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Polymer gels are porous fluid-saturated materials
which can swell or shrink triggered by various
stimuli. The swelling/shrinking induced deformation
can generate large stresses which may lead to the
failure of the material.

In the present research, a nonlinear stress-diffusion
model is employed to investigate the stress and the
deformation state arising in hydrated constrained
polymer gels when subject to a varying chemical
potential. Two different constraint configurations are
taken into account: (i) elastic constraint along the
thickness direction, and (ii) plane elastic constraint.
The first step entirely defines a compressed/tensed
configuration. From there, an incremental chemo-
mechanical analysis is presented. The derived model
extends the classical linear poroelastic theory with
respect to a prestressed configuration. Finally, the
comparison between the analytical results obtained
by the proposed model and a particular problem
already discussed in literature for a stress-free gel
membrane (one-dimensional test-case) will highlight
the relevance of the derived model.
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1. Introduction

Polymer gels are porous fluid-saturated elastic materials which swell and shrink in response to a
large variety of environmental stimuli (e.g. temperature, light, pH, moisture). In the last decade,
the scientific community [1-7] have been attracted by these promising materials due to their
application in multifunctional devices.

The swelling/shrinking induced deformations, due to hydration and dehydration cycles, can
generate large stresses which may significantly reduce performance, lead to failure, and
determine fracture and fatigue phenomena [8] which in polymers have been rarely investigated
within a modeling framework [9,10].

Two main approaches are widely employed in literature: nonlinear and linear formulations. As
stated in Doi [11], the modeling of the key process in polymer gels, i.e. the swelling/shrinking
process, is not a simple diffusion of a solvent through a polymer network. Rather, it is useful
to consider the solvent-polymer mixture as a single homogenized continuum body which,
once immersed in a solvent bath, swells until it reaches a homogeneous stress-free equilibrium
(reference) state. Starting from that reference state a coupled chemo-mechanical problem is
formulated within a nonlinear mechanics framework which allows to catch the huge swelling-
induced deformations, defining the so called stress-diffusion theory [12-17]. However, in some
situations, linear formulations can describe even moderately large deformations. Among these,
the poroelastic model may be viewed as an incremental linear model based on small perturbations
of a reference state which are induced by small changes in the environmental conditions [18-20].
Generally, linear stress-diffusion theories assume a stress-free reference configuration and there
is no attempt to consider instead a prestressed one [11,12,20,21]. However, there are situations
where it is useful to take into account the stressed state of a configuration, as for example in
a single membrane of a fuel cell stack. In fact, hydration/dehydration cycles can induce the
swelling /shrinking of each layer. Therefore, the single membrane can potentially be viewed as
a gel body under mechanical loads or confinements, see also the work of Kusoglu et al. [22].
The effect of the surrounding bodies will be taken into account through linear springs which can
generate a residual stress state into the gel. This aspect distinguishes the proposed model from
the existing scientific literature and makes this manuscript an asset for future investigation.

The aim of this article is to develop an incremental approach of the stress-diffusion problem
starting from a prestressed reference state, and to investigate eventual critical conditions which
may be induced by mechanical confinements. We consider a gel body which lays in equilibrium
and it is confined by a system of uniformly distributed elastic springs at rest in a bath of
assigned chemical potential. The stiffness of the springs may be different between the in-plane
and the out-of-plane direction. An increase (decrease) of the equilibrium chemical potential
determines a water uptake (release), and, as a consequence, the gel swells (shrinks) while springs
shorten (elongate) generating uniform compressive (tensile) stresses. Once this prestressed
state is fully characterized, the incremental problem induced by a further small change in the
chemical potential is formulated within a thermodynamically consistent framework. Finally, the
incremental model is applied to investigate the incremental dynamics of a thin plate-like gel body,
and estimates the space and time evolution of the key chemo-mechanical variables.

The paper is organized as follows. In Section 2, the well-known nonlinear stress-diffusion
theory is recalled. In Section 3, the stress-diffusion model is applied to a gel with mechanical
confinements. In Section 4, the thermodynamically consistent incremental problem is presented
for a prestressed reference state. The proposed model is validated by showing that the standard
poroelastic theory for a stress-free reference state and the incremental elastic theory from a
prestressed state can be easily recovered. Finally, in Section 5, our model is applied to a plate-like
body in order to obtain a one-dimensional time-dependent closed form solution.
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2. Background

In this section, the well-known nonlinear stress-diffusion problem [14] is recalled in order to pave
the way for the next investigation.

Three different states of a gel body are introduced: (i) a dry state By, (ii) a swollen and stress-free
state B, and (iii) an actual state B; (see figure 1). The model is based on two state variables: (i) the
displacement field uy(Xy,t) from By (Jug] = m), and (ii) the molar water concentration per unit
dry volume c4(Xg,t) ([cq] = mol m~?). The point X € B is a material point, ¢t € 7 is an instant
of the time interval 7, and =z = X + uy(Xy, t) is the actual position of the point X at the time ¢.

By

Bt

Figure 1. Dry gel state B, (red shape) and the swollen stress-free state B, (pink shape) only differ for a change in size,
while the actual state BB; (violet shape) in general differs from 34 and B3, for a change in size and possibly in shape.

The thermodynamics of the model is derived from the classical Flory-Rehner model, which is
based on a free energy v per unit dry volume ([¢)] = J m~3). The free energy v depends (i) on the
deformation gradient F; = I 4+ Vug from the initial dry configuration of the polymer gel through
an elastic component 1, and (ii) on the molar solvent concentration ¢4 through a polymer-solvent
mixing energy {m. It holds: ) = e + 1)m. Moreover, it is assumed that a volumetric constraint,
prescribing that changes in volume are only due to solvent absorption or release, holds:

dvt

— =detFyg=1+ 2.1

av, ~detFa + f2¢q, 21)
being dV; and dv: two volume elements at X; € B; and at x € B, respectively, and being {2 the
molar volume of the solvent ([£2] = m? mol 1)
The constitutive equation for the dry-reference stress S, ([Sy] =Pa=1J m~?) and for the chemical
potential p ([u] =J mol 1) stem from thermodynamic issues in the form

Sa=8Sa(Fq) —pFy and p=p(ca) +p92, (2.2)
with
Sa(Fq) = aF, and  p(cq) = Doy (23)

where F* = (det F)F~ T and the pressure p ([p] = Pa) is the reaction to the constraint (2.1). The
Flory-Rehner thermodynamic model [23,24] prescribes a neo-Hookean elastic energy e and a
polymer-solvent mixing energy:

