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Abstract

In this work we explore the construction and the applications of a special fam-
ily of level-dependent biorthogonal filters, i.e. filters whose taps depend on the
scaling level. Such a family is generated from a class of functions all related
through level-dependent (or nonstationary) refinement equations, which con-
tains cardinal polynomial B-splines as a particular case. The greater flexibility
offered by the nonstationarity of these filters allows to achieve better results in
some image processing problems, such as image compression, when compared
to classical biorthogonal B-spline filters.
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1. Introduction

Wavelet analysis is nowadays a well-established tool for signal and image
processing problems.

Recently, techniques from the theory of nonstationary subdivision schemes
have been used for constructing wavelet bases generating level-dependent (or
nonstationary) multiresolution analyses [3, 10, 13]. In such a framework, the
decomposition and reconstruction steps of the discrete wavelet transform are
based on low-pass and high pass filter sequences which change level by level.

In this paper, we present a special construction of biorthogonal families of
wavelet systems constructed from the class of nonstationary refinable functions
introduced in [10, 11].

The level-dependent nature of such filterbanks provides more flexibility when
applied to practical contexts of image processing, since the parameter controlling
the nonstationary filters can be properly tuned for adapting the filters to the
specific task.
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In fact, the preliminary results of our numerical tests confirm that the new
filters outperform the B-spline filters, which can be seen as special instances
obtained for limiting values of the parameters involved in the masks. In partic-
ular, they show higher correlation with human perception when used for image
processing purposes.

The paper is organized as follows. In Section 2 we fix the notation and
recall some basic facts concerning biorthogonal filters. In Section 3 we introduce
our starting low-pass filters and illustrate a procedure for completing them to
a biorthogonal system. In Section 4 we provide some applications in image
compression which underline the effectiveness of such level-dependent filterbanks
in image compaction.

2. Preliminaries

Basic notions on nonstationary subdivision schemes and refinable functions
can be found, for instance, in [7]. In this section we just recall some definitions
and properties of level-dependent multiresolution analyses taken from [11] (see
also [13]).
Let us denote by `(Z) the space of all sequences. A nonstationary subdivision
scheme S(a(m) : m ≥ 0) consists of the successive applications of several subdi-
vision operators, each depending on the mask a(m) ∈ `(Z), which, starting from
an initial sequence c(0) ∈ `(Z), generates a sequence of sequences (c(m) : m ≥ 0)
as follows:

c
(m+1)
j =

∑
k∈Z

a
(m)
j−2k c

(m)
k , j ∈ Z, m ≥ 0. (1)

The scheme (1) is said to be convergent if, for any initial sequence, there exists a
uniformly continuous function f such that the sequences (c(m) : m ≥ 0) satisfy

sup
j∈Z
|c(m)
j − f(2−mj)| → 0, as m→∞. (2)

In such a case, the special choice of the delta sequence δ = (δ0j : j ∈ Z) as initial
data produces, in the limit, the so-called basic limit function ϕ of the scheme.
Furthermore, all the schemes S(a(m) : m ≥ n) for n ≥ 0 are convergent, each
with basic limit function ϕ(n), where ϕ(0) coincides with ϕ. All these scaling
functions are related by the refinement equations

ϕ(n) =
∑
k∈Z

a
(n)
k ϕ(n+1)(2 · −k), n ≥ 0. (3)

This refinement property allows to consider a level-dependent (or nonstationary)
multiresolution analysis (MRA) in L2(R), where each space Vn is spanned by
the translates of the function ϕ(n)(2n·), i.e.

Vn = span {ϕ(n)(2n · −k) : k ∈ Z}, n ≥ 0.
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Let us now introduce the functions ϕ̃(n), n ≥ 0, duals to ϕ(n) in the following
sense:

〈ϕ(n), ϕ̃(n)(· − k)〉 = δ0k, k ∈ Z, (4)

and satisfying the refinement equations

ϕ̃(n) =
∑
k∈Z

ã
(n)
k ϕ̃(n+1)(2 · −k), n ≥ 0, (5)

for some mask sequences (ã(n) : n ≥ 0). The relation between such masks and
the masks in (3) is expressed by the biorthogonality relation∑

k∈Z
a
(n)
k ã

(n)
k−2j = 2 δ0j , j ∈ Z, (6)

which can also be written as:

