
Enforcing shaping of thin gel sheets by anisotropic swelling

Daniele Battistaa, Michele Curatoloa, Paola Nardinocchia,∗

aDipartimento di Ingegneria Strutturale e Geotecnica
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Abstract

This paper investigates swelling-induced shaping in bilayered thin plates. Sphere-like
and nearly developable shapes are realized and the ability to control a specific shaping,
shifting from one shape to another, under anisotropic swelling is investigated. It is
shown that reinforcing fibers can be crucial in controlling shaping under swelling and
dramatically affect the characteristics of the final shapes.
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1. Introduction

Swelling and shrinking of polymer gels have been widely used as driving forces for
changing the shape of materials. In response to different stimuli, such as changes
in temperature or pH, the solvent uptake inside the cross–linked network can change
resulting in reversible volumetric expansion or shrinkage. Most gels have a long re-
sponse time, and the corresponding changes in shape are typically slow, generally due
to local volume changes in the material corresponding to solvent uptake and release.
Inhomogeneous swelling (shrinking) can determine dramatic changes in shape, espe-
cially in thin structures which can also quickly shift from one shape to another (see
[23, 21, 29, 32, 14, 24, 6, 38, 39, 40, 22, 3] and references therein for thin gel and polymeric
structures). In thin shells, in-plane and through-the-thickness inhomogeneous swelling,
corresponding to in-plane or through-the-thickness inhomogeneous material, drive these
changes in shape and realize domes and other surfaces from plates [34, 37, 35].
Swelling in gel bodies can be viewed as an elastic growth, as it is a growth of the body
due to the elastic stretching induced by solvent uptake of the polymeric network. A gel
body stores elastic energy even if it freely swells from a dry state under no constraints
and no loads. On the contrary, (inelastic) growth processes can determine changes in
body shape without any storage of elastic energy, if growth deformations are compatible
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and realizable. So, swelling and growth are quite different phenomena from an energetic
point of view, especially when they come together (i.e. in active gels [4, 2]). There is
a clear distinction between them and a full modeling of their interactions is fundamen-
tally important to accurately describe the combined processes [8]. Nevertheless, reduced
models of growing plates and shells have often been used to study swelling in thin struc-
tures [23, 13, 25]. The reason is that, for thin structures, the growth approach to the
elastic problem, based on the multiplicative decomposition of the deformation gradient,
yields simplified models which allow for semi-analytical solutions. However, the three-
dimensional nature of the swelling processes, which are locally isotropic processes, as
well as the differential capability to store energy with respect to growth processes, can
deliver important differences in the realized steady and swollen configurations.
The topic of the paper is swelling-driven bending of thin plates. The strategy used to get
plate bending under swelling is based on bonding one above the other two layers with
different elastic properties to realize a through-the-thickness inhomogeneous swelling.
The amount of bending depends on the swelling mismatch between the layers; on the
other side, the final shaping depends on different geometrical and mechanical factors.
The goal is to discuss the shaping of bilayered plates from the three-dimensional fully
coupled stress-diffusion nonlinear model the point of view, presented in [26] and largely
tested and discussed in [28, 30, 31, 9, 10, 11, 12] and to compare it with other results
based on growth approaches. A large range of swelling mismatches and plates with dif-
ferent slenderness, aspect ratio and stiffness were selected. Bifurcation from the spherical
shape is identified by aspect ratios different from 1.
The results are also reviewed within the context of the non-euclidean plate theory [35]
and discussed with reference to a revised version of the bifurcation formula produced in
[33].
Finally, it is shown how shaping strategy can be controlled by realizing bilayered plates
which include anisotropic layers. In this case, reinforcing fibers can be crucial in control-
ling shaping under swelling and dramaticallyaffect the characteristics of the final shapes.

2. Steady states of swelling processes

Swelling is studied starting from the multiphysics model presented and discussed in
Ref. 26 and successively refined in Refs. 28, 9, 11, 12. The key elements of the model
are shortly reviewed.
Water–polymer mixture is modeled as a homogenized continuum body, allowing for a
mass flux of the solvent (see also Refs. 19, 20, 42, 7). The dry-reference state Gd of
the gel is a shell, identified with the region of the Euclidean space E it occupies. The
state variables of the model are the displacement field ud from Gd and the molar water-
concentration cd per unit dry volume. The two state variables satisfy the following
volumetric constraint Jd = detFd = Ĵd(cd) = 1 + Ωcd, implying that any changes in
volume of the gel is accompanied by an equivalent uptake or release of water content.
Therein, Fd = I + ∇ud is the deformation gradient and Ω is the molar volume of the
water.
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As prescribed by the Flory–Rehner thermodynamic model [16, 17], the free energy ψ per
unit dry-volume depends on Fd through an elastic component ψe, and on cd through a
polymer–water mixing energy ψm: ψ = ψe+ψm. We introduce a relaxed free–energy ψr,
which includes the volumetric constraint, as ψr(Fd, cd, p) = ψe(Fd) + ψm(cd) − p(Jd −
Ĵd(cd)) with the pressure p as the reaction to the volumetric constraint, which maintains
the volume change Jd due to the displacement equal to the one due to solvent absorption
or release Ĵd(cd). The constitutive equation for the dry-reference stress Sd and for the
chemical potential µ are consistently derived as

