
Peel the onion: Recognition of Android apps
behind the Tor Network

Authors hidden for double-blind review process

No Institute Given

Abstract. According to Freedom on the Net 2017 report [14] more than
60% of World’s Internet users are not completely free from censorship.
Solutions like Tor allow users to gain more freedom, bypassing these re-
strictions. For this reason they are continuously under deep observation
to detect vulnerabilities that would compromise users anonymity. The
aim of this work is showing that Tor is vulnerable to app deanonymiza-
tion attacks on Android devices through network traffic analysis. While
attacks against Tor anonymity have already gained considerable atten-
tion in the context of website fingerprinting in desktop environments, to
the best of our knowledge this is the first work that addresses a sim-
ilar problem on Android devices. For this purpose, we describe a gen-
eral methodology for performing an attack that allows to deanonymize
the apps running on a target smartphone using Tor. Then, we discuss
a Proof-of-Concept, implementing the methodology, that shows how the
attack can be performed in practice and allows to assess the deanonymiza-
tion accuracy that it is possible to achieve. Moreover, we made the soft-
ware of the Proof-of-Concept available, as well as the datasets used to
evaluate it. In our extensive experimental evaluation, we achieved an
accuracy of 97%.

Keywords: TOR, De-anonimization, Android, Traffic Analysis

1 Introduction

Tor is a very popular anonymization network, currently counting more
than two million daily users [22]. While Tor is mainly associated with
preserving anonymity during Web navigation, its protection capabilities
are not limited to such application. In general, Tor can be used to protect
any TCP-based traffic, being it generated by a desktop or mobile applica-
tion. Nowadays, smartphone apps are replacing web browsers for interact-
ing with many online services, such as social networks, chat services and
video/audio streaming. The usage of anonymization mechanisms, such as
Tor, on mobile devices is gaining momentum and is motivated by the
increasing interest of several actors in profiling mobile users, e.g., for
marketing purposes, government surveillance, detection and exploitation

of vulnerabilities and other activities that may be harmful for users’ pri-
vacy and security, or perceived as such by them. Several works in the past
studied the privacy guarantees offered by Tor, focussing, in particular, on
the Desktop PC scenario where a large fraction of the anonymized traffic
is web data or file sharing services. Conversely, less attention has been
devoted to the usage of Tor on mobile devices, and the level of anonymity
it can provide. The aim of this work is to show that Tor is vulnerable to
app deanonymization attacks on Android devices through network traffic
analysis. For this purpose, we describe a general methodology for per-
forming an attack that allows to deanonymize the apps running on a
target smartphone using Tor, which is the victim of the attack. Then, we
discuss a proof-of-concept, implementing the methodology, that shows
how the attack can be performed in practice and allows to assess the
deanonymization accuracy that it is possible to achieve.

Summarizing, this work provides the following contributions:

– a methodology for deanonymizing apps on Android-based smartphones
that use Tor;

– a Proof-of-Concept that implements the deanonymization methodol-
ogy, which can be used to verify Tor’s vulnerability to app deanonymiza-
tion and assess the level of accuracy that can be achieved;

– a dataset1 of generated Android Tor traffic traces that can be used
to check the validity of our Proof-of-Concept and compare alternative
methodologies.

The remainder of the paper is organized as follows. Section 2 reports
the related works. Section 3 presents the fundamental concepts related
to Tor and the machine learning algorithms employed in this work. Sec-
tion 4 introduces the threat model that we consider. Section 5 discusses
the methodology for deanonymizing Android apps behind the Tor net-
work. Section 6 describes the Proof-of-Concept. Section 7 reports the
experiment performed to evaluate the accuracy of the methodology and
discusses the obtained results. Finally, in section 8 we draw some conclu-
sions and discuss possible future directions for this work.

2 Related Works

Many works have been published in the broad area of traffic analysis
both in the context of desktop environments and smartphone environ-

1 Both the software necessary to reproduce the Proof-of-Concept and the dataset can
be downloaded from the following repository: [URL hidden for double-blind review
process]

ments (mostly assuming the Android operating system). While, there are
some works in the context of desktop environments that has focused on
deanonymizing Tor traffic, to the best of our knowledge, there is no work
assuming both a smartphone environment and that traffic is anonymized
through Tor. Therefore, there is no work we can directly compare to.

In this section we report the most related works considering a desktop
environment, with or without Tor anonymized traffic, and an Android
environment without Tor.

Desktop environment without Tor: In the context of website fingerprint-
ing, Hintz [16] proposes an attack against SafeWeb, an encrypting web
proxy, that allows to determine the webpages visited by the users. The
attack exploits the fact that, even if traffic is encrypted, many browser
open separate TCP connection for downloading resources from visited
pages, allowing an attacker to monitor their sizes. Such sizes can be used
to fingerprinting webpages. The author proposes some protections based
on the addition of noise or on multiplexing data on a single connection.

Bissias et al. [10] propose a statistical website fingerprinting attack.
The attacker creates a profile of the target website by monitoring the
distribution of packet sizes and inter-arrival times. These data are then
compared to user traffic.

Liberatore et al. [18] describe a website fingerprinting attack against
HTTPS connections. They use unique packet lengths to build profiles
of HTTPS connections and compare them against a dataset of known
profiles using a naive Bayes classifier.

Desktop environment with Tor: In the context of Website fingerprint-
ing, Wang et al. [28] propose an attack that uses a k−Nearest Neighbor
Classifier to effectively fingerprint web pages behind Tor. They employ
several types of features, including general statistics about total traffic,
unique packet lengths, packet orderings, bursts and inter-packet times.
They show that their attack has significantly higher accuracy than pre-
vious attacks in the same field.