A(n)(z) Ã(n)(z−1) +A(n)(−z) Ã(n)(−z−1) = 4, |z| = 1, (7)

where
A(n)(z) =

∑
k∈Z

a
(n)
k zk, z ∈ C \ {0},

denotes the so-called symbol of the mask a(n).
If we denote with Ṽn, n ≥ 0, the spaces generated by the shifts of ϕ̃(n)(2n·),

then, the sequence {Ṽn}n≥0 is a biorthogonal MRA associated to {Vn}n≥0. The
wavelet spaces are defined as the complementary spaces:

Wn = Vn+1 − Vn, W̃n = Ṽn+1 − Ṽn,

satisfying the orthogonality conditions: W̃n ⊥ Vn, Wn ⊥ Ṽn. They are generated
by the shifts of the 2n-dilates of the wavelet functions ψ(n), ψ̃(n), respectively,
that obey the two-scale relations

ψ(n) =
∑
k∈Z

b
(n)
k ϕ(n+1)(2 · −k), ψ̃(n) =

∑
k∈Z

b̃
(n)
k ϕ̃(n+1)(2 · −k), n ≥ 0, (8)

where the wavelet mask sequences (b(n) : n ≥ 0), (b̃(n) : n ≥ 0), have to satisfy:∑
k∈Z

b
(n)
k b̃

(n)
k−2j = 2 δ0j ,

∑
k∈Z

a
(n)
k b̃

(n)
k−2j =

∑
k∈Z

b
(n)
k ã

(n)
k−2j = 0,

or equivalently, in terms of symbols,

B(n)(z) B̃(n)(z−1) +B(n)(−z) B̃(n)(−z−1) = 4,

A(n)(z) B̃(n)(z−1) +A(n)(−z) B̃(n)(−z−1) = 0, (9)

B(n)(z) Ã(n)(z−1) +B(n)(−z) Ã(n)(−z−1) = 0,

for |z| = 1. As usual, the wavelet symbols can be set as:

B̃(n)(z) = zA(n)(−z−1), B(n)(z) = zÃ(n)(−z−1), (10)

so that the last two conditions in (9) are automatically satisfied.
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3. Level-dependent biorthogonal wavelet systems

In this section we construct biorthogonal wavelet systems associated to the
class of nonstationary subdivision schemes introduced in [5] (see also [9, 11]).
Their masks depend not only on the level, but also on an additional parameter
which, as we will see, offers extra degrees of freedom and, thus, a great flexibility
in practical implementations.

The starting point is the family of stationary subdivision schemes introduced
in [8]. The corresponding masks are bell-shaped so that the associated refinable
functions are bell-shaped too. The mask coefficients depend on one or more
shape parameters that allow to control the shape of the limit function.
In particular, here we consider the subset of masks in the family depending on
one parameter. They are associated with the symbols:

SN (z;α) =
1

2α
(1 + z)

N

z(N−ε)/2+1

(
z2 + 2

(
2α−N − 1

)
z + 1

)
, z ∈ C \ {0}, (11)

where N ∈ N with N ≥ 1, ε = 0 for N even, ε = 1 for N odd. Here, α ≥ 2 is a
real parameter such that α−N ≥ 1: when α varies from N + 1 to ∞, SN (z;α)
varies continuously between the symbol of the B-spline of order N + 2 and the
symbol of the B-spline of order N .

To construct subdivision schemes of nonstationary type, we set the free
parameter α to have the special form α = N + 1 + n−µ, where µ ∈ R with
µ > 1, so that we obtain the following families of symbols which now depend
on the refinement level n and on the parameter µ:

AN (z;n, µ) =
1

2N+1+n−µ

(1 + z)
N

z(N−ε)/2+1

(
z2 + 2

(
2n

−µ+1 − 1
)
z + 1

)
, z ∈ C \ {0}.

