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Abstract: In this work selective laser melting was successfully utilized to produce 316 stainless steel
bulk specimens. Although this technology provides many advantages compared to conventional
shaping processes, little residual porosity may be a problem for some applications where high strength
is required. The objective of this work was to determine, through data analysis, a mechanical and
metallographic comparison between thin sheets made by using different manufacturing technologies:
Cold rolling and additive manufacturing. This comparison was useful to understand whether it
could be more advantageous to use the prototyping for new mechanical components. The results
show that the additive manufactured steel, due to its microstructure, is characterized by a higher
yield strength and by a lower elongation and ultimate tensile strength.
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1. Introduction

Additive manufacturing is an advanced technology that allows to produce components having
complex shapes. The material is added layer upon layer by using 3D design data. Metal additive
manufacturing has attracted considerable interest in the industry to produce parts characterized
by intricated structures. Unlike conventional casting and thermo-mechanical treatment, additive
manufacturing allows to produce near-net shape components and then the alloy microstructure
obtained with the production process usually remain unchanged [1,2]. It must also be stressed that
material areas in different directions are subjected to different thermal cycles, resulting in anisotropic
mechanical properties [3,4]. To date the relationship between the process parameters and mechanical
properties of the produced components is not well known. Additive manufacturing is a flexible
technique that can produce components having any geometry by using digital design data.

Stainless steels are one of the most widely investigated materials for selective laser melting. In
fact, this process allows to produce both dense and porous stainless-steel components used in the
aerospace and automotive industry [5].

By analyzing the data available in the literature, ferrous alloy components are usually produced
by using Laser Powder-Bed (LPB) (also known as selective laser melting), Laser Powder-Fed (LPF)
and Binder Jetting (BJ). By analyzing data relative to materials produced by means of LPF it seems
that the ultimate tensile strength and yield strength of LPF components are mostly greater than the
wrought components. This could be due to the higher cooling rate and grain refinement characterizing
the additive manufacturing process. Experimental results also highlighted a lower elongation due
probably to porosities and inclusions present in the material due to the selection of wrong parameters.
LPF processed steels show lower elongation-to-failure values; this is probably due to porosity caused
by the selected operative parameters.
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Many papers available in the literature highlight the relationship between process parameters
used in selective laser melting and mechanical properties of the alloy [6–8]. It has been found that
microstructure and performance can be optimized by adjusting laser scanning paths and that a
solid solution treatment determines the disappearance of the dendritic structure. A tailored laser
scanning path and post-heat treatment are essential to produce a sound material having a uniform
microstructure that has good mechanical behavior. Very recent papers investigated the relationship
between the microstructure and mechanical properties of 316 stainless steels fabricated via additive
manufacturing. It has been found that by using particular experimental conditions it is possible to
obtain specimens characterized by high yield strength and ductility. The high yield strength has been
attributed to both a high dislocation density and a special cellular and columnar substructure whose
grain boundaries hinder dislocation movement [9–11]. On the other hand, twin generation seems to
increase elongation [11].

The objective of this work is to determine, through data analysis, a mechanical and metallographic
comparison between thin sheets made by using different manufacturing technologies: Cold rolling
and additive manufacturing. This comparison will be useful to understand whether it could be
more advantageous for the prototyping of new mechanical components. In fact, although the
sheet-metal forming process is known to have excellent results in terms of surface finish and mechanical
characteristics, it requires a long time for the realization of the die. Additive manufacturing technology
could be an interesting alternative to sheet-metal forming because it would allow the realization of the
same components in a shorter period of time.

2. Experimental

The 316L specimens were produced by using the patented LaserCUSING® process. In this process,
fine metal powders are melted locally by a high-energy fiber laser. The specimens were built up layer
by layer (with a layer thickness of 20–80 µm) by lowering the bottom of the build chamber, applying
more powder and then melting again.

The process parameters used to produce the specimens have been optimized to minimize material
porosity. Process parameter values are confidential and cannot be disclosed. From the as-deposited
specimens, metallographic samples were taken. Metallographic specimens were polished and etched.
The microstructure of the alloys taken in different directions were observed by using both optical
microscope and scanning electron microscope equipped with energy dispersion spectroscopy.

