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Abstract
Background: miRNAs regulate the expression of several genes with one miRNA able to target multiple genes and
with one gene able to be simultaneously targeted by more than one miRNA. Therefore, it has become indispensable
to shorten the long list of miRNA-target interactions to put in the spotlight in order to gain insight into understanding
the regulatory mechanism orchestrated by miRNAs in various cellular processes. A reasonable solution is certainly to
prioritize miRNA-target interactions to maximize the effectiveness of the downstream analysis.
Results: We propose a new and easy-to-use web tool MIENTURNET (MicroRNA ENrichment TURned NETwork) that
receives in input a list of miRNAs or mRNAs and tackles the problem of prioritizing miRNA-target interactions by
performing a statistical analysis followed by a fully featured network-based visualization and analysis. The statistics is
used to assess the significance of an over-representation of miRNA-target interactions and then MIENTURNET filters
based on the statistical significance associated with each miRNA-target interaction. In addition, the holistic approach
of the network theory is used to infer possible evidences of miRNA regulation by capturing emergent properties of the
miRNA-target regulatory network that would be not evident through a pairwise analysis of the individual components.
Conclusion: MIENTURNET offers the possibility to consistently perform both statistical and network-based analyses
by using only a single tool leading to a more effective prioritization of the miRNA-target interactions. This has the
potential to avoid researchers without computational and informatics skills to navigate multiple websites and thus to
independently investigate miRNA activity in every cellular process of interest in an easy and at the same time
exhaustive way thanks to the intuitive web interface. The web application along with a well-documented and
comprehensive user guide are freely available at http://userver.bio.uniroma1.it/apps/mienturnet/ without any login
requirement.
Keywords: Network analysis, miRNA regulatory network, Bioinformatics tool

Background
MicroRNAs (miRNAs) are small, endogenously-initiated
non-coding RNAs of about 22 nucleotides that post-
transcriptionally control gene expression via either translation
inhibition or degradation of their target mRNAs [1, 2].
The significance of miRNAs had been long overlooked
until their initial discovery in the worm Caenorhab-
ditis elegans [3] and successively in plants, animals,
and even viruses [2]. Nowadays, it is becoming more
and more evident that miRNAs are playing significant
roles in regulatory mechanisms operating in various
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organisms, including developmental timing, cell differen-
tiation, proliferation, apoptosis as well as tumorigenesis
[4, 5]. Consistently, the identification and understanding
of interactions between miRNAs and their targets is the
foremost aim for deciphering the regulatory mechanisms
that control the biogenesis and functionality of miRNAs
in various cellular processes.
It is now widely known that the interactions between

miRNA and mRNA in animals are usually restricted to
the “seed” sequence near the 5’ terminus (i.e. nucleotides
2-7 at the 5’-end of the mature miRNA sequence). In
particular, miRNAs control the target expression by base
pairing to sequence motifs in the 3’ UTR of mRNAs with
perfect or near perfect complementarities [6]. Conversely,
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most plant miRNAs regulate their targets based on a com-
plete sequence complementarity [7]. However, there are
still enigmas to be uncovered about principles govern-
ing miRNA-mRNA interactions and the nature of miRNA
modulation.
In the last few decades, many miRNA-related bioinfor-

matic tools have been established in order to predict can-
didate mRNAs based on the information from sequence,
structure associated free energy and evolutionary conser-
vation [8, 9]. Those bioinformatic methods usually result
in the prediction of tens or hundreds of targets for each
miRNA with high false positive rates [10]. Therefore, fur-
ther experiments are still needed to determine how many
of these predicted targets are genuinely targeted by miR-
NAs. Unfortunately, this utterly important task is ham-
pered by the impossibility to experimentally validate all
candidate genes individually that would be too laborious,
time-consuming, and cost-inefficient.
A reasonable solution to the problem of the identifi-

cation of effective miRNA-target interactions is certainly
to prioritize them as to maximize the efficiency of the
downstream validation experiments. More precisely, the
principle is to identify themost promising candidate inter-
actions and filter out the ones that appear of limited rel-
evance, and then to investigate these promising candidate
interactions more thoroughly.
Several computational methods have been proposed to

tackle this prioritization problem and they have been used
in practice to derive hypotheses that can be validated
experimentally. Among the others, TargetScan predicts
biological targets of miRNAs by searching for the exact
matching between the seed region of a miRNA and the
3’ UTR of its targets and prioritizes miRNA-target inter-
actions based on the predicted efficacy of targeting and
also, as an option, based on the probability of conserved
targeting [11].
More recently, new web-based applications such as

miTEA [12], GSEA [13]1 and miEAA [14] have been
developed to assess the statistical significance of an over-
representation of miRNA-target interactions (i.e. miRNA-
target enrichment analysis), and then filter them based on
the resulting p-values.
Other web tools, like miRNet [15] and miRTargetLink

