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Is daily physical activity affected by
dynamic hyperinflation in adults with
cystic fibrosis?
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and Paolo Palange1,6

Abstract

Background: The aim of this study was to investigate the relationship between dynamic hyperinflation and daily
physical activity (DPA) in adults with cystic fibrosis (CF).

Methods: Thirty-four clinically stable CF were studied. All patients undertook incremental cardiopulmonary exercise
testing (CPET). CPET-related measurements included: oxygen uptake (V’O2), carbon dioxide production (V’CO2),
ventilatory profile, work rate (W), inspiratory capacity (IC), end-expiratory lung volume (EELV). PA was assessed
using the accelerometer SenseWear Pro3 Armband.

Results: Exercise tolerance was reduced in most of patients and the mean V’O2,peak value was 75.2% of predicted
(28.5 ± 4.8 ml/min/kg). Seventy % of patients responded to CPET with dynamic hyperinflation. Higher incidence of
dynamic hyperinflation was found in CF males compared to CF females (p = 0.026). Patients who developed dynamic
hyperinflation during CPET had higher vigorous PA (p = 0.01) and more total energy expenditure (p = 0.006) than
patients who did not. EELVΔ was related to activities requiring vigorous intensity and total energy expenditure
(R = 0.46, p = 0.001; R = 0.57, p < 0.001).

Conclusions: In adults with CF and mild to moderate lung impairment, DPA might not be limited by dynamic
hyperinflation.
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Background
The assessment of daily physical activity (DPA) is a par-
ameter of increasing interest in the clinical evaluation of
patients with cystic fibrosis (CF). Despite the well-
recognized physical and psychological benefits of exer-
cise in maintaining health in CF, exercise participation is
often below recommended levels [1] especially in CF
females [2]. Recently, two studies showed that activity
levels in daily life correlate significantly with exercise
tolerance in CF adults [3, 4]. It is important to identify
significant factors related to aerobic capacity because
peak oxygen uptake (V’O2,peak) is a prognostic factor in

CF [5, 6]. Maintaining high levels of physical activity is
an important objective in the management of CF.
Many studies have investigated exercise intolerance in

CF and have showed multiple compromised mechanisms
[7]. These include musculoskeletal abnormalities [8, 9],
abnormal oxygen delivery and gas exchange [10], decondi-
tioning [11] and finally lung dynamic hyperinflation [12].
In chronic obstructive pulmonary disease (COPD) breath-
ing at higher lung volumes increases respiratory work and
thus potentiates the perception of breathlessness, which
may discourage patients from taking part in DPA and be-
come responsible for a decrease in DPA [13].
In the past, Alison et al. measured changes in end-

expiratory lung volume (EELV) during leg and arm
exercise in 22 CF patients [14]. They observed that CF
patients with FEV1 < 90% predicted were likely to dy-
namically hyperinflate during arm cranking. This is
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particularly interesting if we consider that the ability to
perform upper-limb exercise is important for daily activ-
ities. More recently, a larger study showed that dynamic
hyperinflation during cardiopulmonary exercise testing
(CPET) is almost common in adult patients with mild-
to-moderate CF [12]. To date, although the impact of
dynamic hyperinflation on exercise is recognized [12],
little information on the effect of dynamic hyperinflation
on DPA is available in CF. Several studies have found
that the level of DPA is independent of lung function in
CF [15, 16] suggesting that high activity levels do not
necessarily reflect the level of lung function [16].
Whether DPA level in adult CF can be associated
with a development of dynamic hyperinflation war-
rants further investigations.
The aim of the present study was to investigate the re-

lationship between dynamic hyperinflation developed
during CPET and DPA levels in a cohort of adults with
mild-to-moderate airflow obstruction. Specifically, we
wished to evaluate if the identification of dynamic hyper-
inflation with exercise may correlate with daily life activ-
ities in these CF patients.