Ye(Fa) = g(Fd Fg—3) and ¢m(cq) = RT;F

h(ca), 24
being G (|G] = Jm™?) the shear modulus of the dry polymer. The variable h(c,) is given by:

.ch
Xl—‘rQCd’

¢
hea) = 2 calogy— QdCd + (2.5)
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being R ([R] =] K~ ! mol™1), T (|T] = K), and x the universal gas constant, the temperature, and
the dimensionless Flory parameter, respectively. From equations (2.3); and (2.4)1, we derive the
constitutive equation for the dry-reference stress S;(F ), while from equations (2.3)2, (2.4)2, and
(2.5) we derive the constitutive equation for the chemical potential p(cq). It follows that

S(Fg)=CF, and pleq) =0 W (ca), 2.6)

where the prime ()’ denotes the derivative with respect to the independent variable and

¢y n 1 n X
14 02cqg 14+02c¢qg (A+02c¢cq)2 )"

B (cq) =02 <log (2.7)
The balance equations of forces and solvent can be written starting from the balance of work and
from the solvent mass conservation, respectively. In the reference state, it holds:

divSy=0 and ¢3=—-divhy in Bg, (2.8)

with the referential solvent flux h, constitutively determined in terms of a positive definite
mobility tensor Md=M(Fd,cd) as hy=—-M;Vyu in such a way to satisfy the dissipation
inequality. Boundary conditions have to be assigned to solve the coupled equations (2.8). As
usual, we have: (i) Neumann-type boundary conditions on the stress vector S;m and on the
solvent flux hy - m, or/and (ii) Dirichlet-type boundary conditions on the displacement uy and

on the concentration cg:
Sdm =s in 6Bds and hd -1 = qq in 8qu (29)
u=u in 0By, and cg=cs in 0By (2.10)

with 0B, 0B4q, 0Bgy, and 0B, the portion of the dry boundary 9B, where tractions, fluxes,
displacements, and concentration, respectively, are prescribed.

€3 ey Bg F, = Bo
V| oy | —— ¢ /
\:’ Bd D M= —00 l:l Bo D M= Mo

Figure 2. The free-swelling from B, to B, is determined by a change in the bath’s chemical potential from the dry
conditions . = —oo (white pattern) to i = po (light blue pattern).

A distinguished problem is the free-swelling one. In that case, a free body is embedded into a
solvent bath of chemical potential 1.0, boundary tractions are null and the confines are permeable.
Moreover, the body is free and the boundary value cs of the concentration on 9B, is assigned
assuming that the gel is in equilibrium with the bath, that is,

u=po with p=up(cs)+ 2p, on 0By. (2.11)

Looking for a homogeneous solution, mechanical and chemical balance laws prescribe S; =0
and g = po. Denoting as F, the gradient F; of the deformation process from B, to B, (see
figure 2), and according to the spherical form of F,, i.e. Fo = AoI, the mechanical balance yields
the pressure p

GF, —pFy=0 = p:)\g:Go, (2.12)

o

being Ao a uniform stretch. We denote G, as the shear modulus reduced by the homogeneous
free-swelling: Go = G/ Ao. With this, the chemical balance yields a nonlinear equation relating yo
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and Ao
1(Jo) + Go 2=po, with Jo=2A, (2.13)

where, with a slight abuse of notation and exploiting the volumetric constraint (2.1), we set

h(cq) =h(Jq) and h'(cq)=02h (Jy), (2.14)
with J ) .
_ - d— 20X
plea) = p(Ja) = RT (log == + - + Jg)' (2.15)

It may be useful to view the free-swollen state 3, as a reference configuration and to introduce the
deformation gradient F =F; F, ! from B, to B;. Using the standard pull-back and push-forward
approach, the swollen-reference stress S, at B, as well as the actual (Cauchy) stress T at B; can

be introduced as:

So—= 28, FT and T= ideg . (2.16)
Jo Jd

Using equations (2.2)1, (2.3)1, (2.4)1, we obtain the following relations:

G

So=—
o Jo

FF,F. —pF* and T= Jid GF,FL —pI. (2.17)

3. Tension and compression states

In this section, the general stress-diffusion model, given in Section 2, is employed to investigate
the hydration/dehydration of a gel with boundary springs. The final state B; = BB is not stress-free
and it is assumed as new prestressed reference configuration for the next step, given in Section 4.
We consider a plate-like body is in free state B, into a bath of chemical potential p,, (see figure
2). The end faces P* of the body have a unit normal +e3, the in-plane sizes have a length L,
and the thickness of the body is h,. Moreover, we denote as m the unit normal at the mantle
(lateral boundary) M of the body. Therefore, 3B, = {P+ UP~ U M}. We assume that the body
is anchored all over the permeable boundary through a uniform field of linear elastic springs
mimicking the effect of surrounding bodies. We assume that the springs are relaxed at B,, and
that their stiffness may be different between the in-plane k and the transverse direction k£ (with
[k, k) | = Pa) (see figure 3).

e3

O B, wall

OB B p=

o = Oe ‘__{ }_' Je
ww f | C p= pie

Oel

Figure 3. Change of the bath’s chemical potential from . (light blue pattern) to p. (blue pattern) determines the
deformation F' and the tractions o. and o | on the boundary 0.