Sd =
∂ψe
∂Fd

− pF?d and µ =
∂ψm
∂cd

+ pΩ , (2.1)

being F?d = JdF
−T
d . For isotropic gels, the elastic component ψe of the free energy

takes a neo-Hookean form, whereas for anisotropic gels a further component has been
added which accounts for the reinforcing effect of the fibres [31]. The polymer–water
mixing energy ψm always keeps the Flory–Huggins isotropic form. So, introduced the
unit vector field e which identifies the fiber direction field in transversely isotropic gels,
we have:

ψe(Fd) =
Gd
2

(Fd ·Fd−3) or ψe(Fd) =
Gd
2

(Fd ·Fd−3)+
Gdγ

2
(Fde ·Fde−1)2 , (2.2)

and

ψm(cd) =
RT
Ω

h(cd) with h(cd) = Ω cd log
Ω cd

1 + Ω cd
+ χ

Ω cd
1 + Ω cd

; (2.3)

where Gd represents the shear modulus of the dry polymer, R represents the univer-
sal gas constant, T represents the temperature and χ represents the Flory parame-
ter. Whereas the constitutive equation for the chemical potential does not change for
isotropic/anisotropic gels, and is

µ = µ̂(cd) = µ̂(Jd) = RT
(

log
Jd − 1

Jd
+

1

Jd
+

χ

J2
d

)
, (2.4)

the constitutive equations for the stress in the isotropic and anisotropic case are

Sd = GdFd − pF?d or Sd = GdFd + 2Gd γ (Fde · Fde− 1)Fd e⊗ e− pF?d . (2.5)

Typically, thermodynamical issues drive the constitutive representation of the solvent
flux hd in terms of the gradient∇µ of the chemical potential as hd = −M(Fd, cd)∇(µ̂(cd)+
pΩ) with the mobility tensor M(Fd, cd) = D/RT cdC−1d and Cd = FTdFd as a positive
definite tensor depending on the diffusivity D of the polymer. Here, we only aim to
characterize the stationary swollen states of thin bilayered structures, delivered by the
equilibrium equations of the model in the form:

0 = div Sd and 0 = −div hd in Gd . (2.6)

In the present studies, they are supplemented by the boundary mechanical Sdm = t
and chemical µ̂(cs) + pΩ = µe conditions on ∂Gd, with the latter corresponding to
an implicit condition on the concentration field cs on ∂Gd controlled by assigning the
external chemical potential µe.
It is worth noting that the pressure term p in the constitutive equations..
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2.1. Swelling mismatch in bilayered structures

Bilayered plates bend under swelling due to the mismatch between the shear moduli
and/or the Flory parameters of the two plate-like parts. The issue has already been
largely discussed in the literature [1, 15, 27, 34, 35], and can be described starting from
the free-swelling solution of the stress-diffusion problem corresponding to a body which
is embedded into a bath of assigned chemical potential µe. A homogeneous body attains
a swollen stress-free state with Sd = 0 and hd = 0, identified by the deformation gradient
Fd = λoI with the free-swelling stretch λo the solution of the equilibrium equation:

RT
(

log
λ3o − 1

λ3o
+

1

λ3o
+

χ

λ6o

)
+
GdΩ

λo
= µe . (2.7)

Equation (2.7) shows that the uniform swelling ratio λo is completely determined by the
shear modulus G once the external chemical potential µe and the Flory parameter χ
have been fixed.
When two bonded layers of different shear modulus swell into a homogeneous bath of
assigned chemical potential, the mismatch between the uniform swelling ratios which
would correspond to the two layers if each of them was free from the other, is one of
the determinants of the bending intensity. It has been shown that, for 1/λ3o → 0, the
mismatch δ between the uniform swelling ratios λot and λob of the top and bottom layers,
respectively, can be written as

δ =
λot
λob

=

(
Gb
Gt

)1/5

= α−1/5 with α =
Gt
Gb

. (2.8)

When one of the two layers is unidirectionally fiber reinforced, the swelling mismatch
between the two layers may be different along the fiber direction and in the transverse
direction. Indeed, a homogeneous anisotropic body with fibers attains a swollen stress-
free state with Sd = 0 and hd = 0, identified by the deformation gradient Fd = λo‖ e⊗
e + λo⊥ Ǐ being λo‖ and λo⊥ the linear swelling ratios along the fiber direction e ⊗ e,

and in the orthogonal plane, respectively, and Ǐ = I− e⊗ e. Moreover, the free-swelling
stretches λo‖ and λo⊥ are solutions of the equilibrium equations:

λ2o⊥ = (1 + 2 γ (λ2o‖ − 1))λ2o‖ and
GΩ

λo‖
= µe − µ̂(Jd) , Jd = λo‖λ

2
o⊥ . (2.9)

