0.942 0.895 0.67 2.64 6.83 7.53 

2 PW 1.50 0.30 0.0012 0.942 0.895 0.36 2.38 8.95 7.53 

3 PW 3.00 0.30 0.0090 0.985 0.935 0.53 1.65 3.62 4.51 



 

 

 

 

4 PW 12.00 1.20 0.0360 0.985 0.935 1.00 1.83 2.76 4.51 

5 PW 3.00 0.60 0.0024 0.942 0.895 0.49 2.50 7.82 7.53 

6 PW 6.00 0.60 0.0180 0.985 0.935 0.73 1.74 3.16 4.51 

7 VSSW 5.00 0.30 0.0200 0.979 0.881 1.46 3.35 5.92 8.62 

8 VSSW 3.75 0.24 0.0200 0.976 0.878 1.49 3.43 6.06 8.82 

9 VSSW 3.40 0.36 0.0200 0.935 0.842 1.98 4.55 8.04 11.70 

 521 

Figure 15 shows a very good agreement between collapse empirical cumulative distributions given by the CR 522 

model and the predictive damping models (CDC, CDR and SDR) for all walls, as proven also by the collapse 523 

median intensity measure IM* (corresponding to 50% of time histories exceeding umax/uins = 1). On the contrary, 524 

the empirical cumulative distributions given by the CDR model, adopting the damping value of Equation (14), 525 

present as expected a significant underestimation of the probability of overturning. Such underestimation 526 

happens because Equation (14) was derived from a fitting of logarithmic decrement without any circular 527 

frequency or stiffness associated to it, nor a reference to a multilinear elastic system representing a rocking 528 

system. In conclusion, all calibrated damping models result in fragility curves consistent with the one 529 

associated with a CR model. However, an appropriate selection of the damping ratio, different for each model, 530 

is necessary to obtain an accurate prediction. 531 

It is worth emphasising that the scatter associated with VSSWs is lower than that of PWs, while for the latter 532 

a lower dispersion is associated with the smaller bodies. This behaviour may be related to adopted spectral 533 

acceleration range 0.2-1.4 s, within which the effective periods of small PWs fall.  534 



 

 

 

 535 

Figure 15 Comparison between empirical cumulative distributions obtained with different damping models.  536 

7. Conclusions 537 

This paper presents a single-degree-of-freedom (SDOF) model for the analysis of the rocking behaviour of a 538 

parapet wall (PW) and a vertical spanning strip wall (VSSW). This low computational cost model was 539 

developed with the target of performing large non-linear time history analysis in order to assess the 540 

vulnerability of URM components to local OOP mechanisms. The model consists in a multilinear elastic 541 

oscillator that dissipates energy with an equivalent viscous damping (EVD) force (proposed in different 542 

formats) rather than the more widely used coefficient of restitution (CR).  543 

This alternative approach may present several potential advantages over a CR-based approach such as 544 

similarities of the damping problem to that of classical linear oscillators and possible implementation in already 545 

available finite element environments. For instance, the proposed approach allows to model the response of a 546 

specific component (e.g. parapet or chimney) in a multi-degree of freedom model adding a degree of freedom 547 

associated with a mass, a non-linear spring and a viscous dashpot element. Moreover, EVD models may take 548 



 

 

 

 

into account the energy dissipation in both pre-mechanism (during the elastic response) and post-mechanism 549 

phases (when the rocking phenomenon takes place). 550 

Several configurations of velocity-dependent forces acting on the initial (constant damping coefficient, CDC) 551 

or secant stiffness of the system (adopting constant, CDR, or linear frequency-damping ratio relationships, 552 

SDR) are presented and discussed. The work aims at defining a relationship between these EVD models and 553 

the system geometry via the CR. The response given by the CR-based approach was taken as the reference 554 

one. In order to ensure the equivalence, damped free vibrations produced by EVD models have been matched 555 

with the one provided by a CR model. 556 

In general, these equivalences depend on the amplitude of oscillation and the initial stiffness of the system. 557 

Therefore, logarithmic regressions function of the wall geometry and initial stiffness were provided to predict 558 

the best damping ratio associated with each EVD model. The CDR model acting on the system secant stiffness, 559 

considering its reduced dependence on oscillation amplitude and initial stiffness, resulted the most appropriate 560 

in simulating free vibrations damped by a CR. In addition, the SDR model has shown a rather good 561 

performance.  562 

The EVD SDOF model was able to reasonably replicate the experimental rocking response of PWs and the 563 

calibrated damping ratios were rather close to predicted ones. Finally, incremental dynamic analysis adopting 564 

damping ratios provided by the predictions equations were performed on several PWs and VSSWs having 565 

height-to-thickness ratios considered representative of Italian architectonic and artistic assets. The good match 566 

between collapse cumulative distributions given by CR and the EVD models confirm the effectiveness of the 567 

proposed approach. 568 

A future extension of this work may consider one-sided rocking mechanisms, modelling the transverse walls 569 

with an adequate stiffness. Furthermore, the proposed EVD model may be adopted to evaluate the effectiveness 570 

of current equivalent-static code procedures and possibly propose alternative protocols. 571 

 572 
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