A change in the chemical potential of the bath, from (i, to pe, determines a new process from B,
to B, whose deformation gradient is denoted as F. The latter deformation process is influenced
(i) by the stiffnesses k and k of the boundary springs acting on the mantle and on the end faces,
respectively, and (ii) by the chemical potential .. We assume that F has a transversely isotropic
structure which is described by the homogeneous stretches Aand A | : F = M + )\ | e3 ® e3, where
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weset \1 =X =X\ A3=2A,and 1=1 - e3 ® e3. Mechanical and chemical boundary conditions
prescribe that

Tm=0cem on M and Tez3=o0,. €3 on ’Pi, (3.1)

whereas p=pe all over 0B. Assuming that the homogeneous (Cauchy) stress shares the
transversely isotropic structure of F and has the form T =01 + 0 e3 ® e3, we have

0c=0e¢, 0] =0, and pu=pe, (3.2)

everywhere in B. We assume that the following representation holds for the external tractions oe
and o, due to the boundary springs:

Je:—k(k—l) and UeJ_:_kJ_()\J__]-)- (33)

The new equilibrium state is characterized by the external chemical potential pe. The
corresponding equation of chemical equilibrium prescribes that:

w(JJo) + 2p=pe with J=A2A, . (3.4)

When the chemical potential varies, the swelling-induced deformation of the body determines
a change in the length of springs while uniform normal stresses act on 9B. We consider the
following scenarios.

o The chemical potential decreases, that is p1e < po: the gel expels solvent and shrinks (A < 1
and A | < 1),soreducing its volume, the springs elongate, thus generating uniform tensile
stresses oe and 0. (tension zone).

o The chemical potential increases, that is pe > ji0: the gel absorbs solvent and swells (A > 1
and Aj > 1), so increasing its volume as shown in figure 3, the springs shorten, thus
generating uniform compressive stresses o. and o, (compression zone).

When pie = j10, the springs stay relaxed and no further deformation processes take place (F =1I).
In the general case, equations (3.2) define the homogeneous problem to be solved to characterize
the state B. The constitutive equations (2.17)2 and (3.4), for both the stress and the chemical
potential, are given by

G _ GoAy

U—I*% [N By

—p and pu=p(JJo) + 2p. (3.5)

By inserting equations (3.2) into equations (3.5) the following nonlinear system with three
unknowns (A, A ,p) is defined:

Go e k(r—1), (3.6)
AL
GoA

i\zL —p=—k (AL 1),

JJo —1 1 X
rr (1 p= e
(Og 770 +JJ0+J2J§>+ P e

We studied the two limit cases: (i) k=0 and (ii) k&, =0, corresponding to a body B elastically
constrained only at the end faces P* or at the mantle M, respectively. The solutions of the two
problems are investigated and represented in figures 4 and 5, by considering ., = —50 J mol !
and G = 10 x 10* Pa [16] (to which corresponds o, = 1.615 and G/, = 6.193 x 10* Pa). A recap of
the employed constants and parameters is presented in Table 1.
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Table 1. Constants and parameters employed in the proposed simulations [16].

Parameter Value Unit
R 8.3145  Jmol 'K™!
T 288.65 K
02 6 x 1075 m? mol !
G 10 x 10% Pa
X 0.2 —
Ao 1.615 —
o —50 Jmol !

(i) Elastic constraints along the thickness (k = 0)

In the first case, elastic constraints are present only in the thickness direction, that is the body B,

is constrained only at the end faces Pi, while the stiffness of the springs on the mantle M is set

to zero, i.e. k = 0. The system (3.6) reduces to the following equations with unknowns A and A :
)\J_ _ 1 GD

N2 WZ*QL (AL — 1), N(JJO)JFQI:ME’ (3.7)

where weset o] =k, /G.Once, solved them, the pressure p can be determined from the equation
(3.6)1 or (3.6)2. An overview of the solution of the problem can be obtained by looking at the
intersection points in the A=A plane of the equations (3.7), see figure 4(A). Moreover, figure 4(B)
shows the stress state corresponding to a choice of e and o .

[Jtension zone []compression zone ‘
| p o1 /Go

| I | I | I | |
= 1
(B) o \\'T—o.r—
B —0.2
B —20 0, T —T—-02 0.5
- A T 01—
- L —40 | o
o
-5 g 0—e 0— | 0
I —60 -
2 | |
- /
I —80 | o s
- ! /
i 100 | | o -02
o ‘ I I -1
0 0.5 1 1.5 2 2.5 3 0 1 2 3 4
A ol

Figure 4. (A) The iso-potential lines je = —100, —75, —50, —25,0 Jmol~! range from o = —100 Jmol~! (dark
violet solid line) to e =0 Jmol~! (light violet solid line) and are obtained from equation (3.7)2. Dashed lines are
obtained from equation (3.7)1 for «; =0, 2,4 (gray, green, and orange dashed lines, respectively). The intersections
between dashed and solid lines deliver the A, A solutions corresponding to those specific values of . and . (B)
Isolines of the dimensionless stress o | /G,. The red, black, and blue crossed dots correspond to the same states.

The solid isolines in figure 4(A) show the chemical potential in equation (3.7)2 corresponding to
e = —100, =75, —50, —25,0 J mol ™ L according to the arrow’s direction (solid lines with different
shades of violet). The dashed isolines correspond to equation (3.7); for a; =0,2,4 (gray, green
and orange dashed line, respectively). All the possible solutions of the system (3.7) are given by
the intersections between the solid and the dashed lines. As it is expected, for pe = po = —50

—0.5

H
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Jmol™! (intermediate violet solid line) and for each value of |, the solution is trivial: no
further deformation from B, is induced, A=\ | =1 and F =1 (black dot). For values pe > —50
Jmol ! (lighter violet solid lines), all the solutions show A > 1and A > 1, that is the gel absorbs
solvent, swells and undergoes compression while the springs shorten (light red area). In absence
of springs, that is for a; =0 (gray dashed line), the body increases its volume in stress-free
conditions without any changes in shape (A =\ ). However, for values a; # 0 and increasing
from o) =2 (green dashed lines) to o) =4 (orange dashed lines), fixed pe =0 J mol ™! (light
violet solid line), the plane stretch A increases while the transverse stretch A decreases, being
the latter (out-of-plane) direction constrained by stiffer springs (k; > k). For values pe < —50
Jmol ™! (darker violet solid lines), the opposite behavior is observed. All the solutions show for
A<1land A <1, that the gel expels solvent, shrinks and undergoes tension while the springs
elongate (light blue area). The solid isolines in figure 4(B) show the dimensionless stress o | /Go.
The light red and the light blue colored parts of the panel identify the same compression and
tension zones as in figure 4(A). The black isolines identify the zero stress states corresponding to
e = [to, for any values of o) (horizontal black line), and to a; =0, for any values of pe (vertical
black line). Large stresses are achieved for large chemical stimulus |pe — po| > 0 and for stiffer
springs, i.e. for a) increasing from 0 to 4.