AlSabah et al. [9] propose a machine learning based approach for
Tor’s traffic classification. The aim of the work is to recognize different
classes of workloads that, in combination with QoS policies, can signifi-
cantly improve the experience of Tor clients. However, since Tor’s traffic
is encrypted, it is not possible to rely on classical QoS to discriminate
applications traffic. The proposed technique achieves an accuracy higher
than 95%.

Juarez et al. [17] analyze the known website fingerprinting attacks
on Tor. Known attacks claim to be effective under precise assumptions
about threat model and user settings, which often do not hold in practical
scenarios. The authors conduct a critical evaluation of these attacks and
show their weaknesses when performed in real scenarios.

Chakravarty et al. [11] evaluate the feasibility and effectiveness of
practical traffic analysis attacks on the Tor network using NetFlow data.
It is not a passive attack as authors deliberately alter traffic characteris-
tics at the server side and observe how this alteration affects client side
through a statistical correlation. They achieve 100% accuracy in labora-
tory tests, and 81.4% accuracy in real world tests.

Ling et al. [19] propose TorWard, a system that attempts to recognize
malicious traffic over Tor. In their experiments they found that a consid-
erable portion of the Tor traffic is malicious (around 10%) with 8.99% of
the alerts generated due to malware and 78.03% of the alerts generated
due to malicious P2P traffic.

Mittal et al. [20] exploit throughput information to gain information
about the user. The attack can identify the Guard Node (entry point to
Tor network) and identify if two concurrent TCP connections belong to
the same user.

Habibi Lashkari et al. [15] focus on recognition of traffic types instead
of websites. They consider 8 application traffic types: browsing, email,
chat, audio streaming, video streaming, file transfer, VoIP and P2P. They
perform network traffic analysis by splitting the traffic traces in flows of
a given duration. For each flow they compute several features based on
inter-arrival times, active and idle periods, packet rates and byte rates.
They employ a supervised machine learning approach to classify the traf-
fic type of each flow. In particular they explored k−Nearest Neighbor,
Random Forest and C4.5 classifiers.

Android environment without Tor: A number of authors have proposed
various approaches to identify smartphone apps through network traffic
analysis. Some of these solutions focus on examining IP addresses and
packet payloads. However, relying on IP addresses is less effective be-
cause a lot of applications exploit Content Delivery Networks (CDN) for
scalability. AppScanner [27] targets mobile environments and uses traffic
features to fingerprint mobile apps. They rely on a supervised machine
learning approach using only features that do not require the inspection
packet payloads, thus working also on encrypted traffic. They perform
experiments with SVM and Random Forest classifiers achieving 99% of

accuracy in their dataset with 110 of the most popular apps in the Google
Play Store.

Dai et al. [13] propose a technique for app fingerprinting based on
building network traffic profiles of apps. They run each app in an em-
ulator, exercising different execution paths through a novel UI fuzzing
technique, and collect the corresponding network traces. They compute
a fingerprint of the app by identifying invariants in the generated net-
work traces. Using the generated fingerprint they were able to detect the
presence of apps in real-world network traffic logs from a cellular provider.

Conti et al. [12] describe a machine learning based network traffic anal-
ysis approach to identify user actions on specific apps (facebook, gmail
and twitter). They achieve more than 95% of accuracy and precision for
most of the considered actions.

Stöber et al. [26] focus on identifying smartphones from 3G/UMTS
data capture. Even if 3G/UMTS data is encrypted an attacker could
reliably identify a smartphone using only the information extracted from
periodic traffic patterns leak side-channel information like timing and
data volume. They show that they can identify smartphones with only
15 minutes of traffic monitoring and fingerprints computed on 6 hours of
sniffed background traffic, obtaining an accuracy of 90%.

Saltaformaggio et al. [24] develop a tool called NetScope which is able
to detect user activities on both Android and iOS smartphones. They
compute features by only inspecting the IP headers, and use a SVM
multi-class classifier to detect activities. NetScope achieves a precision of
78.04% and a recall of 76.04% on average on a set of 35 widely used apps.

3 Background on Tor

In this section we briefly summarize the basic concepts about the Tor
network. Tor [23] is a distributed overlay network that anonymizes TCP-
based applications (web browsers, secure shells, mail clients) while trying
to keep the latency low. The network consists of a set of interconnected
entities called Onion Routers (ORs). Tor clients, also known as Onion
Proxies (OPs), periodically connect to directory servers to download the
list of available ORs. OPs use this information to establish circuits in the
Tor network, to connect to a destination node (which is often outside the
Tor network). A circuit is a path of ORs in which each OR knows only
its predecessor and its successor ORs. A Tor circuit has three types of
nodes:

– Entry or Guard Node: this represents the entry point to the Tor net-
work for the Tor client.

– Relay Nodes: these are the intermediate ORs of the circuit.
– Exit Node: this is the last OR in the Tor circuit. That is, the one that

connects to the destination.

Each Tor circuit must have one entry node, at least one relay node
(but there may be multiple) and one exit node. The entry node is the
only node in the circuit that knows the Tor client, while the exit node is
the only one that knows the destination.

Messages exchanged between the Tor client and the destination are
split into cells when they traverse the Tor network. Cells are the basic
unit of communication among Tor nodes. Tor cells used to have a 512
bytes fixed size in earlier Tor versions. Though this choice provided some
resistance against traffic analysis, it was inefficient and made Tor traffic
easier to discover due to packet-size distribution [23]. Therefore, variable
length cells have been introduced in newer Tor versions.

When establishing a circuit, the Tor client shares a symmetric key
with each node of the circuit. When the Tor client sends a packet to
the destination it encrypts the corresponding cells’ payloads with all the
shared keys, in reverse order from the exit node to the entry node. Each
node along the path unwraps its layer using its key. Only the exit node can
reconstruct the message to be sent to the destination in clear. The same
happens in the opposite direction, with each node that instead encrypts
with its own key.

