
EVOLUTION EQUATIONS AND doi:10.3934/eect.2020018
CONTROL THEORY
Volume 9, Number 1, March 2020 pp. 87–130

REACHABILITY PROBLEMS FOR A WAVE-WAVE

SYSTEM WITH A MEMORY TERM

Paola Loreti∗ and Daniela Sforza

Dipartimento di Scienze di Base e Applicate per l’Ingegneria
Sapienza Università di Roma
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Abstract. We solve the reachability problem for a coupled wave-wave system

with an integro-differential term. The control functions act on one side of the

boundary. The estimates on the time is given in terms of the parameters of the
problem and they are explicitly computed thanks to Ingham type results. Nev-

ertheless some restrictions appear in our main results. The Hilbert Uniqueness

Method is briefly recalled. Our findings can be applied to concrete examples
in viscoelasticity theory.

1. Introduction. Controllability and observability of distributed system have been
studied for a long time because of their possible applications, see e.g. [25, Ch.V],
[36] and their references.

A number of physical problems are modelized by coupled systems, see [17], hence
many works were devoted to the controllability of such problems. In the literature
coupled wave-wave equations were investigated by studying boundary stabiliza-
tion, see [31]; exact synchronization for a coupled system of wave equations with
Dirichlet boundary conditions was successfully treated by Li and Rao [23] in the
n−dimensional case with general coupling matrix. However, their method does not
allow to get precise estimates on the controllability time.

The twin-wave system without memory terms has been recently investigated by
Avdonin et al. [2]. They have established the optimal controllability time by acting
only on one of the equations, thereby improving a special case of an earlier theorem
of [1].

By the way in the case of equal coupling coefficients controllability results may be
obtained from the well-known results for the scalar case by replacing the unknown
functions u and w by u + w and u − w, and applying the available simultaneous
controllability results. Another more general way to obtain controllability results is
to apply an abstract theorem (see [12, 13, 16]) concerning compact perturbations.
This theorem states in a general framework that if the uncoupled system is control-
lable in some time T , then the coupled system is controllable in each time T ′ > T.
In particular, the critical controllability time is the same for the coupled and the
uncoupled system. On the other hand, the direct approach of [2] allowed them, by
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taking into account the specificity of their example, to establish the controllabil-
ity also in the critical time T ′ = T = 4π by acting only on one of the equations
(as in [1] where a two-level energy method for indirect boundary observability is
applied for general hyperbolic systems). However this argument does not apply to
the model we are going to consider. Evolution equations with memory terms have
also been investigated by many authors because they appear in many important
physical models, see e.g. Dafermos [6, 7].

Justified by the above discussion, our aim will be to investigate the reachability
for a system constituted of a wave equation with a memory term and another wave
equation coupled by lower order terms. For given a , b ∈ R we consider the following
system

u1tt(t, x)− u1xx(t, x) +

∫ t

0

k(t− s)u1xx(s, x)ds+ au2(t, x) = 0 ,

t ∈ (0, T ) , x ∈ (0, π),

u2tt(t, x)− u2xx(t, x) + bu1(t, x) = 0 .

(1)
In this work we will treat smooth kernels on [0,∞). For example, decreasing expo-
nential kernels arise in the analysis of Maxwell fluids or Poynting -Thomson solids,
see e.g. [32, 35], that is one can consider

k(t) = βe−ηt (0 < β < η).

It is also noteworthy to observe that such kernels satisfy the principle of fading
memory stated in [5]. The system is subject to the boundary conditions

u1(t, 0) = u2(t, 0) = 0 , u1(t, π) = g1(t) , u2(t, π) = g2(t) t ∈ (0, T ) , (2)

and with null initial conditions

ui(0, x) = uit(0, x) = 0 x ∈ (0, π), i = 1, 2 . (3)

We will solve a reachability problem for 1 of the following type: given T > 0 and
taking (u0i , u

1
i ), i = 1, 2, whose regularity we will specify later, one has to find

gi ∈ L2(0, T ), i = 1, 2, such that the weak solution u of problem 1-3 satisfies the
final conditions

ui(T, x) = u0i (x) , uit(T, x) = u1i (x) , x ∈ (0, π), i = 1, 2 .

In our case the compact perturbation method does not apply any more, even if we
use two control functions. We are going to prove the controllability for system 1 by
using two controls. Our method can be adapted to the case of one control function
too, but the proof becomes much longer for technical reasons.

In the following we will assume that the eigenvalues related to the integro-
differential operator are all distinct.

Theorem 1.1. Let 0 < β < min{1/2, η}. For any T > 2π√
1−4β2

and (u0i , u
1
i ) ∈

L2(0, π)×H−1(0, π), i = 1, 2, there exist gi ∈ L2(0, T ), i = 1, 2, such that the weak
solution (u1, u2) of system

u1tt(t, x)− u1xx(t, x) + β

∫ t

0

e−η(t−s)u1xx(s, x)ds+ au2(t, x) = 0 ,

t ∈ (0, T ) , x ∈ (0, π)

u2tt(t, x)− u2xx(t, x) + bu1(t, x) = 0 ,
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with boundary conditions

u1(t, 0) = u2(t, 0) = 0 , u1(t, π) = g1(t) , u2(t, π) = g2(t) t ∈ (0, T ) ,

and null initial values

ui(0, x) = uit(0, x) = 0 x ∈ (0, π) , i = 1, 2,

verifies the final conditions

ui(T, x) = u0i (x) , uit(T, x) = u1i (x) , x ∈ (0, π), i = 1, 2 .

Our proof yields a sufficient controllability time Tβ that converges to the critical
controllability time T0 as the parameter β tends to zero. However, we cannot pass
to the limit to recover the corresponding result in the case without memory, because
the eigenvalues of the integro-differential operator are not bounded for β → 0+, as
formulas 41 and 42 clearly show. It remains an open question whether this can be
done and whether the critical controllability time is independent of the parameter
β. A partial answer to the last question is given by Theorem 5.9 below.

Also, the controllability time T = 4π obtained by Avdonin et al. [2] may suggest
us that the same critical time holds for the system with memory, as we proved in
the case of one equation, see [27]. However, the estimate we obtain on the critical
time shows the peculiar role of the memory term. Indeed, for β sufficiently small the

value T = 2π/
√

1− 4β2 is smaller than T = 4π, showing an unexpected damping
effect of the memory. This is a new feature of the analysis, in which the presence
of memory may contribute to get reachability in a smaller time.

In this framework Ingham type estimates, see [11], play an important role, see [36,
14, 15]. We already used this approach to study the reachability for one equation,
see [27], and to treat the case of a wave–Petrovsky system with a memory term, see
[28].

Further analysis can be done modifying the convolution integral, see [8]. However
modification of the type of memory changes the spectral analysis, so a different
investigation has to be done.

The plan of our paper is the following. In Section 2 we give some preliminary
results. In Section 3 we describe the Hilbert Uniqueness Method. In Section 4
we carry out a detailed spectral analysis to give a representation formula for the
solution of the wave-wave coupled system with memory. In Section 5 we prove the
observability estimates. Finally, in Section 6 we give a reachability result for the
coupled system with memory.

2. Preliminaries. Throughout the paper, we will adopt the convention to write
F � G if there exist two positive constants c1 and c2 such that c1F ≤ G ≤ c2F .

Let X be a real Hilbert space with scalar product 〈· , ·〉 and norm ‖ · ‖. For
any T ∈ (0,∞] we denote by L1(0, T ;X) the usual spaces of measurable functions
v : (0, T )→ X such that one has

‖v‖1,T :=

∫ T

0

‖v(t)‖ dt <∞ .

We shall use the shorter notation ‖v‖1 for ‖v‖1,∞. We denote by L1
loc(0,∞;X)

the space of functions belonging to L1(0, T ;X) for any T ∈ (0,∞). In the case of
X = R, we will use the abbreviations L1(0, T ) and L1

loc(0,∞) to denote the spaces
L1(0, T ;R) and L1

loc(0,∞;R), respectively.
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Classical results for integral equations (see, e.g., [9, Theorem 2.3.5]) ensure that,
for any kernel k ∈ L1

loc(0,∞) and ψ ∈ L1
loc(0,∞;X), the problem

ϕ(t)− k ∗ ϕ(t) = ψ(t), t ≥ 0 , (4)

admits a unique solution ϕ ∈ L1
loc(0,∞;X). In particular, if we take ψ = k in 4,

we can consider the unique solution %k ∈ L1
loc(0,∞) of

%k(t)− k ∗ %k(t) = k(t), t ≥ 0 .

Such a solution is called the resolvent kernel of k. Furthermore, for any ψ the
solution ϕ of 4 is given by the variation of constants formula

ϕ(t) = ψ(t) + %k ∗ ψ(t), t ≥ 0 ,

where %k is the resolvent kernel of k.
We recall some results concerning integral equations in case of decreasing expo-

nential kernels, see for example [27, Corollary 2.2].

Proposition 1. For 0 < β < η and T > 0 the following properties hold true.

(i): The resolvent kernel of k(t) = βe−ηt is %k(t) = βe(β−η)t.
(ii): Given ψ ∈ L1

loc(−∞, T ;X), a function ϕ ∈ L1
loc(−∞, T ;X) is a solution of

ϕ(t)− β
∫ T

t

e−η(s−t)ϕ(s)ds = ψ(t) t ≤ T ,

if and only if

ϕ(t) = ψ(t) + β

∫ T

t

e(β−η)(s−t)ψ(s) ds t ≤ T .

Moreover, there exist two positive constants c1 , c2 depending on β, η, T such
that

c1

∫ T

0

|ϕ(t)|2 dt ≤
∫ T

0

|ψ(t)|2 dt ≤ c2
∫ T

0

|ϕ(t)|2 dt . (5)

We state and prove a result, that will allow us to give an equivalent way to write
the solution of our problem.

Lemma 2.1. Given λ , β , η ∈ R, a ∈ R \ {0} and b ∈ R, a couple (f, g) of scalar
functions defined on the interval [0,∞) is a solution of the system

f ′′ + λf − λβ
∫ t

0

e−η(t−s)f(s)ds+ ag = 0 ,

t ≥ 0,

g′′ + λg + bf = 0 ,

(6)

if and only if f is a solution of the equation

f (5)+ηf (4)+2λf ′′′+λ(2η−β)f ′′+(λ2−ab)f ′+(λ2(η−β)−ηab)f = 0, t ≥ 0, (7)

the condition

f (4)(0) = −2λf ′′(0) + λβf ′(0) + (ab− ηλβ − λ2)f(0) (8)

is satisfied and g is given by

g = −1

a

(
f ′′ + λf − λβ

∫ t

0

e−η(t−s)f(s)ds
)
. (9)
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Proof. Let (f, g) be a solution of 6. Differentiating the first equation in 6, we get

f ′′′ + λf ′ + ηλβ

∫ t

0

e−η(t−s)f(s)ds− λβf + ag′ = 0 , (10)

whence

ag′(0) = −f ′′′(0)− λf ′(0) + λβf(0) . (11)

Substituting in 10 the identity

λβ

∫ t

0

e−η(t−s)f(s)ds = f ′′ + λf + ag ,

we obtain

f ′′′ + ηf ′′ + λf ′ + λ(η − β)f + ag′ + ηag = 0 . (12)

Differentiating yet again, we have

f (4) + ηf ′′′ + λf ′′ + λ(η − β)f ′ + ag′′ + ηag′ = 0 ,

whence, by using the second equation in 6, that is ag′′ = −abf − λag, we get

f (4) + ηf ′′′ + λf ′′ + λ(η − β)f ′ − abf + ηag′ − λag = 0 . (13)

Thanks to 11 and ag(0) = −f ′′(0)− λf(0), we have

f (4)(0) = −ηf ′′′(0)− λf ′′(0)− λ(η − β)f ′(0) + abf(0)− ηag′(0) + λag(0)

= −ηf ′′′(0)− λf ′′(0)− λ(η − β)f ′(0) + abf(0) + ηf ′′′(0)

+ ηλf ′(0)− ηλβf(0)− λf ′′(0)− λ2f(0)

= −2λf ′′(0) + λβf ′(0) + (ab− ηλβ − λ2)f(0) ,

so formula 8 for f (4)(0) holds true. Moreover, by differentiating 13 we obtain

f (5) + ηf (4) + λf ′′′ + λ(η − β)f ′′ − abf ′ + ηag′′ − λag′ = 0 .

By using again g′′ = −bf − λg we get

f (5) + ηf (4) + λf ′′′ + λ(η − β)f ′′ − abf ′ − ηabf − λag′ − ηλag = 0 .

From 12 it follows

−ag′ − ηag = f ′′′ + ηf ′′ + λf ′ + λ(η − β)f ,

and hence we have

f (5) + ηf (4) + 2λf ′′′ + λ(2η − β)f ′′ + (λ2 − ab)f ′ + (λ2(η − β)− ηab)f = 0 ,

that is f is a solution of the differential equation 7. Finally, from the first equation
in 6 we deduce that g is given by 9.

Conversely, if f satisfies 7 − 8, multiplying the differential equation by eηt and
integrating from 0 to t, we obtain∫ t

0

eηsf (5)(s) ds+ η

∫ t

0

eηsf (4)(s) ds+ 2λ

∫ t

0

eηsf ′′′(s) ds+ 2ηλ

∫ t

0

eηsf ′′(s) ds

−λβ
∫ t

0

eηsf ′′(s) ds+(λ2−ab)
∫ t

0

eηsf ′(s) ds+(λ2(η−β)−ηab)
∫ t

0

eηsf(s) ds = 0 .



92 PAOLA LORETI AND DANIELA SFORZA

Integrating by parts the first, the third, the fifth and the sixth integral, we have

eηtf (4) − f (4)(0) + 2λeηtf ′′ − 2λf ′′(0)− λβeηtf ′ + λβf ′(0) + ηλβeηtf

−ηλβf(0)−η2λβ
∫ t

0

eηsf(s) ds+(λ2−ab)eηtf−(λ2−ab)f(0)−λ2β

∫ t

0

eηsf(s) ds = 0 .

Using the condition 8 and multiplying by e−ηt, we obtain

f (4) + 2λf ′′ − λβf ′ + ηλβf − η2λβ
∫ t

0

e−η(t−s)f(s) ds

+ (λ2 − ab)f − λ2β
∫ t

0

e−η(t−s)f(s) ds = 0 . (14)

Moreover, by 9 it follows

ag′ = −f ′′′ − λf ′ + λβf − ηλβ
∫ t

0

e−η(t−s)f(s)ds ,

and hence

ag′′ = −f (4) − λf ′′ + λβf ′ − ηλβf + η2λβ

∫ t

0

e−η(t−s)f(s)ds .

Therefore, thanks to the previous identity and 14 we have

ag′′ = λf ′′ + (λ2 − ab)f − λ2β
∫ t

0

e−η(t−s)f(s) ds ,

whence, in view of 9 we get

ag′′ = −λag − abf .
Finally, by 9 and the above equation, it follows that the couple (f, g) is a solution
of the system 6.