Equation in (2.9)1 delivers a representation of λ2o⊥ in terms of λ2o‖; by using it in (2.9)2,
we get the relation between λo⊥ and the external chemical potential µe. It is worth
noting that the isotropic free-swelling ratio λo always stays between λo‖ and λo ⊥ for
the same values of the other parameters:

λo‖ < λo < λo⊥ . (2.10)

Hence, we can define differential swelling mismatches depending on the directions and
on the position of the fibers within the top or bottom layer. For fiber reinforced top or
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bottom layers, we have

δt‖ =
λot‖

λob
and δt⊥ =

λot⊥
λob

or δb‖ =
λot
λob‖

and δb⊥ =
λot
λob⊥

. (2.11)

Due to (2.10), it holds

δt‖ =
λot‖

λob
<
λot
λob

= δ and δt⊥ =
λot⊥
λob

>
λot
λob

= δ , (2.12)

and

δb‖ =
λot
λob‖

>
λot
λob

= δ and δb⊥ =
λot
λob⊥

>
λot
λob

= δ , (2.13)

Specifically, if the elastic moduli of the two layers are the same, we have that δ =
δb‖δ

t
‖ = δb⊥δ

t
⊥. As shown in Section 4, the shaping problems, when anisotropic layers are

included in the assembled structure, caused by the differential swelling mismatches raise
some interesting questions.

3. Isotropic swelling of bilayer thin sheets

Realizing thin multilayered plates by bonding at least two layers with different elastic
moduli, and with at least one of the two as a stimuli-responsive layer is a strategy to get
plate bending in absence of mechanical actions. Under the stimulus, the mismatched
response of the two layers delivers a strain gradient along the thickness which allows to
realize bending in absence of mechanical actions.
We consider bilayered isotropic plates of thickness h and sides L1 and L2, with h/Lη <<
1 (η = 1, 2). We assume the ratio β between the thickness ht of the top layer and the
thickness h of the plate fixed. Once embedded into a solvent bath, each layer swells as
much as its shear modulus and the bond with the other layer allows. The plate increases
its thickness and, due to the swelling mismatch δ between the two layers, bends.
The problem is set within the stress-diffusion model illustrated in the Section 2and the
isotropic elastic energy is chosen in the form (2.3)1. We are interested in the equilib-
rium solution of the problem and solve it by using Stationary Solutor in the finite
element software COMSOL Multiphysics. We use a mesh composed of parallelepiped
cells with at least six elements for each direction and the stationary solver with the
Newton nonlinear method to solve all the equations of the problem in a weak form.
High orders shape functions are also used; specifically, we use quintic order Lagrange
shape functions for the balance of forces and the balance of solvent mass and a quartic
discontinous Lagrange shape function for the Lagrangian multiplier of the volumetric
constraint equation. Finally, the convergence is verified by testing different sizes of mesh
and by increasing the order of the shape functions.

3.1. From flat to double-curve shapes

We started our analyses by implementing a wide range of swelling tests keeping fixed
the aspect ratio AR = 1 of the plate, that is, assuming L1 = L2 = L (and L = 1cm),
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and changing both the slenderness h/L, in the interval (0.08, 0.2), and the ratio α in the
interval (0.3, 1). We also fix β = 0.61. At each α, it corresponds a swelling mismatch
δ = λot/λob, due to the equation (2.11). In our tests, δ varies in the interval (1.3, 1),
determining a maximum differential strain εot − εob ' 0.3. It is worth noting that the
same swelling mismatch holds when the bottom layer (and, as a consequence assuming
α as fixed, the top layer) is softer and softer.

Figure 1: Top: Gaussian curvature K? versus shear moduli ratio α for a square plate with slenderness
h/L = 0.07 and shear modulus of the bottom layer Gb = 107Pa (blue line) and Gb = 105Pa (yellow
line). Bottom: Gel configurations at the three points 1-2-3 corresponding to α = 1, 0.6, 0.3, respectively,
highlighted in the top plot. Colour code corresponds to the volumetric change Jd, which is related to
the amount of solvent uptake.

For Gb = 105Pa and Gb = 107Pa, figure 1 shows the increase in bending of a plate
of slenderness h/L = 0.07, corresponding to the decrease in α: for α = 1, the plate
is homogeneous and the swelling realizes a homothety with the plate keeping its flat
shape. For α 6= 1 a sphere-like shape is realized, with equal principal curvatures and the
Gaussian curvature K?, evaluated at the center of the middle surface, increasing for α
decreasing, corresponding to an increase of the swelling mismatch. We can see that, at
α = 0.3, we get a swelling mismatch δ = 1.3 for both the plates, even if, it corresponds
to free-swelling stretches λob and λot equal to 2.75 and 3.5, for Gb = 105Pa, and to
free-swelling stretches λob and λot equal to 1.32 and 1.68, for Gb = 107Pa. Figure 1 also

1It has been shown in [27] how for the same values of all the other parameters, β = 0.6 determines
the maximum value of curvature in bilayered beams.
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shows the plate configurations at the three points 1-2-3 corresponding to α = 1, 0.6, 0.3,
respectively, highlighted in the plot of figure 1, corresponding to a bottom layer with
Gb = 107Pa.
The sphere-like shape still holds when the slenderness h/L changes in the interval
(0.08, 0.2). Figure 3 shows the final configurations of the plates corresponding to α = 0.7,
that is to a swelling mismatch δ ' 1, and to a shear modulus of the bottom layer equal
to Gb = 105. We still get a double-curved surface even if the volumetric change Jd is
very high as well as the swelling stretches of the two layers.