[16], use instead network-based visualization methods
to prioritize miRNA-target interactions and then filter
by looking for those miRNAs linked simultaneously to
multiple genes of interest.
Altogether these resources can help to prioritize can-

didate miRNA-target interactions, but researchers need
to navigate multiple websites and then merge the results
for further analysis. Thus, despite integrating information
from different databases can be useful to cut down the
1Hereafter, when citing GSEA we refer to the Investigate Gene Sets tool from
GSEA/MSigDB web site.

number of miRNA-target interactions to be experimen-
tally validated, this procedure requires general familiarity
with the contents and structure of different databases as
well as with their query languages. Moreover, information
retrieval from distributed heterogeneous data sources still
remains a challenging issue since data are stored in differ-
ent ways and described by various formats, and this entails
a semantic heterogeneity that includes problems on nam-
ing such as with synonyms, that is same concept expressed
with different terms. For example, GSEA provides the
results of miRNA-target enrichment analysis reporting
the miRNA family name according its own standard
name (e.g. ACATTCC_MIR1_MIR206), whereas miR-
Net requires as input miRNA identifiers from miRBase
(e.g. ID: hsa-miR-206, or ACCESSION:MIMAT0000462).
Thus, the output of GSEA could not be directly processed
by miRNet but needs of a not always trivial integration
coding.
Here, we propose a new web tool called MIENTUR-

NET (MicroRNA ENrichment TURned NETwork) that
tackles the problem of prioritizing miRNA-target inter-
actions, both computationally predicted and experimen-
tally validated, and then it filters based on the statistical
significance resulting from a miRNA-target enrichment
analysis. Finally, MIENTURNET makes use of the holistic
approach of the network theory to infer possible evidences
(computational or experimental) of miRNA regulation by
capturing topological properties of themiRNA-target reg-
ulatory network that would be not evident through a
pairwise analysis of the individual components. There-
fore, MIENTURNET offers the possibility to consistently
perform all the above-mentioned analyses by using only
a single tool and is especially meant for non-expert users
thanks to the simple and intuitive web interface, to the
delivery of an exhaustive and well-documented set of
output information, and to the practical user guide provided as
Additional file 1. MIENTURNET fetches data of compu-
tationally predicted and experimentally validatedmiRNA-
target interactions only from TargetScan andmiRTarBase,
respectively. It is noteworthy that TargetScan appears as
the most up-to-date tool for sequence-based miRNA-
target predictions [8], whereas miRTarBase appears as
the most up-to-date tool for validated interactions, and it
offers an easy downloadable spreadsheet [17].

Implementation
MIENTURNET web tool was implemented by using the
R programming language (Release 3.4.4, March 2018) for
statistical computing and graphics (http://www.rproject.
org/). The whole web framework was developed based
on the shiny package (version 1.2) from RStudio (http://
shiny.rstudio.com). Indeed, shiny is a free, open source,
extensible package that allows to create an interactive
web interface for sharing analysis and graphics from R.

http://www.rproject.org/
http://www.rproject.org/
http://shiny.rstudio.com
http://shiny.rstudio.com
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The performance of shiny package was widely tested and
validated by several successful web applications [18–21].
Additional R packages used to create MIENTURNET
include: visNetwork (ver. 2.0.4), igraph (ver. 1.2.2) [22],
shinyWidgets (ver. 0.4.4), shinyBS (ver. 0.61) and cluster-
Profiler (ver. 3.8.1) [23].

Data retrieval
Simulated data
We generated simulated expression profiles for 100 sam-
ples spanning 12440 genes that are available in Tar-
getscan (Release 7.2) [11] and for 100 samples spanning
14888 genes that are available in miRTarBase (Release
7.0, September 2017) [24]. In each simulated dataset E,
the expression level of each gene g in each sample s was
independently randomly drawn from a standard normal
distribution, E(g, s) ∼ N(0, 1), and 10 random miRNAs
were simulated to be active at different levels of influence:
the first repressing its top 100 targets, the second repress-
ing its top 200 targets, the third repressing its top 300
targets, and so on until the last repressing its top 1000 tar-
gets. In addition, for each simulated data set, the level of
miRNAs activity α is increased from 0.3 to 1 with 0.05
steps. The miRNA repression was simulated by reduc-
ing the expression levels of the miRNA targets for 50 of
the 100 samples. The reduction level is set equal to (α
+ ε) with ε drawn from a standard normal distribution.
This means that the expression value for a target g of an
active miRNA in an affected sample s is given by E(g, s) =
N(0, 1) − (α + N(0, 1)).