3.1 Padding

Internet service providers and surveillance infrastructures are known to
store metadata about connections. Collecting and analyzing such data
is useful for characterizing traffic, but may also represent a threat to
anonymity.

Per-flow records are emitted by routers on a periodic basis depending
on two configurable timeouts: active flow timeout and the inactive flow
timeout. The expiration of the active flow timeout causes routers to emit
a new record for each active connection. The inactive flow timeout causes
the emission of a new record when a connection is inactive for a certain
amount of time. The value of such timeouts is configurable and the range
depends on routers vendors, but active flow timeout is typically in the
order of minutes, while the inactive flow timeout in the order of tens of
seconds. Therefore, the aggregation level of records data (on a temporal

basis) is at least the active flow timeout, but may be finer when there are
inactive periods longer than the inactive flow timeout.

Thus, to reduce the granularity level of records’ data (with the aim
of hindering deanonymization techniques based on traffic analysis), long
inactive periods should be avoided. For this reason, the Tor protocol in-
troduced connection padding. With connection padding, special purpose
cells (PADDING cells) are sent if the connection is inactive for a given
amount of time, so as to reduce the duration of inactive periods.

Connection Padding Connection padding cells are exchanged only be-
tween the Tor client and entry node. To determine when to send a con-
nection padding cell, both the Tor client and the entry node maintain
a timer. These timers are set up with a timeout value between 1.5 and
9.5 seconds. The exact value depends on a function that samples a dis-
tribution described in [21]. After the establishment of the Tor circuit the
timers start on both sides, if any of the two timers expires, a padding
cell is sent to the other endpoint. Exchanging any cell different from a
padding cell resets the timers.

Reduced Connection Padding Connection padding introduces an overhead
in terms of exchanged data. Especially in mobile environments, this over-
head may become excessive. Therefore, reduced connection padding has
been introduced to lower the overhead due to connection padding. With
reduced connection padding the timeout is sampled from a different range,
between 9 seconds to 14 seconds.

4 Threat Model

In our threat model an attacker wants to deanonimize the apps on a target
smartphone that uses Tor. That is, he/she wants to recognize which apps
are being used by the target smartphone at any given time. We assume
that the target is connected to the Internet through a wireless access
point, either via a Wi-Fi LAN or via the cellular WAN, and that the
attacker is able to passively capture the traffic between the target and
the access point. We assume that the Tor client (i.e., an Onion Proxy) is
installed in the smartphone itself and all apps’ traffic passes through the
Tor client.

5 Deanonymization Methodology

Figure 1 shows an overview of our methodology for deanonymizing An-
droid apps behind Tor. The assumption at the basis of the methodology

Training
Traffic

Gathering

Android Tor
Traces

Pr
ep

ro
ce

ss
in

g

Flows
Labelled
Feature
Vectors

Machine
Learning

Model
Training

Trained
Model

Target
Traffic

Sniffing
Target Tor

Traces

Preprocessing and
Feature Extraction

Module
Feature
Vectors Classifier

Deanon.
Apps

Tr
ai

ni
ng

Ph

as
e

D
ea

no
ny

m
iz

at
io

n
Ph

as
e

Labels

Target

Fe
at

ur
e

Ex
tra

ct
io

n

Public
Datasets

Data
Generation

Fig. 1. Overview of the deanonymization methodology.

is that different apps produce different network traffic patterns, which are
discernible, through proper network traffic analysis, even when the traffic
is anonymized through Tor.

The methodology relies on a machine learning based network traffic
analysis and consists of two distinct phases:

– Training Phase: during which we build a machine learning model of
the distinctive characteristics of apps’ Tor traffic. This is the prepa-
ration phase of the attack.

– Deanonymization Phase: during which we conduct the actual attack
against the target, by monitoring the target’s traffic and using the
model built in the previous phase to recognize which apps the victim
is using.

During the training phase we build a machine learning model of how
different apps produce Tor traffic. We assume that the attacker is inter-
ested in recognizing a predefined set of apps C = {app1, . . . , appn}. If the
target is using an app which is not included in C, our methodology will
not be able to recognize that app. Both the phases of our methodology
include a Traffic Gathering and a Preprocessing and Feature Exctraction
modules, followed by the building of the Machine Learning model for the
Training Phase and Classifier module for the Deanonymization one. In
the following sections we describe each logical block in details.

Traffic Gathering - Since we assume a supervised learning process, for the
training phase, the first step is collecting a training dataset. In particular
our methodology requires to gather, for each app in C, raw Tor traffic
traces. These traces can be picked from public datasets, if available (such
as the one that we made available with this work), or can be generated

synthetically, as described in section 6.1. For the Deanonymization Phase
instead, our methodology requires the attacker to passively capture the
target’s network traffic.

Preprocessing and Feature Extraction Module - This module processes
the network traces gathered at the previous step and extracts the features
that will be fed to the machine learning algorithm. For each network trace,
we sort all TCP sessions (note that Tor only supports TCP) and we split
sessions into flows. A flow is a portion of a TCP session of a predefined
fixed duration TF , the flow timeout. We split each TCP session into flows
of TF seconds. When, we find a TCP packet with the FIN flag set, we stop
splitting. Thus, the last flow of each TCP connection may actually last
less than TF seconds. The flow timeout is a configurable parameter of our
methodology that has an impact on the deanonymization accuracy. As
detailed later, in section 7, we performed experiments with TF = 10 and
TF = 15. The experiments with TF = 10 yielded slightly better results.
For the Training Phase, once we have split all traces into flows, we label
each flow with the app in C that has generated the corresponding traffic.