Tensile test specimens were cut from both rolled and printed 316 stainless steel in order to compare
their mechanical properties. Tests have been carried out on both rolled and printed specimens having
a thickness of 0.3, 0.5 and 0.8 mm.

In order to study the effect of the rolling direction on the material mechanical properties, tensile
specimens were taken as shown in Figure 1. In fact, the rolling process produce the grains aligned in
the rolling direction. This involves different mechanical behavior in different directions. For this reason,
specimens were taken in different directions: 0◦, 45◦ and 90◦ with respect to the rolling direction. For
each selected direction and for each thickness we tested 3 specimens. As far as specimens prepared by
means of additive manufacturing are concerned, 3 specimens for each considered thickness were tested.
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Tensile tests were carried out for determining tensile strength, yield stress and elongation.
Microstructural analyses were carried out by means of SEM and optical microscopy on specimens

after grinding and polishing and after electrochemical etching in a 10% aqueous oxalic acid bath.
Microanalyses were carried out by means of energy dispersion spectroscopy.

3. Results and Discussion

Optical micrographs reported in Figure 2 show that both materials after etching show a very fine
microstructure and that the one produced by means of additive manufacturing shows few cavities. By
looking at the transversal section of steel sheets produced by cold rolling it is possible to observe the
presence of shear bands due to plastic deformation located mainly at the sheet central part (Figure 3).
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Figure 3. Optical micrographs showing the transversal section of the rolled specimen at lower (a) and
higher (b) magnification.

Figure 4 shows the transversal section of the specimen produced by means of additive
manufacturing. The micrographs show the melting pools where the pool boundaries form circular arcs
due to the energy distribution during laser melting. It can be observed that the pool boundaries are
interlaced with each other and that there are no evident cavities. By looking at the microstructure,
it can be observed that due to the thermal cycle the dendritic microstructure disappears and grains
grow by crossing pool boundaries. The cross-sections of the samples show that the stainless-steel
powder particles are completely fused together. Moreover, the laser tracks overlap so that each melting
pool is bonded on the other pools surrounding it. Although the material produced by means of
additive manufacturing is quite compact it is important to compare its properties with those of the
rolled specimen.
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Figure 4. Optical micrograph showing the microstructure (transversal section) of the 3D-printed
specimen at lower (a) and higher (b) magnification.

Figures 5–7 show the mechanical properties of the additive manufactured material (blue) compared
with those of the cold-rolled specimens taken in different directions (red—L longitudinal, green—45◦

LT and purple—T transversal) for the three different thicknesses tested. The mechanical property
values are listed in Table 1. It can be observed that for the cold-rolled material the measured mechanical
properties are independent from the considered direction. The ultimate tensile strength (UTS) is about
625 MPa (593–649 MPa, standard deviation 14.1), the Yield Strength is about 290 MPa (263–307 MPa,
standard deviation 16.4) and the elongation is about 70% (58%–84%, standard deviation 6.7).

The mechanical properties of the steel produced by means of additive manufacturing are quite
different from those of the cold-rolled steel. In fact, the UTS and the elongation are lower, while the
yield stress is higher. In particular, a small reduction of the UTS (about 9%), a large reduction of the
elongation (more than 60%) and a large increase in the yield stress (more than 45%) can be observed.
Moreover, the influence of the thickness on the mechanical properties seems to be negligible. For the
additive manufactured steel, the UTS is about 570 MPa (550–588 MPa, standard deviation 13.6), the
yield strength is about 445 MPa (405–478 MPa, standard deviation 28.5) and the elongation is about
23% (11.6%–29.4%, standard deviation 6.8).
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Figure 5. Ultimate tensile strength (UTS) of additive manufactured and cold-rolled 316 stainless steel
for different specimen thicknesses.
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Figure 7. Elongation of additive manufactured and cold-rolled 316 stainless steel for different
specimen thicknesses.