Methods
Study design
Thirty-four adults with CF were recruited consecutively
between January 2012 and December 2013 from the
Policlinico Umberto I Hospital, Sapienza University of
Rome, Italy. The study was approved by the Ethics Com-
mittee of Policlinico Umberto I Hospital, with approval
number 582/11. Data on demographic and clinical char-
acteristics, baseline spirometry and CPET-related mea-
surements were collected at the time of enrolment. The
patients were equipped with a physical activity monitor.
Their habitual physical activities were assessed for a
period of 5 days. Medical management of the CF pa-
tients was carried out as normal, including use of bron-
chodilators. Subjects with CF were asked to continue
any respiratory-related medications before the visits. The
estimation of the calculation for sample size was done
using a previous study by Lahaije Anke JMC, et al. [17]
who showed a r = 0.42 for the relation between dynamic
hyperinflation and physical activity. For this study, as-
suming α = 0.05 and 0.80 power with r between 0.40 and
0.50, our effect size would require a number of patients
between 30 and 47. We therefore recruited 34 CF
patients in total.

Patients and data collection
Patients attending a CF outpatient clinic were
approached for participation in the study. Patients were
included if they were ≥ 18 years of age, with mild-to-
moderate pulmonary impairment based on FEV1 (i.e.,
mild = FEV1 > 80% predicted; moderate = FEV1 40 to

80% predicted) and had a confirmed diagnosis of CF
based on genetic testing showing two CF-causing muta-
tions and/or two documented sweet chloride values >
60 mEq/l. Patients were excluded if they had unstable
medical conditions that could cause or contribute to
breathlessness (i.e cardiovascular, metabolic, or other re-
spiratory diseases) or other disorders that could interfere
with exercise testing, such as neuromuscular diseases or
musculoskeletal problems. Patients with a pulmonary
exacerbation in the 4 weeks prior to the study, with
acute respiratory failure, on oxygen therapy, on the wait-
ing list for lung transplantation or post- transplant were
excluded from the study. Baseline data were collected at
the time of study entry.
After obtaining written informed consent and appro-

priate screening of medical history, we collected data on
age, sex, height, weight, body mass index (BMI), chronic
infections and CF comorbidity (pancreas insufficiency
and CF-related diabetes). At the time of study entry all
patients underwent spirometry, nitrogen washout and
single-breath diffusing capacity (DLCO) which were per-
formed by standardized techniques using an automated
pulmonary function testing system (COSMED PFT,
Pavona Italy) [18–20]. All pulmonary function data were
standardized as percentages of predicted normal values
[21, 22]. Maximal voluntary ventilation (MVV) was esti-
mated using the formula FEV1 × 40.
A maximal incremental CPET was conducted. We used

an electronically-braked cycle ergometer (Ergoline-800,
Ergoline GmbH, Bitz, Germany) and the Quark b2 system
(COSMED, Rome, Italy) according to recommended
guidelines [23]. CPET consisted of a steady-state resting
period, then 2 min of warm-up at 10 watt followed by a
stepwise protocol in which the work rate was increased in
1-min intervals by increments of 20 W. The test was con-
tinued until exhaustion and subjects were encouraged
throughout the test. Subjects rated the magnitude of their
perceived breathing and leg discomfort at rest, every two
minutes during exercise and at peak exercise by pointing a
modified Borg scale [24]. Oxygen saturation (SpO2) by
pulse oximetry on the finger, electrocardiographic moni-
toring of heart rate (HR), rhythm and ST-segment
changes, minute ventilation (V’E), oxygen uptake (V’O2),
carbon dioxide production (V’CO2) were measured at rest
and during CPET. Peak V’O2 (V’O2,peak) was normalized
for body weight and was also expressed as percentage of
the predicted value [25]. The inspiratory capacity (IC)
maneuver was performed by patients at rest, at the end of
each increment of exercise and at peak of exercise. The IC
represents the volume inhaled from the end of normal ex-
halation to maximal inhalation (i.e., total lung capacity).
EELV was calculated by subtracting the IC from the total
lung capacity (EELV = TLC-IC) [26]. It is assumed that
total lung capacity remains unchanged during exercise,
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which is supported by literature in health [27] and COPD
[28]. The change in the IC from rest to peak exercise was
calculated (ICΔ) and consequently, the change in EELV
from rest to peak exercise was also calculated (EELVΔ).
Based on previous studies in CF [12, 29], patients were
categorized into the dynamic hyperinflation group if they
showed evidence of decreasing in IC from rest to peak
exercise (ICΔ) ≥ 100 mL.

