
UNSUPERVISED LEARNING

1. INTRODUCTION

This article presents a review of traditional and current
methods of classification in the framework of unsupervised
learning, in particular cluster analysis and self-organizing
neural networks. Both are vector quantization methods
aiming at minimizing the distance between an input vec-
tor and its representation. The learning is unsupervised
as no predefined cluster structure of the input data is as-
sumed. The review of cluster analysis methods covers hard
clustering, hierarchical and nonhierarchical, whose aim is
to assign exact (with membership degree equal to 1) units
(objects) to clusters; fuzzy clustering, where the member-
ship degree of a unit to a cluster is allowed to stay in
the interval [0; 1]; mixture clustering, a model-based clus-
tering consisting in fitting a mixture model to data and
identifying each cluster with one of its components. All
these methods are reviewed in all the variants related to
the presence of complex or big data structures or to the
presence of outliers.

The self-organizing maps are also presented as artifi-
cial neural network, the cells (neurons) of which become
specifically tuned to various input data patterns or classes
of patterns through an unsupervised learning process. The
resulting vector quantization process allows clustering of
the input data.

References 1,2,3 deeply elaborate the topic.

2. CLUSTER ANALYSIS

In this section, we describe the principal methods and the-
oretical approaches of cluster analysis.

2.1. Hard Clustering

Given a set of units, the aim of hard cluster analysis is to
assign each unit to only one cluster so that units within
each cluster are similar to one another with respect to
the observed variables, and the units in different clusters
are dissimilar. Clustering methods are classified as hier-
archical clustering and nonhierarchical clustering (or par-
titional clustering) methods, based on the properties of the
generated clusters (1,4). Hierarchical clustering groups
data by means of a sequence of partitions, either starting
with one cluster with all units and then splitting it into
smaller clusters or starting with each unit forming a sepa-
rate cluster and then merging similar clusters into larger
clusters. The former is known as divisive clustering, and
the latter as agglomerative clustering. Both agglomerative
and divisive clustering methods organize data into the hi-
erarchical structure on the basis of appropriate proximity
measures (i.e., distance measures (see Section “Distance
Measures”), dissimilarity measures, similarity indices). In
Section “Distance Measures”, we focus our attention only
on the agglomerative approach. Nonhierarchical cluster-
ing (see Section “Nonhierarchical Clustering (Partitioning
Clustering)”) directly divides data units into some prespec-

ified number of clusters without the hierarchical structure.
See, for more details, References 1,4.

Distance Measures.. Let 𝐗 = {𝑥𝑖𝑗 ∶ 𝑖 = 1,… , 𝑛; 𝑗 =
1,… , 𝐽} = {𝐱𝑖 = (𝑥𝑖1,… , 𝑥𝑖𝑠,… , 𝑥𝑖𝐽 )′ ∶ 𝑖 = 1,… , 𝑛} be a data
matrix, where 𝑥𝑖𝑗 represents the 𝑗th quantitative variable
observed on the 𝑖th unit and 𝐱𝑖 represents the vector of the
variables observed for the 𝑖th unit. Clustering methods
are based on measuring distances among units.

A distance function 𝑑 ∶ 𝐴 × 𝐴 → ℝ is a real-valued func-
tion on a real vector space 𝐴 satisfying the following prop-
erties (𝑖, 𝑖′, 𝑖′′ = 1, 2, ..., 𝑛):

1) 𝑑(𝐱𝑖, 𝐱𝑖) = 0 ∀𝐱𝑖 ∈ 𝐴
2) 𝑑(𝐱𝑖, 𝐱𝑖′ ) > 0 ∀𝐱𝑖 ≠ 𝐱𝑖′
3) 𝑑(𝐱𝑖, 𝐱𝑖′ ) = 𝑑(𝐱𝑖′ , 𝐱𝑖) ∀𝐱𝑖, 𝐱𝑖′ ∈ 𝐴
4) 𝑑(𝐱𝑖, 𝐱𝑖′′ ) ≤ 𝑑(𝐱𝑖, 𝐱𝑖′ ) + 𝑑(𝐱𝑖′ , 𝐱𝑖′′ ) ∀𝐱𝑖, 𝐱𝑖′ , 𝐱𝑖′′ ∈ 𝐴

The distance class of Minkowski is (1):

𝑟𝑑𝑖𝑖′ =

[
𝐽∑
𝑗=1

|𝑥𝑖𝑗 − 𝑥𝑖′𝑗|𝑟]
1
𝑟

𝑟 ≥ 1

where 𝑥𝑖𝑗 and 𝑥𝑖′𝑗 represent the 𝑗th variables observed,
respectively, in the 𝑖th and 𝑖′th unit (𝑖, 𝑖′ = 1,… , 𝑛). For 𝑟 =
1, we have the city block distance (Manhattan distance):

1𝑑𝑖𝑖′ =
𝐽∑
𝑗=1

|𝑥𝑖𝑗 − 𝑥𝑖′𝑗|
and for 𝑟 = 2, we have the Euclidean distance, proba-
bly the most commonly used distance measure in cluster
analysis:

2𝑑𝑖𝑖′ =

[
𝐽∑
𝑗=1

(𝑥𝑖𝑗 − 𝑥𝑖′𝑗)2
] 1

2

.