Figure 2: Top: Gaussian curvature K? versus slenderness h/L for a square plate with slenderness α = 0.7
and shear modulus of the bottom layer Gb = 105Pa. Bottom: Gel configurations at the three points
1-2-3 corresponding to α = 1, 0.5, 0.3, respectively, highlighted in the top plot. Colour code corresponds
to the volumetric change Jd, which is related to the amount of solvent uptake.

3.2. From spherical to nearly developable shapes

Within the wide range of swelling tests we investigated, the aspect ratio of the
bilayered plate looks like a determinant of the final shape realized by the plate. Indeed,
under the same conditions above presented about the materials of the two layers and for
a slenderness ratio within the interval explored above, we found a deformation regime
completely different. We keep L2 = L fixed and changed L1 so to cover a range of aspect
ratios AR between 1 and 0.1. We runned several simulations with different meshes, for
any AR 6= 1, fixing Gb = 107Pa, α = 0.7, and h/L = 0.07.
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Figure 3: Top: Principal curvatures κ1 (solid line) and κ2 (dashed line) versus the aspect ratio AR

for a bilayered plate with slenderness h/L = 0.07, shear modulus of the bottom layer Gb = 107Pa,
and α = 0.7. Bottom: Gel configurations at the three points 1-2-3 corresponding to AR = 1, 0.5, 0.1,
respectively, highlighted in the top plot. Colour code corresponds to the volumetric change Jd, which is
related to the amount of solvent uptake.

The shape of the bilayered plate bifurcates from the spherical shape at AR = 1, as it
is shown in figure 3 where the values of the principal curvatures κ1 (solid line) and κ2
(dashed line), evaluated at the center of the middle surface, are represented versus AR.
The two lines start diverging when AR 6= 1; they remain close up to a critical AR value
(about AR = 0.2 in the figure). Figure 3 also shows that a cylindrical shape, with zero
Gaussian curvature K = κ1κ2 is attained when AR is very small; otherwise, dome-like
shapes with positive Gaussian curvatures are realized.

3.3. Bifurcation thresholds

The shaping discussed above can be reviewed within the modeling presented in [34].
Therein, the non euclidean plate theory has been used to derive the threshold between
the deformative regimes of bilayered plates delivering double-curved and nearly devel-
opable shapes, when one of the two layers in-plane grows with respect to the other
(in-plane growth mismatch). In that case, the threshold is represented in terms of the
natural curvature κo of the plate. Defined as κ̄ob the dimensionless natural curvature
corresponding to the bifurcation, it is shown that2

κ̄ob =

(
20 + 14

√
2

27

)1/2

ε2 , ε =
h

S
, (3.14)

with the shape factor S = (2/9
∫
r4dA/A)1/4 and κ̄ob = κobh. At that value of natural

curvature, the energy of a spherical cap coincides with the energy of an isometric state,
and bifurcation occurs. Taking into account the observations made in [35], where the non

2See equation (9) in [34].
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euclidean plate theory has been slightly reviewed to comprehend bilayered plate with
isotropically growing layers, a revised version of the above formula can be produced,
with ε2 changed in

ε̃2 = λobf(α, β)ε2 , f(α, β) = 1− β + βα−1/5 , (3.15)

and β = ht/h.
We can easily evaluate ε̃ and, hence, κob for our plates; we can also evaluate κo cutting
a bilayered beam out the bilayered plate and identifying the natural curvature κo with
the curvature realized by that beam through the explicit formula produced in [27]. Let
us focus on the plates whose steady curved shapes are represented in figure 3. Fixed Gb,
α, h/L and L, the natural curvature κo does not depend on the aspect ratio and, using
the equations (4.14)-(4.16) in [27], its value is 69.5m−1. On the contrary, the bifurcation
natural curvature κob depends on the aspect ratio by means of the shape factor S and
decreases from 55.71m−1 to 22.85m−1 going from AR = 0.1 AR = 1, as the area of the
plate descreases. It means that κo > κob when AR 6= 1 and, as figure 3 shows, bifurcation
from sphere has already occurred. However, κo > κob also for squared plates which take
spherical shapes in the range of swelling tests we investigated.
As we are going to stress in the Conclusions, the poor matching of the two approaches
requires further investigation, starting from both sides: numerical tests via a fully three-
dimensional stress-diffusion model and analytical approach via energetic issues which
take into account the characteristics of the swelling deformation processes.