Assessment of daily physical activity
DPA was assessed at the time of the study enrollment,
using a multi-sensor armband (SenseWear Pro3 Armband
(SWA), BodyMedia, Pittsburgh, USA) which has been val-
idated in CF [30, 31]. Patients wore the armband for at
least five full consecutive typical days (including 3 week-
days and 2 weekend days) when they were at home. Data
are reported as the average of 5 days. It was reported in
CF that 5 days monitoring was enough to assess DPA and
that DPA levels were similar through the week (i.e.,
weekdays versus weekend days) [3, 4]. The character-
istics of the device have been previously described
[2]. The outputs obtained from the armband were the
detection of energy expenditure (EE), including total
energy expenditure (TEE) and active energy expend-
iture (AEE), total physical activity duration, number
of steps, time lying down, sleep duration and intensity
of PA, expressed in metabolic equivalents (METS).
The time (min) spent in PA at different intensities
(mild, moderate, vigorous) and the definitions for ac-
tivity levels based on METS were those used by
Troosters et al. [3]. See Additional file 1.

Statistical analysis
Data obtained from CF patients with dynamic hyperin-
flation and non-dynamic hyperinflation were compared.
Categorical data are presented as percentages, and com-
parisons were performed using the χ2 or Fisher’s exact
test. Parametric data are presented as mean ± standard
deviation (SD) and comparisons were made using the
two-sample independent t test. Non-parametric data are
presented as median and interquartile range and com-
parisons were performed using the Mann–Whitney U
test. Correlations were identified between PA measure-
ments and CPET parameters through the use of the
Pearson’s R correlation coefficient or the Spearman’s rank
correlation coefficient according to parametric or non-
parametric distribution of data, respectively and corrected
for gender. Significant contributors (gender, V’O2,peak

ml∙min− 1, EELVΔ in absolute value and % of TLC) were
introduced into a stepwise multiple linear regression
analysis to identify independent determinants of PA.
All statistical tests were two-sided, and significance

was reported at p < 0.05. Analyses were performed using

the SPSS Statistics version 22.0 software package (IBM,
Armonk, New York, USA).

Results
Study population characteristics and daily physical activity
Baseline characteristics and pulmonary function data for
the group as a whole and the dynamic (n = 24) and non-
dynamic hyperinflation (n = 10) groups are shown in
Table 1. The study group comprised CF patients with a
good nutritional status and a mild to moderate lung im-
pairment based on FEV1 as a percentage of predicted.
(Table 1). Seventy percent (24/34) of patients demon-
strated evidence of dynamic hyperinflation during CPET.
There was no difference for age, BMI, airways infection,
pulmonary function and oxygen saturation between the
dynamic hyperinflation and non-dynamic hyperinflation
groups. However, the frequency distribution of males in
the dynamic hyperinflation group was significantly
greater than females (p < 0.05).
Physiological responses to CPET in the dynamic and

non-dynamic hyperinflation groups are presented in
Table 2. Exercise tolerance was reduced in most of pa-
tients. Their mean V’O2,peak value was 75.2% of pre-
dicted (28.5 ± 4.8 ml/min/kg). The majority of CF
patients (24 of 34) increased their EELV back toward
resting levels at maximal exercise and did increase EELV
beyond resting values, demonstrating evidence of dy-
namic hyperinflation during CPET. In the dynamic
hyperinflation group, the IC from rest to peak exer-
cise decreased by 0.5 ± 0.3 l as showed in Table 3 by
EELVΔ value.
When we analyzed dynamic hyperinflation at submaxi-