Expression profiling
miRNA expression profiles from six different human tis-
sue types were obtained from DASHR 2.0 [25], which
is a comprehensive database of human small non-coding
RNA genes and mature products. Repeat measurements
of the same tissue were averaged resulting in one profile
for each tissue type, and miRNAs whose expression levels
were greater than the 75th percentile of the tissue type dis-
tribution were selected as the most tissue-representative
miRNAs. Protein expression levels from the same human
tissue types based on immunohistochemistry using tissue
microarrays were downloaded from the Human Protein
Atlas version 18.1 [26]. For each tissue type, proteins with
high expression levels in that tissues were selected as the
most tissue-representative proteins. Note that both def-
initions of the most tissue-representative miRNAs and
proteins ensure that they are highly expressed at least in
a certain tissue, but it does not require they are expressed
only in that tissue.

Positive predictive value
To test the performance of MIENTURNET in capturing
the most tissue-representative miRNAs, we computed the

positive predictive value (PPV) for different tissues, which
is defined as [27]:

PPV = number of true positives
(number of false positives + number of true positives)

where a “true positive” is an outcome where the model
correctly predicts the positive class, whereas a “false pos-
itive” is an outcome where the model incorrectly predicts
the positive class. In our analysis, PPV represents the
number of the most tissue-representative miRNAs on the
total number of miRNAs identified by MIENTURNET
targeting an input list of the most tissue-representative
proteins. The ideal value of the PPV in a perfect test is 1
(100%), and the worst possible value would be zero. The
PPV statistic is often called “precision” and a small posi-
tive predictive value (e.g. PPV < 50%) indicates that more
than half of the positive results from the testing procedure
are false positives.

miRNA-target interactions
The predictions of miRNA targets and the information
about the miRNA family members with their seed were
downloaded fromTargetScan web site (Release 7.2,March
2018) [11]. The experimentally validated miRNA-target
interactions were downloaded from miRTarBase web site
(Release 7.0, September 2017) [24].
Currently, MIENTURNET supports the choice of six

organisms shared from TargetScan and miRTarBase, that
is: Human (Homo sapiens), Mouse (Mus musculus), Rat
(Rattus norvegicus),Worm (Caenorhabditis elegans), Fruit
fly (Drosophila melanogaster), Zebrafish (Danio rerio).
All miRNA entries are annotated according to the latest

miRBase database (Release 22, March 2018) [28], while all
mRNA entries are annotated according to the latest NCBI
database (Release 227, August 2018) [29].

Tool description
The flowchart of MIENTURNET is shown in Fig. 1.
MIENTURNET is devised for:

• receiving in input a list of genes according to Official
Gene Symbol (e.g. PTEN for human species, Pten for
mouse species) and inferring possible evidences
(computational or experimental) of miRNA
regulation based on a statistical analysis for
over-representation of miRNA-target interactions;

• receiving in input a list of mature miRNAs according
to miRBase ID (e.g. hsa-miR-15a-5p) and inferring
possible evidences (computational or experimental)
of their regulation on target genes based on a
statistical analysis for over-representation of
miRNA-target interactions.

The resulting miRNA-target interactions are visualized as
a network and then analyzed according their topological
features.
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Fig. 1 Flowchart of MIENTURNET web tool

MIENTURNET performs a miRNA-target enrichment
analysis (Fig. 2a) by calculating the following statistics (i.e.
p-value resulting from the hypergeometric test):

p = 1 −
X−1∑

i=0

(K
i
)(M−K

N−i
)

(M
N

)

whereM is the dimension of the universe, that is the num-
ber of all predicted (validated) miRNA-target interactions
encompassed in TargetScan (miRTarBase);N is the length
of the input list; K is the number of predicted (validated)
miRNA-target interactions encompassed in TargetScan
(miRTarBase) for a selected gene or miRNA according to
the type of the input list;X is the number of predicted (val-
idated) miRNA-target interactions encompassed in the
input list for the selected gene or miRNA.
MIENTURNET allows to visualize the resulting

miRNA-target interactions as a network that can be fil-
tered, explored, and customized interactively in order to
improve its visualization and understanding (Fig. 2b). For
example, by choosing miRTarBase database, the results
can be filtered according to the type of evidence cate-
gories used by miRTarBase to validate the miRNA-target
interactions: ‘Strong’ for considering strong experimental
methods (e.g., Luciferase assay, Western); ‘Weak’ for
considering weaker experimental evidence (e.g., CLIP);
‘Strong and Weak’ for considering both strong and weak
experimental methods. In addition, MIENTURNET