(12)

For the sake of notation let us set β = β(n, µ) := 2n
−µ

. The symbols (12)
satisfy the symmetry condition

AN

(
1

z
;β

)
=

1

zε
AN (z;β),

thus giving rise to linear phase filters. The presence of the factor (1 + z)N

guarantees the polynomial reproduction property of the mask up to the degree
N−1. Furthermore, since lim

n→0
β(n, µ) =∞, lim

n→∞
β(n, µ) = 1, in the limit cases,

the symbols become

AN (z;∞) =
2

z(N−ε)/2

(
1 + z

2

)N
=

1

z(N−ε)/2
BN (z),

AN (z; 1) =
2

z(N−ε)/2+1

(
1 + z

2

)N+2

=
1

z(N−ε)/2+1
BN+2(z),

where we have denoted with BN (z) the B-spline symbol of order N .
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For anyN , the scheme associated to the sequence of symbols {AN (z;n, µ), n ≥
0} converges to a set of nonstationary basic limit functions satisfying a set of
nonstationary refinement equations of type (3). The properties of these func-
tions have recently been illustrated in [9, 11].

Due to the refinability properties of the limit functions, these schemes are
associated to level-dependent MRAs. To construct families of dual symbols, we
follow the approach proposed in [4] extending it to our more general situation.

Let us start by expressing the symbols (12) in terms of trigonometric poly-
nomials, with the substitution z = e−iω. One obtains

AN (ω;β) =
1

2N+1β ei
ω
2 ε

(
ei
ω
2 + e−i

ω
2

)N (
e−iω + 2(2β − 1) + eiω

)
=

1

2N+1β ei
ω
2 ε

(
2 cos

ω

2

)N
2(cosω + 2β − 1)

= e−i
ω
2 ε cosN

(ω
2

)
L
(

sin2 ω

2
;β
)

where

L(y;β) =
2β − 2y

β
.

We require the dual filters to have polynomial reproduction up to some degree
Ñ − 1. This implies that the dual symbols have the form

ÃÑN (ω;β) = e−i
ω
2 ε cosÑ

(ω
2

)
L̃
(

sin2 ω

2
;β
)
,

where the polynomial L̃(y;β) has to be found.
To this aim, we give an equivalent formulation of the biorthogonality relation

(7) on the unit circle in terms of AN (ω;β) and ÃÑN (ω;β):

cosN+Ñ
(ω

2

) 2β − 2 sin2 ω
2

β
L̃
(

sin2
(
−ω

2

)
;β
)

+ cosN+Ñ

(
ω + π

2

)
2β − 2 sin2 ω+π

2

β
L̃

(
sin2

(
−ω + π

2

)
;β

)
= 4,

that is

cosN+Ñ
(ω

2

) β − sin2 ω
2

2β
L̃
(

sin2
(ω

2

)
;β
)

+(−1)N+Ñ sinN+Ñ
(ω

2

) β − cos2 ω2
2β

L̃
(

cos2
(ω

2

)
;β
)

= 1.

By setting y = sin2(ω/2), the following Lemma is then proved.

Lemma 1. Assume that N + Ñ is even. The biorthogonality relation (7) holds

true if and only if the polynomial L̃(y;β) satisfies the Bézout identity

(1− y)q
β − y

2β
L̃(y;β) + yq

β − 1 + y

2β
L̃(1− y;β) = 1, (13)
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where

q =
N + Ñ

2
.

The existence of such polynomial of (minimal) degree q is guaranteed by
the Bézout theorem and can be found with the Euclidean polynomial division
algorithm. Using similar arguments as in [4] and [6], we propose a simpler and
explicit construction.

Proposition 2. The polynomial L̃(y;β) is given by

L̃(y;β) =

q∑
k=0

l̃k(β) yk,

where

l̃k(β) =


2

βk

k∑
j=0

(
q + j − 1

j

)
βj , k = 0, . . . , q − 1,

2

2β − 1
l̃q−1(β), k = q.