For each flow xi we compute a vector of features vi = (f1(xi), . . . , fm(xi)).
Section 6.2 reports the set of features that we considered in our Proof-
of-Concept. The general methodology does not rely on a particular set of
features. However, as always, the choice of such set strongly impacts accu-
racy. Our set of features has been derived from an experimental analysis
involving various feature sets. Since many machine learning algorithms
(e.g., SVM and k−NN) work best with standardized features, for each
component yi,k = fk(xi) (of each feature vector) we compute its standard
score.

Machine Learning Model Training - During this step we feed the machine
learning training algorithm with the training set built by the other mod-
ules. Our methodology does not rely on a particular machine learning
model, but assumes a generic multi-class classifier whose set of classes is
the set of apps C. In our experiments we tested three different classifiers
based on, respectively, Random Forest, k−Nearest Neighbors and SVM.

Classifier - In this step, each feature vector coming from the previous step
is directly fed to the classifier that has been trained during the training
stage. For each feature vector the classifier outputs a class, namely one
of the apps in C. The output of the classifier is also the output of the
methodology, i.e., the deanonymized apps. In our Proof-of-Concept we
adopt an offline approach. That is, the two phases are not concurrent,

they are performed subsequently. We first perform monitoring, collect-
ing enough traces, and then we perform the classification. However, our
methodology is general enough to allow for an online implementation, in
which the two stages are actually executed simultaneously, and a new pro-
cessing and classification step is performed as soon as the corresponding
data is available.

6 Proof-of-Concept

This section presents details about our Proof-of-Concept implementing
the methodology described in the previous section. We use a simple ar-
chitecture made by a workstation, a wireless router connected to internet
and two target smartphones connected to the router. On the targets we
install Orbot [1], a proxy app that allows to use Tor on Android. The
workstation is in charge of collecting the raw TCP traces, preprocessing
them and extract feature vectors. We also use it to train the machine
learning models and use them to deanonymize the network traffic.

6.1 Dataset

Since no public datasets collecting Android Tor’s traces were available at
the time of this writing, we generate our own datasets. To build them, we
used AndroidViewClient [3], Culebra GUI and CulebraTester [4]. With
these tools we developed different simulation scripts for each app, in order
to reproduce a typical human user. We reported the details about simu-
lated stimulation of the various apps in appendix A. In this way we can
create, for each app in C, a synthetic, yet as realistic as possible, network
trace. To sniff the traffic and perform basic network analysis, we execute
Tcpdump [2] on the router and Wireshark [8] on the workstation. We
collected two datasets of network traces: 11.24 GB of traces with default
configuration, that we call Reduced Connection Padding Dataset and 9.84
GB with the (full) connection padding activated, that we call Full Con-
nection Padding Dataset, see section 3.1. In both datasets we collected
about 4 hours of network traffic for each of the following apps: Dailymo-
tion, Facebook, Instagram, Replaio Radio, Skype, Spotify, TorBrowser
Alpha, Twitch, uTorrent, YouTube.

6.2 Features

In our Proof-of-Concept we employed three types of features.

Time-based Features - Since Tor’s relay cells (those that transport the
actual payload) are fixed sized, initially we concentrated on time-based,
rather than size-based features. In particular, we employed the following
features, given that they led to good results in the context of recognition
of traffic classes in desktop environments [15]:

– FIAT (Forward Inter Arrival Time): time between two outgoing pack-
ets;

– BIAT (Backward Inter Arrival Time): time between two incoming
packets;

– FLOWIAT (Flow Inter Arrival Time): time between two packets, no
matter the direction;

– Active time: amount of time a flow is active;

– Idle time: amount of time a flow is idle;

– Flow bytes per second : number of bytes per second;

– Flow packets per second : number of packets per second;

– Duration: duration of the flow in seconds.

For all the above features except the last three, we actually compute
4 statistical values: minimum, maximum, mean and standard deviation.
Moreover, the active and idle time depends on a configurable threshold,
the activity timeout TA. We performed experiments with TA = 2 and
TA = 5 seconds.

Packet Direction and Burst Features - Packet direction and burst features
have also been proven to be effective in the context of website fingerprint-
ing on desktop environments [28]. Packet direction indicates whether a
packet is going forward, from the source (the Tor client) to the destina-
tion, or backward, i.e., in the opposite direction. A burst instead is an
uninterrupted sequence of packets in the same direction. After a prelim-
inary analysis, we decided to enrich our feature set with the following
features:

– Direction of the first 10 packets (of the flow);

– Incoming Bursts: number of bursts, bursts mean length, length of the
longest burst;

– Outgoing Bursts: number of bursts, bursts mean length, length of the
longest burst;

– Lengths of the first 10 incoming bursts;

– Lengths of the first 10 outgoing bursts.

Size-based Features - Event though relay cells are fixed sized, Tor uses
variable-length cells for traffic control. As a preliminary analysis, we
counted the number of packets for each packet size and we observed that,
while there is a large variability in packet sizes, there is a relatively small
set of possible packet sizes. Thus, we decided to introduce a feature for
each of the ten most frequent packet sizes. These, were (in order of higher
frequency) 1500, 595, 583, 2960, 1097, 1384, 151, 1126, 1109 and 233
bytes. We soon decided to discard size 2960, as this exceeds the MTU
(1500 byes) and thus represents a reassembled packet. Each feature is a
counter of the number of packets of that size observed in the flow.

7 Experimental Evaluation

We performed several experiments using the prototype implementation
of our methodology described in the Proof-of-Concept section (see sec-
tion 6). For each experiment we vary the following settings:

– Tor’s connection padding : Reduced or Full, depending on whether we
use the dataset with reduced connection padding or full connection
padding (see section 6.1);

– Flow Timeout (TF): either 10 or 15 seconds (see section 5);

– Activity Timeout (TA): either 2 or 5 seconds (see section 6.2);

– Presence of the Web Browser app: Yes/No.