Table 1. Mechanical properties of 316 stainless steel produced by means of additive manufacturing
(3D) and cold rolling. Three specimen thicknesses have been considered. Standard deviations are
reported in parentheses.

Thickness
(mm)

Ultimate Tensile Strength
(MPa) Yield Strength (MPa) Elongation (%)

3D L L-T T 3D L L-T T 3D L L-T T

0.8 578.1 638.5 620.0 609.2 471.7 300.1 291.8 296.2 24.9 67.0 70.0 69.7
(10.9) (1.7) (2.0) (2.6) (7.8) (3.4) (10.8) (11.0) (7.3) (1.8) (3.6) (4.9)

0.5 569.2 619.3 619.4 630.9 440.1 266.4 266.5 279.5 24.9 65.5 79.4 71.1
(19.0) (4.1) (8.2) (10.1) (7.0) (2.7) (5.2) (5.2) (4.9) (5.2) (3.5) (2.4)

0.3 569.7 645.5 629.2 608.5 428.3 298.7 306.3 284.0 18.1 61.2 83.6 69.5
(12.6) (3.0) (11.8) (12.9) (8.9) (1.7) (0.4) (2.9) (9.1) (2.3) (0.1) (5.5)



Materials 2019, 12, 3867 6 of 8

By analyzing these data it can be highlighted that for the additive manufactured steel, the
microstructure, characterized by several as-cast melting pools and by a complex sub grain structure
(Figure 4), produce a higher yield strength in comparison with the cold-rolled steel, as highlighted by
several authors [10,11]. On the other hand, both UTS and elongation of the additive manufactured steel
are lower than that of cold-rolled steel. In order to understand the reason for this peculiar behavior
it must be highlighted that although most of the studies states benefits of additive manufacturing
technology, there are still limitations concerning heterogeneity in the microstructure and mechanical
properties [12–14]. Many authors discussed the effect of complex thermal cycles on the alloy
microstructure. In addition, common defects such as pores, microshrinkage cavities and lack of
fusion can change the mechanical behavior of the material. In this work the presence of few
micro-discontinuities (Figure 2b) has become a source of stress concentration in the part and led to crack
propagation and failure. This can justify why UTS and elongation of the additive manufactured steel
are lower than the ones of the rolled steel. Obviously, those mechanical properties could be improved
by checking the powder’s quality and process parameters. As already stressed in the literature [13] the
discrepancy among data coming from different studies may be due to the complex microstructure and
defects characterizing additive manufactured parts.

In order to understand the mechanical behavior of the tested materials it is important to analyze
the fracture surfaces. Figure 8 shows that the additive manufactured material has a ductile behavior.
In fact, the steel plastic deformation is apparent, and in some areas dimples can be observed. The
rolled steel (Figure 9), characterized by a very high elongation, has fracture surfaces characterized by
dimples. Figure 9b shows that the T tensile specimen shows bigger cavities due to the decohesion of
shear bands.

Materials 2019, 12, x FOR PEER REVIEW 6 of 8 

 

 (12.6) (3.0) (11.8) (12.9) (8.9) (1.7) (0.4) (2.9) (9.1) (2.3) (0.1) (5.5) 

By analyzing these data it can be highlighted that for the additive manufactured steel, the 

microstructure, characterized by several as-cast melting pools and by a complex sub grain structure 

(Figure 4), produce a higher yield strength in comparison with the cold-rolled steel, as highlighted 

by several authors [10,11]. On the other hand, both UTS and elongation of the additive manufactured 

steel are lower than that of cold-rolled steel. In order to understand the reason for this peculiar 

behavior it must be highlighted that although most of the studies states benefits of additive 

manufacturing technology, there are still limitations concerning heterogeneity in the microstructure 

and mechanical properties [12–14]. Many authors discussed the effect of complex thermal cycles on 

the alloy microstructure. In addition, common defects such as pores, microshrinkage cavities and lack 

of fusion can change the mechanical behavior of the material. In this work the presence of few micro-

discontinuities (Figure 2b) has become a source of stress concentration in the part and led to crack 

propagation and failure. This can justify why UTS and elongation of the additive manufactured steel 

are lower than the ones of the rolled steel. Obviously, those mechanical properties could be improved 

by checking the powder’s quality and process parameters. As already stressed in the literature [13] 

the discrepancy among data coming from different studies may be due to the complex microstructure 

and defects characterizing additive manufactured parts. 