mal level of exercise (i.e. at lactic threshold, LT), there
was no difference for EELVΔ value between hyperin-
flated and not hypeinflated CF patients (− 0.09 ± 0.22 l
versus − 0.11 ± 0.09 respectively, p = 0.50).
Patients with evidence of dynamic hyperinflation had

similar V’O2, work-rate and heart rate at peak exercise
to those without evidence of dynamic hyperinflation.
Both groups achieved maximal heart rates above 80% of
predicted. In dynamic hyperinflation group we found
higher values of V Epeak (p < 0.05) and lower values of
breathing reserve (BR) even if did not achieve the statis-
tical significance (p = 0.2). For both groups, mean max-
imal ventilation was less than the predicted MVV and
breathing reserve was always preserved, suggesting that
ventilation limit was not a main limiting factor. Both CF
groups stopped exercise primarily because of leg discom-
fort. No differences were found in the ventilatory equiva-
lents for carbon dioxide (V’E/V’CO2) at peak exercise; no
differences were detected for V’E/V’CO2 slope and
PETCO2, indicating similar ventilatory efficiency and gas
exchange functionality. There was a fall in mean SpO2

from rest to peak exercise (SpO2Δ) in hyperinflated
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patients (− 3.5%) which exceeded that seen in non-
hyperinflated patients (− 2.5%) but was not statically different.
DPA is shown in Table 3. Patients with evidence of dy-

namic hyperinflation demonstrated higher total energy
expenditure and higher daily time spent in activities
above vigorous intensity. Similarly, there was a trend for
more activities above moderate intensity (p = 0.1) and
active energy expenditure (p = 0.09) in the dynamic
hyperinflation group.

Correlation analysis was done for the group as a whole.
DPA above moderate intensity was related to V’O2,peak

expressed as ml∙min− 1 (R = 0.44, p = 0.002) and as ml∙min−
1∙kg− 1 (R = 0.52, p < 0.001). Interestingly, daily activity
measures were related to the development of dynamic
hyperinflation. We found a relationship between total
energy expenditure and EELVpeak (R = 0.56, p < 0.001),
EELVpeak expressed as % of TLC (R = − 0.47, p = 0.001).
Moreover, we found a positive relationship between total

Table 1 Demographic characteristics and pulmonary function of the study group

Characteristics All (n = 34) Dynamic hyperinflation
(n = 24)

Non-dynamic
hyperinflation (n = 10)