The following lemma is analogous to that of [27, Lemma 2.3]. For the reader’s
convenience we prefer to state and prove it the same.

Lemma 2.2. Given λ , β , η ∈ R and h ∈ C(R), if g ∈ C3(R) is a solution of the
third order differential equation

g′′′ + ηg′′ + λg′ + λ(η − β)g = h in R , (15)

then g is also a solution of the integro-differential equation

g′′+λg−λβ
∫ t

0

e−η(t−s)g(s)ds = e−ηt(g′′(0)+λg(0))+

∫ t

0

e−η(t−s)h(s)ds t ∈ R .

(16)

Proof. Multiplying the differential equation 15 by eηt and integrating from 0 to t,
we obtain∫ t

0

eηsg′′′(s) ds+ η

∫ t

0

eηsg′′(s) ds+ λ

∫ t

0

eηsg′(s) ds+ λ(η − β)

∫ t

0

eηsg(s) ds

=

∫ t

0

eηsh(s) ds .

Integrating by parts the first term and the third one, we have

eηtg′′ − g′′(0) + λeηtg − λg(0)− λβ
∫ t

0

eηsg(s) ds =

∫ t

0

eηsh(s) ds .
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Finally, if we multiply by e−ηt, then we obtain 16.

3. The Hilbert Uniqueness Method. For reader’s convenience, in this section
we will describe the Hilbert Uniqueness Method for coupled wave equations with a
memory term. For another approach based on the ontoness of the solution operator,
see e.g. [19, 37].

Given k ∈ L1
loc(0,∞) and a , b ∈ R, we consider the following coupled system:

u1tt(t, x)− u1xx(t, x) +

∫ t

0

k(t− s)u1xx(s, x)ds+ au2(t, x) = 0 ,

t ∈ (0, T ) , x ∈ (0, π)

u2tt(t, x)− u2xx(t, x) + bu1(t, x) = 0 ,

(17)

subject to the boundary conditions

u1(t, 0) = u2(t, 0) = 0 , u1(t, π) = g1(t) , u2(t, π) = g2(t) t ∈ (0, T ) , (18)

and with null initial conditions

ui(0, x) = uit(0, x) = 0 x ∈ (0, π), i = 1, 2 . (19)

For a reachability problem we mean the following: given T > 0 and taking
(u0i , u

1
i ), i = 1, 2, in a suitable space, that we will introduce later, find gi ∈ L2(0, T ),

i = 1, 2 such that the weak solution u of problem 17-19 satisfies the final conditions

ui(T, x) = u0i (x) , uit(T, x) = u1i (x) , x ∈ (0, π), i = 1, 2 . (20)

One can solve such reachability problems by the HUM method. To see that, we
proceed as follows.

Given (z0i , z
1
i ) ∈ (C∞c (0, π))2, i = 1, 2, we introduce the adjoint system of 17,

that is
z1tt(t, x)− z1xx(t, x) +

∫ T

t

k(s− t)z1xx(s, x)ds+ bz2(t, x) = 0 ,

t ∈ (0, T ) , x ∈ (0, π)

z2tt(t, x)− z2xx(t, x) + az1(t, x) = 0 ,

zi(t, 0) = zi(t, π) = 0 t ∈ [0, T ], i = 1, 2,

(21)

with final data

zi(T, ·) = z0i , zit(T, ·) = z1i , i = 1, 2 . (22)

The above problem is well-posed, see e.g. [32]. Thanks to the regularity of the final
data, the solution (z1, z2) of 21–22 is regular enough to consider the nonhomoge-
neous problem

ϕ1tt(t, x)− ϕ1xx(t, x) +

∫ t

0

k(t− s)ϕ1xx(s, x)ds+ aϕ2(t, x) = 0

t ∈ (0, T ) , x ∈ (0, π) ,
ϕ2tt(t, x)− ϕ2xx(t, x) + bϕ1(t, x) = 0

ϕi(0, x) = ϕit(0, x) = 0 x ∈ (0, π) , i = 1, 2,

ϕ1(t, 0) = 0 , ϕ1(t, π) = z1x(t, π)−
∫ T

t

k(s− t)z1x(s, π)ds

t ∈ [0, T ],
ϕ2(t, 0) = 0 , ϕ2(t, π) = z2x(t, π).

(23)
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As in the non-integral case, it can be proved that problem 23 admits a unique
solution (ϕ1, ϕ2). So, we can introduce the following linear operator: for any

(z0i , z
1
i ) ∈

(
C∞c (0, π)

)2
, i = 1, 2, we define

Ψ(z01 , z
1
1 , z

0
2 , z

1
2) = (−ϕ1t(T, ·), ϕ1(T, ·),−ϕ2t(T, ·), ϕ2(T, ·)) . (24)

For any (ξ0i , ξ
1
i ) ∈

(
C∞c (0, π)

)2
, i = 1, 2, let (ξ1, ξ2) be the solution of

ξ1tt(t, x)− ξ1xx(t, x) +

∫ T

t

k(s− t)ξ1xx(s, x)ds+ bξ2(t, x) = 0

t ∈ (0, T ), x ∈ (0, π),
ξ2tt(t, x)− ξ2xx(t, x) + aξ1(t, x) = 0

ξi(t, 0) = ξi(t, π) = 0 t ∈ [0, T ],
i = 1, 2,

ξi(T, ·) = ξ0i , ξit(T, ·) = ξ1i .

(25)

We will prove that

〈Ψ(z01 , z
1
1 , z

0
2 , z

1
2), (ξ01 , ξ

1
1 , ξ

0
2 , ξ

1
2)〉L2

=

∫ T

0

ϕ1(t, π)
(
ξ1x(t, π)−

∫ T

t

k(s− t) ξ1x(s, π) ds
)
dt+

∫ T

0

ϕ2(t, π)ξ2x(t, π) dt .

(26)

To this end, we multiply the first equation in 23 by ξ1 and integrate on [0, T ]× [0, π],
so we have∫ π

0

∫ T

0

ϕ1tt(t, x)ξ1(t, x) dt dx−
∫ T

0

∫ π

0

ϕ1xx(t, x)ξ1(t, x) dx dt

+

∫ π

0

∫ T

0

∫ t

0

k(t−s)ϕ1xx(s, x) ds ξ1(t, x) dt dx+a

∫ T

0

∫ π

0

ϕ2(t, x)ξ1(t, x) dx dt = 0 .

If we take into account that∫ T

0

∫ t

0

k(t− s)ϕ1xx(s, x) ds ξ1(t, x) dt =

∫ T

0

ϕ1xx(s, x)

∫ T

s

k(t− s) ξ1(t, x) dt ds

and integrate by parts, then we have∫ π

0

(
ϕ1t(T, x)ξ01(x)− ϕ1(T, x)ξ11(x)

)
dx+

∫ π

0

∫ T

0

ϕ1(t, x)ξ1tt(t, x) dt dx

+

∫ T

0

ϕ1(t, π)ξ1x(t, π) dt−
∫ T

0

∫ π

0

ϕ1(t, x)ξ1xx(t, x) dx dt

−
∫ T

0

ϕ1(s, π)

∫ T

s

k(t− s) ξ1x(t, π) dt ds

+

∫ π

0

∫ T

0

ϕ1(s, x)

∫ T

s

k(t− s) ξ1xx(t, x) dt ds dx

+ a

∫ T

0

∫ π

0

ϕ2(t, x)ξ1(t, x) dx dt = 0 .

As a consequence of the above equation and

ξ1tt − ξ1xx +

∫ T

t

k(s− t)ξ1xx(s, ·)ds = −bξ2 ,
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we obtain∫ π

0

(
ϕ1t(T, x)ξ01(x)− ϕ1(T, x)ξ11(x)

)
dx

+

∫ T

0

ϕ1(t, π)
(
ξ1x(t, π)−

∫ T

t

k(s− t) ξ1x(s, π) ds
)
dt

+

∫ T

0

∫ π

0

(
aϕ2(t, x)ξ1(t, x)− bϕ1(t, x)ξ2(t, x)

)
dx dt = 0 . (27)

In a similar way, we multiply the second equation in 23 by ξ2 and integrate by parts
on [0, T ]× [0, π] to get∫ π

0

(
ϕ2t(T, x)ξ02(x)− ϕ2(T, x)ξ12(x)

)
dx+

∫ π

0

∫ T

0

ϕ2(t, x)ξ2tt(t, x) dt dx

+

∫ T

0

ϕ2(t, π)ξ2x(t, π) dt−
∫ T

0

∫ π

0

ϕ2(t, x)ξ2xx(t, x) dx dt

+ b

∫ T

0

∫ π

0

ϕ1(t, x)ξ2(t, x) dx dt = 0 ,

whence, in virtue of

ξ2tt − ξ2xx = −aξ1 ,
we get∫ π

0

(
ϕ2t(T, x)ξ02(x)− ϕ2(T, x)ξ12(x)

)
dx+

∫ T

0

ϕ2(t, π)ξ2x(t, π) dt

+

∫ T

0

∫ π

0

(
bϕ1(t, x)ξ2(t, x)− aϕ2(t, x)ξ1(t, x)

)
dx dt = 0 . (28)

If we sum equations 27 and 28, then we have

〈Ψ(z01 , z
1
1 , z

0
2 , z

1
2), (ξ01 , ξ

1
1 , ξ

0
2 , ξ

1
2)〉L2

=

∫ π

0

(
− ϕ1t(T, x)ξ01(x) + ϕ1(T, x)ξ11(x)− ϕ2t(T, x)ξ01(x) + ϕ2(T, x)ξ11(x)

)
dx

=

∫ T

0

ϕ1(t, π)
(
ξ1x(t, π)−

∫ T

t

k(s− t) ξ1x(s, π) ds
)
dt

+

∫ T

0

ϕ2(t, π)ξ2x(t, π) dt , (29)

that is, 26 holds true.
Taking ξ0i = z0i and ξ1i = z1i , i = 1, 2, in 26 yields

〈Ψ(z01 , z
1
1 , z

0
2 , z

1
2), (z01 , z

1
1 , z

0
2 , z

1
2)〉L2

=

∫ T

0

∣∣∣z1x(t, π)−
∫ T

t

k(s− t) z1x(s, π) ds
∣∣∣2 dt+

∫ T

0

∣∣z2x(t, π)
∣∣2 dt . (30)

As a consequence, we can introduce a semi-norm on the space
(
C∞c (Ω)

)4
. Indeed,

for (z0i , z
1
i ) ∈

(
C∞c (Ω)

)2
, i = 1, 2, we define

‖(z01 , z11 , z02 , z12)‖F :=
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(∫ T

0

∣∣∣z1x(t, π) −
∫ T

t

k(s − t) z1x(s, π) ds
∣∣∣2 dt +

∫ T

0

∣∣z2x(t, π)
∣∣2 dt)1/2. (31)

In view of Proposition 1, ‖ · ‖F is a norm if and only if the following uniqueness
theorem holds.

Theorem 3.1. If (z1, z2) is the solution of problem 21–22 such that

z1x(t, π) = z2x(t, π) = 0 , ∀t ∈ [0, T ] ,

then

z1(t, x) = z2(t, x) = 0 ∀(t, x) ∈ [0, T ]× [0, π] .

If we are able to establish Theorem 3.1, then we can define the Hilbert space F

as the completion of
(
C∞c (Ω)

)4
for the norm 31. Moreover, the operator Ψ extends

uniquely to a continuous operator, denoted again by Ψ, from F to the dual space
F ′ in such a way that Ψ : F → F ′ is an isomorphism. In conclusion, if we prove

Theorem 3.1 and, for example, F =
(
H1

0 (0, π)× L2(0, π)
)2

with the equivalence of

the respective norms, then, taking (u0i , u
1
i ) ∈ L2(0, π)×H−1(0, π), i = 1, 2, we can

solve the reachability problem 17–20.

4. Representation of the solution as Fourier series.

4.1. Spectral analysis. The aim of this section will be to give a complete spectral
analysis for the coupled system.

We will recast our system of coupled wave equations with a memory term in
an abstract setting. Indeed, we consider a self-adjoint positive linear operator L :
D(L) ⊂ H → H on a Hilbert space H with dense domain D(L). We denote by
{λn}n≥1 a strictly increasing sequence of eigenvalues for the operator L with λn > 0
and λn → ∞ and we assume that the sequence of the corresponding eigenvectors
{wn}n≥1 constitutes a Hilbert basis for H.

We fix two real numbers a 6= 0, b and consider the following coupled system:
u′′1(t) + Lu1(t)− β

∫ t

0

e−η(t−s)Lu1(s)ds+ au2(t) = 0

t ≥ 0,

u′′2(t) + Lu2(t) + bu1(t) = 0

ui(0) = u0i , u′i(0) = u1i , i = 1, 2 .

(32)

If we take the initial data (u0i , u
1
i ), i = 1, 2, belonging to D(

√
L)×H, then we can

expand them according to the eigenvectors wn to obtain:

u0i =

∞∑
n=1

αinwn , αin = 〈u0i , wn〉 , ‖u0i ‖2D(
√
L)

:=

∞∑
n=1

α2
inλn ,

u1i =

∞∑
n=1

ρinwn , ρin = 〈u1i , wn〉 , ‖u1i ‖2H :=

∞∑
n=1

ρ2in .

(33)

Our target is to write the components u1, u2 of the solution of system 32 as sums
of series, that is

ui(t) =

∞∑
n=1

fin(t)wn , fin(t) = 〈ui(t), wn〉 , i = 1, 2 .
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To this end, we put the above expressions for u1 and u2 into 32 and multiply by
wn, so for any n ∈ N (f1n, f2n) is the solution of the system

f ′′1n + λnf1n − βλn
∫ t

0

e−η(t−s)f1n(s)ds+ af2n = 0,

f ′′2n + λnf2n + bf1n = 0 ,

fin(0) = αin , f ′in(0) = ρin , i = 1, 2 .

(34)

Thanks to lemma 2.1 with λ = λn, (f1n, f2n) is the solution of problem 34 if and
only if f1n is the solution of the Cauchy problem

f
(5)
1n + ηf

(4)
1n + 2λnf

′′′
1n + λn(2η − β)f ′′1n + (λ2

n − ab)f ′1n + (λ2
n(η − β)− ηab)f1n = 0,

f1n(0) = α1n,

f ′1n(0) = ρ1n,

f ′′1n(0) = −λnα1n − aα2n,

f ′′′1n(0) = −λnρ1n + βλnα1n − aρ2n,
f
(4)
1n (0) = (λ2

n − ηβλn + ab)α1n + 2aλnα2n + βλnρ1n ,

(35)

and f2n is given by

f2n = −1

a

(
f ′′1n + λnf1n − βλn

∫ t

0

e−η(t−s)f1n(s)ds
)
.