4. Enforcing cylindrical shaping by anisotropic swelling

A controlled assembly of isotropic and anisotropic gel layers which admit differen-
tial swelling mismatches in different directions greatly changes the shaping scenario;
moreover, the architecture of the assembly determines the shaping of the structure.
Well-know examples come from plant world. Typically, plant cell walls are composites
of stiff cellulose fibrils embedded in a compliant and highly swellable matrix consisting of
hemicelluloses. Different alignments of cellulose fibrils in different layers of the compos-
ite realize different architectures, and plants can control the swelling(shrinking)–driven
deformation of cells by an elaborated adjustment of cell wall architecture [5, 36].
In this section, we start our investigation by the squared and rectangular bilayered
isotropic plates above studied and move towards more complex architectures. As first,
we consider the assembly of two gel layers with the top softer than the bottom (α < 1)
and the reinforcing fibers in the e2 direction which are homogeneously distributed in
the softer top layer (architecture T), in the harder bottom layer (architecture B), and in
both of them (architecture TB). We identify the three architectures with three different
marks in the next figures.
We set the swelling problem in the same conditions already introduced in the previ-
ous section by considering bilayered plates with Gb = 105Pa, α = 0.7, β = 0.6 and
h/L = 0.007 and different aspect ratios. Then, we realize the three architectures above
described; each of them corresponds to a different swelling problem.
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For squared plates, figure 4 (left column) shows that embedding fibers in just one layer
favours cylindrical shaping. When the softer top layer is reinforced (top left), stretching
in the fiber direction is too expensive and the plate contracts at the top layer so realiz-
ing a positive κ2 curvature as figure 5 shows (see the dashed blue line), with the other
curvature κ1 almost null. On the contrary, when the harder bottom layer is reinforced
(middle left), the plate contracts at the bottom layer so realizing a negative κ2 curvature
as figure 5 shows (see the dashed yellow line), again with the other curvature κ1 almost
null. In this case, the steady shape resembles a cylindrical tube as the lower shear mod-
ulus of the top layer allows there large stretches in the circumferential (fiber) direction.
Two anisotropic layers sharing fiber direction almost do not bend in the fiber direction,
as figure 4 (bottom left) shows. Moreover, the anticlastic effect, that is, the difference
between the absolute values of the principal curvatures, is reduced with respect to what
we observe when only one layer is fiber reinforced. This effect can be appreciated in
figure 5 for both AR = 1 and AR = .6.

Figure 4: Morphological phase diagrams of emerging surface patterns from numerical simulations cor-
responding to architectures T, B, TB (top, middle, bottom rows) and to aspect ratios AR = 1, 0.6, 0.1
(left, middle, right columns). Colour code represents the volume change Jd.

When the aspect ratio is small, plates almost resemble beams. In this case, putting
fibers in the softer top or in the harder bottom layer realize shapes with the two principal
curvatures of opposite sign, that is, an anticlastic curvature different from zero. More-
over, going from the beam-like plate with the top layer reinforced, figure 4 (top right),
to the other, figure 4 (middle right), the signs of both the principal curvatures change.
Hence, even in beam-like plates, fibers can greatly affect the steady shape realized under
swelling by the structure.
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Figure 5: Principal curvatures κ1 (solid lines) and κ2 (dashed lines) of bilayered plates assemblied in
the architectures T, B, TB (blue, yellow and green lines) versus the aspect ratio AR.

5. Conclusions

The behavior of bilayered thin gel sheets under swelling has been investigated using a
three-dimensional model which accounts for large deformations and for the contribution
of the mixing energy to the total potential energy. Specifically, we focused our attention
on the steady shapes realized under swelling and on how these shapes can be mastered.
The aspect ratio of the plate has a key role in determining the shape, as already noted for
different stimuli-responsive plates in other studies. By contrast, the difference between
the elastic properties of the two layers appears to be less important to achieve different
shapes. We showed as reinforcing fibers can be crucial to change this last statement.
When fibers are inserted just in one layer, we observed a better enforcing of cylinder-like
shapes than with fibers in both layers. Finally, a larger suppression of the anticlastic
curvature was observed by inserting fibers in both layers.
The results of the wide number of swelling tests here presented set a few challenging
issues which have to be considered in the next future, possibly through a semi–analytic
approach. It would allow a better control of the role of different quantities here discussed,
such as the anisotropic swelling mismatch and the anticlastic effect. Moreover, in our
opinion it should also be better discussed the effectiveness of the reduced models of
growing plates in predicting final steady shapes when three-dimensional elastic growth
(swelling) is involved. As noted in [18, 41], the choice of elastic energies for thin plates
and shells is an unsettled issue with consequences for much recent modeling of soft
matter.

Acknowledgments

The work is supported by MIUR (the Italian Ministry of University and Research)
through the Project PRIN2017 (N. 2017KL4EF3) Mathematics of active materials from
mechanobiology to smart devices. D.B. and M.C. acknowledge the Italian National
Group of Mathematical Physics (GNFMNdAM) for support.