(14)

Proof. Let us rewrite (13) as

L̃(y;β) = (1− y)−q
2β

β − y

− (1− y)−q
2β

β − y
yq
β − 1 + y

2β
L̃(1− y;β)

(15)

and consider a Taylor expansion of the right-hand side with respect to y. To
compute the first q terms of the polynomial:

L̃(y;β) =

q∑
k=0

l̃k y
k,

where l̃k = l̃k(β), we simply have to consider the first q terms of the following
expansion:

(1− y)−q
2β

β − y
= 2

q−1∑
k=0

 k∑
j=0

(
q + j − 1

j

)(
1

β

)k−j yk + yqR(y),

which gives explicit expressions for the coefficients:

l̃k =
2

βk

k∑
j=0

(
q + j − 1

j

)
βj , k = 0, . . . , q − 1.

It remains to determine the q-th coefficient. To compute it, we make use of
(13), which we rewrite more explicitly as

β − y
2β

q∑
j=0

(
q

j

)
(−1)jyj

q∑
k=0

l̃ky
k +

β − 1 + y

2β
yq

q∑
k=0

l̃k

k∑
j=0

(
k

j

)
(−1)jyj = 1
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q l̃0 l̃1 l̃2 l̃3 l̃4

1 2
4

2β − 1

2 2
2(1 + 2β)

β

4(1 + 2β)

β(2β − 1)

3 2
2(1 + 3β)

β

2(1 + 3β + 6β2)

β2

4(1 + 3β + 6β2)

β2(2β − 1)

4 2
2(1 + 4β)

β

2(1 + 4β + 10β2)

β2

2(1 + 4β + 10β2 + 20β3)

β3

4(1 + 4β + 10β2 + 20β3)

β3(2β − 1)

Table 1: Coefficients of the polynomial L̃(y) (cf. (14)) for q = 1, . . . , 4.

k Ñ = 1 Ñ = 3 Ñ = 5

1, 0 −1 + 4β −18β + 64β2 − 1 −22β + 1024β3 − 300β2 − 2

2,−1 −1 −1− 14β + 8β2 176β3 − 212β2 − 14β − 2

3,−2 − (1 + 2β) (−1 + 4β) −176β3 − 38β2 + 17β + 3

4,−3 1 + 2β −24β3 + 38β2 + 21β + 3

5,−4 (−1 + 4β)
(
6β2 + 3β + 1

)
6,−5 −6β2 − 3β − 1

Denomin. 2(2β − 1) 25β(2β − 1) 29β2(2β − 1)

Table 2: Dual filters {ãβk} of the nonstationary filter (12) with N = 1.

The coefficient of the monomial y2q in the left-hand side of the previous

identity is
(−1)q(2β−1)l̃q

2β +
2(−1)q−1 l̃q−1

2β . After equating it to zero, we get

l̃q =
2

2β − 1
l̃q−1.

A reconversion in terms of the symbol produces:

ÃÑN (z;β) =
1

z(Ñ−ε)/2

(
1 + z

2

)Ñ q∑
n=0

l̃n
22n

(
2− 1

z
− z
)n

(16)

with l̃n, n = 0, . . . , q, computed as in (14). We observe that the equation above
is still valid when µ < 1 and, in particular, for negative values of µ. In this case
the limit values of β are reversed, i.e. lim

n→0
β(n, µ) = 1, lim

n→∞
β(n, µ) =∞, and

so are the limit symbols.
Explicit values for the coefficients of the polynomial L̃(y) and of the dual

filters ÃÑ (z;β) are given in Tables 1-4. Figures 1 and 2 illustrate the behaviour
of some primal and dual filters of the class, respectively in the case of a varying
n and in the case of a varying β.

We finish the section by mentioning that all such dual filters give rise to
scaling and wavelet functions that are only formally biorthogonal, in fact it is not
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k Ñ = 2 Ñ = 4 Ñ = 6

0 8 (6β − 1)β 8
(
90β2 − 19β − 1

)
β 16β

(
−1 + 700β3 − 162β2 − 12β

)
1,−1 16β2 − 10β − 1 −14β − 2− 148β2 + 304β3 −5− 2308β3 − 210β2 + 5184β4 − 36β

2,−2 −4 (2β + 1)β −64β2 (2β + 1) −4
(
492β3 + 246β2 − 4β − 1

)
β

3,−3 2β + 1 26β2 − 48β3 + 17β + 3 9 + 60β − 1248β4 + 356β3 + 266β2

4,−4 4
(
6β2 + 3β + 1

)
β 8

(
68β3 + 34β2 + 12β + 1

)
β

5,−5 −1− 6β2 − 3β 160β4 − 116β3 − 66β2 − 28β − 5

6,−6 −4β
(
10β2 + 4β + 1 + 20β3

)
7,−7 10β2 + 4β + 1 + 20β3

Denomin. 24β(2β − 1) 28β2(2β − 1) 212β3(2β − 1)