p value

Age, years 33.1 ± 8.5 34.2 ± 9.0 30.5 ± 6.7 0.322

BMI, kg/m2 22.6 ± 2.6 23.0 ± 2.3 21.5 ± 3.0 0.093

Male, % 67 79 40 0.026

Pseudomonas aeruginosa infection, % 64.7 70.8 50.0 0.247

Staphylococcus aureus infection, % 67.6 62.5 80.0 0.320

Burkholderia cepacia infection, % 2.9 4.2 0 0.512

Pancreatic insufficiency, % 73.5 75.0 70.0 0.763

F508 del homozygous/heterozygous 6/21 5/14 1/7 0.731

Lung function

FEV1, % of predicted 69.6 ± 19.0 68.3 ± 19.2 72.9 ± 19.3 0.532

FVC, % of predicted 86.1 ± 17.2 85.9 ± 17.6 86.5 ± 17.2 0.921

FEV1/FVC, % 67.9 ± 10.9 63.3 ± 10.7 71.8 ± 11.1 0.189

IC, % of predicted 100.8 ± 23.3 102.8 ± 24.2 96.1 ± 21.9 0.478

TLC, % of predicted 95.6 ± 15.9 96.9 ± 17.4 92.5 ± 11.9 0.473

RV, % of predicted 112.2 ± 45.2 117.9 ± 51.0 98.6 ± 23.7 0.183

RV/TLC,% 31.6 ± 9.4 32.4 ± 10.0 29.8 ± 8.3 0.483

FRC, % of predicted 93.5 ± 27.5 95.7 ± 31.9 88.5 ± 12.9 0.859

DLCO, % of predicted 81.3 ± 13.7 82.1 ± 13.2 79.1 ± 15.7 0.612

MVV, l·min− 1 104.6 ± 31.3 107.5 ± 32.5 97.4 ± 28.3 0.396

SpO2, % 96.8 ± 1.6 96.7 ± 1.7 97.2 ± 1.3 0.445

Definition of abbreviations: BMI body mass index, FEV1 forced expiratory volume in one second, FVC forced vital capacity, FEV1/FVC forced expiratory volume in one
second and forced vital capacity ratio, TLC total lung capacity, RV residual volume, IC inspiratory capacity, FRC functional residual capacity, DLCO diffusion lung capacity
for carbon monoxide, MVV estimated maximal voluntary ventilation, SpO2 arterial oxygen saturation, % of predicted percentage of predicted normal values
Data are presented as mean ± SD. p values are differences between the dynamic hyperinflation and non-dynamic hyperinflation groups

Table 2 Daily physical activity of the study group

Variable All (n = 34) Dynamic hyperinflation (n = 24) Non-dynamic hyperinflation (n = 10) p value

Total energy expenditure, kcal 2577 (2395–3014) 2785 (2513–3093) 2260 (2018–2541) 0.006

Active Energy expenditure, kcal 695 (497–1327) 744 (541–1516) 580 (376–1044) 0.109

Duration Physical Activity, min/day 179 (116–310) 187 (111–321) 168 (116–313) 0.849

Average METs, kcal·kg− 1·h−1 1.8 (1.6–2.0) 1.8 (1.6–2.0) 1.7 (1.6–2.0) 0.994

Steps, number/day 8784 (6533–11,321) 8784 (7031–11,763) 8647 (5172–11,427) 0.624

Mild intensity activities, min/day 160 (106–253) 167 (93–268) 151 (106–287) 0.944

Moderate intensity activities, min/day 14 (9–29) 15 (9–32) 12 (5–24) 0.270

Vigorous intensity activities, min/day 1 (0–3) 1 (1–4) 0 0.010

Moderate+Vigorous intensity activities, min/day 16 (9–29) 16 (10–35) 12 (5–24) 0.196

Definition of abbreviations: CF Cystic Fibrosis, METs Metabolic Equivalents of Task
Data are presented as median (interquartile range). p values are differences between the dynamic hyperinflation and non-dynamic hyperinflation groups

Savi et al. BMC Pulmonary Medicine  (2018) 18:60 Page 4 of 9



energy expenditure and change in EELV from rest to peak
exercise (EELVΔ) (R = 0.57, p < 0.001, Fig. 1). A relationship
was also found between activities requiring vigorous
intensity and EELVpeak (R = 0.59, p < 0.001) and
EELVΔ (R = 0.46, p = 0.001).
Among these significant contributors to DPA, the

multivariate linear regression analysis identified V’O2,peak

and gender as independent predictor of DPA and ex-
cluded the role of dynamic hyperinflation in predicting
DPA levels (Table 4). Specifically, EELVΔ (l) and EELVΔ
(% of TLC) were discarded as not significant predictors:
EELVΔ (l) p values were 0.412, 0.513 and 0.719 for
model 1, 2 and 3, respectively; EELVΔ (% of TLC) p values
were 0.796, 0.581 and 0.691 for model 1, 2 and 3, re-
spectively (Table 4).

Discussion
The main finding of this study is that DPA levels of pa-
tients with mild-to moderate CF might not be correlated
with the development of dynamic hyperinflation.
Specifically, the variance in DPA within these CF pa-
tients cannot be explained by the dynamic hyperinflation
that occurs during CPET. Patients who responded to
exercise with dynamic hyperinflation performed higher

daily activity requiring vigorous intensity and had more
total energy expenditure than those without dynamic
hyperinflation.
It is well known that the development of dynamic