computes the topological properties for each node in the
miRNA-target interaction network (i.e. degree, between-
ness, average shortest path length, eccentricity, clustering
coefficient) in order to find nodes displaying a central role
(Fig. 2c). Then, it estimates the nodes degree distribution
(i.e. the probability distribution of degrees over the whole
network) along with the power-law fit, in order to deter-
mine whether the network exhibits a scale-free behaviour
(Fig. 2c), consistent with how emerged so far in almost
all biological networks [30–32]. MIENTURNET offers
also the possibility to perform a functional enrichment
analysis of the targets of selected miRNAs (Fig. 2d), in
order to gain insight into understanding the biological
processes underlying the target gene activity. For this
analysis, currently the choice is among the following
annotation databases: KEGG pathways [33], Reactome
[34], WikiPathways [35] and Disease Ontology [36] (only
with Homo sapiens).
MIENTURNET reports numerous output files contain-

ing the results of its analyses (i.e. miRNA-target enrich-
ment analysis, selected miRNA-target functional enrich-
ment analysis and network analysis). These files are simple
tabular output files that can be viewed with any spread-
sheet application (such as Microsoft Excel). However,
browsing these files by eye is not especially easy, and
working with data across multiple files can be quite diffi-
cult and could require nontrivial scripts. MIENTURNET
drastically simplifies data exploration task by creating,
for each of the performed analyses, publication-ready
plots.



Licursi et al. BMC Bioinformatics          (2019) 20:545 Page 5 of 10

Fig. 2 Outputs of MIENTURNET web tool with the example list of genes as input. a Table of results from miRNA-target enrichment analysis (top); bar
plot representing each miRNA resulting from the enrichment along with the number of its target genes (bottom). The color of the bars represent
the adjusted p-values (FDR). b Visualization of miRNA-target interaction network where blue circles refer to miRNAs, while yellow circles refer to their
target genes. c Table of network topological properties (top); network degree plots for target genes (bottom-left) and for miRNAs (bottom-middle);
and nodes degree distribution shown on double logarithmic axis (log-log plot), in which the straight line corresponds to the power-law fit
(bottom-right). d Dot plot of functional enrichment analysis for target genes of selected miRNAs resulting from the enrichment analysis. The Y-axis
reports the annotation categories (e.g. KEGG pathways) and the X-axis reports the selected miRNAs. The color of the dots represent the adjusted
p-values (FDR), whereas the size of the dots represents gene ratio (i.e. the number of miRNA targets found enriched in each category over the
number of total genes associated to that category)

Results and discussion
Performance evaluation
To evaluate the performance ofMIENTURNET, we tested
it on simulated dataset designed to model the activity of
a small set of miRNAs in a subset of samples (see “Imple-
mentation” section for further details). We analyzed the
performance of MIENTURNET for different levels of
miRNA activity by using Receiver Operator Characteris-
tic (ROC) curve both for computationally predicted and
experimentally validated miRNA-target interactions. We
found that MIENTURNET is able to detect active miR-
NAs with high level of sensitivity and specificity even in
cases of low activity, both considering miRTarBase (AUC
= 98%) and TargetScan (AUC = 74%) as reference database
(Fig. 3).
To better assess the precision of MIENTURNET in

detecting miRNA activity, we tested it on a more prac-

tical context of less controlled dataset, publicly available both
for miRNA and protein expression profiles in human
healthy tissue types (see “Implementation” section for fur-
ther details).Weanalyzed theperformanceofMIENTURNET
in different tissues, where miRNA and protein expression
profiles were both available, by computing the positive
predictive value (PPV) both for computationally predicted
and experimentally validated miRNA-target interactions.
The rational behind this analysis was to give as input
list to MIENTURNET the most tissue-representative pro-
teins and evaluate the precision of MIENTURNET in
capturing the most tissue-representative miRNAs tar-
geting them. We found that MIENTURNET is able to
detect the most tissue-representative interactions with
an high precision, both considering miRTarBase (PPV >

70%) and TargetScan (PPV > 50%) as reference database
(Fig. 4).
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Fig. 3 Performance of MIENTURNET in detecting miRNA activity. ROC curves resulting by the MIENTURNET application on simulated data by
considering both predicted interactions from TargetScan (blue curve) and validated interactions from miRTarBase (orange curve). The data
simulated the activity of 10 miRNAs at different levels (α ∈ [0.3-1] with 0.05 steps). For each level of α, we computed the true positive rate (i.e.
sensitivity) placed on Y-axis, and the false positive rate (i.e. 1 - specificity) placed on X-axis. Sensitivity is the rate of truly active miRNAs identified by
MIENTURNET on the total number of active miRNAs; specificity is the rate of truly inactive miRNAs identified by MIENTURNET on the total number of
inactive miRNAs. We run MIENTURNET under default parameters. Diagonal grey line represents the line of no-discrimination