Table 3: Dual filters {ãβk} of the nonstationary filter (12) with N = 2.

k Ñ = 1 Ñ = 3 Ñ = 5

1, 0 4β(6β − 1) 4β(90β2 − 19β − 1) 8β
(
700β3 − 162β2 − 12β − 1

)
2,−1 −(2β + 1)(4β + 1) −56β3 − 72β2 − 10β − 2 −1012β3 − 28β − 416β4 − 114β2 − 5

3,−2 2β + 1 −2(2β − 1)(18β2 + 7β + 1) −1552β4 + 28β3 + 130β2 + 32β + 5

4,−3 (4β + 1)(1 + 6β2 + 3β) 136β2 + 28β + 304β4 + 328β3 + 4

5,−4 −1− 6β2 − 3β 240β4 − 56β3 − 40β2 − 20β − 4

6,−5 − (4β + 1)
(
4β + 1 + 20β3 + 10β2

)
7,−6 4β + 1 + 20β3 + 10β2

Denomin. 23β(2β − 1) 27β2(2β − 1) 211β3(2β − 1)

Table 4: Dual filters {ãβk} of the nonstationary filter (12) with N = 3.

even guaranteed that they belong to L2(R). To guarantee the existence of scaling
and wavelet functions further conditions have to be verified. Nevertheless, our
aim is to apply the filters themselves in an image processing framework, where
perfect reconstruction properties at each level and filters phase linearity play
a crucial role rather than the existence and the properties of the associated
biorthogonal functions.

4. Level-dependent biorthogonal filterbanks and application to image
compression

Let (a(n,µ), b(n,µ), ã(n,µ), b̃(n,µ) : n ≥ 0, µ ∈ R) be the biorthogonal wavelet
filterbank system obtained as described in the previous section, namely the scal-

ing sequences a(n,µ), ã(n,µ) are respectively associated toAN (z;n, µ), ÃÑN (z;n, µ),

for some fixed values of N, Ñ , while the wavelet masks b(n,µ), b̃(n,µ) are the co-
efficients of the wavelet symbols obtained through (10).

Suppose f is an input discrete signal represented by the coefficient sequence

c(m) = (c
(m)
j : j ∈ Z). Such a signal can be processed by the filterbank

system through iterated low-pass/high-pass decomposition/reconstruction pro-
cesses. In particular, the level-dependent decomposition scheme produces the
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Figure 1: The primal filters (top) corresponding to N = 1, N = 2, N = 3 and the respective
associated duals (bottom) corresponding to Ñ = 3, Ñ = 2, Ñ = 3, for n = 1, 2, 3. The
parameter µ is fixed to 1.5. The two thick solid lines in each plot represent the limit B-spline
filters.

sequences (c(m−L), d(m−L), . . . , d(m−1)), up to a fixed level L, as

c
(n)
j =

∑
k∈Z

ã
(n,µ)
k−2j c

(n+1)
k ,

d
(n)
j =

∑
k∈Z

b̃
(n,µ)
k−2j c

(n+1)
k ,

j ∈ Z, n = m− 1, . . . ,m− L, (17)

while the level-dependent reconstruction scheme allows for the reconstruction of
the original sequence by means of:

c
(n+1)
k =

∑
j∈Z

(
a
(n,µ)
k−2j c

(n)
j + b

(n,µ)
k−2j d

(n)
j

)
, k ∈ Z, n = m− L, . . . ,m− 1. (18)

At each step of the decomposition/reconstruction schemes, the filter taps change
according to the level (and to the parameter µ), thus providing a nonstationary,
in the sense of level-dependent, way to analyze and synthesize a signal.

The extension to the bivariate case is straightforward if we limit ourselves to
the separable case, where the 2D filters are just tensor products of the univariate
filters, which result in processing the data according to the coordinate axis
directions.