11



Appendix A. Weak form

The Finite Elements Model (FEM) solves the balance equations 2.6 and the volu-
metric constraint Jd = Ĵd(cd) in integral form. The problem is reformulated as follows:
find ud, cd and p such that, for all test fields ũd, c̃d, and p̃, it holds

0 =

∫
Gd

(
−[Sd(Fd)− pF?d] · ∇ũd + hd · ∇c̃d + [Jd − Ĵd(cd)] · p̃

)
, (A.1)

where

Sd(Fd) = GdFd or Sd(Fd) = GdFd + 2Gd γ (Fde · Fde− 1)Fd e⊗ e , (A.2)

in the isotropic or anisotropic case, respectively.
Mechanical boundary conditions are easy to handle, as we assume zero tractions and
assign a displacement ūd on the boundary that eliminates any rigid motion without
generating reaction forces. On the contrary, tackling the chemical boundary conditions
is more tricky, as it is not possible to control the solvent source qs at the surface, nor
the surface concentration cs. We set them as

0 =

∫
∂cGd

[ µ̂(cs) + pΩ− µe ] · c̃s , (A.3)

0 =

∫
∂cGd

[ (cd − cs) q̃s + qs (c̃d − c̃s) ] , (A.4)

and reformulate the complete problem as follows: find ud, cd, p, cs, and qs such that,
for any test functions ũd, c̃d, p̃, c̃s, and q̃s, equations (A.1)–(A.4) hold; the three fields
ud, cd, p are defined in Gd × T , while the two fields cs and qs are defined on ∂cGd × T .

Appendix B. Numerical implementation and details

The robustness and the accuracy of the numerical model are tested for a different
number n of parallelepiped elements along the three sides of the body, see Fig. B.6.
The bilayer plate has the following parameters: α = 0.7, h/L = 0.07, β = 0.6 and
Gb = 107 Pa.The Gaussian curvature K∗ at the center of the plate is evaluated and
reaches a stable value for n ≥ 5. The degrees of freedom go from 7000 for n = 2 to
350000 for n = 8. In all the simulations n = 6 parallelepiped elements are used. Since
the geometry of the bilayer bodies, investigated in this paper, is always very simple
(no curved surfaces), parallelepiped elements are preferred with respect to tetrahedral
elements. The convergence of the model is always assured with quintic order Lagrange
shape functions for the balance of forces and the balance of solvent mass and a quartic
discontinuous Lagrange shape function for the Lagrangian multiplier of the volumetric
constraint equation. By contrast, the model does not always converge with lower orders
of shape functions, especially for large deformation cases. Moreover, high orders of shape
functions are also mandatory to obtain a good accuracy as both the dependent variables
ud and cd in the balance laws have second spatial derivatives.
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Figure B.6: Validation test for different number of parallelepiped elements n showed at the right of the
figure. The Gaussian curvature evaluated at the center of the bilayer body returns stable results for
n ≥ 5.
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B. J. Nelson, Self-folding hydrogel bilayer for enhanced drug loading, encap-
sulation, and transport, in: 2016 38th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC), 2016, pp. 2103–2106.
doi:10.1109/EMBC.2016.7591143.

[22] H. Jiang, L. Fan, S. Yan, F. Li, H. Li, J. Tang, Tough and electro-responsive
hydrogel actuators with bidirectional bending behavior, Nanoscale 11 (2019) 2231–
2237. doi:10.1039/C8NR07863G.
URL http://dx.doi.org/10.1039/C8NR07863G

[23] J. Kim, J. A. Hanna, M. Byun, C. D. Santangelo, R. C. Hayward, Designing re-
sponsive buckled surfaces by halftone gel lithography, Science 335 (6073) (2012)
1201–1205. doi:10.1126/science.1215309.

[24] J. Kim, C. Kim, Y. Song, S.-G. Jeong, T.-S. Kim, C.-S. Lee, Re-
versible self-bending soft hydrogel microstructures with mechanically op-
timized designs, Chemical Engineering Journal 321 (2017) 384 – 393.
doi:https://doi.org/10.1016/j.cej.2017.03.125.
URL http://www.sciencedirect.com/science/article/pii/

S1385894717304928

[25] Y. Liu, J. Genzer, M. D. Dickey, “2d or not 2d”: Shape-programming poly-
mer sheets, Progress in Polymer Science 52 (2016) 79 – 106. doi:https:

//doi.org/10.1016/j.progpolymsci.2015.09.001.
URL http://www.sciencedirect.com/science/article/pii/