In particular, the last setting indicates whether the traces related to the
usage of the web browser app are included in the experiment’s dataset or
not. The choice of performing experiments for both cases is motivated by
the fact that, according to our experiments, the web browser app seems
to be the most difficult to recognize among those due to the fact that
each class of webpage can potentially have its own pattern that can be
similar to apps of the same type. Thus its inclusion significantly reduces
the accuracy of the methodology. Due to space constraints in this paper
we discuss only the four most significant experiments (see Table 1). The
results of the other experiments are available in the extended version of
this work2 (a brief summary is also reported in this paper in Appendix B).
However, from these we drew the same general conclusions drawn from
the first four experiments.

2 Citation removed for double-blind review process

Table 1. Experiments discussed in this article (Flow Timeout and Activity Timeout
are in seconds).

Experiment
Connection
Padding

Flow
Timeout

Activity
Timeout

Web
Browser

Experiment 1 Reduced 10 2 Yes
Experiment 2 Reduced 10 2 No
Experiment 3 Full 10 2 Yes
Experiment 4 Full 10 2 No

7.1 Evaluation Methodology

For each experiment we evaluate the performance achieved by our Proof-
of-Concept, namely the performance of the classifier. We asses both the
overall performance of the classifier and the performance achieved on
a per-class basis, so as to highlight whether some apps are more easily
recognized than others. The per-class performance are computed in terms
of precision, recall, F1 score and accuracy computed for each class in C.
The overall classifier performance are computed by averaging the per-class
metrics. Note that precision, recall and F1 score are averaged according
to two criteria: micro and macro. The two criteria account differently for
imbalances in the dataset (i.e., uneven proportion of samples per classes).
The micro criteria biases the corresponding metrics towards the most
populated classes, while the macro criteria treats all classes equally [25].
Note, that micro precision and micro recall (and thus micro F1 score),
are mathematically equivalent. Thus, when presenting the results of the
experiments we will only report the micro F1 score.

7.2 Results

In this section we present the results of the experimental evaluation.

Global evaluation - Table 2 shows a comparison of the results obtained

Table 2. Summary of the results of Experiments 1-4.

Experiment Avg. Accuracy Micro F1 Macro Precision Macro Recall Macro F1

Experiment 1 0.968 0.840 0.834 0.830 0.832
Experiment 2 0.969 0.859 0.859 0.852 0.855
Experiment 3 0.972 0.861 0.857 0.849 0.853
Experiment 4 0.973 0.880 0.877 0.872 0.875

in each experiment through this classifier. In all experiments we achieved

Table 3. Per-class performance of each classifier for Experiment 1.

Random Forest k−NN SVC
APP PR. REC. F1 ACC. PR. REC. F1 ACC. PR. REC. F1 ACC.

dailymotion 0.83 0.77 0.8 0.96 0.56 0.58 0.57 0.91 0.74 0.72 0.73 0.95
facebook 0.9 0.84 0.87 0.98 0.62 0.7 0.66 0.94 0.86 0.85 0.86 0.97
instagram 0.79 0.86 0.82 0.94 0.58 0.67 0.62 0.88 0.77 0.83 0.8 0.94
replaio radio 0.99 0.98 0.98 1.0 0.98 0.96 0.97 0.99 0.98 0.98 0.98 0.99
skype 0.99 0.96 0.97 1.0 0.97 0.94 0.95 0.99 0.98 0.95 0.97 0.99
spotify 0.67 0.65 0.66 0.94 0.56 0.48 0.52 0.92 0.63 0.66 0.65 0.93
torbrowser 0.68 0.77 0.72 0.97 0.6 0.47 0.53 0.95 0.67 0.71 0.69 0.96
twitch 0.83 0.87 0.85 0.97 0.68 0.76 0.71 0.93 0.83 0.83 0.83 0.96
utorrent 0.9 0.91 0.9 0.98 0.82 0.69 0.75 0.96 0.85 0.84 0.85 0.97
youtube 0.76 0.69 0.72 0.95 0.61 0.57 0.59 0.93 0.72 0.63 0.67 0.95

Table 4. Per-class performance of each classifier for Experiment 2.

Random Forest k−NN SVC
APP PR. REC. F1 ACC. PR. REC. F1 ACC. PR. REC. F1 ACC.

dailymotion 0.83 0.78 0.8 0.96 0.56 0.58 0.57 0.9 0.74 0.72 0.73 0.94
facebook 0.9 0.84 0.87 0.98 0.65 0.71 0.68 0.94 0.86 0.85 0.85 0.97
instagram 0.79 0.87 0.83 0.94 0.6 0.67 0.63 0.88 0.77 0.82 0.79 0.93
replaio radio 0.99 0.98 0.99 1.0 0.98 0.96 0.97 0.99 0.98 0.98 0.98 0.99
skype 0.99 0.96 0.98 1.0 0.98 0.95 0.96 0.99 0.98 0.96 0.97 0.99
spotify 0.72 0.74 0.73 0.95 0.6 0.5 0.55 0.92 0.67 0.72 0.69 0.94
twitch 0.84 0.87 0.85 0.97 0.68 0.76 0.72 0.93 0.84 0.83 0.83 0.96
utorrent 0.9 0.93 0.91 0.98 0.83 0.71 0.77 0.96 0.87 0.87 0.87 0.97
youtube 0.77 0.71 0.74 0.95 0.63 0.56 0.59 0.93 0.73 0.66 0.69 0.95

the best results with the Random Forest classifier. In all experiments we
obtained comparable accuracy (∼ 0.97).