hyperinflation makes patients breathe at increased oper-
ational lung volumes, resulting in a higher respiratory ef-
fort and oxygen requirement of breathing [32]. Dynamic
hyperinflation leaves less room for the expansion of tidal
volume that comes with increasing minute ventilation.
Several studies are available for COPD patients, which
observed that dynamic hyperinflation is likely to lead to
such mechanical constraints on tidal volume [26, 33]. At
some point, further increase in the effort to breathe does
not result in an equal increase in tidal volume, known as
neuromechanical dissociation [33]. This causes an in-
crease in symptoms and impairments that patients ex-
perience [33]. As consequence, in moderate-severe
COPD patients, reduced DPA might be partially ex-
plained by the development of dynamic hyperinflation
during CPET [13]. Although extrapolation of data from
COPD to CF is not appropriate, the COPD model is
used to explain some physiological mechanisms during
exercise mainly because the study of dynamic hyperinfla-
tion and its clinical utility in CF is limited. Specifically,

Table 3 Cardiopulmonary exercise testing data of the study group

CPET variables at peak exercise All (n = 34) Dynamic hyperinflation
(n = 24)

Non-dynamic
hyperinflation (n = 10)

p value

Work rate, % of predicted maximum 87.5 ± 18.4 85.2 ± 14.7 93.2 ± 25.2 0.365

V’O2, ml∙min−1∙kg− 1 28.5 ± 4.8 28.7 ± 4.6 27.8 ± 5.6 0.639

V’O2, % of predicted maximum 75.2 ± 13.3 75.2 ± 13.5 75.0 ± 13.4 0.960

HR, beats∙min− 1 155.4 ± 12.4 155.0 ± 12.5 156.3 ± 12.6 0.785

HR, % of predicted maximum 83.3 ± 7.4 83.6 ± 7.9 82.5 ± 6.4 0.697

V’O2/HR, ml∙beat− 1 12.2 ± 3.1 12.9 ± 3.0 10.5 ± 2.5 0.037

SpO2, % 93.6 ± 3.3 93.2 ± 3.4 94.7 ± 3.0 0.254

SpO2Δ, % −3.2 ± 3.2 −3.5 ± 3.3 −2.5 ± 2.8 0.467

VT, l 1.9 ± 0.6 2.0 ± 0.5 1.6 ± 0.6 0.040

Respiratory rate, breaths∙min− 1 37.8 ± 7.6 37.4 ± 6.7 38.8 ± 10.0 0.655

V’E, l∙min− 1 68.8 ± 19.9 73.2 ± 19.1 58.2 ± 18.7 0.042

BR, % 31.2 ± 19.6 28.8 ± 18.7 36.7 ± 21.6 0.292

V’E/V’CO2 slope 27.4 ± 5.3 28.2 ± 5.9 25.5 ± 2.8 0.181

PETCO2, mmHg 40.1 ± 5.5 39.5 ± 5.8 41.3 ± 4.8 0.304

EELV, l 3.8 ± 1.4 4.3 ± 1.2 2.7 ± 1.3 0.001

EELVΔ, l 0.2 ± 0.6 0.5 ± 0.3 − 0.5 ± 0.6 < 0.001

EELVΔ, % of TLC 2.6 ± 12.5 8.0 ± 5.4 − 10.4 ± 15.3 < 0.001

Dyspnea, modified Borg scale 4.7 ± 2.5 5.1 ± 2.5 4.0 ± 2.4 0.183

Leg discomfort, modified Borg scale 6.3 ± 2.1 6.6 ± 2.2 5.6 ± 1.8 0.223

Definition of abbreviations: CF Cystic Fibrosis, V’O2 oxygen uptake, HR heart rate, SpO2 arterial oxygen saturation, VT tidal volume, V’E minute ventilation, BR breathing
reserve, V’E/V’CO2 ventilatory equivalent for carbon dioxide, PETCO2 partial pressure of end-tidal CO2, EELV end-expiratory lung volume, EELVΔ end-expiratory lung volume
delta from rest to peak exercise, TLC total lung capacity
Data recorded at peak exercise. Data are presented as mean ± SD, unless otherwise stated. p values are differences between the dynamic hyperinflation and
non-dynamic hyperinflation groups
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the aspects of lung mechanics related to daily activity
have not been studied in detail in patients with CF, who
are younger and less likely to be smokers [34]. In our
mild-to moderate CF who developed dynamic hyperinfla-
tion during exercise, this neuromechanical dissociation

did not happen, because their IC value at peak exercise
was still large. We found that dynamic hyperinflation did
not limit exercise tolerance on CPET in this CF group
examined. The hyperinflated group reported symp-
toms of muscle effort equal or in excess of dyspnea.