(i) Plane elastic constraints (k; = 0)

In the second case, elastic constraints are present only in the in-plane direction, that means that
the body B, is constrained at the mantle M, while the stiffness of the springs on the end faces P*
is zero, i.e. k) = 0. The system (3.6) reduces to the following equations:

1A Go\,
AL Ao AoA2 22

a(A=1), p(JJo)+ 12 = He , (3.8)
in the unknowns X and A | and with o = k/G. As in the previous case, figures 5(A) and 5(B) show
the solution of the problem through the same graphical representation in the A-X | plane, together

with a representation of the stress state corresponding to a choice of i and a.

[Jtension zone []compression zone ‘
‘ p c/Go

Ll Ll Ll |1 Ll Ll Ll | | I | | | I | I | 1
(A) 3 : 7 B) o . ——
- \ Ha=2 s = 1
2.5 | : a=0] | A
; 7 —20 ~0.2 0.5
2 / —~ 1 S0y 02
; p To_40 | T 0
1 v Q
<15 E 0 o—| 0
60
¢ ) 0.1
/
1 = or
05
0.5 h / **
. 4 ©
\‘ —100 | I /
0 T TT TT T TT T T T T T T T -1
0.5 1.5 2.5 0 1 2 3 4
by «

Figure 5. (A) The iso-potential lines fie

100, —75, =50, —25,0 J mol~! range from pe = —100 J mol~1! (dark

violet solid line) to pe =0 Jmol~! (light violet solid line) and are obtained from equation (3.8)2. Dashed lines are
obtained from equation (3.8); for o =0, 2,4 (gray, green, and orange dashed lines, respectively). The intersections
between dashed and solid lines deliver the A, A solutions corresponding to those specific values of ue and a. (B)
Isolines of the dimensionless stress o /G,. The red, black, and blue dots correspond to the same states.
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All possible solutions of the system (3.8) are given by the intersections between the solid and
the dashed lines in figure 5(A). The bisector of the A-A | plane (gray dashed line) represents the
solution of the equation (3.8); corresponding to = 0. The trivial solution is identified by the
intersection of each curve of « (gray, orange, and orange dashed lines) with the solution of the
equation (3.8)2 corresponding to pe = po = —50 J mol ™! (black dot). Compression and tension
zones are obtained for values e > —50 J mol (lighter violet solid line) and p1e < —50 J mol !
(darker violet) solid line, respectively. The intersections of the isoline pe =0 J mol ! (light violet
solid line) with the isolines going from « =2 (green dashed line) to o =4 (orange dashed line),
identify an opposite situation with respect to the previous problem with plane elastic constraints:
transverse stretches )\ increase while plane stretches A decrease, being the in-plane direction
constrained by stiffer springs (k > & ). The solid lines in figure 5(B) are the contour plots of the
dimensionless stress 0/Go. As expected, larger stresses are obtained with respect to the case with
elastic constraints along the thickness, see figure 4(B), due to the presence of an higher number
of springs. In fact, plane elastic constraints are placed in two directions: e; and e3. The red
(compression), black (stress-free), and blue (tension) crossed dots identify the same states in both
figures. It is worth noting that an appropriate combination of the two parameters (a and )
results in a particular stress state (compression or tension) within the gel sheet.

4. Incremental analysis of the stress-diffusion problem

In this section, once the state B is entirely characterized according to the formulation given
in Section 3, we want to investigate a further hydration/dehydration of the gel under the
assumption of small changes. We present a thermodynamically consistent incremental analysis
of the stress-diffusion problem from the prestressed reference configuration B.

When a further change in the chemical potential p. is introduced, a new deformation process
from B is determined, whose gradient is denoted as F. Therefore, the gradient of the deformation
process from B, to B; can be represented in terms of a sequence of deformation processes from
BjasF, ;= f"(FFo) (see figure 6).

,,

Figure 6. Sequence of deformation processes from the dry state 3,4 (red shape) to the actual state 3; (purple shape).

For a chemical potential changing from pie to pe + €fi, with € < 1, we state that the change is small
and the whole induced mechanical problem can be studied through an incremental approach,
based on a linearized analysis around the stressed state 5. Therefore, F= F(e) =1+ eH, that is,
F is a small deformation superimposed to the deformation FF, and F(0) = I [21].
Correspondingly, the reference stress S is represented as S(e¢) = S + €S, with Sy as the stress at B
(corresponding to F= I) and with S the so called incremental stress. It is worth noting that S is
equal to the Cauchy stress T at B, corresponding to the deformation process F; = FF,, usually
called prestress, and

So=To= G (FF,) (FF,)T — poI , (4.1)

1
J Jo
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being p(e) = po + €p, with pg the pore pressure at B corresponding to F =1 ! The latter variable,
i.e. p, is given by the solution of equations (3.6). Moreover, the form of the prestress Sg depends
on the boundary elastic springs which also determines the deformation map F.

We also assume that the concentration ¢ per unit of reference volume 3 and the chemical potential
p within the body, both existing at B, allow a similar representation:

c=co+ey and p=pe + €, (4.2)

where cg and -y are the concentration at 3 and its increment, respectively, both per unit volume in
B, and pe is the value of the chemical potential at B with /i its increment.
Finally, we deal with the incompressibility constraint: starting from the equation (2.1) and by
using the proper change of density, we get 2

dv

. -1
M—JJJQ-l"‘QCd—l""QJJoC = J_JJO

+R2c=14+2(c—co)=1+ Ney. (4.3)

Moreover, being J =det F, we also get

Je)=1+el-H=1+ Qey. (4.4)

Therefore, the incremental version of the incompressibility constraint prescribes that {2y =1 - H.

(@) Incremental thermodynamics

Following Ref. [21], we analyze the incremental problem starting from a O(e?) thermodynamics,
that is, we develop both the external work and the time rate of the free energy up to O(e?).
The mechanical and the chemical external work W(P), being P C B, can be expressed as

W(P):L (s-i‘+uc>h~w) : 4.5)

with h = eh. Implementing the incremental approximations and deriving the time rate of the
concentration field from the volumetric constraintdet F =J =1+ 2(c — ¢q) as

1
‘0

we get for the internal work density w the following representation

[I eI H)I - eHT] e’ (4.6)

= CHa HerE
w—e(SO H+ H))
+ (S 4K ((I-H)I-H—(HT-H)) +Pa.\) —h-via). 4.7)
? 2
The free energy density per unit volume of B is defined from 1) through a change in density as
1 . = RT ~
ﬁ(we(Fd) + ¢Ym(cq)) with Fg=FFF, and ¢m(cq)= Wh(det(FFFo)) , (4.8)
o

being JJJ, = det(FFF,) = det Fy and J = J (). We get

%we(f‘(e)FFo) = %G + ¢GHFF, - FF, + %62GHFFO . HFF,, (4.9)
o
and
1 ~ 1 ’
= I-H .
T h(J(€)J Jo) T h(JJo) 4+ eh' (JJo)( )+ (4.10)

%3 (JJoh" (1) - H)” + 1/ (JJo) (- BT - HT) - H) |

'Equation (4.1) is obtained by using equation (2.17)s for the deformation process F 4 = FF,,.
2The identity 1/JJ, =1 — £2¢¢ is employed in equation (4.3). This identity comes from the first order term in e of the
linearization procedure of the constraint (2.1).