If we introduce the linear operator Υn defined by

Υn(v)(t) := −1

a

(
v′′(t) + λnv(t)− βλn

∫ t

0

e−η(t−s)v(s)ds
)

t ≥ 0 , (36)

then f2n can be written as

f2n(t) = Υn(f1n)(t) t ≥ 0 . (37)

We also note that for any z ∈ C

Υn(ezt) = −1

a

[(
z2 + λn −

βλn
η + z

)
ezt +

βλn
η + z

e−ηt
]
. (38)

4.2. The fifth order ordinary differential equation. We proceed to solve the
Cauchy problem 35. To this end, we have to evaluate the solutions of the 5th–degree
characteristic equation in the variable Z

Z5 + ηZ4 + 2λnZ
3 + λn(2η − β)Z2 + (λ2n − ab)Z + λ2n(η − β)− ηab = 0 . (39)

By means of the singular perturbation theory we get the five solutions of 39: one
is a real number rn and the other four iωn, −iωn, iζn, −iζn are pairwise complex
conjugate numbers. Moreover, rn, ωn and ζn exhibit the following asymptotic
behavior as n tends to ∞:

rn = β − η −
β
(
β − η

)2
λn

+O
( 1

λ2n

)
= β − η +O

( 1

λn

)
, (40)

ωn =
√
λn +

β

2

(3

4
β − η

) 1√
λn

+ i
[β

2
−
(β(β − η)2

2
+
ab

2β

) 1

λn

]
+O

( 1

λ
3/2
n

)
=
√
λn + i

β

2
+O

( 1√
λn

)
, (41)
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ζn =
√
λn +

ηab

2βλ
3/2
n

+ i
( ab

2βλn
+

a2b2

2β3λ2n

)
+O

( 1

λ
5/2
n

)
=
√
λn + i

ab

2βλn
+O

( 1

λ
3/2
n

)
.

(42)
Therefore, we are able to write the solution f1n(t) of 35 in the form

f1n(t) = Rne
rnt + Cne

iωnt + Cne
−iωnt +Dne

iζnt +Dne
−iζnt , (43)

where the coefficients Rn ∈ R and Cn, Dn ∈ C are unknown. Since the function
f1n(t) have to satisfy the initial conditions in 35, to determine Rn, Cn and Dn we
will solve the system

Rn + Cn + Cn +Dn +Dn = f1n(0),

rnRn + iωnCn − iωnCn + iζnDn − iζnDn = f ′1n(0),

r2nRn − ω2
nCn − ω2

nCn − ζ2nDn − ζ2nDn = f ′′1n(0),

r3nRn − iω3
nCn + iω3

nCn − iζ3nDn + iζ3nDn = f ′′′1n(0),

r4nRn + ω4
nCn + ω4

nCn + ζ4nDn + ζ4nDn = f
(4)
1n (0).

(44)

Indeed, we obtain that the coefficients have the following asymptotic behavior as n
tends to ∞:

Rn =
β

λn
(α1n(β − η) + ρ1n) + (α1n + ρ1n + α2n + ρ2n)O

( 1

λ2n

)
, (45)

Cn =
α1n

2
− i

4β

(
β2α1n + 2βρ1n + 2aα2n

) 1

λ
1/2
n

+
1

2β2

(
(ab− β3(β − η))α1n

− β(β2ρ1n + ηaα2n)− βaρ2n
) 1

λn
+ (α1n + ρ1n + α2n + ρ2n)O

( 1

λ
3/2
n

)
(46)

Dn = i
aα2n

2βλ
1/2
n

+
a

2β2

(
βηα2n + βρ2n − bα1n

) 1

λn

+
i

2β3

(
2a2bα2n − ηβ2aρ2n + 2ηβabα1n + βabρ1n

) 1

λ
3/2
n

+ (α1n + ρ1n + α2n + ρ2n)O
( 1

λ2n

)
. (47)

Accordingly, we can write f1n(t) by means of formula 43, where the coefficients Rn,
Cn and Dn are given by formulas 45-47 respectively. Moreover, thanks to 37, we
can also get the expression for f2n(t), that is

f2n(t) = Υn

(
Rne

rnt + Cne
iωnt + Cne

−iωnt +Dne
iζnt +Dne

−iζnt
)
. (48)

We will observe that the function f2n(t) can be written in a more handleable form.
To this end, first we recall the following result (see e.g. [27, Section 6]).

Lemma 4.1. Approximated solutions of the cubic equation

Z3 + ηZ2 + λnZ + λn(η − β) = 0 , (49)

are given by

rn = β − η −
β
(
β − η

)2
λn

+O
( 1

λ2n

)
, (50)
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zn = −β
2

+
β
(
β − η

)2
2

1

λn
+ i
[√

λn +
β

2

(3

4
β − η

) 1√
λn

]
+O

( 1

λ
3/2
n

)
. (51)

Therefore, comparing 40 with 50, we have that the numbers rn are approximated
solutions of 49, and hence the function t → Rne

rnt is a solution of the third order
differential equation

g′′′ + ηg′′ + λng
′ + λn(η − β)g = 0 in R . (52)

Lemma 4.2. The numbers iωn, with ωn defined by 41, are approximated solutions
of the cubic equation

Z3 + ηZ2 + λnZ + λn(η − β) = −ab
β
.

Proof. The comparison of 41 with 51 yields

iωn = zn +
ab

2βλn
.

Since

(iωn)3 + η(iωn)2 + λniωn + λn(η − β)

= z3n + ηz2n + λnzn + λn(η − β) + 3z2n
ab

2βλn
+ 3zn

a2b2

4β2λ2n
+

a3b3

8β3λ3n

+ 2ηzn
ab

2βλn
+ η

a2b2

4β2λ2n
+
ab

2β
,

and in virtue of Lemma 4.1 we have

z3n + ηz2n + λnzn + λn(η − β) = 0,

then we get

(iωn)3 +η(iωn)2 +λniωn+λn(η−β) = −3ab

2β
+
ab

2β
+O

( 1√
λn

)
= −ab

β
+O

( 1√
λn

)
.

that is, our claim holds true.

Thanks to Lemma 4.2, the numbers iωn and their conjugate numbers −iωn are
approximated solutions of the cubic equation

Z3 + ηZ2 + λnZ + λn(η − β) = −ab
β
,

so, it follows that the function t → Cne
iωnt + Cne

−iωnt is a solution of the third
order differential equation

g′′′ + ηg′′ + λng
′ + λn(η − β)g = −ab

β
g in R . (53)

In virtue of 52 and 53, the function

gn(t) = Rne
rnt + Cne

iωnt + Cne
−iωnt

is a solution of the third order differential equation

g′′′ + ηg′′ + λng
′ + λn(η − β)g = −ab

β
(Cne

iωnt + Cne
−iωnt) in R . (54)
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Therefore, we can apply Lemma 2.2 with h(t) = −abβ (Cne
iωnt + Cne

−iωnt): thanks

to 16 and 36, we have

Υn(gn(t)) = −1

a
e−ηt

(
g′′n(0) + λngn(0)

)
+
b

β

∫ t

0

e−η(t−s)(Cne
iωns + Cne

−iωns)ds .

(55)
From 44 and 35 it follows that

g′′n(0) = f ′′1n(0) + ζ2nDn + ζ2nDn = −λnα1n − aα2n + ζ2nDn + ζ2nDn

λngn(0) = λnf1n(0)− λnDn − λnDn = λnα1n − λnDn − λnDn .

Thanks to 42 we have ζ2n − λn = O
(

1√
λn

)
, so we see that

g′′n(0) + λngn(0) = −aα2n + (α1n + ρ1n + α2n + ρ2n)O
( 1

λn

)
.

Moreover ∫ t

0

e−η(t−s)eiωnsds =
1

η + iωn

(
eiωnt − e−ηt

)
.

Set

cn =
b

β(η + iωn)
, (56)

from 55 we obtain

Υn(Rne
rnt+Cne

iωnt+Cne
−iωnt) = cnCne

iωnt+cnCne
−iωnt+

(
α2n−2<(cnCn)

)
e−ηt .
(57)

Moreover, thanks to 38 we have

Υn(eiζnt) =
1

a

(
ζ2n − λn +

βλn
η + iζn

)
eiζnt − βλn

a(η + iζn)
e−ηt .

Therefore, if we define

dn =
1

a

(
ζ2n − λn +

βλn
η + iζn

)
, (58)

and

En = α2n − 2<(cnCn)− 2βλn
a
<
(

Dn

η + iζn

)
, (59)

thanks to 48 and 57, f2n(t) can be written in the following form

f2n(t) = dnDne
iζnt + dnDne

−iζnt + cnCne
iωnt + cnCne

−iωnt + Ene
−ηt . (60)

We also note that

|dn| � |ζn| �
√
λn , |cn| ≤

M

|ωn|
. (61)

The proof of the following lemma is straightforward in virtue of 47 and 61, so we
omit it.

Lemma 4.3. Set

En = α2n − 2<(cnCn)− 2βλn
a
<
(

Dn

η + iζn

)
,

there exists a constant M > 0 such that∣∣∣ ∞∑
n=1

En

∣∣∣2 ≤M ∞∑
n=1

(
|Cn|2 + |dnDn|2

)
.
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Now, we state and prove some properties about the coefficients, that show some
differences with respect to the analogous ones in [27, 28].

Lemma 4.4. The following statements hold true.

(i) For any n ∈ N one has

|Cn|2 + λn|Dn|2 �
1

λn

(
α2
1nλn + ρ21n + α2

2nλn + ρ22n
)
. (62)

(ii) There exists a constant M > 0 such that for any n ∈ N one has

|Rn| ≤
M

λ
1/2
n

(
|Cn|2 + λn|Dn|2

)1/2
. (63)

Proof. (i) From 46 it follows that

|Cn|2 =
1

4
α2
1n +

1

16β2

(
β2α1n + 2βρ1n + 2aα2n

)2 1

λn

+
α1n

2β2

(
(ab− β3(β − η))α1n − β(β2ρ1n + ηaα2n)− βaρ2n

) 1

λn

+ (α2
1n + ρ21n + α2

2n + ρ22n)O
( 1

λ2n

)
. (64)

Moreover, from 47 we deduce that

λ1/2n Dn = i
aα2n

2β
+

a

2β2

(
βηα2n + βρ2n − bα1n

) 1

λ
1/2
n

+
i

2β3

(
2a2bα2n+2ηβabα1n+βabρ1n−ηβ2aρ2n

) 1

λn
+(α1n+ρ1n+α2n+ρ2n)O

( 1

λ
3/2
n

)
,

whence

λn|Dn|2 =
a2α2

2n

4β2
+

a2

4β4

(
βηα2n + βρ2n − bα1n

)2 1

λn

+
aα2n

2β4

(
2a2bα2n + 2ηβabα1n + βabρ1n − ηβ2aρ2n

) 1

λn

+ (α2
1n + ρ21n + α2

2n + ρ22n)O
( 1

λ2n

)
. (65)

Now, putting together 64 and 65, we have

|Cn|2 + λn|Dn|2 =
1

4

(
α2
1n +

ρ21n
λn

+
a2

β2

(
α2
2n +

ρ22n
λn

))
+

1

16β2

(
β2α1n + 2aα2n

)2 1

λn
+
ρ1n
4β

(
β2α1n + 2aα2n

) 1

λn

+
α1n

2β2

(
(ab− β3(β − η))α1n − β(β2ρ1n + ηaα2n)− βaρ2n

) 1

λn

+
a2

4β4

(
βηα2n − bα1n

)2 1

λn
+
a2ρ2n
2β3

(
βηα2n − bα1n

) 1

λn

+
aα2n

2β4

(
2a2bα2n+2ηβabα1n+βabρ1n−ηβ2aρ2n

) 1

λn
+
(
α2
1n+ρ21n+α2

2n+ρ22n
)
O
( 1

λ2n

)
.

We can neglect the indices n ∈ N such that α1n = ρ1n = α2n = ρ2n = 0, because
the present evaluation will be used in summing series. So, we can assume that for
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any n ∈ N (α1n, ρ1n, α2n, ρ2n) 6= (0, 0, 0, 0), and hence by the previous formula we
obtain

|Cn|2 + λn|Dn|2

α2
1n +

ρ21n
λn

+ a2

β2

(
α2
2n +

ρ22n
λn

)
=

1

4
+

(
α2
1n + (α1n + α2n)(ρ1n + α2n + ρ2n)

)
O
(

1
λn

)
α2
1n +

ρ21n
λn

+ a2

β2

(
α2
2n +

ρ22n
λn

) → 1

4
, as n→∞ ,

taking into account, for example, that

α1nρ1n
λn

=
α1n

λ
1/3
n

ρ1n

λ
2/3
n

≤ α2
1n

λ
2/3
n

+
ρ21n

λ
4/3
n

.

In conclusion, 62 holds true.
(ii) From 45 we have

|Rn|2 =
β2

λ2n

(
α1n(β − η) + ρ1n

)2
+
(
α1n + ρ1n

)(
α1n + ρ1n + α2n + ρ2n

)
O
( 1

λ3n

)
.

Moreover, thanks to 62, there exists a constant c > 0 such that

|Cn|2 + λn|Dn|2 ≥
c

λn

(
α2
1nλn + ρ21n + α2

2nλn + ρ22n
)
.

Therefore, from the above formulas we get

|Rn|2

|Cn|2 + λn|Dn|2

≤ 1

cλn

β2(α1n(β − η) + ρ1n)2 + (α1n + ρ1n)(α1n + ρ1n + α2n + ρ2n)O
(

1
λn

)
α2
1nλn + ρ21n + α2

2nλn + ρ22n
,

that is, 63 follows.

In conclusion, taking into account of any result of the present section we have
proved the following representation formula for the solution of the coupled system.

Theorem 4.5. The solution of problem 32 can be written as series in the following
way

u1(t) =

∞∑
n=1

(
Cne

iωnt + Cne
−iωnt +Rne

rnt +Dne
iζnt +Dne

−iζnt
)
wn ,

u2(t) =

∞∑
n=1

(
dnDne

iζnt + dnDne
−iζnt + cnCne

iωnt + cnCne
−iωnt + Ene

−ηt
)
wn ,

(66)

where

rn = β − η +O
( 1

λn

)
,

ωn =
√
λn + i

β

2
+O

( 1√
λn

)
,

ζn =
√
λn + i

ab

2βλn
+O

( 1

λ
3/2
n

)
,
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|Rn| ≤
M

λ
1/2
n

(
|Cn|2 + |dnDn|2

)1/2
,
∣∣∣ ∞∑
n=1

En

∣∣∣2 ≤M ∞∑
n=1

(
|Cn|2 + |dnDn|2

)
,

|dn| �
√
λn , |cn| ≤

M√
λn

, (M > 0)

∞∑
n=1

λn

(
|Cn|2 + |dnDn|2

)
� ‖u01‖2D(

√
L)

+ ‖u11‖2H + ‖u02‖2D(
√
L)

+ ‖u12‖2H .