S0079670015001021

15

http://dx.doi.org/10.1063/1.1723792
https://doi.org/10.1007/s00033-019-1122-2
https://doi.org/10.1007/s00033-019-1122-2
http://dx.doi.org/10.1007/s00033-019-1122-2
https://doi.org/10.1007/s00033-019-1122-2
http://www.sciencedirect.com/science/article/pii/S0022509607002244
http://www.sciencedirect.com/science/article/pii/S0022509607002244
http://dx.doi.org/http://doi.org/10.1016/j.jmps.2007.11.010
http://www.sciencedirect.com/science/article/pii/S0022509607002244
http://www.sciencedirect.com/science/article/pii/S0022509607002244
http://www.sciencedirect.com/science/article/pii/S0020768309001899
http://www.sciencedirect.com/science/article/pii/S0020768309001899
http://dx.doi.org/http://dx.doi.org/10.1016/j.ijsolstr.2009.04.022
http://www.sciencedirect.com/science/article/pii/S0020768309001899
http://www.sciencedirect.com/science/article/pii/S0020768309001899
http://dx.doi.org/10.1109/EMBC.2016.7591143
http://dx.doi.org/10.1039/C8NR07863G
http://dx.doi.org/10.1039/C8NR07863G
http://dx.doi.org/10.1039/C8NR07863G
http://dx.doi.org/10.1039/C8NR07863G
http://dx.doi.org/10.1126/science.1215309
http://www.sciencedirect.com/science/article/pii/S1385894717304928
http://www.sciencedirect.com/science/article/pii/S1385894717304928
http://www.sciencedirect.com/science/article/pii/S1385894717304928
http://dx.doi.org/https://doi.org/10.1016/j.cej.2017.03.125
http://www.sciencedirect.com/science/article/pii/S1385894717304928
http://www.sciencedirect.com/science/article/pii/S1385894717304928
http://www.sciencedirect.com/science/article/pii/S0079670015001021
http://www.sciencedirect.com/science/article/pii/S0079670015001021
http://dx.doi.org/https://doi.org/10.1016/j.progpolymsci.2015.09.001
http://dx.doi.org/https://doi.org/10.1016/j.progpolymsci.2015.09.001
http://www.sciencedirect.com/science/article/pii/S0079670015001021
http://www.sciencedirect.com/science/article/pii/S0079670015001021


[26] A. Lucantonio, P. Nardinocchi, L. Teresi, Transient analysis of swelling-induced
large deformations in polymer gels, Journal of the Mechanics and Physics of Solids
61 (1) (2013) 205 – 218. doi:10.1016/j.jmps.2012.07.010.

[27] A. Lucantonio, P. Nardinocchi, M. Pezzulla, Swelling-induced and controlled curv-
ing in layered gel beams, Proceedings of the Royal Society A: Mathematical, Phys-
ical and Engineering Science 470 (2171). doi:10.1098/rspa.2014.0467.

[28] A. Lucantonio, M. Roche, P. Nardinocchi, H. A. Stone, Buckling dynamics of a
solvent-stimulated stretched elastomeric sheet, Soft Matter 10 (2014) 2800–2804.
doi:10.1039/C3SM52941J.
URL http://dx.doi.org/10.1039/C3SM52941J

[29] D. Morales, B. Bharti, M. D. Dickey, O. D. Velev, Bending of responsive hy-
drogel sheets guided by field-assembled microparticle endoskeleton structures,
Small 12 (17) 2283–2290. arXiv:https://onlinelibrary.wiley.com/doi/pdf/

10.1002/smll.201600037, doi:10.1002/smll.201600037.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201600037

[30] P. Nardinocchi, M. Pezzulla, L. Teresi, Steady and transient analysis of anisotropic
swelling in fibered gels, Journal of Applied Physics 118 (24). doi:http://dx.doi.
org/10.1063/1.4938737.
URL http://scitation.aip.org/content/aip/journal/jap/118/24/10.1063/

1.4938737

[31] P. Nardinocchi, M. Pezzulla, L. Teresi, Anisotropic swelling of thin gel sheets, Soft
Matter 11 (2015) 1492–1499. doi:10.1039/C4SM02485K.
URL http://dx.doi.org/10.1039/C4SM02485K

[32] K. Oliver, A. Seddon, R. S. Trask, Morphing in nature and beyond: a review of
natural and synthetic shape-changing materials and mechanisms, Journal of Mate-
rials Science 51 (24) (2016) 10663–10689. doi:10.1007/s10853-016-0295-8.
URL https://doi.org/10.1007/s10853-016-0295-8

[33] M. Pezzulla, S. A. Shillig, P. Nardinocchi, D. P. Holmes, Morphing of geometric
composites via residual swelling, Soft Matter 11 (2015) 5812–5820. doi:10.1039/

C5SM00863H.
URL http://dx.doi.org/10.1039/C5SM00863H

[34] M. Pezzulla, G. P. Smith, P. Nardinocchi, D. P. Holmes, Geometry and mechanics of
thin growing bilayers, Soft Matter 12 (2016) 4435–4442. doi:10.1039/C6SM00246C.
URL http://dx.doi.org/10.1039/C6SM00246C