10000000 V 208 4 0014 Buo-BuysiandAieioseforeds



where 1’ denotes the first order derivative of h(J;) with respect to its argument. 3

(b) Incremental dissipation inequality

Once performed the incremental analysis of the external work and of the time rate of the free
energy, we formulate the incremental thermodynamics. We require that the incremental problem
is consistent with the dissipation inequality enforcing it up to O(e?):

d 1
W(P)—Ejpn(il)e-kdim)dVZO, PCB, 4.11)

along with any incremental process. By using the aforementioned approximations for both the
work and the free energy density up to 0(62), i.e. equations (4.7), (4.9) and (4.10), the incremental
version of the dissipation inequality takes the form:

G

Hey RT,, _ G T\ ¥
e<so+ A AL JJOFFO(FFO) ) H+ 4.12)

é2 <s + %1 - %T (FI6h" (1o)X - FOT 4+ K (1) (1 H)T — HT))

G
JJo

+ %((I 8 29) g < ) HFFO(FFO)T> H- & (ﬁ : Vﬁ) >0.

The term of first order in € in the incremental dissipation inequality (4.12) (first line) is identical to
zero, as it can be easily verified by using equations (4.1) and (3.4). The terms of second order in € in
the incremental dissipation inequality (4.12) (second and third lines) are the approximation of the
dissipation inequality obtained by applying the incremental theory and can be roughly rewritten
as:

(S — F(F,Fo, pre, 1 (JJo), b (Jo), H) + %I) ‘H—h-Vi>0. (413)
The incremental theory is thermodynamically consistent, that is, following [25], the dissipation
inequality is satisfied along any incremental process [26-28]. Moreover, we also assume that the
dissipative components are only related to the diffusion problem and take

S = F(F,Fo, e, ' (JJo), b (J.J,), H) — %I and h=-MVj, (4.14)

being the mobility M a positive definite tensor. So, the incremental stress depends on both
the reference state B through the list ig = (F,Fo, sic, K’ (JJo),h''(JJo)) and the incremental
deformation through H. On the other hand, the incremental flux is assumed as depending
on the reference state B through the mobility tensor M which may depend on the list Iz
and must be positively definite. Little manipulations allow to simplify the representation of
F(F,Fo, pie, W' (JJo), ' (JJ,), H) and write the incremental stress S as:

S=C[H] - 5I, (4.15)

being p = fi/2 usually defined as the pore pressure in the poroelastic theory [18], and where the
incremental elasticity tensor C is defined as

G 1 RT
C[H] = - HBo + (e — w(JJo))(HT — (I- H)T) + ?Jjoh”(JJO)(I "H)I, (4.16)
o
being By = (FF,)(FF,)T the right Cauchy-Green strain tensor corresponding to the deformation
of gradient FF,. It is worth to note that the second term in equation (4.16), that is pre — pu(JJo), is
3That derivative is evaluated at e = 0, that is when F = I + ¢H = I, therefore J4 = JJ J, = J J,, as follows:

dh(Ja)

h'(JJ,) =
dJa |y, =77,
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obtained — by using the equations (3.4), (2.6)2, (2.14)2 and (4.1) — as follows:

G
JJo

% (te — p(JJo)) = % (e — RTH (JJo)) = po = % I. (

By — so) . (4.17)
Finally, the balance laws for the incremental chemo-mechanical problem are
divS=0 and 4=-divh inB, (4.18)

which can be solved by considering suitable chemical and mechanical boundary conditions.

(c) General reduced models

In order to validate the proposed incremental theory, we show that two well known problems in
literature, namely (i) the classic linear poroelastic theory [18,21], and (ii) the standard incremental
problem of elasticity around a stressed state [29], can be derived as two limit cases.

Poroelastic theory

The classic poroelastic theory [18] can be viewed as an incremental problem from a stress-free
reference configuration [21]. Correspondingly, our problem may be viewed as a prestressed form
of the classic poroelastic theory which, to the authors’ best knowledge, has been not yet proposed
within the scientific community. When the prestress is zero, i.e. So =0, the configuration B is
stress-free. Therefore, k = k| = 0 or, equivalently, B = B,. With this, F, = AoI and F =1, and the
incremental deformation process F = F4F, ! brings 5, to B.

According to the aforementioned assumptions, the equation (4.15) is reduced to:

s S Cur_ (BT, SYamio;
S={H+ H <QJ0h (Jo)+>\o>(1 H)I — jI (4.19)

—2GE + (K—%G) (I-E)I—jI,

where equation (4.17) is employed, and where H - I=E - I with %H +HT = E, while G and K
are the poroelastic shear and bulk moduli defined as in Ref. [21].

Residual stress in an elastic body

When the chemical field due to solvent transport is neglected, i.e. when only the mechanical field
is considered, our incremental problem reduces to the elastic incremental problem with respect to
a prestressed configuration, as in Ref. [29]. Indeed, the dissipation inequality (4.12) reduces to:

G : e
€ <s0 - FFO(FFO)T) TH4 € [s -
o

o

HFFO(FFO)T] H>0. (4.20)

Again, the term of first order in e is identically zero, as it can be verified from the constitutive
equation (4.1) for Sg (the material is assumed compressible, hence pg = 0). The term of second
order in e delivers the incremental stress S. All in all, it holds:

S=Sp+eS=Sg+e¢ f] HFF,(FF,)T =S + ¢C[H]. (4.21)

o
In this case, it is useful to additively decompose the increment H of the deformation gradient F
in the standard symmetric and skew-symmetric part, E and W, respectively,as H=E + W and
show that

CIW]= WSy, skwC[E] = (BSy — SoB), and sym C[E]=C[E]. (4.22)
By inserting the previous formulas (4.22) into equation (4.21), the reference stress S takes the same
form as in the work of Hoger [29]:

§ =So + «(WSo + C[E] + 5 (BSo — SoE)) (4.23)
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5. Incremental problem

In this section, the general incremental analysis presented in Section 4, is applied to a one-
dimensional time-dependent problem in order to derive a closed-form solution and investigate
the effects of the prestress on the main chemo-mechanical variables.