Comparing MIENTURNET to other existing tools
As we stated above, the last few years have witnessed
the increasing of web-based applications for supporting
the identification of miRNA-target interactions that could
be involved in various crucial cell processes or devel-
opmentally important cellular functions. Among them,
the most used are miTEA [12], GSEA [13], miEAA [14],
miRNet [15], and miRTargetLink [16]. A comprehensive
comparison of these tools is given in Table 1.
Almost all these tools look for miRNAs targeting an

input list of candidate genes by exploiting information

on miRNA-target interactions computationally predicted
and/or experimentally validated, and allow to perform
functional enrichment analysis of the target genes. Excep-
tions are miEAA being tailored only for miRNA input,
while miRNet and miRTargetLink being tailored also for
miRNA input.
The prioritization problem of miRNA-target candidate

genes is faced by all these tools, but each of them makes
use of a different approach to deal with it. In particular,
miTEA, GSEA and miEAA perform a statistical analy-
sis to evaluate possible miRNA-target enrichment in the

Fig. 4 Performance of MIENTURNET in detecting the most tissue-representative miRNA activity. Bar plot of the positive predictive value (PPV)
computed by considering predicted interactions from TargetScan (blue bars) and validated interactions from miRTarBase (orange bars) along with
each tissues type. PPV is the number of the most tissue-representative miRNAs on the total number of miRNAs identified by MIENTURNET targeting
an input list of the most tissue-representative proteins. We run MIENTURNET under default parameters
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Table 1 Comparison of MIENTURNET with other web tools developed for the identification and analysis of miRNA-target interactions
(MTIs)

Tools miTEA GSEA/MSigDB miEAA miRNet miRTargetLink MIENTURNET
Reference [12] [13] [14] [15] [16]
Last Release February 2013 July 2018 April 2016 March 2018 April 2016 March 2019

Input list

Gene identifiers Gene symbol,
RefSeq, Uniprot,
Unigene,
Ensembl

Gene
symbol,
Entrez

- Gene symbol,
Ensembl, Entrez

Gene symbol Gene symbol

miRNA identifiers ∗ - - ID ID, Accession ID ID

Others - - - � - -

Queries

Multiple item � � � � � �

Organisms

Species ∗∗ Human, Mouse,
Rat, Zebrafish,
Fruit fly

Human Human Human, Mouse,
Rat, Cattle,
Chicken,
Zebrafish, Fruit
fly, Worm,
Helminth

Human Human, Mouse,
Rat, Zebrafish,
Fruit fly, Worm

Species # 5 1 1 9 1 6

Reference database

Predicted target genes TargetScan,
MicroCosm,
EIMMo

MSigDB - miRanda∗∗∗ miRanda TargetScan

Experimental target genes - - miRTarBase TarBase,
miRTarBase,
miRecords

miRTarBase,
in-house data

miRTarBase

Others - - � � - -

Statistical analysis

Differential expression - - - � - -

Functional enrichment - � � � � �
miRNA-target enrichment � � � - - �

MTI network

Visualization - - - � � �
Customization - - - � � �
Filtering - - - � � �

MTI network analysis

Degree - - - � - �
Betweenness - - - � - �
Closeness - - - - - �
Average shortest path - - - - - �
Eccentricity - - - - - �
Clustering coefficient - - - - - �
Fit power low - - - - - �
*miRNA identifiers from miRBase database [28]
**species common name (scientific name): Human (Homo sapiens), Mouse (Musmusculus), Rat (Rattus norvegicus), Cattle (Bos taurus), Chicken (Gallus gallus), Zebrafish (Danio
rerio), Fruit fly (Drosophila melanogaster), Worm (Caenorhabditis elegans), Helminth (Schistosomamansoni)
***only for Cattle, Chicken, Helminth

input list by exploiting different methodologies: miTEA
takes advantage of a novel non-parametric hypothe-
sis test, called minimum-mHG, requiring a previously
ranked list of genes [12]; GSEA and miEAA implement

an over-representation analysis based on the hyperge-
ometric statistic test [13, 14]. However, miEAA takes
into account only validated miRNA-target interactions
from miRTarbase, whereas miTEA and GSEA explore
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only predicted miRNA-target interactions from different
databases: miTEA from TargetScan and, as an option,
from MicroCosm and EIMMo; GSEA from its internal
Molecular Signatures Database (MSigDB), which con-
tains targets of only 221 human miRNAs cataloged in an
outdated version of miRBase.
Conversely, miRTargetLink and miRNet assist resear-

chers in understanding miRNAs and their targets through
a network-based visualization method and offer the
possibility to consider computationally predicted or
experimentally validatedmiRNA-target interactions, both
selecting as reference databases miRanda and miRTar-
Base, respectively. It is worthy mentioning that miRanda
web server is not maintained anymore and the standalone
version is updated to 2010. Additionally, miRNet collects
experimentally validated miRNA-target interaction data
also from TarBase and miRecords. However, the current
version of TarBase is not downloadable and the previ-
ous one requires a prior consent, whereas last update of
miRecords back to 2013.
MIENTURNET was designed to exploit the strengths of

the above-mentioned tools and to overcome some of their
limitations. Indeed, MIENTURNET tackles the problem
of prioritizing miRNA-target interactions by using a sta-
tistical analysis together with a network-based visualiza-
tion and analysis. It is able to accept as input a list of genes
as well as a list of miRNAs searching for both predicted
and experimentally validated miRNA-target interactions
from the most reliable and updated databases, TargetScan
and miRTarBase, respectively. MIENTURNET offers also
the possibility to perform functional enrichment anal-
ysis of target genes of individual miRNAs by querying
widespread annotation databases (i.e. KEGG, Reactome,
WikiPathways).