Fig. 1 Relationship between total energy expenditure in daily living recorded by accelerometer and change in end-expiratory lung volume (EELV)
in patients with cystic fibrosis (R = 0.57, p < 0.001). In this figure, the most hyperinflated CF patients, those with the highest EELV, also showed the
highest physical activity parameter represented as total energy expenditure. Open circles = CF patients with dynamic hyperinflation, closed circles = CF
patients without dynamic hyperinflation

Table 4 Independent predictors of physical activity level in a multivariate linear regression analysis

Model Dependent Predictors Unstandardized coefficients Standardized
coefficients

95% CI p R2

T SE β

1 Total Energy Expenditure (Constant) 1582.144 302.285 966.334 to 2197.955 < 0.001

Gender 450.965 184.121 0.412 75.877 to 826.054 0.020

V’O2 peak 0.450 0.200 0.378 0.042 to 0.857 0.032

52.9%

2 Vigorous PA (Constant) 0.091 0.523 −0.973 to 1.155 0.863

Gender 3.040 0.856 0.526 1.297 to 4.782 0.001

27.7%

3 Moderate + Vigorous PA (Constant) −11.567 11.908 −35.797 to 12.663 0.338

VˈO2 peak 0.018 0.007 0.418 0.004 to 0.032 0.013

17.5%

Definition of abbreviations: CF Cystic Fibrosis, V’O2 oxygen uptake, PA physical activity, CI confidence interval. For every model: included independent variables were:
gender (male), V’O2 peak (ml∙min−1), EELVΔ (l) and EELVΔ (% of TLC)
For every model: EELVΔ (l) and EELVΔ (% of TLC) were discarded as not significant predictors. For model 2 and 3: V’O2 peak (ml∙min− 1) and gender (male) were
discarded as not significant predictors, respectively
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One explanation could be that the occurrence of
hyperinflation during CPET played a minor role in
limiting exercise tolerance in our CF patients, likely
because of mild lung function impairment. This is in
keeping with Moorcroft et al.’ conclusions that non
pulmonary factors predominate in limiting patients
with mild to moderate disease [35].
We were able to demonstrate a positive correlation be-

tween changes in EELV from rest to peak exercise and
levels of DPA, expressed both as energy expenditure and
activities requiring vigorous intensity. These features de-
scribed that CF patients with the highest EELV also
showed the highest physical activity parameters, suggest-
ing that DPA might not be limited by the occurrence of
dynamic hyperinflation. There are different procedures
to estimate DPA using accelerometers. One of the most
common is estimating the energy expenditure of the ac-
tivity performed. Several studies have highlighted the ac-
curacy of SWA on estimate energy expenditure in CF. It
was found an agreement between energy expenditure
measures estimated by the SWA and indirect calorim-
etry during daily activities [31]. Furthermore, the hyper-
salinity of sweat in people with CF had no significant
negative impact on the accuracy of SWA estimate of en-
ergy expenditure [30].
In our patients, the multiple regression analysis did