5. Ingham type estimates. Our goal is to prove an inverse inequality and a
direct inequality for the pair (u1, u2) defined by

u1(t) =

∞∑
n=1

(
Cne

iωnt + Cne
−iωnt +Rne

rnt +Dne
iζnt +Dne

−iζnt
)
,

u2(t) =

∞∑
n=1

(
dnDne

iζnt + dnDne
−iζnt + cnCne

iωnt + cnCne
−iωnt

)
+ Ee−ηt ,

(67)

with ωn , Cn , ζn , Dn, dn, cn ∈ C and rn , Rn , E ∈ R. We will assume that there exist
γ > 0, α, χ ∈ R, n′ ∈ N, µ > 0, ν > 1/2, such that

lim inf
n→∞

(<ωn+1 −<ωn) = lim inf
n→∞

(<ζn+1 −<ζn) = γ , (68)

lim
n→∞

=ωn = α > 0 ,

lim
n→∞

rn = χ < 0 ,

lim
n→∞

=ζn = 0 ,

(69)

|dn| � |ζn| , |cn| ≤
M

|ωn|
, (70)

|Rn| ≤
µ

nν

(
|Cn|2+|dnDn|2

)1/2
∀ n ≥ n′ , |Rn| ≤ µ

(
|Cn|2+|dnDn|2

)1/2
∀ n ≤ n′.

(71)

5.1. Outline of the proof. Before to proceed with our computations, we will
outline briefly our reasoning. Firstly, to shorten our formulas we introduce the
following notations

UC1 (t) =

∞∑
n=1

(
Cne

iωnt + Cne
−iωnt

)
, UD1 (t) =

∞∑
n=1

(
Dne

iζnt +Dne
−iζnt

)
,

UR1 (t) =

∞∑
n=1

Rne
rnt,

(72)

UD2 (t) =

∞∑
n=1

(
dnDne

iζnt + dnDne
−iζnt

)
, UC2 (t) =

∞∑
n=1

(
cnCne

iωnt + cnCne
−iωnt

)
,

(73)
so we can write the functions u1, u2 as

u1 = UC1 + UD1 + UR1 , u2 − Ee−ηt = UD2 + UC2 .
If k(t) is a suitable positive function, see 76 below, our first goal will be to estimate∫ ∞

0

k(t)|UC1 (t) + UD1 (t) + UR1 (t)|2 dt+

∫ ∞
0

k(t)|UD2 (t) + UC2 (t)|2 dt ,

unless a finite number of terms in the series.



104 PAOLA LORETI AND DANIELA SFORZA

By reason of 2ab ≥ − 1
2a

2 − 2b2 we have |a + b|2 ≥ 1
2a

2 − b2, so we can observe
that

|UC1 (t) + UD1 (t) + UR1 (t)|2 ≥ 1

2
|UC1 (t)|2 − |UD1 (t) + UR1 (t)|2

≥ 1

2
|UC1 (t)|2 − 2|UD1 (t)|2 − 2|UR1 (t)|2 ,

|UD2 (t) + UC2 (t)|2 ≥ 1

2
|UD2 (t)|2 − |UC2 (t)|2 .

Bearing in mind 71, since k(t) is positive from the above inequalities we can deduce∫ ∞
0

k(t)|UC1 (t) + UD1 (t) + UR1 (t)|2 dt+

∫ ∞
0

k(t)|UD2 (t) + UC2 (t)|2 dt

≥
∫ ∞
0

k(t)
(1

2
|UC1 (t)|2 − 2|UD1 (t)|2

)
dt+

∫ ∞
0

k(t)
(1

2
|UD2 (t)|2 − |UC2 (t)|2

)
dt

− 2

∫ ∞
0

k(t)|UR1 (t)|2 dt .

In virtue of 70 we can control the term
∫∞
0
k(t)UD1 (t)dt (resp.

∫∞
0
k(t)UC2 (t)dt)

by means of
∫∞
0
k(t)UD2 (t)dt (resp.

∫∞
0
k(t)UC1 (t)t.). Therefore, it is convenient to

write the previous formula in the following way∫ ∞
0

k(t)|UC1 (t) + UD1 (t) + UR1 (t)|2 dt+

∫ ∞
0

k(t)|UD2 (t) + UC2 (t)|2 dt

≥ 1

2

∫ ∞
0

k(t)
(
|UC1 (t)|2 − 2|UC2 (t)|2

)
dt+

1

2

∫ ∞
0

k(t)
(
|UD2 (t)|2 − 4|UD1 (t)|2

)
dt

− 2

∫ ∞
0

k(t)|UR1 (t)|2 dt . (74)

We will give a lower bound estimate for
∫∞
0
k(t)|UC1 (t)|2dt and

∫∞
0
k(t)|UD2 (t)|2dt,

and, on the contrary, an upper bound estimate for
∫∞
0
k(t)|UC2 (t)|2dt,∫∞

0
k(t)|UD1 (t)|2dt and

∫∞
0
k(t)|UR1 (t)|2dt. So, thanks to 74, we will be able to

prove an inverse estimate.
Moreover, if we will assume an additional condition on the coefficients of the

series, we will be able to prove an inverse inequality with a better estimate for
the control time. Indeed, the additional assumption will allow us to control all
terms

∫∞
0
k(t)|UD1 (t)|2dt,

∫∞
0
k(t)|UC2 (t)|2dt and

∫∞
0
k(t)|UR1 (t)|2dt by means of∫∞

0
k(t)|UD2 (t)|2dt. In this way the estimate of the term

∫∞
0
k(t)|UC1 (t)|2 dt can

be done with the help of an idea used previously in [27]. In fact in this case we will
use the following inequality∫ ∞

0

k(t)|UC1 (t) + UD1 (t) + UR1 (t)|2 dt+

∫ ∞
0

k(t)|UD2 (t) + UC2 (t)|2 dt

≥ 1

2

∫ ∞
0

k(t)|UC1 (t)|2 dt

+
1

2

∫ ∞
0

k(t)
(
|UD2 (t)|2 − 4|UD1 (t)|2 − 2|UC2 (t)|2 − 4|UR1 (t)|2

)
dt . (75)
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5.2. Technical results. In order to avoid repetitions and simplify the proofs of
the main theorems, we prefer to single out some lemmas that we will employ in
several situations. For this reason, in this subsection we collect some results to be
used later.

Let T > 0. We introduce an auxiliary function defined by

k(t) :=


sin

πt

T
if t ∈ [0, T ] ,

0 otherwise .

(76)

In the following lemma we list some useful properties of k.

Lemma 5.1. Set

K(w) :=
Tπ

π2 − T 2w2
, w ∈ C , (77)

the following properties hold.

(i) For any w ∈ C one has

K(w) = K(w) ,
∣∣K(w)

∣∣ =
∣∣K(w)

∣∣ , (78)∫ ∞
0

k(t)eiwtdt = (1 + eiwT )K(w) . (79)

(ii) For any zi, wi ∈ C, i = 1, 2, one has∫ ∞
0

k(t)<(z1e
iw1t)<(z2e

iw2t)dt

=
1

2
<
(
z1z2(1 + ei(w1+w2)T )K(w1 + w2) + z1z2(1 + ei(w1−w2)T )K(w1 − w2)

)
.

(80)

(iii) Let γ > 0 and j ∈ N. Then for T > 2π/γ and w ∈ C, |w| ≥ γj, one has∣∣K(w)
∣∣ ≤ 4π

Tγ2(4j2 − 1)
. (81)

Proof. (i) The proof is straightforward.
(ii) We note that for any z, w ∈ C∫ ∞

0

k(t)<(zeiwt)dt = <
(
z(1 + eiwT )K(w)

)
.

Therefore, taking into account

<(z1e
iw1t)<(z2e

iw2t) =
1

2
<
(
z1z2e

i(w1+w2)t + z1z2e
i(w1−w2)t

)
,

it follows 80.
(iii) We observe that∣∣K(w)

∣∣ =
π

T
∣∣∣w2 −

(
π
T

)2∣∣∣ =
4π

Tγ2
∣∣∣4(wγ )2 − ( 2π

Tγ

)2∣∣∣ .
Since |w| ≥ γj and 2π

Tγ < 1, we have∣∣∣4(w
γ

)2
−
( 2π

Tγ

)2∣∣∣ ≥ 4
|w|2

γ2
−
( 2π

Tγ

)2
≥ 4j2 − 1 ,

and hence 81 holds true.
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Lemma 5.2. If γ > 0 is such that

lim inf
n→∞

(
<σn+1 −<σn

)
= γ ,

then for any ε ∈ (0, 1) there exists n0 ∈ N such that

|<σn −<σm| ≥ γ
√

1− ε|n−m| , ∀n ,m ≥ n0 , (82)

<σn ≥ γ
√

1− ε n , ∀n ≥ n0 . (83)

Proof. For ε ∈ (0, 1) there exists n0 ∈ N such that

<σn+1 −<σn ≥ γ
√

1− ε ∀n ≥ n0 ,
whence 82 follows. Moreover, in view of

lim inf
n→∞

<σn+1

n+ 1
≥ lim inf

n→∞

(
<σn+1 −<σn

)
, (84)

see [4, p. 54], 83 holds true.

Lemma 5.3. (i): For any n0 ∈ N and n ≥ n0 we have
∞∑

m=n0
m6=n

1

4(m− n)2 − 1
≤ 1 . (85)

(ii): Fixed a, b ≥ 0 and ε > 0, there exists n0 ∈ N large enough to satisfy

a

4n2 − 1
+ b

∞∑
m=n0

1

4m2 − 1
≤ ε ∀n ≥ n0 . (86)

(iii): Fixed a ≥ 0, ν > 1/2 and ε > 0, there exists n0 ∈ N large enough to satisfy

a

∞∑
n=n0

1

n2ν
≤ ε . (87)

Proof. (i) We have

∞∑
m=n0
m6=n

1

4(m− n)2 − 1
=

n−1∑
m=n0

1

4(n−m)2 − 1
+

∞∑
m=n+1

1

4(m− n)2 − 1

≤ 2

∞∑
j=1

1

4j2 − 1
=

∞∑
j=1

( 1

2j − 1
− 1

2j + 1

)
= 1 .

(ii) We observe that for n ≥ n0 we have

4n2 − 1 ≥ 4n3/2n
1/2
0 − 1 ≥ n1/20 (4n3/2 − 1) ,

and hence

a

4n2 − 1
+ b

∞∑
m=n0

1

4m2 − 1
≤ 1

n
1/2
0

(
a+ b

∞∑
m=1

1

4m3/2 − 1

)
.

In conclusion, if one takes n0 ∈ N such that

n0 ≥
1

ε2

(
a+ b

∞∑
m=1

1

4m3/2 − 1

)2

,

then 86 holds true.
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(iii) For 0 < δ < 2ν − 1 we have
∞∑

n=n0

1

n2ν
≤ 1

nδ0

∞∑
n=1

1

n2ν−δ
,

whence, for n0 ≥
(
a
ε

∑∞
n=1

1
n2ν−δ

)1/δ

we have 87.

Lemma 5.4. Suppose that

lim inf
n→∞

(
<σn+1 −<σn

)
= γ > 0 .

Then for any ε ∈ (0, 1) and T > 2π
γ
√
1−ε there exists n0 = n0(ε) ∈ N such that for

any n ≥ n0 we have
∞∑

m=n0
m 6=n

|K(σn−σm)|+
∞∑

m=n0

|K(σn+σm)| ≤ 4π

Tγ2(1− ε)

(
1+

∞∑
m=n0

1

4m2 − 1

)
, (88)

Proof. As regards the first inequality, we observe that, thanks to 82 and 81, for
ε ∈ (0, 1) there exists n0 ∈ N such that

∞∑
m=n0
m6=n

|K(σn − σm)| ≤ 4π

Tγ2(1− ε)

∞∑
m=n0
m6=n

1

4(m− n)2 − 1
,

whence, in view of 85 we get our statement.
Moreover, concerning the second estimate, thanks to 83, we have

|σn + σm| ≥ <σm ≥ γ
√

1− ε m , ∀m ≥ n0 .
Therefore, using again 81 we obtain the required inequality.

The following result is an useful tool in the proof of the Ingham type inverse
estimates. For the sake of completeness we prefer to give a detailed proof, although
it could be deduced from previous papers, see [14].

Proposition 2. Suppose that

lim inf
n→∞

(
<σn+1 −<σn

)
= γ > 0

and {Fn} is a complex number sequence such that
∑∞
n=1 |Fn|2 < +∞.

Then for any ε ∈ (0, 1) and T > 2π
γ
√
1−ε there exists n0 = n0(ε) ∈ N independent

of T and Fn such that we have∫ ∞
0

k(t)
∣∣∣ ∞∑
n=n0

Fne
iσnt + Fne

−iσnt
∣∣∣2 dt

≥ 2πT

∞∑
n=n0

(
1

π2 + 4T 2(=σn)2
− 4

T 2γ2
(1 + ε)

)
(1 + e−2=σnT )|Fn|2 , (89)

∫ ∞
0

k(t)
∣∣∣ ∞∑
n=n0

Fne
iσnt + Fne

−iσnt
∣∣∣2 dt

≤ 2πT

∞∑
n=n0

(
1

π2 + 4T 2(=σn)2
+

4

T 2γ2
(1 + ε)

)
(1 + e−2=σnT )|Fn|2 . (90)
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Proof. Let us first observe that∣∣∣ ∞∑
n=n0

Fne
iσnt + Fne

−iσnt
∣∣∣2 = 4

∞∑
n,m=n0

<
(
Fne

iσnt
)
<
(
Fme

iσmt
)
,

where n0 ∈ N will be chosen later. From 80 we have∫ ∞
0

k(t)
∣∣∣ ∞∑
n=n0

Fne
iσnt + Fne

−iσnt
∣∣∣2 dt

= 2

∞∑
n,m=n0

<
[
FnFm(1+ei(σn−σm)T )K(σn−σm)+FnFm(1+ei(σn+σm)T )K(σn+σm)

]
.

Since 77 gives K(σn − σn) =
πT

π2 + 4T 2(=σn)2
, it follows that

∫ ∞
0

k(t)
∣∣∣ ∞∑
n=n0

Fne
iσnt + Fne

−iσnt
∣∣∣2 dt− 2πT

∞∑
n=n0

1 + e−2=σnT

π2 + 4T 2(=σn)2
|Fn|2

= 2

∞∑
n,m=n0
n 6=m

<
[
FnFm(1 + ei(σn−σm)T )K(σn − σm)

]

+ 2

∞∑
n,m=n0

<
[
FnFm(1 + ei(σn+σm)T )K(σn + σm)

]
.