Future perspectives
Currently, MIENTURNET supports the choice of six
organisms (Table 1) for which both predicted and experi-
mentally validated miRNA-target interactions were avail-
able. In future, we would like to include other organisms,
like plants, when well-structured, easy downloadable and
queryable databases will be available for both predicted
and validated miRNA-target interactions.
Moreover, we plan to integrate the two miRNA regu-

latory networks obtained by considering both predicted
and experimentally validated miRNA-target interactions
and prioritize them according to the guilt-by-association
concept. In practice, this method should favor candidate
genes that are linked simultaneously to multiple miRNAs
sharing common features. For instance, if a candidate gene
interacts with two miRNAs that are already known to be
involved in the same phenotype and only one of these two
interactions has been experimentally validated, the other
appears promising for effective miRNA targeting. This

can be extended by considering multiple sources of infor-
mation beside miRNA-target interactions, which is often
what prioritization methods do.
Finally, although MIENTURNET exploits the most up-

to-date tool for sequence-based miRNA-target predic-
tions (i.e. TargetScan) and the most up-to-date tool for
validated interactions (i.e. miRTarBase), it could be likely
that in the future both databases could no longer be
updated. If this is the case, we will use the most up-to-date
tools at that time.

Conclusions
We developed MIENTURNET, a user-friendly web tool
that integrates the miRNA-target enrichment analysis
with a network-based visualization and analysis in order
to tackle the prioritization problem of miRNA-target can-
didate interactions. Although the procedure implemented
by MIENTURNET assumes basic skills of network theory
and statistics, the tool does not require extensive bioin-
formatics expertise and is meant for novices and experts
alike.
The protocol begins with an input list of miRNAs or

mRNAs and produces a network of statistically significant
miRNA-target interactions together with a fully-featured
analysis of the topological properties of all nodes as well
as a fully-featured analysis of the functional enriched cat-
egories in a specific set of nodes. The numerous output
files containing the analysis results are tab-delimited text
files that can be opened with spreadsheet programs such
as Microsoft Excel. In addition, MIENTURNET creates
publication-quality visualizations of the analysis results.
The strength of MIENTURNET is to enable researchers

without computational and informatics skills to play with
their data in an easy and at the same time exhaustive
fashion and hence to stimulate miRNA-related research
activities by investigating miRNA activity in every cellular
process of interest. The weakness ofMIENTURNET relies
on the databases that were selected to be used. Despite
being the most comprehensive and reliable databases in
miRNomics field, they have some limitations: TargetScan
is based on predicted data, which are not always con-
firmed by experimental methods, and miRTarBase does
not contain all published data.

Availability and requirements
Project name: MIENTURNET
Project home page: http://userver.bio.uniroma1.it/apps/
mienturnet/
Operating system(s): Windows, macOS, and Linux
Programming language: R programming language
(Release 3.4.4, March 2018)
Other requirements: MIENTURNET was tested and
found compatible with Chrome 70.0 and Firefox 62.0 on
Ubuntu 16.04, MacOS 10.13.6 and Windows 10 as well as

http://userver.bio.uniroma1.it/apps/mienturnet/
http://userver.bio.uniroma1.it/apps/mienturnet/
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with Safari 12.0.2 and Internet Explorer 11
License: GNU GPL
Any restrictions to use by non-academics: MIENTUR-
NET is free and open to all users and there is no login
requirement

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12859-019-3105-x.

Additional file 1: This file contains the user guide of MIENTURNET
showing how the tool works and how to use it.

Abbreviations
AUC: Area Under Curve; FDR: False Discovery Rate; mHG:
minimum-hypergeometric; MIENTURNET: MicroRNA ENrichment TURned
NETwork; miRNAs: microRNAs; MTI: miRNA-target interaction; PPV: Positive
Predictive Value; ROC: Receiver Operator Characteristic

Acknowledgments
Not applicable.

Authors’ contributions
PP conceived and designed the research. VL developed the web application.
FC, GF performed computational data analysis and prepared figures. PP, GF, FC
wrote the user guide and the manuscript. All authors have read and approved
the final manuscript.

Funding
Not applicable.