The unknown fields which completely determine the incremental gel dynamics are the
incremental displacement field u, and the incremental concentration field ~. These variables
satisfy the balance equation of forces

divS=0 with S=C[H] -5I, and (5.1)
the balance equation of solvent mass
4=—divh with h=-MVji=-MV25, (5.2)

respectively. Moreover, the two unknown fields are coupled through the linearized expression of
the volumetric constraint within the incremental framework:

Qy=1-H. (5.3)

The initial and boundary conditions of the differential system identified by the equations (5.1)-
(5.3), depend on the particular configuration investigated.

One-dimensional model

With the aim of appreciating the differences induced by the compressive or tensile prestressed
states in the reference configuration 3, we consider a one-dimensional problem already discussed
analytically and experimentally by Doi [11] and Yoon et al. [20]. Therein, a linear poroelastic
theory for a stress-free reference configuration is employed to investigate a thin gel sheet which
(i) is glued to a rigid impermeable wall of unit normal e3 at its bottom surface (x3 = —h) and (ii)
is free at its top surface (z3 =0) (see figure 7). Furthermore, in [20] experimental observations
have been used to validate the performed analytical investigations. In the following, the same
problem is discussed by using our linear poroelastic theory for a prestressed configuration. It is
worth noting that, for this particular case, the diffusion and the elastic problem can be solved
sequentially.

el I

es
0 o1
_he
B M B, Nwall Ewall (clamp) L= pe Cp=pe+p
Figure 7. Prestressed thin gel sheet clamped at its bottom surface (x3 = —h) and free at its top surface (z3 =0). A

change in the bath’s chemical potential from p. (blue pattern) to i + & (dark blue pattern) determines the incremental
problem described by the deformation F.

As the in-plane dimensions of the gel are much larger than its thickness, it is assumed that solvent
is driven inside/outside the gel mostly from its top surface once a change fi in the chemical
potential pe occurs. Therefore, the incremental flux shows only a component in the e3 direction,
which is a function of the thickness coordinate z3 and of the time ¢: h= hs(z3,t)es. The same
property holds for the incremental potential fi = ji(x3,t) due to the Darcy’s law (5.2)2, as well
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as for all the fields involved in the analysis. Moreover, as the sheet is thin, the only meaningful
component of the displacement vector u is the component normal to the wall:

u=u+wez, with w=w(x3,t) and G=0, (5.4)

with G =wue; + vey the two in-plane components of the incremental displacement field.
The incremental stress S = S(z3,t) can be written in terms of its in-plane and out-of-plane
components as S =51+ G33e3 ® es. According to the aforementioned assumptions and by using
the expression (4.15), it holds:

o= Q(A07)‘a>\L)€33 _ﬁa and 533 :-A()‘O7)\a>\L)E33 _ﬁa (55)

with H - e3 ® e3 = £33 = Ow/Jx3 the deformation in the thickness direction, and where

0o, M AL ) = (—po + %Jjoh”(.]]o)) Jand (5.6)
and
Ao, A1) = ﬁ,\g,\i + EJJoh”(JJO) (5.7)
JJo [7;

are two functions which are fully defined by the solution of the reference stressed state 5,
previously discussed.

The balance of forces (5.1) prescribes that 533 3(x3, t) = 0 and can be solved by using the boundary
condition of free stress at the tip, i.e. 533(0, t) = 0. Therefore, by using equation (5.5)2, it holds that

G33=0 = Ao, M, AL )esz =p. (5.8)

It is useful to introduce an incremental in-plane resultant force per unit length F(t):

0 0
FO = | seat)day=(@-A) [ canlos.t)das, 69)
—h —h
where, in the last step, equations (5.5); and (5.8)2 are employed. The integration of equation (5.9),
together with the clamp boundary condition w(—h, t) = 0, gives an expression for the incremental
tip displacement which corresponds to the change in thickness of the sheet:

F(t)
9-A°

w(0,t) = (5.10)
In steady-state, when t =1, the incremental chemical potential inside the gel is the same of
the surrounding environment, that is fi(z3,t) = 2p(x3,t) = 4. Therefore, the integration of
the equation (5.8)2 in steady-state conditions gives the following expression of the stationary
incremental tip displacement:

h

T07 (5.11)

0 0
J 633(w375)d933:lj p(as,t)des = w(0,t)=
—h AJ_ h

Equations (5.10) and (5.11)2 share the same structure like the ones in [20], even though the
different denominators take into account the different reference configuration adopted in our
research, which is not stress-free and reached through two steps: (i) a stress-free step F,,, and (ii) a
constrained not stress-free step F. It is worth noting that in [20] the reference configuration of the
incremental problem is reached through a one-step and stress-free deformation process which is
named as Foo = Mool in this work.

A comparison between the tip displacement in steady-state conditions of the proposed model
w(0, ), see equation (5.11), with the one presented in [20] wy (0, ?) is discussed. The displacement
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ratio and the relative change of the displacement are:

w(0,t)  3Koo +4Goo w(0,1) — wy (0,1)
= , and V= —2+>—=- 7
’LUY(O,Q 3A wy (07'5

being Goo and Koo the classical poroelastic shear and bulk moduli [21], respectively, defined as:

(5.12)

Goo = i , and Koo = ﬂJooh”(JOO) - EGOO ) (5.13)
)\OO Q 3
where Joo = A3, with Moo the stretch related to the deformation process Foo = Aool which
identifies the reference stress-free configuration in [20]. The parameter Ao, is evaluated through
equation (2.13) as a solution of the free swelling problem induced by 1 = f100:
G
w(Joo) + SV 2= pioo, (5.14)

oo

with oo = e in order to have a consistent comparison within equations (5.12).