Per-app evaluation - Tables 3-6 show the per-app result of each experi-
ment. For all classifiers, we observe a certain variability in how accurate
the classifier is in recognizing the various apps. Looking at the F1 score,
Spotify, Tor Browser and YouTube appear to be the most difficult apps to
recognize. Indeed, by looking directly at the data, we observed that these
three apps are often confused, one for another. Since both Spotify and
YouTube provide streaming contents, they probably generate strongly
similar traffic patterns, that mislead the classifiers. The same reasoning
probably applies to Tor Browser. Indeed, webpages may embed streaming
content, including YouTube videos themselves. Moreover, in experiments
3 and 4, by looking at the F1 score, we observe that the apps that mislead
the classifiers the most are Facebook, Instagram and Tor Browser. This
is not surprising. Indeed, if we think of the typical usage patterns of the
apps that we considered in our experiments, Facebook, Instagram and Tor
Browser are the ones with the largest idle periods (the user “think time”),
as opposed to the other apps, that mainly provide streaming content (typ-

Table 5. Per-class performance of each classifier for Experiment 3.

Random Forest k−NN SVC
APP PR. REC. F1 ACC. PR. REC. F1 ACC. PR. REC. F1 ACC.

dailymotion 0.87 0.81 0.84 0.97 0.66 0.72 0.69 0.95 0.8 0.77 0.78 0.97
facebook 0.78 0.72 0.75 0.96 0.48 0.52 0.5 0.91 0.71 0.72 0.72 0.95
instagram 0.72 0.7 0.71 0.94 0.47 0.47 0.47 0.89 0.67 0.7 0.68 0.93
replaio radio 0.95 0.97 0.96 0.99 0.88 0.94 0.91 0.98 0.96 0.96 0.96 0.99
skype 0.98 0.95 0.97 0.99 0.93 0.92 0.93 0.98 0.98 0.94 0.96 0.99
spotify 0.82 0.84 0.83 0.96 0.69 0.68 0.68 0.93 0.76 0.78 0.77 0.95
torbrowser 0.81 0.69 0.75 0.97 0.64 0.35 0.45 0.94 0.78 0.67 0.72 0.97
twitch 0.86 0.92 0.89 0.98 0.68 0.77 0.72 0.94 0.86 0.87 0.87 0.97
utorrent 0.99 0.99 0.99 1.0 0.94 0.98 0.96 0.99 0.98 0.99 0.98 1.0
youtube 0.79 0.88 0.83 0.96 0.68 0.65 0.66 0.92 0.79 0.82 0.8 0.95

Table 6. Per-class performance of each classifier for Experiment 4.

Random Forest k−NN SVC
APP PR. REC. F1 ACC. PR. REC. F1 ACC. PR. REC. F1 ACC.

dailymotion 0.88 0.82 0.85 0.97 0.67 0.71 0.69 0.94 0.81 0.77 0.79 0.96
facebook 0.82 0.73 0.77 0.96 0.51 0.52 0.52 0.91 0.73 0.73 0.73 0.95
instagram 0.75 0.71 0.73 0.94 0.51 0.49 0.5 0.89 0.69 0.7 0.69 0.93
replaio radio 0.95 0.97 0.96 0.99 0.88 0.94 0.91 0.98 0.96 0.96 0.96 0.99
skype 0.98 0.96 0.97 0.99 0.96 0.92 0.94 0.98 0.97 0.95 0.96 0.99
spotify 0.84 0.86 0.85 0.97 0.73 0.69 0.71 0.94 0.8 0.81 0.8 0.95
twitch 0.87 0.92 0.9 0.98 0.71 0.77 0.74 0.94 0.88 0.87 0.87 0.97
utorrent 0.99 0.99 0.99 1.0 0.96 0.98 0.97 0.99 0.98 0.99 0.99 1.0
youtube 0.81 0.88 0.84 0.96 0.71 0.65 0.68 0.92 0.8 0.83 0.81 0.95

ically, with less frequent and shorter idle periods). Since the connection
padding mechanism is activated by idle periods, it is normal to observe a
performance degradation when using full connection padding rather than
the reduced one.

Result Summary - As expected, all performance metrics slightly improve
when we do not consider the Tor Browser app (see Table 2). Indeed,
the type of the visited website strongly impacts on the characteristics of
the generated traffic, which makes this app sometimes be confused with
other apps. For example, when visiting a webpage with streaming content
the Tor Browser app might be confused with a streaming app (such as
Spotify or YouTube). A counterintuitive result that we obtained is that
apparently the use of Tor’s (full) connection padding actually improved
the accuracy over the used reduced connection padding. If we look at the
per-class results (Tables 3-6) we notice that the performance on Face-
book and Instagram apps actually worsen significantly. Also the recall of
the Tor Browser app worsen significantly, though its precision improves,
which means that the proportion of false negatives increases (the app
is more often confused with others), while the number of false positives

decreases (other apps are less frequently confused with Tor Browser).
The fact that these three apps are more often misclassified when using
full padding is what we expected. Indeed, as already pointed out, their
typical use patterns involve more frequent “think times” and, thus, idle
periods, which trigger the connection padding mechanism. On the other
hand, the other apps are mainly characterized by a “streaming” pattern,
thus involving extremely less frequent idle periods, which explains why
for the majority of them the performance does not worsen. However, it
does not explain why they improve. Clearly, the padding mechanism has a
strong impact on the time-based features (see section 6.2), especially the
active/idle time. Our guess is that the full padding mechanism is actually
activated statistically more often for some of these streaming apps and
less often for others, which actually results in a better separation of the
corresponding classes. We plan to better investigate this aspect as future
work.

8 Conclusion

In this work we have shown that Tor when used on Android devices is
vulnerable to app deanonymization. We described a general methodol-
ogy to perform an attack against a target smartphone which allows to
unveil which apps the victim is using. The proposed methodology per-
forms network traffic analysis based on a supervised machine learning
approach. It leverages the fact that different apps produce different rec-
ognizable traffic patterns even when protected by Tor. We also provided
a Proof-of-Concept that implements the methodology, that we employed
to assess the accuracy that it can achieve in deanonymizing apps. We
performed several experiments achieving an accuracy of 97.3% and a F1
score of 87.5%. We made the software of the Proof-of-Concept, as well as
the datasets that we built during the experiments, publicly available, so
that it can be used to assess Tor’s vulnerability to this attack, compare
alternative methodologies and test possible countermeasures.