Thus∣∣∣∣∣
∫ ∞
0

k(t)
∣∣∣ ∞∑
n=n0

Fne
iσnt + Fne

−iσnt
∣∣∣2 dt− 2πT

∞∑
n=n0

1 + e−2=σnT

π2 + 4T 2(=σn)2
|Fn|2

∣∣∣∣∣
≤ 2

∞∑
n,m=n0
n 6=m

|Fn||Fm|(1 + e−=(σn+σm)T )|K(σn − σm)|

+ 2

∞∑
n,m=n0

|Fn||Fm|(1 + e−=(σn+σm)T )|K(σn + σm)| . (91)

By 78 we have

|K(σn − σm)| = |K(σm − σn)| ,

hence

∞∑
n,m=n0
n 6=m

|Fn||Fm||K(σn − σm)| ≤ 1

2

∞∑
n,m=n0
n 6=m

(
|Fn|2 + |Fm|2

)
|K(σn − σm)|

=
1

2

∞∑
n=n0

|Fn|2
∞∑

m=n0
m 6=n

|K(σn − σm)|+ 1

2

∞∑
m=n0

|Fm|2
∞∑

n=n0
n 6=m

|K(σm − σn)|

=

∞∑
n=n0

|Fn|2
∞∑

m=n0
m6=n

|K(σn − σm)| .
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In the same manner we can see that
∞∑

n,m=n0
n 6=m

|Fn||Fm|e−=(σn+σm)T |K(σn−σm)| ≤
∞∑

n=n0

e−2=σnT |Fn|2
∞∑

m=n0
m6=n

|K(σn−σm)| ,

∞∑
n,m=n0

|Fn||Fm|(1 + e−=(σn+σm)T )|K(σn + σm)|

≤
∞∑

n=n0

(1 + e−2=σnT )|Fn|2
∞∑

m=n0

|K(σn + σm)| .

Substituting these inequalities into 91 yields∣∣∣∣∣
∫ ∞
0

k(t)
∣∣∣ ∞∑
n=n0

Fne
iσnt + Fne

−iσnt
∣∣∣2 dt− 2πT

∞∑
n=n0

1 + e−2=σnT

π2 + 4T 2(=σn)2
|Fn|2

∣∣∣∣∣
≤ 2

∞∑
n=n0

(1 + e−2=σnT )|Fn|2
( ∞∑
m=n0
m 6=n

|K(σn − σm)|+
∞∑

m=n0

|K(σn + σm)|

)
.

Fix now ε ∈ (0, 1) and T > 2π
γ
√
1−ε . As for ε′ ∈ (0, ε) one has T > 2π

γ
√
1−ε′ too, we

can employ Lemma 5.4 with ε replaced by ε′. Thus taking n0 as in Lemma 5.4 and
applying 88 we obtain∣∣∣∣∣
∫ ∞
0

k(t)
∣∣∣ ∞∑
n=n0

Fne
iσnt + Fne

−iσnt
∣∣∣2 dt− 2πT

∞∑
n=n0

1 + e−2=σnT

π2 + 4T 2(=σn)2
|Fn|2

∣∣∣∣∣
≤ 8π

Tγ2(1− ε′)

∞∑
n=n0

(1 + e−2=σnT )|Fn|2
(

1 +

∞∑
m=n0

1

4m2 − 1

)
.

By Lemma 5.3-(ii) with a = 0 and b = 1 one can pick n0 ∈ N large enough to satisfy

∞∑
m=n0

1

4m2 − 1
≤ ε′ .

Therefore∣∣∣∣∣
∫ ∞
0

k(t)
∣∣∣ ∞∑
n=n0

Fne
iσnt + Fne

−iσnt
∣∣∣2 dt− 2πT

∞∑
n=n0

1 + e−2=σnT

π2 + 4T 2(=σn)2
|Fn|2

∣∣∣∣∣
≤ 8π

Tγ2
1 + ε′

1− ε′
∞∑

n=n0

(1 + e−2=σnT )|Fn|2 .

Taking ε′ ∈ (0, ε) such that 1+ε′

1−ε′ < 1 + ε, that is ε′ < ε
2+ε , we obtain∣∣∣∣∣

∫ ∞
0

k(t)
∣∣∣ ∞∑
n=n0

Fne
iσnt + Fne

−iσnt
∣∣∣2 dt− 2πT

∞∑
n=n0

1 + e−2=σnT

π2 + 4T 2(=σn)2
|Fn|2

∣∣∣∣∣
≤ 8π

Tγ2
(1 + ε)

∞∑
n=n0

(1 + e−2=σnT )|Fn|2 ,

which gives 89 and 90.
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5.3. Inverse inequality. Following the outline shown in Section 5.1 we have to
estimate all three integrals on the right-hand side of 74. For this reason, for any
term to bound we will establish a corresponding lemma.

Lemma 5.5. For any ε ∈ (0, 1) and T > 2π
γ
√
1−ε there exists n0 = n0(ε) ∈ N

independent of T and Cn such that we have∫ ∞
0

k(t)
(∣∣∣ ∞∑

n=n0

Cne
iωnt + Cne

−iωnt
∣∣∣2 − 2

∣∣∣ ∞∑
n=n0

cnCne
iωnt + cnCne

−iωnt
∣∣∣2) dt

≥ 2πT

∞∑
n=n0

(
1− ε

π2 + 4T 2(=ωn)2
− 4

T 2γ2
(1 + ε)

)
(1 + e−2=ωnT )|Cn|2 . (92)

Proof. Fix ε ∈ (0, 1) and T > 2π
γ
√
1−ε . Let us apply Proposition 2 with σn = ωn.

Indeed, for ε′ ∈ (0, ε) to be chosen later there exists n0 independent of T and Cn
such that from 89 with Fn = Cn and 90 with Fn = cnCn respectively we have∫ ∞

0

k(t)
∣∣∣ ∞∑
n=n0

Cne
iωnt + Cne

−iωnt
∣∣∣2 dt

≥ 2πT

∞∑
n=n0

(
1

π2 + 4T 2(=ωn)2
− 4

T 2γ2
(1 + ε′)

)
(1 + e−2=ωnT )|Cn|2 , (93)

∫ ∞
0

k(t)
∣∣∣ ∞∑
n=n0

cnCne
iωnt + cnCne

−iωnt
∣∣∣2 dt

≤ 2πT

∞∑
n=n0

(
1

π2 + 4T 2(=ωn)2
+

4

T 2γ2
(1 + ε′)

)
(1 + e−2=ωnT )|cnCn|2 . (94)

Combining these inequalities gives∫ ∞
0

k(t)
(∣∣∣ ∞∑

n=n0

Cne
iωnt + Cne

−iωnt
∣∣∣2 − 2

∣∣∣ ∞∑
n=n0

cnCne
iωnt + cnCne

−iωnt
∣∣∣2) dt

≥ 2πT
∞∑

n=n0

(
1− 2|cn|2

π2 + 4T 2(=ωn)2
− 4

T 2γ2
(1 + ε′)

(
1 + 2|cn|2

))
(1 + e−2=ωnT )|Cn|2 .

We will choose ε′ in a suitable way to obtain our statement. Thanks to 70 for n0
large enough we have 2|cn|2 ≤ ε′ for n ≥ n0. Hence

(1 + ε′)
(
1 + 2|cn|2

)
≤ (1 + ε′)2 ≤ 1 + 3ε′ ∀n ≥ n0 .

Taking ε′ < ε/3 yields

(1 + ε′)
(
1 + 2|cn|2

)
≤ 1 + ε ∀n ≥ n0 .

Moreover, since 2|cn|2 ≤ ε we get 92 and the proof is complete.

To estimate the second integral on the right-hand side of 74 we state the following
result, that may be proved in much the same way as the previous lemma by means
of Proposition 2 with σn = ζn and 70. For this reason we omit the proof.
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Lemma 5.6. For any ε ∈ (0, 1) and T > 2π
γ
√
1−ε there exists n0 = n0(ε) ∈ N

independent of T and Dn such that we have∫ ∞
0

k(t)
(∣∣∣ ∞∑

n=n0

dnDne
iζnt + dnDne

−iζnt
∣∣∣2 − 4

∣∣∣ ∞∑
n=n0

Dne
iζnt +Dne

−iζnt
∣∣∣2) dt

≥ 2πT

∞∑
n=n0

(
1− ε

π2 + 4T 2(=ζn)2
− 4

T 2γ2
(1 + ε)

)
(1 + e−2=ζnT )|dnDn|2 . (95)

Finally, we will give an estimate for the last integral on the right-hand side of 74.

Lemma 5.7. For any ε ∈ (0, 1) and T > 0 there exists n0 = n0(ε) ∈ N independent
of T and Rn such that we have∫ ∞

0

k(t)
∣∣∣ ∞∑
n=n0

Rne
rnt
∣∣∣2 dt ≤ ε πT ∞∑

n=n0

|Cn|2 + |dnDn|2

π2 + T 2r2n
. (96)

Proof. Our proof starts with the observation that 79 leads to∫ ∞
0

k(t)
∣∣∣ ∞∑
n=n0

Rne
rnt
∣∣∣2 dt =

∞∑
n,m=n0

RnRm

∫ ∞
0

k(t)e(rn+rm)t dt

=

∞∑
n,m=n0

RnRm(1 + e(rn+rm)T )K(irn + irm) ,

where n0 ∈ N has to be chosen later. By the definition 77 of K we have

K(irn + irm) =
Tπ

π2 + T 2(rn + rm)2
.

Let us apply rn ≤ 0 for n ≥ n′ to obtain

1 + e(rn+rm)T ≤ 2 .

Consequently, taking n0 ≥ n′ we get∫ ∞
0

k(t)
∣∣∣ ∞∑
n=n0

Rne
rnt
∣∣∣2 dt ≤ 2πT

∞∑
n,m=n0

|Rn||Rm|
π2 + T 2(rn + rm)2

.

From 71 we see that∫ ∞
0

k(t)
∣∣∣ ∞∑
n=n0

Rne
rnt
∣∣∣2 dt

≤ 2πTµ2
∞∑

n,m=n0

(
|Cn|2 + |dnDn|2

)1/2
mν

(
|Cm|2 + |dmDm|2

)1/2
nν

1

π2 + T 2(rn + rm)2
.

Using again 69 yields

∞∑
n,m=n0

(
|Cn|2 + |dnDn|2

)1/2
mν

(
|Cm|2 + |dmDm|2

)1/2
nν

1

π2 + T 2(rn + rm)2
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≤ 1

2

∞∑
m=n0

1

m2ν

∞∑
n=n0

|Cn|2 + |dnDn|2

π2 + T 2r2n
+

1

2

∞∑
n=n0

1

n2ν

∞∑
m=n0

|Cm|2 + |dmDm|2

π2 + T 2r2m

=

∞∑
n=n0

1

n2ν

∞∑
n=n0

|Cn|2 + |dnDn|2

π2 + T 2r2n
.

Combining these inequalities we deduce that∫ ∞
0

k(t)
∣∣∣ ∞∑
n=n0

Rne
rnt
∣∣∣2 dt ≤ 2πTµ2

∞∑
n=n0

1

n2ν

∞∑
n=n0

|Cn|2 + |dnDn|2

π2 + T 2r2n
.

Applying Lemma 5.3-(iii) we conclude that 96 is proved.

We will establish the main result to obtain the inverse inequality. To simplify
our notations, in the following we will use the symbols

un0
1 (t) :=

∞∑
n=n0

(
Cne

iωnt + Cne
−iωnt +Rne

rnt +Dne
iζnt +Dne

−iζnt
)
,

un0
2 (t) :=

∞∑
n=n0

(
dnDne

iζnt + dnDne
−iζnt + cnCne

iωnt + cnCne
−iωnt

)
.

(97)

Theorem 5.8. Assume γ > 4α (see 68 and 69). Then, for any ε ∈
(
0, γ

2−16α2

γ2+16α2

)
and T > 2π√

γ2(1−ε)−16α2(1+ε)
there exist n0 = n0(ε) ∈ N, independent of T and all

coefficients of the series, and a constant c(T, ε) > 0 such that∫ ∞
0

k(t)
∣∣∣ ∞∑
n=n0

Cne
iωnt + Cne

−iωnt +Rne
rnt +Dne

iζnt +Dne
−iζnt

∣∣∣2 dt
+

∫ ∞
0

k(t)
∣∣∣ ∞∑
n=n0

dnDne
iζnt + dnDne

−iζnt + cnCne
iωnt + cnCne

−iωnt
∣∣∣2 dt

≥ c(T, ε)
∞∑

n=n0

(1 + e−2=ωnT )
(
|Cn|2 + |dnDn|2

)
. (98)

Proof. Fix ε ∈ (0, 1), in view of 97 our goal is to evaluate the following sum∫ ∞
0

k(t)
(
|un0

1 (t)|2 + |un0
2 (t)|2

)
dt , (99)

where the index n0 ∈ N depending on ε will be chosen suitably. To this end, we
bear in mind the comments given in Section 5.1. Indeed, we observe that∫ ∞

0

k(t)
∣∣∣ ∞∑
n=n0

Cne
iωnt + Cne

−iωnt +Rne
rnt +Dne

iζnt +Dne
−iζnt

∣∣∣2 dt
≥ 1

2

∫ ∞
0

k(t)
∣∣∣ ∞∑
n=n0

Cne
iωnt + Cne

−iωnt
∣∣∣2 dt

− 2

∫ ∞
0

k(t)
∣∣∣ ∞∑
n=n0

Dne
iζnt +Dne

−iζnt
∣∣∣2 dt− 2

∫ ∞
0

k(t)
∣∣∣ ∞∑
n=n0

Rne
rnt
∣∣∣2 dt
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and∫ ∞
0

k(t)
∣∣∣ ∞∑
n=n0

dnDne
iζnt + dnDne

−iζnt + cnCne
iωnt + cnCne

−iωnt
∣∣∣2 dt

≥ 1

2

∫ ∞
0

k(t)
∣∣∣ ∞∑
n=n0

dnDne
iζnt + dnDne

−iζnt
∣∣∣2 dt

−
∫ ∞
0

k(t)
∣∣∣ ∞∑
n=n0

cnCne
iωnt + cnCne

−iωnt
∣∣∣2 dt .

Combining these inequalities we obtain∫ ∞
0

k(t)
(
|un0

1 (t)|2 + |un0
2 (t)|2

)
dt

≥ 1

2

∫ ∞
0

k(t)
(∣∣∣ ∞∑

n=n0

Cne
iωnt + Cne

−iωnt
∣∣∣2 − 2

∣∣∣ ∞∑
n=n0

cnCne
iωnt + cnCne

−iωnt
∣∣∣2) dt

+
1

2

∫ ∞
0

k(t)
(∣∣∣ ∞∑

n=n0

dnDne
iζnt + dnDne

−iζnt
∣∣∣2 − 4

∣∣∣ ∞∑
n=n0

Dne
iζnt +Dne

−iζnt
∣∣∣2) dt

− 2

∫ ∞
0

k(t)
∣∣∣ ∞∑
n=n0

Rne
rnt
∣∣∣2 dt .