[35] M. Pezzulla, N. Stoop, X. Jiang, D. P. Holmes, Curvature-driven morphing
of non-euclidean shells, Proceedings of the Royal Society A: Mathemati-
cal, Physical and Engineering Sciences 473 (2201) (2017) 20170087. arXiv:

https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2017.0087,

16

http://dx.doi.org/10.1016/j.jmps.2012.07.010
http://dx.doi.org/10.1098/rspa.2014.0467
http://dx.doi.org/10.1039/C3SM52941J
http://dx.doi.org/10.1039/C3SM52941J
http://dx.doi.org/10.1039/C3SM52941J
http://dx.doi.org/10.1039/C3SM52941J
https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201600037
https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201600037
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/smll.201600037
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/smll.201600037
http://dx.doi.org/10.1002/smll.201600037
https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201600037
http://scitation.aip.org/content/aip/journal/jap/118/24/10.1063/1.4938737
http://scitation.aip.org/content/aip/journal/jap/118/24/10.1063/1.4938737
http://dx.doi.org/http://dx.doi.org/10.1063/1.4938737
http://dx.doi.org/http://dx.doi.org/10.1063/1.4938737
http://scitation.aip.org/content/aip/journal/jap/118/24/10.1063/1.4938737
http://scitation.aip.org/content/aip/journal/jap/118/24/10.1063/1.4938737
http://dx.doi.org/10.1039/C4SM02485K
http://dx.doi.org/10.1039/C4SM02485K
http://dx.doi.org/10.1039/C4SM02485K
https://doi.org/10.1007/s10853-016-0295-8
https://doi.org/10.1007/s10853-016-0295-8
http://dx.doi.org/10.1007/s10853-016-0295-8
https://doi.org/10.1007/s10853-016-0295-8
http://dx.doi.org/10.1039/C5SM00863H
http://dx.doi.org/10.1039/C5SM00863H
http://dx.doi.org/10.1039/C5SM00863H
http://dx.doi.org/10.1039/C5SM00863H
http://dx.doi.org/10.1039/C5SM00863H
http://dx.doi.org/10.1039/C6SM00246C
http://dx.doi.org/10.1039/C6SM00246C
http://dx.doi.org/10.1039/C6SM00246C
http://dx.doi.org/10.1039/C6SM00246C
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2017.0087
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2017.0087
http://arxiv.org/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2017.0087
http://arxiv.org/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2017.0087


doi:10.1098/rspa.2017.0087.
URL https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2017.

0087

[36] M. Ruggeberg, I. Burgert, Bio-inspired wooden actuators for large scale applica-
tions, PLoS ONE 10 (2015) e0120718.

[37] G. Stoychev, L. Guiducci, S. Turcaud, J. W. C. Dunlop, L. Ionov, Hole-programmed
superfast multistep folding of hydrogel bilayers, Advanced Functional Materi-
als 26 (42) 7733–7739. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.

1002/adfm.201602394, doi:10.1002/adfm.201602394.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201602394

[38] T. van Manen, S. Janbaz, A. A. Zadpoor, Programming the shape-
shifting of flat soft matter, Materials Today 21 (2) (2018) 144 – 163.
doi:https://doi.org/10.1016/j.mattod.2017.08.026.
URL http://www.sciencedirect.com/science/article/pii/

S1369702117302237

[39] N. Vu-Bac, T.X. Duong, T.Lahmer, X.Zhuang, R.A.Sauer, H.S.Park, T.Rabczuk, A
NURBS-based inverse analysis for reconstruction of nonlinear deformations of thin
shell structures, Computer Methods in Applied Mechanics and Engineering 331,
(2018) 427–455.

[40] N. Vu-Bac, T.X. Duong, T. Lahmer, P. Areias, R.A. Sauer, H.S. Park, T.Rabczuk,
A NURBS-based inverse analysis of thermal expansion induced morphing of thin
shells, Computer Methods in Applied Mechanics and Engineering 350, (2019) 480–
510.

[41] H. G. Wood, J. A. Hanna, Contrasting bending energies from bulk elastic theories,
Soft Matter 15 (2019) 2411–2417. doi:10.1039/C8SM02297F.
URL http://dx.doi.org/10.1039/C8SM02297F

[42] J. Zhang, X. Zhao, Z. Suo, H. Jiang, A finite element method for transient analysis
of concurrent large deformation and mass transport in gels, Journal of Applied
Physics 105 (9) (2009) 093522. doi:10.1063/1.3106628.

17

http://dx.doi.org/10.1098/rspa.2017.0087
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2017.0087
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2017.0087
https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201602394
https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201602394
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.201602394
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.201602394
http://dx.doi.org/10.1002/adfm.201602394
https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201602394
http://www.sciencedirect.com/science/article/pii/S1369702117302237
http://www.sciencedirect.com/science/article/pii/S1369702117302237
http://dx.doi.org/https://doi.org/10.1016/j.mattod.2017.08.026
http://www.sciencedirect.com/science/article/pii/S1369702117302237
http://www.sciencedirect.com/science/article/pii/S1369702117302237
http://dx.doi.org/10.1039/C8SM02297F
http://dx.doi.org/10.1039/C8SM02297F
http://dx.doi.org/10.1039/C8SM02297F
http://dx.doi.org/10.1063/1.3106628

	Introduction
	Steady states of swelling processes
	Swelling mismatch in bilayered structures

	Isotropic swelling of bilayer thin sheets
	From flat to double-curve shapes
	From spherical to nearly developable shapes
	Bifurcation thresholds

	Enforcing cylindrical shaping by anisotropic swelling
	Conclusions
	Weak form
	Numerical implementation and details