As future work we plan to experiment with additional machine learn-
ing algorithms. Moreover, in this work we adopted a multi-class classifier
approach. That is, we trained a single classifier on all possible classes. We
plan to extend our experimental evaluation by testing alternative binary-
class approaches (such as one-vs-all and one-vs-one), in which we employ
several binary classifiers in place of a single multi-class classifier. Another
improvement to this work may be to enlarge the datasets with a richer
set of apps.

References

1. Orbot: Tor for android (2018), https://guardianproject.info/apps/orbot/
2. Tcpdump (2018), https://www.tcpdump.org/
3. Androidviewclient (2019), https://github.com/dtmilano/AndroidViewClient
4. Culebra (2019), http://culebra.dtmilano.com/
5. The majestic million (2019), https://majestic.com/reports/majestic-million
6. Socialblade.com top 500 most followed profiles (sorted by followers count) (2019),

https://socialblade.com/instagram/top/500/followers

7. Socialblade.com top 500 most liked facebook pages (sorted by count) (2019),
https://socialblade.com/facebook/top/500/likes

8. Wireshark (2019), https://www.wireshark.org/
9. AlSabah, M., Bauer, K., Goldberg, I.: Enhancing tor’s performance using real-

time traffic classification. In: Proceedings of the 2012 ACM Conference on Com-
puter and Communications Security. pp. 73–84. CCS ’12, ACM, New York, NY,
USA (2012). https://doi.org/10.1145/2382196.2382208, http://doi.acm.org/10.
1145/2382196.2382208

10. Bissias, G.D., Liberatore, M., Jensen, D., Levine, B.N.: Privacy vulnerabilities
in encrypted http streams. In: Proceedings of the 5th International Conference
on Privacy Enhancing Technologies. pp. 1–11. PET’05, Springer-Verlag, Berlin,
Heidelberg (2006). https://doi.org/10.1007/11767831()1

11. Chakravarty, S., Barbera, M.V., Portokalidis, G., Polychronakis, M., Keromytis,
A.D.: On the effectiveness of traffic analysis against anonymity networks using flow
records. In: Proceedings of the 15th International Conference on Passive and Active
Measurement - Volume 8362. pp. 247–257. PAM 2014, Springer-Verlag, Berlin,
Heidelberg (2014). https://doi.org/10.1007/978-3-319-04918-2()24, https://doi.
org/10.1007/978-3-319-04918-2(_)24

12. Conti, M., Mancini, L.V., Spolaor, R., Verde, N.V.: Can’t you hear me
knocking: Identification of user actions on android apps via traffic analy-
sis. In: Proceedings of the 5th ACM Conference on Data and Application
Security and Privacy. pp. 297–304. CODASPY ’15, ACM, New York, NY,
USA (2015). https://doi.org/10.1145/2699026.2699119, http://doi.acm.org/10.
1145/2699026.2699119

13. Dai, S., Tongaonkar, A., Wang, X., Nucci, A., Song, D.: Networkprofiler:
Towards automatic fingerprinting of android apps. pp. 809–817 (04 2013).
https://doi.org/10.1109/INFCOM.2013.6566868

14. Freedom on the Net: 2017 report (2017), https://freedomhouse.org/report/

freedom-net/freedom-net-2017

15. Habibi Lashkari, A., Draper Gil, G., Mamun, M.S.I., Ghorbani, A.A.:
Characterization of tor traffic using time based features. In: Proceedings
of the 3rd International Conference on Information Systems Security and
Privacy - Volume 1: ICISSP,. pp. 253–262. INSTICC, SciTePress (2017).
https://doi.org/10.5220/0006105602530262

16. Hintz, A.: Fingerprinting websites using traffic analysis. In: Proceedings of the
2Nd International Conference on Privacy Enhancing Technologies. pp. 171–
178. PET’02, Springer-Verlag, Berlin, Heidelberg (2003), http://dl.acm.org/

citation.cfm?id=1765299.1765312

17. Juarez, M., Afroz, S., Acar, G., Diaz, C., Greenstadt, R.: A critical evaluation
of website fingerprinting attacks. In: Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. pp. 263–274. CCS ’14,

ACM, New York, NY, USA (2014). https://doi.org/10.1145/2660267.2660368,
http://doi.acm.org/10.1145/2660267.2660368

18. Liberatore, M., Levine, B.N.: Inferring the source of encrypted http con-
nections. In: Proceedings of the 13th ACM Conference on Computer and
Communications Security. pp. 255–263. CCS ’06, ACM, New York, NY,
USA (2006). https://doi.org/10.1145/1180405.1180437, http://doi.acm.org/10.
1145/1180405.1180437

19. Ling, Z., Luo, J., Wu, K., Yu, W., Fu, X.: Torward: Discovery of malicious traffic
over tor. IEEE INFOCOM 2014 - IEEE Conference on Computer Communications
pp. 1402–1410 (2014)

20. Mittal, P., Khurshid, A., Juen, J., Caesar, M., Borisov, N.: Stealthy traf-
fic analysis of low-latency anonymous communication using throughput fin-
gerprinting. In: Proceedings of the 18th ACM Conference on Computer and
Communications Security. pp. 215–226. CCS ’11, ACM, New York, NY,
USA (2011). https://doi.org/10.1145/2046707.2046732, http://doi.acm.org/10.
1145/2046707.2046732