We now take T > 2π
γ
√
1−ε to estimate the first two integrals on the right-hand side.

We introduce ε′ ∈ (0, ε) to choose suitably later. We also have T > 2π
γ
√
1−ε′ , so we

can use 92 and 95 respectively to obtain∫ ∞
0

k(t)
(∣∣∣ ∞∑

n=n0

Cne
iωnt + Cne

−iωnt
∣∣∣2 − 2

∣∣∣ ∞∑
n=n0

cnCne
iωnt + cnCne

−iωnt
∣∣∣2) dt

≥ 2πT

∞∑
n=n0

(
1− ε′

π2 + 4T 2(=ωn)2
− 4

T 2γ2
(1 + ε′)

)
(1 + e−2=ωnT )|Cn|2 ,

∫ ∞
0

k(t)
(∣∣∣ ∞∑

n=n0

dnDne
iζnt + dnDne

−iζnt
∣∣∣2 − 4

∣∣∣ ∞∑
n=n0

Dne
iζnt +Dne

−iζnt
∣∣∣2) dt

≥ 2πT

∞∑
n=n0

(
1− ε′

π2 + 4T 2(=ζn)2
− 4

T 2γ2
(1 + ε′)

)
(1 + e−2=ζnT )|dnDn|2 .

By 69 we get |=ζn| ≤ =ωn for n ≥ n0 with n0 sufficiently large. Hence

e−2=ζnT

π2 + 4T 2(=ζn)2
≥ e−2=ωnT

π2 + 4T 2(=ωn)2
∀n ≥ n0 .

Therefore∫ ∞
0

k(t)
(
|un0

1 (t)|2 + |un0
2 (t)|2

)
dt

≥ πT
∞∑

n=n0

(
1− ε′

π2 + 4T 2(=ωn)2
− 4

T 2γ2
(1 + ε′)

)
(1 + e−2=ωnT )

(
|Cn|2 + |dnDn|2

)
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−2

∫ ∞
0

k(t)
∣∣∣ ∞∑
n=n0

Rne
rnt
∣∣∣2 dt .

Applying 96 we obtain∫ ∞
0

k(t)
(
|un0

1 (t)|2 + |un0
2 (t)|2

)
dt

≥ πT
∞∑

n=n0

(
1− ε′

π2 + 4T 2(=ωn)2
− ε′

π2 + T 2r2n
− 4

T 2γ2
(1 + ε′)

)
×

× (1 + e−2=ωnT )
(
|Cn|2 + |dnDn|2

)
. (100)

Now, we will choose ε′ ∈ (0, ε) such that for n ≥ n0

1− ε′

π2 + 4T 2(=ωn)2
− ε′

π2 + T 2r2n
≥ 1− ε
π2 + 4T 2(=ωn)2

, (101)

that is

ε− ε′

π2 + 4T 2(=ωn)2
− ε′

π2 + T 2r2n
≥ 0 ,

π2(ε− 2ε′) + T 2
[
(ε− ε′)r2n − 4ε′(=ωn)2

]
≥ 0 .

To this end, we need to have that

ε− 2ε′ ≥ 0 , (ε− ε′)r2n − 4ε′(=ωn)2 ≥ 0 . (102)

By 69 for n0 sufficiently large we have

r2n ≥
χ2

2
, (=ωn)2 ≤ 3

2
α2 .

Hence

(ε− ε′)r2n − 4ε′(=ωn)2 ≥ (ε− ε′)χ
2

2
− 6ε′α2 .

Therefore taking

ε′ ≤ min
{1

2
,

χ2

χ2 + 12α2

}
ε ,

we deduce 102, and consequently 101. So, from 100 we have∫ ∞
0

k(t)
(
|un0

1 (t)|2 + |un0
2 (t)|2

)
dt

≥ πT
∞∑

n=n0

(
1− ε

π2 + 4T 2(=ωn)2
− 4

T 2γ2
(1 + ε)

)
(1 + e−2=ωnT )

(
|Cn|2 + |dnDn|2

)
.

Since the previous inequality holds for any ε ∈ (0, 1), in particular it can be written

for ε′ < ε
2−ε , because this implies 1+ε′

1−ε′ <
1

1−ε , and hence

1− ε′

π2 + 4T 2(=ωn)2
− 4

T 2γ2
(1 + ε′) ≥ (1− ε′)

(
1

π2 + 4T 2(=ωn)2
− 4

T 2γ2(1− ε)

)
.
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Therefore, taking also into account that (=ωn)2 < α2(1 + ε), n ≥ n0, for n0 large
enough, we can write∫ ∞

0

k(t)
(
|un0

1 (t)|2 + |un0
2 (t)|2

)
dt

≥ πT (1− ε′)
(

1

π2 + 4T 2α2(1 + ε)
− 4

T 2γ2(1− ε)

)
×

×
∞∑

n=n0

(1 + e−2=ωnT )
(
|Cn|2 + |dnDn|2

)
. (103)

The constant
1

π2 + 4T 2α2(1 + ε)
− 4

T 2γ2(1− ε)
is positive if

T 2
[
γ2(1− ε)− 16α2(1 + ε)

]
> 4π2 . (104)

Since γ > 4α we have γ2(1− ε)− 16α2(1 + ε) > 0 if ε < γ2−16α2

γ2+16α2 . If we assume the

more restrictive condition T > 2π√
γ2(1−ε)−16α2(1+ε)

with respect to that T > 2π
γ
√
1−ε ,

then 104 holds true. Finally, from 103 and the definition 99 of In0
we obtain 98.

We now observe that we can obtain a better estimate of the control time T under
an additional condition on the coefficients of the series. Assuming |Cn| ≤M |dnDn|,
we can follow the procedure sketched out at the end of Section 5.1 by using esti-
mate 75. In particular, to evaluate the term

∫∞
0
k(t)|UC1 (t)|2dt we will employ the

same trick used in [27], giving first an estimate for
∫∞
0
e2αtk(t)|UC1 (t)|2dt, with

α = lim
n→∞

=ωn, and then, multiplying by e−2αT , we will obtain the requested in-

equality.

Theorem 5.9. Assume

|Cn| ≤M |dnDn| ∀n ∈ N . (105)

Then, for any ε ∈ (0, 1) and T > 2π
γ
√
1−ε there exist n0 = n0(ε) ∈ N, independent of

T and all coefficients of the series, and a constant c(T, ε) > 0 such that∫ ∞
0

k(t)
∣∣∣ ∞∑
n=n0

Cne
iωnt + Cne

−iωnt +Rne
rnt +Dne

iζnt +Dne
−iζnt

∣∣∣2 dt
+

∫ ∞
0

k(t)
∣∣∣ ∞∑
n=n0

dnDne
iζnt + dnDne

−iζnt + cnCne
iωnt + cnCne

−iωnt
∣∣∣2 dt

≥ c(T, ε)
∞∑

n=n0

(
|Cn|2 + |dnDn|2

)
. (106)

Proof. If α = lim
n→∞

=ωn (see 69) since

∫ ∞
0

e2αtk(t)
∣∣∣ ∞∑
n=n0

Cne
iωnt + Cne

−iωnt
∣∣∣2 dt

=

∫ ∞
0

k(t)
∣∣∣ ∞∑
n=n0

Cne
i(ωn−iα)t + Cne

−i(ωn−iα)t
∣∣∣2 dt ,
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thanks to 89 we have∫ ∞
0

e2αtk(t)
∣∣∣ ∞∑
n=n0

Cne
iωnt + Cne

−iωnt
∣∣∣2 dt

≥ 2πT

∞∑
n=n0

(
1

π2 + 4T 2(=ωn − α)2
− 4

T 2γ2
(1 + ε′)

)
(1 + e−2(=ωn−α)T )|Cn|2 ,

where ε′ ∈ (0, ε) will be chosen later. Therefore, multiplying by e−2αT and taking
into account the definition 76 of the function k, we get∫ ∞

0

k(t)
∣∣∣ ∞∑
n=n0

Cne
iωnt + Cne

−iωnt
∣∣∣2 dt

≥ 2πTe−2αT
∞∑

n=n0

(
1

π2 + 4T 2(=ωn − α)2
− 4

T 2γ2
(1+ε′)

)
(1+e−2(=ωn−α)T )|Cn|2 .

We can take 4(=ωn − α)2 < γ2ε/8 for n ≥ n0 and 1 + ε′ < 1
1−ε/2 for ε′ < ε

2−ε , to

have

1

π2 + 4T 2(=ωn − α)2
− 4

T 2γ2
(1 + ε′)

>
1

π2 + T 2γ2ε/8
− 4

T 2γ2(1− ε/2)
=

T 2γ2(1− ε)− 4π2

(π2 + T 2γ2ε/8)T 2γ2(1− ε/2)

and T 2γ2(1− ε)− 4π2 > 0 for T > 2π
γ
√
1−ε . So, we get∫ ∞

0

k(t)
∣∣∣ ∞∑
n=n0

Cne
iωnt + Cne

−iωnt
∣∣∣2 dt

≥ 2πTe−2αT
T 2γ2(1− ε)− 4π2

(π2 + T 2γ2ε/8)T 2γ2(1− ε/2)

∞∑
n=n0

(1 + e−2(=ωn−α)T )|Cn|2 . (107)

On the other hand, from 90 it follows∫ ∞
0

k(t)
∣∣∣ ∞∑
n=n0

cnCne
iωnt + cnCne

−iωnt
∣∣∣2 dt

≤ 2πT

∞∑
n=n0

(
1

π2 + 4T 2(=ωn)2
+

4

T 2γ2
(1 + ε′)

)
(1 + e−2=ωnT )|cnCn|2

≤ 2πT

∞∑
n=n0

M |cn|2
(

1

π2 + 4T 2(=ζn)2
+

4

T 2γ2
(1 + ε′)

)
(1 + e−2=ζnT )|dnDn|2 ,

thanks also to =ωn ≥ |=ζn| and |Cn| ≤ M |dnDn|. Moreover, again by 90 and the
previous inequality we have∫ ∞

0

k(t)
(
2
∣∣∣ ∞∑
n=n0

Dne
iζnt +Dne

−iζnt
∣∣∣2 + ∣∣∣ ∞∑

n=n0

cnCne
iωnt + cnCne

−iωnt
∣∣∣2) dt

≤ 2πT

∞∑
n=n0

( 2

|dn|2
+M |cn|2

)( 1

π2 + 4T 2(=ζn)2
+

4

T 2γ2
(1+ε′)

)
(1+e−2=ζnT )|dnDn|2.
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Choosing n0 sufficiently large such that 2
|dn|2 + M |cn|2 ≤ ε′ for any n ≥ n0, from

the above estimate we deduce∫ ∞
0

k(t)
(

2
∣∣∣ ∞∑
n=n0

Dne
iζnt +Dne

−iζnt
∣∣∣2 +

∣∣∣ ∞∑
n=n0

cnCne
iωnt + cnCne

−iωnt
∣∣∣2) dt

≤ 2πTε′
∞∑

n=n0

(
1

π2 + 4T 2(=ζn)2
+

4

T 2γ2
(1 + ε′)

)
(1 + e−2=ζnT )|dnDn|2 . (108)

In addition, from 96, using again |Cn| ≤M |dnDn| and 69 we get∫ ∞
0

k(t)
∣∣∣ ∞∑
n=n0

Rne
rnt
∣∣∣2 dt

≤ πTε′
∞∑

n=n0

|dnDn|2

π2 + T 2r2n
≤ πTε′

∞∑
n=n0

|dnDn|2

π2 + 4T 2(=ζn)2
. (109)

Combining 108 and 109 (with ε′ replaced by ε′/2) we obtain

2

∫ ∞
0

k(t)
∣∣∣ ∞∑
n=n0

Dne
iζnt +Dne

−iζnt
∣∣∣2dt

+

∫ ∞
0

k(t)
(∣∣∣ ∞∑

n=n0

cnCne
iωnt + cnCne

−iωnt
∣∣∣2 + 2

∣∣∣ ∞∑
n=n0

Rne
rnt
∣∣∣2) dt

≤ 2πTε′
∞∑

n=n0

(
1

π2 + 4T 2(=ζn)2
+

4

T 2γ2
(1 + ε′)

)
(1 + e−2=ζnT )|dnDn|2 . (110)

In virtue of 89 we get∫ ∞
0

k(t)
∣∣∣ ∞∑
n=n0

dnDne
iζnt + dnDne

−iζnt
∣∣∣2 dt

≥ 2πT

∞∑
n=n0

(
1

π2 + 4T 2(=ζn)2
− 4

T 2γ2
(1 + ε′)

)
(1 + e−2=ζnT )|dnDn|2 .

From the above formula and 110, taking ε′ ≤ ε/3 but writing again ε′ instead of ε,
we have∫ ∞
0

k(t)
∣∣∣ ∞∑
n=n0

dnDne
iζnt+dnDne

−iζnt
∣∣∣2dt−4

∫ ∞
0

k(t)
∣∣∣ ∞∑
n=n0

Dne
iζnt+Dne

−iζnt
∣∣∣2dt

− 2

∫ ∞
0

k(t)
(∣∣∣ ∞∑

n=n0

cnCne
iωnt + cnCne

−iωnt
∣∣∣2 + 2

∣∣∣ ∞∑
n=n0

Rne
rnt
∣∣∣2) dt

≥ 2πT

∞∑
n=n0

(
1− ε′

π2 + 4T 2(=ζn)2
− 4

T 2γ2
(1 + ε′)

)
(1 + e−2=ζnT )|dnDn|2 .

Taking 4(=ζn)2 < γ2ε/8 for n ≥ n0 and 1+ε′

1−ε′ <
1

1−ε/2 for ε′ < ε
4−ε yields

1− ε′

π2 + 4T 2(=ζn)2
− 4

T 2γ2
(1 + ε′) = (1− ε′)

(
1

π2 + 4T 2(=ζn)2
− 4(1 + ε′)

T 2γ2(1− ε′)

)
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≥ (1− ε′)
(

1

π2 + T 2γ2ε/8
− 4

T 2γ2(1− ε/2)

)
= (1− ε′)

(
T 2γ2(1− ε)− 4π2

(π2 + T 2γ2ε/8)T 2γ2(1− ε/2)

)
.