not identify dynamic hyperinflation as an independent
variable. Aerobic capacity and gender were found signifi-
cant predictor of DPA, explaining almost 53% of the
variance in DPA of our patients with mild-to moderate
lung disease. The DPA that a subject does throughout
her/his habitual life can be influenced by many aspects.
Except physical capabilities, whether a lifestyle is less or
more active is determined by social, behavioural and
psychological factors. We were also able to confirm pre-
vious results describing that the level of physical activity
was independently related to gender in CF population
[2, 16]. Recently, Stevens et al. studied for the first time
the prevalence of dynamic hyperinflation in a large CF
population with a broad range of lung disease severity
[12]. The authors demonstrated that dynamic hyperinfla-
tion during CPET is common among CF patients with
mild-to moderate lung impairment. In our study, we
confirmed the fact that CF patients are likely to hyperin-
flate during exercise and our EELV values were compar-
able to those of Stevens et al. [12] (EELVΔ: 0.5 ± 0.3 l in
our study vs. 0.44 ± 0.26 in Stevens’ study). They also
showed that patients who developed dynamic hyperinfla-
tion had lower lung function, lower exercise tolerance
and greater breathlessness at peak exercise than patients
without dynamic hyperinflation. By contrast, we found
no significant differences on aerobic capacity between
CF patients with evidence of dynamic hyperinflation and
patients without hyperinflation. One explanation could

be that, in both studies, there was a greater gender dif-
ference on the distribution of males versus females in
hyperinflated or not hyperinflated CF group. This may
have possibly affected the exercise testing parameters.
Specifically, in Stevens’s study the frequency distribution
of males in the non-dynamic hyperinflation group was
significantly greater than females (88%, p < 0.05) while in
our study was significantly lower (40%, p = 0.02) [12].
For comparison, we retained that it would be more ap-
propriate to scale the values for % of predicted and then
analyse if there are differences between hyperinflated
and not hypeinflated CF patients. Conversely, Stevens et
al. presented their CPET results as absolute values rather
than percentage of predicted [12]. The lower CPET pa-
rameters observed in their dynamic hyperinflated group
might have been influenced by the fact that subjects
were almost CF females and that the non-dynamic
hyperinflation group was composed mainly by males. In
this kind of gender distribution, we retain that should
not be used the absolute values for CPET parameters to
observe differences between dynamic hyperinflation
and non-dynamic hyperinflation groups, because these
parameters depend strongly on anthropometric fea-
tures (i.e., height and sex) [25].
Following up on these results, the present study

now confirms the high prevalence of dynamic hyper-
inflation in CF adult patients and adds that dynamic
hyperinflation may not influence mild CF from taking
part in DPA.
There is evidence that submaximal exercise related

data (also known as lactate threshold-LT measures) are
more reflective of exercise fitness [36] and would be
more appropriate for comparison with DPA in order to
investigate the possible effects of the latter on exercise
tolerance. When we analyzed the EELVΔ value at sub-
maximal level of exercise (i.e. at LT), which in turn
should reflect more closely normal daily activities, there
was no difference for EELVΔ value between hyperin-
flated and not hypeinflated CF patients. It seems that in
patients with mild to moderate lung obstruction, dy-
namic hyperinflation started during an incremental
CPET where the intensity of exercise become closer to
the zone/range of the maximal effort. So, if we consider
that activities of daily life are of sub-maximal intensity,
they are also likely not to be limited by dynamic
hyperinflation.
We recognize that detecting the occurrence of dy-

namic hyperinflation during daily life activities is import-
ant, but may be unfeasible in clinical practice. However,
this can be determined alternatively during CPET. More
studies may be interesting to evaluate the role of
dynamic hyperinflation induced by exercise on daily ac-
tivities, especially in CF patients with more advanced
disease. In agreement with Stevens’ comment [12], we
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would expect a greater incidence of dynamic hyperinfla-
tion during exercise in patients with severe CF (i.e.,
FEV1 < 30%pred).
The study has important limitations. Firstly, the cohort

is small and from a single centre so it has limited
generalizability to the whole CF population. Secondly,
more males than females were recruited. This was unin-
tentional and a result of patient enthusiasm to partici-
pate at the study, but we recognise this may affect the
interpretation of the results. Finally, because it is a
cross-sectional study, it cannot establish a causal rela-
tionship, but instead an association between dynamic
hyperinflation and PA.

Conclusion
In CF patients with mild to moderate lung impairment,
dynamic hyperinflation during exercise is very common
and seems not to be a limiting factor for daily physical
activity. More research is needed to study directly the
development of dynamic hyperinflation during daily life
activities and to establish whether hyperinflation could
influence habitual PA in more advanced CF disease.
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