Availability of data andmaterials
The interactive web application along with a well-documented and
comprehensive user guide are freely available at http://userver.bio.uniroma1.
it/apps/mienturnet/. This website is free and open to all users and there is no
login requirement.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Institute for Systems Analysis and Computer Science “Antonio Ruberti”,
National Research Council, Via dei Taurini 19, 00185 Rome, Italy. 2Department
of Biology and Biotechnology “Charles Darwin”, “Sapienza” University of Rome,
Via dei Sardi 70, 00185 Rome, Italy.

Received: 26 July 2019 Accepted: 20 September 2019

References
1. Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of

post-transcriptional regulation by micrornas: are the answers in sight? Nat
Rev Genet. 2008;9(2):102–14. https://doi.org/10.1038/nrg2290.

2. Bartel DP. Micrornas: target recognition and regulatory functions. Cell.
2009;136(2):215–33. https://doi.org/10.1016/j.cell.2009.01.002.

3. Lee RC, Feinbaum RL, Ambros V. The c. elegans heterochronic gene lin-4
encodes small rnas with antisense complementarity to lin-14. Cell.
1993;75(5):843–54. https://doi.org/10.1016/0092-8674(93)90529-Y.

4. Cai Y, Yu X, Hu S, Yu J. A brief review on the mechanisms of miRNA
regulation. Genomics Proteomics Bioinforma. 2009;7(4):147–54. https://
doi.org/10.1016/S1672-0229(08)60044-3.

5. Peng Y, Croce CM. The role of micrornas in human cancer. Sig Transduct
Target Ther. 2016;1:15004.

6. Xie X, Lu J, Kulbokas E, Golub TR, Mootha V, Lindblad-Toh K, Lander ES,
Kellis M. Systematic discovery of regulatory motifs in human promoters
and 3’UTRs by comparison of several mammals. Nature. 2005;434(7031):
338.

7. Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP.
Prediction of plant microRNA targets. Cell. 2002;110(4):513–20.

8. Riffo-Campos ÁL, Riquelme I, Brebi-Mieville P. Tools for sequence-based
miRNA target prediction: What to choose?. Int J Mol Sci. 2016;17(12):1987.

9. Cai Y, Yu X, Hu S, Yu J. A brief review on the mechanisms of miRNA
regulation. Genomics Proteomics Bioinforma. 2009;7(4):147–54.

10. Seitz H. Redefining microRNA targets. Curr Biol. 2009;19(10):870–3.
11. Agarwal V, Bell GW, Nam J-W, Bartel DP. Predicting effective microRNA

target sites in mammalian mrnas. eLife. 2015;4:05005. https://doi.org/10.
7554/eLife.05005.

12. Steinfeld I, Navon R, Ach R, Yakhini Z. miRNA target enrichment analysis
reveals directly active mirnas in health and disease. Nucleic Acids Res.
2013;41(3):45.

13. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette
MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. Gene set
enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl Acad Sci. 2005;102(43):
15545–50.

14. Backes C, Khaleeq QT, Meese E, Keller A. mieaa: microRNA enrichment
analysis and annotation. Nucleic Acids Res. 2016;44(W1):110–6.

15. Fan Y, Siklenka K, Arora SK, Ribeiro P, Kimmins S, Xia J. mirnet-dissecting
miRNA-target interactions and functional associations through
network-based visual analysis. Nucleic Acids Res. 2016;44(W1):135–41.

16. Hamberg M, Backes C, Fehlmann T, Hart M, Meder B, Meese E, Keller A.
Mirtargetlink—mirnas, genes and interaction networks. International J
Mol Sci. 2016;17(4):564.

17. Ji Lee Y, Kim V, Muth DC, Witwer KW. Validated microRNA target
databases: an evaluation. Drug Dev Res. 2015;76(7):389–96.

18. Conway JR, Lex A, Gehlenborg N. Upsetr: an R package for the
visualization of intersecting sets and their properties. Bioinformatics.
2017;33(18):2938–40.

19. Sergushichev AA, Loboda AA, Jha AK, Vincent EE, Driggers EM, Jones
RG, Pearce EJ, Artyomov MN. Gam: a web-service for integrated
transcriptional and metabolic network analysis. Nucleic Acids Res.
2016;44(W1):194–200.

20. Cao Y, Wang Y, Zheng X, Li F, Bo X. Revecor: an R package for the reverse
ecology analysis of microbiomes. BMC Bioinformatics. 2016;17(1):294.

21. Metsalu T, Vilo J. Clustvis: a web tool for visualizing clustering of
multivariate data using principal component analysis and heatmap.
Nucleic Acids Res. 2015;43(W1):566–70.

22. Csardi G, Nepusz T. The igraph software package for complex network
research. InterJournal. 2006;Complex Systems:1695. http://igraph.org.