Therefore, for T > 2π
γ
√
1−ε we obtain∫ ∞

0

k(t)
∣∣∣ ∞∑
n=n0

dnDne
iζnt+dnDne

−iζnt
∣∣∣2dt−4

∫ ∞
0

k(t)
∣∣∣ ∞∑
n=n0

Dne
iζnt+Dne

−iζnt
∣∣∣2dt

− 2

∫ ∞
0

k(t)
(∣∣∣ ∞∑

n=n0

cnCne
iωnt + cnCne

−iωnt
∣∣∣2 + 2

∣∣∣ ∞∑
n=n0

Rne
rnt
∣∣∣2) dt

≥ 2πT (1− ε)
(

T 2γ2(1− ε)− 4π2

(π2 + T 2γ2ε/8)T 2γ2(1− ε/2)

) ∞∑
n=n0

(1 + e−2=ζnT )|dnDn|2 .

In conclusion, for any T > 2π
γ
√
1−ε , combining the previous estimate with 107 gives∫ ∞

0

k(t)
(
|un0

1 (t)|2 + |un0
2 (t)|2

)
dt

≥ πT min{e−2αT , (1−ε)}
(

T 2γ2(1− ε)− 4π2

(π2 + T 2γ2ε/8)T 2γ2(1− ε/2)

) ∞∑
n=n0

(
|Cn|2+|dnDn|2

)
,

that is 106.

5.4. Direct inequality. As for the inverse inequality, to prove direct estimates we
need to introduce an auxiliary function. Let T > 0 and define

k∗(t) :=

 cos πt
2T if |t| ≤ T ,

0 if |t| > T .
(111)

For the sake of completeness, we list some standard properties of k∗ in the following
lemma.

Lemma 5.10. Set

K∗(u) :=
4Tπ

π2 − 4T 2u2
, u ∈ C , (112)

the following properties hold for any u ∈ C∫ ∞
−∞

k∗(t)eiutdt = cos(uT )K∗(u) , (113)

K∗(u) = K∗(u) ,
∣∣K∗(u)

∣∣ =
∣∣K∗(u)

∣∣. (114)

Set KT (u) = Tπ
π2−T 2u2 we have

K∗(u) = 2K2T (u) . (115)

Moreover for any zi, wi ∈ C, i = 1, 2, one has∫ ∞
−∞

k∗(t)<(z1e
iw1t)<(z2e

iw2t)dt

=
1

2
<
(
z1z2 cos((w1 + w2)T )K(w1 + w2) + z1z2 cos((w1 − w2)T )K(w1 − w2)

)
.

(116)
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From now on we will denote with c(T ) a positive constant depending on T .

Proposition 3. Let γ > 0. Suppose that {σn} is a complex number sequence
satisfying

lim inf
n→∞

(
<σn+1 −<σn

)
= γ , {=σn} bounded.

Then for any complex number sequence {Fn} with
∑∞
n=1 |Fn|2 < +∞, ε ∈ (0, 1)

and T > π
γ
√
1−ε there exist c(T ) > 0 and n0 = n0(ε) ∈ N independent of T and Fn

such that ∫ ∞
−∞

k∗(t)
∣∣∣ ∞∑
n=n0

Fne
iσnt + Fne

−iσnt
∣∣∣2 dt ≤ c(T )

∞∑
n=n0

|Fn|2 . (117)

Proof. Let us first observe that∣∣∣ ∞∑
n=n0

Fne
iσnt + Fne

−iσnt
∣∣∣2 = 4

∞∑
n,m=n0

<
(
Fne

iσnt
)
<
(
Fme

iσmt
)
,

where the index n0 ∈ N depending on ε will be chosen later. From 116 we have∫ ∞
−∞

k∗(t)
∣∣∣ ∞∑
n=n0

Fne
iσnt + Fne

−iσnt
∣∣∣2 dt

= 2

∞∑
n,m=n0

<
[
FnFm cos((σn − σm)T )K∗(σn − σm)

+ FnFm cos((σn + σm)T )K∗(σn + σm)
]
.

Applying the elementary estimates <z ≤ |z| and | cos z| ≤ cosh(=z), z ∈ C, we
obtain∫ ∞

−∞
k∗(t)

∣∣∣ ∞∑
n=n0

Fne
iσnt + Fne

−iσnt
∣∣∣2 dt

≤ 2

∞∑
n,m=n0

|Fn||Fm| cosh(=(σn + σm)T )
[
|K∗(σn − σm)|+ |K∗(σn + σm)|

]
.

Since the sequence {=σn} is bounded we have

cosh(=(σn + σm)T ) ≤ e2T sup |=σn| ∀n,m ∈ N .
Hence∫ ∞

−∞
k∗(t)

∣∣∣ ∞∑
n=n0

Fne
iσnt + Fne

−iσnt
∣∣∣2 dt

≤ 2e2T sup |=σn|
∞∑

n,m=n0

|Fn||Fm|
[
|K∗(σn − σm)|+ |K∗(σn + σm)|

]
.

Thanks to 114 we get |K∗(σn − σm)| = |K∗(σm − σn)| . Therefore∫ ∞
−∞

k∗(t)
∣∣∣ ∞∑
n=n0

Fne
iσnt + Fne

−iσnt
∣∣∣2 dt

≤ 2e2T sup |=σn|
∞∑

n=n0

|Fn|2
∞∑

m=n0

[
|K∗(σn − σm)|+ |K∗(σn + σm)|

]
.
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Since 112 gives

K∗(σn − σn) =
4πT

π2 + 16T 2(=σn)2
≤ 4T

π
,

it follows that∫ ∞
−∞

k(t)
∣∣∣ ∞∑
n=n0

Fne
iσnt + Fne

−iσnt
∣∣∣2 dt ≤ 8

π
e2T sup |=σn|T

∞∑
n=n0

|Fn|2

+ 2e2T sup |=σn|
∞∑

n=n0

|Fn|2
[ ∞∑
m=n0
m 6=n

|K∗(σn − σm)|+
∞∑

m=n0

K∗(σn + σm)
]
. (118)

Note that by 115 we can apply Lemma 5.4: for any ε ∈ (0, 1) and 2T > 2π
γ
√
1−ε there

exists n0 ∈ N such that
∞∑

m=n0
m 6=n

|K∗(σn − σm)|+
∞∑

m=n0

K∗(σn + σm) ≤ 2π

Tγ2(1− ε)

(
1 +

∞∑
n=1

1

4n2 − 1

)
.

Substituting the previous estimate into 118 gives 117.

Proposition 4. For any n0 ∈ N, n0 ≥ n′, and T > 0 there exists c(T ) > 0 such
that ∫ ∞

−∞
k∗(t)

∣∣∣∣ ∞∑
n=n0

Rne
rnt

∣∣∣∣2 dt ≤ c(T )

∞∑
n=n0

(
|Cn|2 + |dnDn|2

)
. (119)

Proof. Fixed n0 ∈ N, n0 ≥ n′, we observe that 113 leads to∫ ∞
−∞

k∗(t)

∣∣∣∣ ∞∑
n=n0

Rne
rnt

∣∣∣∣2 dt =

∞∑
n,m=n0

RnRm

∫ ∞
∞

k∗(t)e(rn+rm)t dt

=

∞∑
n,m=n0

RnRm cosh((rn + rm)T )K∗(irn + irm) .

By the definition 112 of K∗ we have

K∗(irn + irm) =
4πT

π2 + 4T 2(rn + rm)2
≤ 4T

π
.

In addition, since the sequence {rn} is bounded we have

cosh((rn + rm)T ) ≤ e2T sup |rn| ∀n,m ∈ N .

Consequently,∫ ∞
−∞

k∗(t)

∣∣∣∣ ∞∑
n=n0

Rne
rnt

∣∣∣∣2 dt ≤ 4T

π
e2T sup |rn|

∞∑
n,m=n0

|Rn||Rm| .

Since n0 ≥ n′, by 71 we have that∫ ∞
−∞

k∗(t)

∣∣∣∣ ∞∑
n=n0

Rne
rnt

∣∣∣∣2 dt
≤ 4T

π
e2T sup |rn|

∞∑
n,m=n0

(
|Cn|2 + |dnDn|2

)1/2
mν

(
|Cm|2 + |dmDm|2

)1/2
nν

.
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Moreover

∞∑
n,m=n0

(
|Cn|2 + |dnDn|2

)1/2
mν

(
|Cm|2 + |dmDm|2

)1/2
nν

≤ 1

2

∞∑
m=n0

1

m2ν

∞∑
n=n0

(
|Cn|2 + |dnDn|2

)
+

1

2

∞∑
n=n0

1

n2ν

∞∑
m=n0

(
|Cn|2 + |dnDn|2

)
=

∞∑
n=1

1

n2ν

∞∑
n=n0

(
|Cn|2 + |dnDn|2

)
.

Combining these inequalities we conclude that 119 is proved.

Theorem 5.11. For any ε ∈ (0, 1) and T > π
γ
√
1−ε there exist n0 = n0(ε) ∈ N and

c(T ) > 0 such that∫ T

−T

∣∣∣∣ ∞∑
n=n0

Cne
iωnt + Cne

−iωnt +Rne
rnt +Dne

iζnt +Dne
−iζnt

∣∣∣∣2 dt
+

∫ T

−T

∣∣∣∣ ∞∑
n=n0

dnDne
iζnt + dnDne

−iζnt + cnCne
iωnt + cnCne

−iωnt
∣∣∣∣2 dt

≤ c(T )

∞∑
n=n0

(
|Cn|2 + |dnDn|2

)
. (120)

Proof. Since the function k∗(t) is positive, for n0 ∈ N to be chosen later we have∫ ∞
−∞

k∗(t)

∣∣∣∣ ∞∑
n=n0

Cne
iωnt + Cne

−iωnt +Rne
rnt +Dne

iζnt +Dne
−iζnt

∣∣∣∣2 dt
≤ 4

∫ ∞
−∞

k∗(t)

∣∣∣∣ ∞∑
n=n0

Cne
iωnt + Cne

−iωnt
∣∣∣∣2 dt+ 4

∫ ∞
−∞

k∗(t)

∣∣∣∣ ∞∑
n=n0

Rne
rnt

∣∣∣∣2 dt
+ 4

∫ ∞
−∞

k∗(t)

∣∣∣∣ ∞∑
n=n0

Dne
iζnt +Dne

−iζnt
∣∣∣∣2 dt .

We can apply Proposition 3 to the first term and to the third one and Proposition
4 to the second term. Therefore, fixed ε ∈ (0, 1) and T > π

γ
√
1−ε there exists

n0 = n0(ε) ∈ N such that, thanks to inequalities 117–119 and in view also of 70, we
get∫ ∞

−∞
k∗(t)

∣∣∣∣ ∞∑
n=n0

Cne
iωnt + Cne

−iωnt +Rne
rnt +Dne

iζnt +Dne
−iζnt

∣∣∣∣2 dt
≤ c(T )

∞∑
n=n0

(
|Cn|2 + |dnDn|2

)
. (121)

Moreover, in a similar way applying again Proposition 3 and taking into account
70 we have∫ ∞

−∞
k∗(t)

∣∣∣∣ ∞∑
n=n0

dnDne
iζnt + dnDne

−iζnt + cnCne
iωnt + cnCne

−iωnt
∣∣∣∣2 dt
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≤ c(T )

∞∑
n=n0

(
|dnDn|2 + |Cn|2

)
.

Combining 121 with the above inequality and recalling the notation 97 yields∫ ∞
−∞

k∗(t)
(
|un0

1 (t)|2 + |un0
2 (t)|2

)
dt ≤ c(T )

∞∑
n=n0

(
|Cn|2 + |dnDn|2

)
.

Now, we can consider the last inequality with the function k∗ replaced by the
analogous one relative to 2T instead of T . So, taking into account 111, we get∫ 2T

−2T
cos

πt

4T

(
|un0

1 (t)|2 + |un0
2 (t)|2

)
dt ≤ c(2T )

∞∑
n=n0

(
|Cn|2 + |dnDn|2

)
,

whence, thanks to cos πt
4T ≥

1√
2

for |t| ≤ T , it follows∫ T

−T

(
|un0

1 (t)|2 + |un0
2 (t)|2

)
dt ≤

√
2c(2T )

∞∑
n=n0

(
|Cn|2 + |dnDn|2

)
.

This completes the proof.

Based on the approach performed in [10], the next result states that we can
recover the finite number of missing terms in the inverse and direct estimates. We
omit the proof, because it may be proved in much the same way as Proposition 5.8
and Proposition 5.20 of [28]. We advise the reader to keep in mind formulas 67 and
97.

Proposition 5. Let {ωn}n∈N, {rn}n∈N and {ζn}n∈N be sequences of pairwise dis-
tinct numbers such that ωn 6= ζm, ωn 6= ζm, rn 6= iωm, rn 6= iζm, rn 6= −η, ζn 6= 0,
for any n ,m ∈ N, and

lim
n→∞

|ωn| = lim
n→∞

|ζn| = +∞ . (122)

Assume that there exists n0 ∈ N such that∫ T

0

(
|un0

1 (t)|2 + |un0
2 (t)|2

)
dt �

∞∑
n=n0

(
|Cn|2 + |dnDn|2

)
.

Then, for any sequences {Cn}, {Rn}, {Dn} and E ∈ R we have∫ T

0

(
|u1(t)|2 + |u2(t)|2

)
dt �

∞∑
n=1

(
|Cn|2 + |dnDn|2

)
+ |E|2 . (123)

5.5. Inverse and direct inequalities. We recall that

u1(t) =

∞∑
n=1

(
Cne

iωnt + Cne
−iωnt +Rne

rnt +Dne
iζnt +Dne

−iζnt
)
,

u2(t) =

∞∑
n=1

(
dnDne

iζnt + dnDne
−iζnt + cnCne

iωnt + cnCne
−iωnt

)
+ Ee−ηt ,

where

|E|2 ≤M
∞∑
n=1

(
|Cn|2 + |dnDn|2

)
, (M > 0) . (124)
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Theorem 5.12. Let {ωn}n∈N, {rn}n∈N and {ζn}n∈N be sequences of pairwise dis-
tinct numbers such that ωn 6= ζm, ωn 6= ζm, rn 6= iωm, rn 6= iζm, rn 6= −η, ζn 6= 0,
for any n ,m ∈ N. Assume that there exist γ > 0, α, χ ∈ R, n′ ∈ N, µ > 0, ν > 1/2,
such that

lim inf
n→∞

(<ωn+1 −<ωn) = lim inf
n→∞

(<ζn+1 −<ζn) = γ ,

lim
n→∞

=ωn = α > 0 ,

lim
n→∞

rn = χ < 0 ,

lim
n→∞

=ζn = 0 ,

|dn| � |ζn| , |cn| ≤
M

|ωn|
,

|Rn| ≤
µ

nν

(
|Cn|2+|dnDn|2

)1/2
∀ n ≥ n′ , |Rn| ≤ µ

(
|Cn|2+|dnDn|2

)1/2
∀ n ≤ n′.

Then, for γ > 4α and T > 2π√
γ2−16α2

we have

∫ T

0

(
|u1(t)|2 + |u2(t)|2

)
dt �

∞∑
n=1

(
|Cn|2 + |dnDn|2

)
. (125)

Proof. By T > 2π√
γ2−16α2

there exists 0 < ε < 1 such that T > 2π√
γ2(1−ε)−16α2(1+ε)

.