In order to understand the mechanical behavior of the tested materials it is important to analyze 

the fracture surfaces. Figure 8 shows that the additive manufactured material has a ductile behavior. 

In fact, the steel plastic deformation is apparent, and in some areas dimples can be observed. The 

rolled steel (Figure 9), characterized by a very high elongation, has fracture surfaces characterized by 

dimples. Figure 9b shows that the T tensile specimen shows bigger cavities due to the decohesion of 

shear bands. 

 

Figure 8. SEM micrograph showing the fracture surface of 3D-printed specimens having a thickness 

of 0.3 mm (a) and 0.8 mm (b). 
Figure 8. SEM micrograph showing the fracture surface of 3D-printed specimens having a thickness of
0.3 mm (a) and 0.8 mm (b).



Materials 2019, 12, 3867 7 of 8

Materials 2019, 12, x FOR PEER REVIEW 7 of 8 

 

 

Figure 9. SEM micrograph showing the fracture surface of L rolled specimen (a) and T rolled specimen 

(b). 

4. Conclusions 

The objective of this work was to perform a comparison between the mechanical behavior of 

thin sheets made by using cold rolling and additive manufacturing. Although the sheet-metal 

forming process is known to have excellent results in terms of surface finish and mechanical 

properties, it requires a long time for the realization of the die. The results highlighted that the 

additive manufactured steel is characterized by a higher yield strength and lower elongation 

although its behavior is still ductile. Moreover, its mechanical properties do not depend on the steel 

sheet thickness. Further studies on possible heat treatment could allow to obtain tailored properties. 

Author Contributions: S.N., A.B. and D.P. contributed to the design of the research, to the acquisition of data, 

to the analysis of the results and to the writing of the manuscript. 

Funding: This research received no external funding. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Fayazfar, H.; Salarian, M.; Rogalsky, A.; Sarker, D.; Russo, P.; Paserin, V.; Toyserkani, E. A critical review 

of powder-based additive manufacturing of ferrous alloys: Process parameters, microstructure and 

mechanical properties. Mater. Des. 2018, 144, 98–128. 

2. Shamsaei, N.; Yadollahi, A.; Bian, L.; Thompson, S.M. An overview of Direct Laser Deposition for additive 

manufacturing; Part II: Mechanical behavior, process parameter optimization and control. Addit. Manuf. 

2015, 8, 12–35. 

3. Kobryn, P.A.; Semiatin, S.L. Mechanical properties of laser-deposited Ti-6Al-4V. In Proceedings of the Solid 

Freeform Fabrication Symposium, Austin, TX, USA, 6–8 August 2001; pp. 6–8. 

4. Yadollahi, A.; Shamsaei, N.; Thompson, S.M.; Elwany, A.; Bian, L. Mechanical and Microstructural 

Properties of Selective Laser Melted 17-4 PH Stainless Steel. In Proceedings of the ASME 2015 International 

Mechanical Engineering Congress & Exposition, Houston, TX, USA, 13–19 November 2015; p. 

V02AT02A014-V02AT02A014. 

Figure 9. SEM micrograph showing the fracture surface of L rolled specimen (a) and T rolled
specimen (b).

4. Conclusions

The objective of this work was to perform a comparison between the mechanical behavior of thin
sheets made by using cold rolling and additive manufacturing. Although the sheet-metal forming
process is known to have excellent results in terms of surface finish and mechanical properties, it
requires a long time for the realization of the die. The results highlighted that the additive manufactured
steel is characterized by a higher yield strength and lower elongation although its behavior is still
ductile. Moreover, its mechanical properties do not depend on the steel sheet thickness. Further studies
on possible heat treatment could allow to obtain tailored properties.
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