We show now how a proper choice of the parameter µ in the level-dependent
filterbanks can lead to better results in image processing applications than sta-
tionary filterbanks. In particular, our numerical tests illustrate the compres-
sion effectiveness of the proposed filters, when compared to their limit versions,
namely the B-spline filters.

The 2D discrete decimated wavelet transform using the proposed nonstation-
ary filters has been applied to two common and popular 512× 512× 8 bits test
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Figure 2: The primal filters (top) corresponding to N = 1, N = 2, N = 3 and the respective
associated duals (bottom) corresponding to Ñ = 3, Ñ = 2, Ñ = 3, for different values of the
parameter β.

images: Lena and Barbara. They have been then approximated by retaining a
small percentage (rate) of detail coefficients — the most significant coefficients
have been preserved, the remaining ones have been set equal to zero. The same
has been done using the limit B-splines filters. Results in Figure 3 refer to non-
stationary filters with N = 1, Ñ = 3 for different values of the parameter µ and
starting level L; the rate has been fixed equal to 10%. The approximation error
has been measured in terms of Peak Signal-to-Noise Ratio (PSNR), i.e.

PSNR(I, Ĩ) = 10 log10

2552

MSE(I, Ĩ)
,

where I is the original image, Ĩ is its approximation, and

MSE(I, Ĩ) =
1

Nx Ny

Nx∑
i=1

Ny∑
j=1

(I(i, j)− Ĩ(i, j))2,

denotes the Mean Squared Error between the two image matrices, of size Nx ×
Ny, evaluated at each pixel location (i, j)— the higher the PSNR the better Ĩ
approximates I. As it can be observed, at a fixed rate (percentage of retained
coefficients), the nonstationary filters (abbreviated as ”NS-filters”) show better
reconstruction properties than the ones of limit B-splines filters for a wide range
of µ values.

It is interesting to observe that for highly textured images, like Barbara im-
age, also some negative values of the parameter µ preserve good reconstruction
properties.

In order to further evaluate and test the compaction properties of the pro-
posed NS-filters, they have been embedded in a well known compression algo-
rithm, namely the Set Partitioning In Hierarchical Trees (SPIHT) [12], which
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Figure 3: The original 512× 512× 8 bits Lena (top left) and Barbara (top right) test images.
The reconstruction error (bottom) (measured in terms of PSNR) obtained by retaining just
the most significant 10% of detail coefficients of the multiresolution decomposition provided
by nonstationary filters having N = 1, Ñ = 3 and increasing µ value. Curve colors refer to a
different starting level L of the decomposition while dashed lines refer to the reconstruction
error provided by the B-spline limit filters.

is a reference wavelet-based compression method. It mainly exploits both inter
and intra scale relationships of wavelet coefficients, i.e. high amplitude coeffi-
cients are in correspondence to abrupt changes (main structures) in the original
image and they show persistence properties along scale levels [1, 2].

Results have been measured in terms of PSNR and bits per pixel (bpp). The
latter gives the compression rate and it is defined as

bpp =
8

CF
,

where CF is the compression factor, i.e. the ratio between the bits required to
store the original uncompressed image and the ones required by its compressed
version - the smaller the bpp the higher the compression. For example, bpp = 0.5
means that the compression factor is 16, i.e. the compressed image is stored
using 1/16 of the bits required by the whole original image.

Figure 4 refers to 256 × 256 × 8 bits Cameraman test image. As it can
be observed, at the same compression rate (bpp), NS-filters are able to reach
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Figure 4: The original 256×256×8 bits Cameraman test image (top). PSNR versus bpp plot
(bottom left) for compressed images with SPIHT algorithm using NS-filters having N = 1,
Ñ = 3, µ = 0.1 and L = 8 (red line) and for compressed images with SPIHT algorithm using
JP2K-like stationary biorthogonal filters (blue line). SSIM versus bpp plot (bottom right) for
the same images.