Therefore, thanks to Theorems 5.8 and 5.11 we are able to employ Proposition 5
obtaining ∫ T

0

(
|u1(t)|2 + |u2(t)|2

)
dt �

∞∑
n=1

(
|Cn|2 + |dnDn|2

)
+ |E|2 .

Finally, by 124 we can get rid of the term |E|2 in the previous estimates, and hence
the proof is complete.

If we assume the condition |Cn| ≤ M |dnDn| on the coefficients of the series
instead of γ > 4α, then we can make use of Theorem 5.9 instead of Theorem 5.8,
obtaining the observability inequalities with a better estimate for the control time:
T > 2π

γ . Precisely, the following result holds.

Theorem 5.13. Let assume the hypotheses of Theorem 5.12 and the condition

|Cn| ≤M |dnDn| . (126)

Then, for T > 2π
γ we have∫ T

0

(
|u1(t)|2 + |u2(t)|2

)
dt �

∞∑
n=1

(
|Cn|2 + |dnDn|2

)
. (127)

6. Reachability results. This section will be devoted to the proof of some reach-
ability results for wave–wave coupled systems with a memory term. In the following
we will assume that the eigenvalues defined by 40–42 are all distinct. Notice that
this assumption is satisfied asymptotically.
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Theorem 6.1. Let 0 < β < min{1/2, η} be.
For any T > 2π√

1−4β2
and (u0i , u

1
i ) ∈ L2(0, π) × H−1(0, π), i = 1, 2, there exist

gi ∈ L2(0, T ), i = 1, 2, such that the weak solution (u1, u2) of system
u1tt(t, x)− u1xx(t, x) + β

∫ t

0

e−η(t−s)u1xx(s, x)ds+ au2(t, x) = 0 ,

t ∈ (0, T ) , x ∈ (0, π)

u2tt(t, x)− u2xx(t, x) + bu1(t, x) = 0 ,

(128)

with boundary conditions

u1(t, 0) = u2(t, 0) = 0 , u1(t, π) = g1(t) , u2(t, π) = g2(t) t ∈ (0, T ) , (129)

and null initial values

ui(0, x) = uit(0, x) = 0 x ∈ (0, π) , i = 1, 2, (130)

verifies the final conditions

ui(T, x) = u0i (x) , uit(T, x) = u1i (x) , x ∈ (0, π), i = 1, 2 . (131)

Proof. To prove our statement, we will apply the Hilbert Uniqueness Method de-
scribed in Section 3. Let H = L2(0, π) be endowed with the usual scalar product
and norm

‖u‖L2 :=

(∫ π

0

|u(x)|2 dx
)1/2

u ∈ L2(0, π) .

We consider the operator L : D(L) ⊂ H → H defined by Lu = −uxx for u ∈
D(L) := H2(0, π) ∩ H1

0 (0, π). It is well known that L is a self-adjoint positive
operator on H with dense domain D(L) and

D(
√
L) = H1

0 (0, π).

Moreover, {n2}n≥1 is the sequence of eigenvalues for L and {sin(nx)}n≥1 is the
sequence of the corresponding eigenvectors. We can apply our spectral analysis, see
Section 4.1, to the adjoint system of 128 given by

z1tt(t, x)− z1xx(t, x) +

∫ T

t

k(s− t)z1xx(s, x)ds+ bz2(t, x) = 0 ,

t ∈ (0, T ) , x ∈ (0, π)

z2tt(t, x)− z2xx(t, x) + az1(t, x) = 0 ,

zi(t, 0) = zi(t, π) = 0 t ∈ [0, T ] ,

i = 1, 2,

zi(T, ·) = z0i , zit(T, ·) = z1i ,

(132)

where the final data exhibit the following expansion in the basis {sin(nx)}n≥1

z0i (x) =

∞∑
n=1

αin sin(nx) , z1i (x) =

∞∑
n=1

ρin sin(nx) , i = 1, 2 .

If we take (z0i , z
1
i ) ∈ H1

0 (0, π)× L2(0, π), i = 1, 2, then one has

‖z0i ‖2H1
0

=

∞∑
n=1

α2
inn

2, ‖z1i ‖2L2 =

∞∑
n=1

ρ2in , i = 1, 2. (133)
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The backward system 132 is equivalent to the forward system

u1tt(t, x)− u1xx(t, x) +

∫ t

0

k(t− s)u1xx(s, x)ds+ bu2(t, x) = 0 ,

t ∈ (0, T ) , x ∈ (0, π)

u2tt(t, x)− u2xx(t, x) + au1(t, x) = 0 ,

ui(t, 0) = ui(t, π) = 0 t ∈ [0, T ] ,

i = 1, 2,

ui(0, ·) = z0i , uit(0, ·) = z1i ,

(134)

that is, if (u1, u2) is the solution of 134, then the solution (z1, z2) of 132 is given by

z1(t, x) = u1(T − t, x), z2(t, x) = u2(T − t, x) .

Therefore, thanks to the representation for the solution of 134, see Theorem 4.5, we
can write (z1, z2) in the following way, for any (t, x) ∈ [0, T ]× [0, π]

z1(t, x) =

∞∑
n=1

(
Cne

iωn(T−t) + Cne
−iωn(T−t)

)
sin(nx)

+

∞∑
n=1

(
Rne

rn(T−t) +Dne
iζn(T−t) +Dne

−iζn(T−t)
)

sin(nx) ,

z2(t, x) =

∞∑
n=1

(
dnDne

iζn(T−t) + dnDne
−iζn(T−t)

)
sin(nx)

+

∞∑
n=1

(
cnCne

iωn(T−t) + cnCne
−iωn(T−t)

)
sin(nx) + e−η(T−t)

∞∑
n=1

En sin(nx) .

In particular, thanks also to 133 we get
∞∑
n=1

n2
(
|Cn|2 + |dnDn|2

)
� ‖z01‖2H1

0
+ ‖z11‖2L2 + ‖z02‖2H1

0
+ ‖z12‖2L2 . (135)

Moreover, for any t ∈ [0, T ]

z1x(t, π) =

∞∑
n=1

(−1)nn
(
Cne

iωn(T−t) + Cne
−iωn(T−t)

)
+

∞∑
n=1

(−1)nn
(
Rne

rn(T−t) +Dne
iζn(T−t) +Dne

−iζn(T−t)
)
,

z2x(t, π) =

∞∑
n=1

(−1)nn
(
dnDne

iζn(T−t) + dnDne
−iζn(T−t)

)
+

∞∑
n=1

(−1)nn
(
cnCne

iωn(T−t) + cnCne
−iωn(T−t)

)
+ e−η(T−t)

∞∑
n=1

(−1)nnEn .

We can apply Theorem 5.12 to (z1x(t, π), z2x(t, π)). Indeed, thanks to the above
expressions for zix(t, π), i = 1, 2, and 125 we have∫ T

0

(
|z1x(t, π)|2 + |z2x(t, π)|2

)
dt �

∞∑
n=1

n2
(
|Cn|2 + |dnDn|2

)
,
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and hence by 135 we get∫ T

0

(
|z1x(t, π)|2 + |z2x(t, π)|2

)
dt � ‖z01‖2H1

0
+ ‖z11‖2L2 + ‖z02‖2H1

0
+ ‖z12‖2L2 . (136)

Therefore, we have proved Theorem 3.1. Furthermore, we consider the linear oper-
ator Ψ introduced in Section 3 and, thanks to 24, defined by

Ψ(z01 , z
1
1 , z

0
2 , z

1
2) = (−u1t(T, ·), u1(T, ·),−u2t(T, ·), u2(T, ·)) ,

where (u1, u2) is the weak solution of system 128. So, we have that the operator Ψ
is an isomorphism from the space H1

0 (0, π) × L2(0, π) ×H1
0 (0, π) × L2(0, π) to the

space H−1(0, π)×L2(0, π)×H−1(0, π)×L2(0, π). Therefore, for u0i ∈ L2(0, π) and
u1i ∈ H−1(0, π), i = 1, 2, there exists one and only one (z01 , z

1
1) ∈ H1

0 (0, π)×L2(0, π)
and (z02 , z

1
2) ∈ H1

0 (0, π)× L2(0, π) such that

Ψ(z01 , z
1
1 , z

0
2 , z

1
2) = (−u11, u01,−u12, u02) .

Finally, if we consider the solution (z1, z2) of system 132 with final data given by
the unique (z01 , z

1
1 , z

0
2 , z

1
2), then the control functions required by the statement are

given by

g1(t) = z1x(t, π)− β
∫ T

t

e−η(s−t)z1x(s, π)ds , g2(t) = z2x(t, π) ,

that is, our proof is complete.

Appendix. In this section we will give some cases of polynomial Pn(z) defined by

Pn(z) = z5+ηz4+2λnz
3+λn(2η−β)z2+(λ2n−ab)z+λ2n(η−β)−ηab, z ∈ C, (137)

having all distinct roots.
The case ab = 0 is obvious, because

Pn(z) = (z3 + ηz2 + λnz + λn(η − β))(z2 + λn
)

and hence the roots of Pn(z) are all distinct, see [27].
For the case ab 6= 0 we first study

P (x) = x5+ηx4+2λnx
3+λn(2η−β)x2+(λ2n−ab)x+λ2n(η−β)−ηab, x ∈ R. (138)

We compute the derivatives of P (x):

P ′(x) = 5x4 + 4ηx3 + 6λnx
2 + 2λn(2η − β)x+ λ2n − ab,

P ′′(x) = 2
(
10x3 + 6ηx2 + 6λnx+ λn(2η − β)

)
,

P ′′′(x) = 12
(
5x2 + 2ηx+ λn

)
.

For η <
√

5λ1 we have that P ′′′(x) > 0 for any x ∈ R. Therefore, there exists a
unique x0 < 0 such that P ′′(x0) = 0, P ′′(x) < 0 for x < x0 and P ′′(x) > 0 for
x > x0. As a consequence P ′(x) attains its absolute minimum in x0.

Now we have to distinguish four cases depending on the sign of the numbers
P (0) and P ′(0). We note that, thanks to β > 0, we have λ2n(η − β) − ηab 6= 0 or
λ2n − ab 6= 0, and hence P (0) 6= 0 or P ′(0) 6= 0.

First case. P (0) ≥ 0 and P ′(0) > 0. If the value of the minimum P ′(x0) is greater
or equal to 0, we have that P (x) has a unique real negative root. In the case
P ′(x0) < 0, there exist x1 < x0 < x2 < 0 such that P ′(x1) = P ′(x2) = 0, P ′(x) > 0
for x < x1, P ′(x) < 0 for x1 < x < x2 and P ′(x) > 0 for x > x2. If P (x1) < 0 and
P (x2) < 0 or P (x1) > 0 and P (x2) > 0 P (x) has a unique real negative root, see



REACHABILITY FOR A WAVE-WAVE SYSTEM WITH MEMORY 127

e.g. Figures 1 and 2. Instead, if P (x1) > 0 and P (x2) < 0 then P (x) has three

-4 -3 -2 -1 1

20

40

60

Figure 1. P ′(x) when P ′(0) > 0 and P ′(x0) < 0

-5 -4 -3 -2 -1 1

-10

10
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30

40

Figure 2. P (x) when P (0) > 0, P (x1) > 0 and P (x2) > 0

distinct real negative roots, and hence the five roots of P (z) in C are all distinct.
We also note that we have to assume

P (x1) 6= 0 and P (x2) 6= 0, (139)

because otherwise x1 or x2 would be a double real root for P (x).

Second case. P (0) ≥ 0 and P ′(0) < 0. The discussion is similar to that of the
previous case, the only difference consists in the value of the minimum P ′(x0) that
must be negative.

Third case. P (0) < 0 and P ′(0) ≥ 0. The discussion is similar to that of the first
case, but we have to note that P (x) admits either a only positive root or three real
roots, one positive and two negative.

Fourth case. P (0) < 0 and P ′(0) ≤ 0. As in the third case with the value of the
minimum P ′(x0) less or equal to 0.

In all cases we have to assume 139 to avoid the double root.
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To establish that the roots of P (z) are always all distinct we will use the Routh-
Hurwitz theorem, see [33]. First, we compute the real and imaginary parts of the
polynomial iP (iy), y ∈ R, that is

iP (iy) = P0(y) + iP1(y), y ∈ R,
P0(y) = −y5 + 2λny

3 − (λ2n − ab)y,
P1(y) = ηy4 − λn(2η − β)y2 + λ2n(η − β)− ηab .

(140)

The generalized Sturm chain obtained from P0(y) and P1(y) is given by

P2(y) =
β

η
λny(y2 − λn),

P3(y) = λn(β − η)y2 + λ2n(η − β)− ηab,

P4(y) =
βab

β − η
y,

P5(y) = λ2n(η − β)− ηab .

(141)

If w(x) is the number of variations of the generalized Sturm chain (P0(y), P1(y),
P2(y), P3(y), P4(y), P5(y)), for ab < 0 or ab > 0 and P (0) > 0 we have

w(+∞)− w(−∞) = 3− 2 = 1,

and hence by the Routh-Hurwitz theorem the difference between the number of roots
of iP (z) with negative real part and those with positive real part is 1. Therefore,
in the case P (z) has a unique negative real root necessarily the other four complex
roots are different, because two have negative real part and two have positive real
part.

In the case ab > 0 and P (0) < 0 we have

w(+∞)− w(−∞) = 2− 3 = −1,

and hence if P (z) has a unique positive real root necessarily the other four complex
roots are different, because two have negative real part and two have positive real
part.

Moreover, to compare the roots of the polynomials Pn(z) and Pm(z) given by
137 with n 6= m we have to introduce the Bézout matrix B5(Pn, Pm), since Pn(z)
and Pm(z) have no common roots if and only if B5(Pn, Pm) is nonsingular. The
matrix B5(Pn, Pm) is 5 × 5 and symmetric, whose terms bij , i, j = 1, . . . , 5, unless
the common factor λm − λn, are given by

b11 = abβ(λm+λn), b12 = (β−2η)(λmλn(β−η)−abη), b13 = 2(abη+λmλn(η−β)),

b14 = −η(β − η)(λm + λn), b15 = −(β − η)(λm + λn),

b22 = −ab(β − 4η) + λmλn(4η − 3β),

b23 = 2ab+η(η−β)λn+λm(2λn−βη+η2), b24 = −(β−2η)(λm+λn), b25 = λm+λn,

b33 = −(β − 2η)(λm + λn) , b34 = λm + λn + η(2η − β) , b35 = 2η − β ,

b44 = 4η − β , b45 = 2 , b55 = 0 .

In conclusion, if the coupling constants a, b are such that detB5(Pn, Pm) 6= 0, then
the roots of Pn(z) and Pm(z) are different.
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