21. Perry, M.: Tor padding specification (2019), https://gitweb.torproject.org/

torspec.git/tree/padding-spec.txt

22. Project, T.: Tor metrics, https://metrics.torproject.org/, accessed: Jan. 2019

23. Roger Dinledine, Nick Mathewson, S.M., Syverson, P.: Tor: The second-
generation onion router (2014 draft v1) (2014), \url{"https://murdoch.is/

papers/tor14design.pdf"}

24. Saltaformaggio, B., Choi, H., Johnson, K., Kwon, Y., Zhang, Q., Zhang, X., Xu,
D., Qian, J.: Eavesdropping on fine-grained user activities within smartphone apps
over encrypted network traffic. In: Proceedings of the 10th USENIX Conference
on Offensive Technologies. pp. 69–78. WOOT’16, USENIX Association, Berkeley,
CA, USA (2016), http://dl.acm.org/citation.cfm?id=3027019.3027026

25. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures
for classification tasks. Inf. Process. Manage. 45(4), 427–437 (Jul 2009).
https://doi.org/10.1016/j.ipm.2009.03.002, http://dx.doi.org/10.1016/j.ipm.

2009.03.002

26. Stöber, T., Frank, M., Schmitt, J., Martinovic, I.: Who do you sync
you are?: Smartphone fingerprinting via application behaviour. In: Proceed-
ings of the Sixth ACM Conference on Security and Privacy in Wire-
less and Mobile Networks. pp. 7–12. WiSec ’13, ACM, New York, NY,
USA (2013). https://doi.org/10.1145/2462096.2462099, http://doi.acm.org/10.
1145/2462096.2462099

27. Taylor, V.F., Spolaor, R., Conti, M., Martinovic, I.: Appscanner: Automatic fin-
gerprinting of smartphone apps from encrypted network traffic. In: 2016 IEEE
European Symposium on Security and Privacy (EuroS P). pp. 439–454 (March
2016). https://doi.org/10.1109/EuroSP.2016.40

28. Wang, T., Cai, X., Nithyanand, R., Johnson, R., Goldberg, I.: Effective attacks
and provable defenses for website fingerprinting. In: Proceedings of the 23rd
USENIX Conference on Security Symposium. pp. 143–157. SEC’14, USENIX
Association, Berkeley, CA, USA (2014), http://dl.acm.org/citation.cfm?id=

2671225.2671235

A User Simulation

This section describes how we simulated the user interaction in our Proof-
of-Concept.

Tor Browser The user activity on the Tor Browser app has been sim-
ulated through a python script that visits webpages randomly sampled
from a list of the top 10,000 sites extracted from the Majestic Million
dataset [5]. The script spend a randomly drawn amount of time on each
webpage, before navigating to the next one.

Instagram To simulate the user interaction with Instagram, we cre-
ated a new account and added the Socialblade’s top 500 most followed
profiles [6]. The simulation script generates random swipe inputs on the
Instagram app to scroll the main page up and down with random delays.
Swipe down inputs are generated with higher probability than swipe up
inputs, as a user browsing Instagram posts would typically scroll the page
from top to bottom. After a random number of swipes there is a 30% prob-
ability that the user decides to visit another random profile, or otherwise
a 30% probability that the user will push the like button on the current
Instagram post.

Facebook The simulation of the user interaction with the Facebook app
is very similar to that of Instagram. First we create a Facebook account
for the user and we add a list of followed pages derived from Socialblade’s
top 500 most liked Facebook Pages [7]. Similarly to that of Instagram, the
simulation script scrolls the posts in the main page of the Facebook app,
by generating random swipe inputs with random delays. After a random
number of swipes there is a 30% probability that the user pushes the like
button on the post showing on the screen.

Skype Skype calls have been generated by starting calls with an audio
source near the smartphone microphone.

uTorrent The uTorrent app is a Torrent client and, therefore, it does
not require a complex user interaction. We simply add some torrent file
to the app, and it starts the download.

Dailymotion, Replaio Radio, Spotify, Twitch, YouTube Also this
apps do not require a very complex interaction with the user. We start
each app on some streaming content and leave the app in execution.

B Experiments Result Summary

Table 7 shows the settings of all the experiments that we performed and
a summary of the results obtained.

Table 7. Complete set of experiments with results (Flow Timeout and Activity Time-
out are in seconds).

Experiment
Connection
Padding

Flow
Timeout

Activity
Timeout

Web
Browser

Avg.
Accuracy

Micro
F1

Macro
Precision

Macro
Recall

Macro
F1

Experiment 1 Reduced 10 2 Yes 0.968 0.840 0.834 0.830 0.832
Experiment 2 Reduced 10 2 No 0.969 0.859 0.859 0.852 0.855
Experiment 3 Full 10 2 Yes 0.972 0.861 0.857 0.849 0.853
Experiment 4 Full 10 2 No 0.973 0.880 0.877 0.872 0.875
Experiment 5 Reduced 10 5 Yes 0.969 0.844 0.836 0.833 0.835
Experiment 6 Reduced 10 5 No 0.969 0.860 0.860 0.854 0.857
Experiment 7 Full 10 5 Yes 0.972 0.862 0.858 0.849 0.854
Experiment 8 Full 10 5 No 0.973 0.878 0.876 0.871 0.873
Experiment 9 Reduced 15 2 Yes 0.970 0.852 0.851 0.844 0.847
Experiment 10 Reduced 15 2 No 0.970 0.866 0.871 0.861 0.866
Experiment 11 Full 15 2 Yes 0.975 0.876 0.874 0.859 0.867
Experiment 12 Full 15 2 No 0.976 0.890 0.888 0.878 0.883
Experiment 13 Reduced 15 5 Yes 0.971 0.853 0.851 0.844 0.847
Experiment 14 Reduced 15 5 No 0.972 0.873 0.877 0.868 0.873
Experiment 15 Full 15 5 Yes 0.976 0.878 0.875 0.861 0.868
Experiment 16 Full 15 5 No 0.976 0.893 0.891 0.881 0.886