The isolines of the relative change of the displacement 7" are expressed as percentages in figure
8(A) for a reference state with elastic constraints along the thickness direction (case (i) developed
in Section 3 when k = 0), and in figure 8(B) for a reference state with plane elastic constraints (case
(ii) developed in Section 3 when &k = 0). A point of the isoline corresponds to a particular choice
of fie, ) and pie, a for each case, respectively.

Figure 8. (A) Isolines T for a reference state with elastic constraints along the thickness direction £ = 0. (B) Isolines 7
for a reference state with plane elastic constraints k| = 0. Large values of 1" are identified by cyan solid isolines, while
low values by magenta solid isolines. The red, black, and blue dots correspond to the same states.

Large tip displacements w(0,%) with respect to wy (0,%) are represented by cyan solid isolines
(positive percentages). Otherwise, small tip displacements w(0, ) with respect to wy (0,%) are
represented by magenta solid isolines (negative percentages). Zero relative changes of the
displacement (black isolines), that is = 0%, are achieved for pe = po, for any values of o)
or a (horizontal black isoline), and for a; =0 or =0, for any values of p. (vertical black
isoline). Under these conditions in both cases, the one presented in [20] and the one here
discussed, the reference configuration is stress-free, thus determining the same tip displacements
w(0,%) =wy (0,t). As expected, the gel reaches lower tip displacements than the one in Ref. [20]
when a compressive prestress (light red zone) is present. Vice versa, the gel reaches larger tip
displacements when a tensile prestress (light blue zone) is present. Finally, the behavior of the
relative change is in accordance with the trend of the corresponding dimensionless stresses,
ie.o) /Goand 0 /G, as shown in figures 4(B) and 5(B). It is worth noting that all the expressions
presented in this section can be reduced to the standard poroelastic problem given in [20] by
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substituting A=A =1 and Sp =0 in order to bring the problem back to a stress-free reference
configuration, and by using the definitions given in equations (5.13). *
Finally, the time derivative of the volumetric constraint (5.3) is given by using equation (5.8):

1 .
s (5.15)
Equation (5.15)2 can be substituted in the one-dimensional balance equation for the solvent,

that is equation (5.2), in order to obtain a partial differential equation in space and time for the
incremental chemical potential fi:

. 1.
Q’y:I-H:€33 = Q’YZZPZ

i=p 2 (@> with D =MAQR?, (5.16)
Oxs \ Oxg

where the mobility is defined as M = x(1£2?) ™!, with  ([x] = m?) the permeability of the gel and
1 ([n] = Pas) the viscosity of the solvent.

Equation (5.16) takes the familiar form of the diffusion equation, with D a constant parameter
whose unit of measures equals the ones of a diffusivity coefficient. Equation (5.16) can be solved
once suitable initial and boundary conditions are imposed. At the initial state the incremental
potential is zero: fi(z3,0) = 0. At the top surface, the incremental chemical potential equals that
of the surrounding environment: fi(0,t) = . Finally, at the bottom surface, the impermeable
condition holds: n-Vp=n-Vi/2 =0, being n an outward normal in the ez direction. This
condition in a one-dimensional context becomes 9fi(—h,t)/dx3 =0. The complete analytical
solution, in space and time, for fi(z3,t) is obtained by using the approach of the separation of
variables for non-homogeneous boundary conditions which leading to:

_ Iy | Dtr?(2n+1)2\ . [x3n(2n+1)
(s, t) =i+ — nz;o M1 exp (— sin . (5.17)

T 4h? 2h

Then, the profiles of all the other chemo-mechanical variables can be determined according to the
previous relations: p(z3, t), €33(x3,t), v(z3,t), 6(x3,t) and &33(x3,t).

In particular, we are interested in the time evolution of the incremental in-plane resultant force
per unit length F(t) given in equation (5.9). By combining the latter equation with equation (5.8)2,
being aware that p = fi/2, it follows that

. 0
Ft)= (QATA) J_h fi(x3,t) des . (5.18)

Once the integration along the thickness direction of fi(x3, t) is performed, in accordance with the
expression (5.17), an explicit equation for F'(¢) is obtained:

- _ m 0 2 2
S (1 - 2 (2n~1F1)2 o (‘ s >> - 6D

It is worth to note that the total resultant force per unit length F'(t) can be obtained by integrating
the total in-plane stress which includes the prestress:

0
F(t)= J,h (0 +6(x3,t)) dug = Fo+ F(t), with Fy=oh, (5.20)

where Fy = 0 for a reference configuration B with elastic constraints along the thickness (¢ = 0).

In order to represent F(t), further parameters have to be introduced, namely: the incremental
chemical potential in steady-state i = —1 Jmol ! which is in accordance with the assumptions
of small incremental problem, the thickness of the membrane h =5 x 10~* m, the permeability

“The reduction of the proposed model to a stress-free reference configuration, gives that

4 2
A= gGoo + Koo and Q:*§Goo + Koo -
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(A)

F(t) (Nm™b)

of the gel k=1 x 10718 m?, and the viscosity of the solvent 7= 0.2 Pas. °> A recap of these
parameters is given in Table 2. Moreover, the parameters Q and A depend on A and A (i.e. on to
the particular state of the reference configuration B), as shown in equations (5.6) and (5.7).

Table 2. Parameters introduced for the investigation of F(t) which are in accordance with Ref. [21].

Parameter Value Unit
m -1 Jmol ™!
h 5x 1074 m
K 1x 10718 m?
n 0.2 Pas

The time evolution of the in-plane resultant force per unit length F(t) is shown in figure 9(A). The
investigation only deals with the case (i) developed in Section 3 where the reference configuration
B has elastic constraints along the thickness direction (k=0). According to equation (5.20)1,
only in this situation, the incremental resultant force equals the total resultant force, being the
in-plane prestress zero. Among all the possible states of B, described by the couples (A, A ) in
figure 4(A), only the benchmark states identified by a| =2, with e =0J mol ™! (red solid line),
pre = —50 Jmol ! (black solid line), and je = —100 Jmol ™! (blue solid line), will be taken into
account. These states represent a reference configuration in pre-compression, stress-free, and in
pre-tension, respectively. Throughout the manuscript, they are identified by red, black, and blue
crossed dots. A parametric investigation for the solvent viscosity 7 and the gel permeability « is
shown in figure 9(B) starting from the case with pe = —50J mol ! (black solid line).