23. Yu G, Wang L-G, Han Y, He Q-Y. clusterprofiler: an R package for
comparing biological themes among gene clusters. OMICS J Integr Biol.
2012;16(5):284–7. https://doi.org/10.1089/omi.2011.0118.

24. Chou C-H, Shrestha S, Yang C-D, Chang N-W, Lin Y-L, Liao K-W, Huang
W-C, Sun T-H, Tu S-J, Lee W-H, et al. miRTarBase update 2018: a resource
for experimentally validated microRNA-target interactions. Nucleic Acids
Res. 2018;46(D1):296–302.

25. Kuksa PP, Amlie-Wolf A, Katanic Z, Valladares O, Wang L-S, Leung YY.
Dashr 2.0: integrated database of human small non-coding rna genes and
mature products. Bioinformatics. 2018;35(6):709. https://doi.org/10.1093/
bioinformatics/bty709.

26. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu
A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, et al. Tissue-based map
of the human proteome. Science. 2015;347(6220):1260419.

27. Trevethan R. Sensitivity, specificity, and predictive values: foundations,
pliabilities, and pitfalls in research and practice. Front Public Health.
2017;5:307.

28. Kozomara A, Griffiths-Jones S. mirbase: annotating high confidence
micrornas using deep sequencing data. Nucleic Acids Res. 2014;42(D1):
68–73.

29. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Ostell J, Pruitt KD,
Sayers EW. Genbank. Nucleic Acids Res. 2017. https://doi.org/10.1186/
s12859-015-0568-2.

https://doi.org/10.1186/s12859-019-3105-x
http://userver.bio.uniroma1.it/apps/mienturnet/
http://userver.bio.uniroma1.it/apps/mienturnet/
https://doi.org/10.1038/nrg2290
https://doi.org/10.1016/j.cell.2009.01.002
https://doi.org/10.1016/0092-8674(93)90529-Y
https://doi.org/10.1016/S1672-0229(08)60044-3
https://doi.org/10.1016/S1672-0229(08)60044-3
https://doi.org/10.7554/eLife.05005
https://doi.org/10.7554/eLife.05005
http://igraph.org
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1093/bioinformatics/bty709
https://doi.org/10.1093/bioinformatics/bty709
https://doi.org/10.1186/s12859-015-0568-2
https://doi.org/10.1186/s12859-015-0568-2


Licursi et al. BMC Bioinformatics          (2019) 20:545 Page 10 of 10

30. Jeong H, Tombor B, Albert R, Oltvai Z. N, Barabási A-L. The large-scale
organization of metabolic networks. Nature. 2000;407(6804):651.

31. Han J-DJ, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D,
Walhout AJ, Cusick ME, Roth FP, et al. Evidence for dynamically
organized modularity in the yeast protein–protein interaction network.
Nature. 2004;430(6995):88.

32. Carter SL, Brechbühler CM, Griffin M, Bond AT. Gene co-expression
network topology provides a framework for molecular characterization of
cellular state. Bioinformatics. 2004;20(14):2242–50.

33. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. Kegg as a
reference resource for gene and protein annotation. Nucleic Acids Res.
2015;44(D1):457–62.

34. Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G, Caudy M,
Garapati P, Gillespie M, Kamdar MR, et al. The reactome pathway
knowledgebase. Nucleic Acids Res. 2013;42(D1):472–7.

35. Slenter DN, Kutmon M, Hanspers K, Riutta A, Windsor J, Nunes N,
Melius J, Cirillo E, Coort S. L, Digles D, Ehrhart F, Giesbertz P, Kalafati M,
Martens M, Miller R, Nishida K, Rieswijk L, Waagmeester A, Eijssen LMT,
Evelo CT, Pico AR, Willighagen EL. WikiPathways: a multifaceted pathway
database bridging metabolomics to other omics research. Nucleic Acids
Res. 2018;46:661–7. https://doi.org/10.1093/nar/gkx1064.

36. Kibbe WA, Arze C, Felix V, Mitraka E, Bolton E, Fu G, Mungall CJ, Binder
JX, Malone J, Vasant D, Parkinson H, Schriml LM. Disease ontology 2015
update: an expanded and updated database of human diseases for
linking biomedical knowledge through disease data. Nucleic Acids Res.
2015;43:1071–8. https://doi.org/10.1093/nar/gku1011.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1093/nar/gkx1064
https://doi.org/10.1093/nar/gku1011

	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	Implementation
	Data retrieval
	Simulated data
	Expression profiling
	Positive predictive value
	miRNA-target interactions

	Tool description

	Results and discussion
	Performance evaluation
	Comparing MIENTURNET to other existing tools
	Future perspectives

	Conclusions
	Availability and requirements
	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s12859-019-3105-x.
	Additional file 1

	Abbreviations
	Acknowledgments
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