PSNR values that are comparable to the one achieved by SPIHT using the
JPEG2K biorthogonal stationary filters, even though the parameters of the
algorithm have not been adapted to the nonstationary case. More interestingly,
the visual quality of the decompressed images is better than the one provided
by the standard SPIHT; hence, non stationarity correlates better with human
perception, especially at low rates. In order to further stress this point, the
Structural Similarity index (SSIM) [14] has been used for evaluating the quality
of the decompressed images. SSIM is a full-reference image quality measure.
It evaluates the visual difference between two images, I and Ĩ, (or their sub-
regions) as follows

SSIM(I, Ĩ) =
2µIµĨ + C1

µ2
I + µ2

Ĩ
+ C1

2σIσĨ + C2

σ2
I + σ2

Ĩ
+ C2

σIĨ + C3

σIσĨ + C3
,

where µ∗ and σ∗ respectively are the sample means and standard deviations of
∗, σIĨ is the covariance between I and Ĩ while C1, C2 and C3 are numerical sta-
bilizing constants. The first two terms of SSIM measure the difference between
the two images in terms of luminance mean and variance and they respectively
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PSNR = 30.38; SSIM = 0.8801 PSNR = 30.49; SSIM = 0.8689

PSNR = 27.70; SSIM = 0.8174 PSNR = 27.77; SSIM = 0.8052

Figure 5: Compression tests on the Cameraman image. Top) SPIHT compressed image at
bpp = 0.5 using: the nonstationary filters having N = 1, Ñ = 3, µ = 0.1 and L = 8 (left)
and JP2K-like stationary biorthogonal filters (right). Bottom) SPIHT compressed image at
bpp = 0.3 using: the nonstationary filters having N = 1, Ñ = 3, µ = 0.1 and L = 8 (left) and
JP2K-like stationary biorthogonal filters (right).

replicate two typical and basic mechanisms of human vision: luminance adap-
tation and contrast masking; the third term of SSIM measures the structural
difference in terms of images covariance. SSIM outputs a number less than one:
the closer to 1 this value, the better the image quality (i.e. Ĩ visually resembles
I).

As it can be observed in Figure 4 (bottom right panel) NS-filters provide
better SSIM values for the compressed images; hence, they are able to provide
images with a better visual quality. In order to allow a visual inspection of
the output images, in Figure 5 the ones corresponding to bpp = 0.5 are given.
The visual quality of the NS image is better than the one provided by SPIHT
using standard stationary filters. For example, the highest building on the
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Figure 6: Test on the Lena image: PSNR versus bpp plot (left) for compressed images with
SPIHT algorithm using nonstationary filters having N = 2, Ñ = 4, µ = −0.5 and L =
6 (red line) and for compressed images with SPIHT algorithm using JP2K-like stationary
biorthogonal filters (blue line). SSIM versus bpp plot (right) for the same images.

right of the scene is well reconstructed by NS-filters while it is blurred in the
standard SPIHT image; in addition, some ringing effects around cameraman
profile are considerably reduced in the nonstationary filters image while textures
reconstruction is comparable. These observations are even more valid for lower
rates, as shown in the same figure.

The better reconstruction of the discontinuities is the main advantage pro-
vided by non stationarity; the µ value regulates the convergence to smoother
filters level by level and then it better allows us to isolate discontinuities as well
as to emphasize persistence property of wavelet coefficients through scales. As
a result, parent-child relationships, which represent the key issue of zero-tree
based schemes, are better captured, preventing the effects of thresholding and
quantization.

It is also worth outlining that, even when the difference in terms of PSNR
between the nonstationary filters-based SPIHT image and the standard SPIHT
one is higher, as in Figure 6, their visual quality is still comparable; in addition,
the visual quality of NS-filters image results better at lower rates - this confirms
the good correlation of nonstationary filters with the human visual system.

5. Conclusion

We have presented the construction of a family of biorthogonal wavelet filters
generating level-dependent MRAs. Such filters have been derived from a class
of convergent nonstationary subdivision schemes, corresponding, in the limit
cases, to B-spline schemes. We have shown that the parametric form and the
level-dependency of such filters allow for their better performance in comparison
with B-spline filters in some image compression tests. The application of the
proposed filters to other problems in image processing (for example denoising)
is under investigation.
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A still open question is to find a strategy for automatically choosing the
parameter µ according to the nature of the input data and to the application
we are dealing with. This will be done in a forthcoming paper.
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