1.5 - (B) = 05 B
) _:U'c:OJm0171 / B ‘E
| |— e ==50 Jmol ™" i z I
— e = —100 J mol~* =
1 x\Ly:/ 0
0.5 | 5 05 B
g
Z
0 &0
T T T T T
0 1 2 3 0 1 2 3
t (s) 10% t (s) 104

Figure 9. (A) Time evolution of the in-plane resultant force per unit length F(t). A reference configuration with elastic
constraints along the thickness direction is taken into account, with different values of pe: 0 J mol—1! (red solid line), —50
Jmol~1! (black solid line), —100 J mol~! (blue solid line). The light blue and light red areas identify the tension and the
compression zones related to the prestress. (B) Parametric investigation on F(t) for the case pe = —50 Jmol~1 (black
solid line). The parameters analyzed are the solvent viscosity n, with n = 0.1, 0.2, 0.3 Pas, and the gel permeability «,
with k=1 x 10719,1 x 10718, 1 x 10717 m?.

In figure 9(A), the parameter fi is fixed to fi = —1 Jmol ~!. When the chemical potential decreases
with respect to its equilibrium value (pe + & < pe) the gel reduces its volume, expels solvent and
undergoes tension, therefore F'(t) > 0 for each of the value of yi taken into account. Equation
(5.19) clearly shows that when i = 1 Jmol ™! the opposite behavior F'(t) < 0 is described, being fi

5The parameters h, x and 7 are chosen in accordance with the work of Lucantonio et al. [21], even though they have the same
order of magnitude as in the work of Yoon et al. [20].
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only a multiplicative factor for F(t). The exponential term in equation (5.19) regulates the speed
at which steady-state conditions are achieved. The coefficient of the exponential term depends
on D = D(A) with A= A(X, A} ). Steady-state conditions are reached faster when the gel has a
compressive prestress (red solid line) with respect to the case of a tensile prestress (blue solid
line). Indeed, the values of A and X, are larger for pe =0 J mol !, see the red crossed dot in
figure 4(A), with respect to the values of A and A\, for pe = —50, —100 Jmol ™!, see the black
and blue crossed dots in figure 4(A). Therefore, when e =0 J mol ™!, the larger coefficient of
the exponential factor brings the gel faster towards the equilibrium. As expected, for a particular
instant in time, F() shows low values for a compressive prestress (red solid line) with respect
to a tensile prestress (blue solid line): the compressive prestress acts, in the thickness direction,
against the trend of the gel to generate a positive stress. Furthermore, the light blue and the light
red areas identify, as before, the tension and compression zones, delimiting all the solutions for
—100 Jmol ™! < e < —50J mol™!, and for —50 Jmol ™! < e <0J mol ™1, respectively.

The influence of the solvent viscosity 1 and of the gel permeability « is investigated in figure 9(B)
for the case e = —50 Jmol ™! (black solid line), and by keeping fixed all the other parameters.
Obvious conclusions can be obtained by analyzing the equation (5.19). The parameters 1 and
s only affect the exponential term, therefore the steady-state solution remains the same. As
expected, larger viscosity 7 (black densely dashed lines) and lower permeability « (black densely
dotted lines) behave the same way: steady-state conditions are achieved slower. Finally, the
influence of the thickness of the gel h, which is not given in figure, can be discussed by observing
that & influences the steady-state solution, being present in the factor of the exponential, and the
speed of the gel to reach steady-state conditions, being present in the coefficient of the exponential.

6. Conclusions and outlook

In the present research, two main topics results are discussed.

First, the nonlinear stress-diffusion model is employed to investigate the stress state arising in
constrained hydrated polymer gels when a change in the chemical potential leads to swelling or
shrinking. The constraints are represented by a set of elastic springs mimicking homogeneous
mechanical confinements. It is shown that swelling induced deformations and stresses develop
according to the boundary conditions of the problem: (i) the initial and the final chemical
potential, and (ii) the stiffness of the mechanical constraints. A parametric investigation is
performed considering two limiting cases with elastic constraints just along (i) the out-of-plane
direction, and (ii) the in-plane constraints. The performed analysis can be potentially exploited to
study all kinds of problems in which boundary effects are induced by other bodies, e.g. the effects
generated by other layers on a single membrane in a fuel cell stack.

Second, an incremental theory for stress-diffusion starting from a prestressed reference state is
developed in a thermodynamically consistent way. The proposed model can be viewed as a linear
poroelastic theory for prestressed configurations, which has not yet been presented within the
scientific community. A validation of the proposed formulation is accomplished by a comparison
with two limiting cases already discussed in literature. As expected, the linearized equation of
the incremental stress depends on the state of the reference configuration: in particular it depends
on (i) the prestress, (ii) the initial stretch of the membrane, and on (iii) the difference between the
reference and the final chemical potential. As a benchmark problem, the incremental dynamics of
a thin plate-like gel body from a prestressed reference state is studied, and time-dependent one-
dimensional closed form solution is obtained. The outcomes of the analysis have been compared
with the observations already performed in literature on stress-free gels. The expected behavior
is correctly described by the proposed model. Furthermore, a parametric investigation allows to
understand the influence on the solution of the main material parameters.

In this article, we restricted the discussion to problems that can be treated by analytical
calculations. However, the model and the analysis presented in the proposed paper, are a first
step towards a future study which aims at comprehending the multiphysics problem of thin
ion-exchange membranes when a difference in voltage is applied between the two ends of the
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plate. Hydrated polymeric membranes made of Nafion are widely employed in fuel cells and
rechargeable batteries. These membranes show an electro-chemo-hydro-mechanical fully coupled
behavior, which can be modeled by extending our model. Likewise, the same incremental model
can be developed to describe other multiphysics behavior of materials which have been already
extensively studied in literature, e.g. ionic-polymer-metal-composites [30-32], hydrogels [33,34],
ferrogels [35], polymer membrane in electrochemical cells [36,37].

Finally, the proposed incremental theory for stress-diffusion starting from a stressed state can be
used to explicitly investigate the stress and strain changes induced by a small alteration of the
environmental conditions of polymer gels under uniaxial or biaxial stretching [38—40]. In this
case, (i) the expected solution is non-homogeneous, as for non-homogeneous polymers, (ii) the
compact results shown in this paper do not hold, and (iii) a full nonlinear analysis can be difficult
while an appropriate incremental theory can deliver some interesting results.
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