The Canberra distance is similar to the Manhattan dis-
tance. The distinction is that the absolute difference be-
tween the observed variables is divided by the sum of the
absolute variable values prior to summing:

𝑐𝑑𝑖𝑖′ =
𝐽∑
𝑗=1

|𝑥𝑖𝑗 − 𝑥𝑖′𝑗||𝑥𝑖𝑗 + 𝑥𝑖′𝑗| .
The Mahalanobis distance takes into account the associa-
tion between pairs of variables as measured by the covari-
ance:

𝑀𝑑𝑖𝑖′ =
[
(𝐱𝑖 − 𝐱𝑖′ )𝑇𝐒−1(𝐱𝑖 − 𝐱𝑖′ )

] 1
2

where 𝐒 is the covariance matrix among the variables.
See Reference 1 for more details on the distance mea-

sures and their use in the cluster analysis.

Hierarchical Clustering. The most widely used among
the hierarchicalmethods are agglomerativemethods. They
produce a sequence of partitions of the data; the first con-
sisting 𝑛 single-member “clusters”; the last consisting a
single cluster containing all 𝑛 units, at the end of merge
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Figure 1. Agglomerative–divisive hierarchical clustering of
units a,b,c,d,e (1).

operations forcing all units into the same group (1), as
shown in Figure 1.

The general agglomerative clustering can be summa-
rized by the following procedure (4):

1. Start with the partition with 𝑛 singleton clusters.
Calculate the proximity matrix, for example, dis-
tance matrix, for the 𝑛 clusters.

2. Combine clusters 𝐶𝑘 and 𝐶𝑘′ whose distance
is minimal to form a new cluster 𝐶𝑘𝑘′ , where
𝑑(𝐶𝑘, 𝐶𝑘′ ) = min 𝑑(𝐶𝑝, 𝐶𝑞) 1 ≤ 𝑝, 𝑞 ≤ 𝑛, 𝑝 ≠ 𝑞, where
𝑑(⋅, ⋅) is the distance function.

3. Update the distance matrix by computing the dis-
tances between the cluster 𝐶𝑘𝑘′ and the other clus-
ters.

4. Repeat steps 2 and 3 until only one cluster re-
mains.

The core of the procedure is the definition of the dis-
tance function between two clusters at the basis of the
formation of a new cluster. There exists a large number
of distance function definitions between a cluster 𝐶𝑞 and a
new cluster 𝐶𝑘𝑘′ formed bymerging two clusters 𝐶𝑘 and 𝐶𝑘′ .
Some methods for defining distance functions are shortly
described in Table 1 and displayed in Figure 2.

Single linkage, complete linkage, and average linkage
consider all units of a pair of clusters when calculating
their intercluster distance, and they are also called graph
methods. The others are called geometric methods because
they use geometric centers to represent clusters and deter-
mine their distances (4). See Reference 1 for the features
and properties of these methods and experimental com-
parative studies.

The graphical representation of the results of hierar-
chical clustering is a particular graph called dendrogram.
The dendrogram is a tree-structured graph. At the bottom
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Figure 2. Distance between two clusters R and Q. (a) Average.
(b) Single. (c) Complete (1).
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Figure 3. Example of dendrogram in hierarchical clustering of
units 1,2,3,4,5 (5).

of the tree all units form a separate cluster; the root node
at the top represents the whole data set in a single cluster
and each leaf node is regarded as a cluster. The dendro-
gram visualizes the clustering agglomerative process from
bottom to top through horizontal lines taken on the vertical
axes at the height of the distance of the linked clusters.

The intermediate nodes thus describe the extent to
which the units are proximal to each other. The ultimate
clustering results can be obtained by cutting the dendro-
gram at the desired level of distance (or number of groups).
An example of dendrogram is shown in Figure 3. This rep-
resentation provides very informative description and a
visualization of the potential data clustering structures,
especially when real hierarchical relations exist in the data
(1,4).

As far as the choice of the optimal partition (optimal
number of clusters) is concerned, different cluster validity
criteria are used for hierarchical and partitioningmethods.
In particular, for hierarchical clustering methods the opti-
mal partition is achieved by selecting one of the solutions
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Table 1. Some Agglomerative Clustering Methods

Single linkage method (also known as nearest-neighbor
method)

The single linkage method uses the smallest distance among the
pairs of units of two clusters to define intercluster distance.
Single linkage clustering tends to generate elongated clusters,
which causes the chaining effect (1). As a result, noise may
produce merging of two clusters with different properties. How-
ever, if the clusters are separated far from each other, the single
linkage method works well

Complete linkage method The complete linkage method uses the farthest distance among
the pairs of units of two clusters to define inter-cluster distance

Group average linkage method (also known as the un-
weighted pair group method average, i.e., UPGMA)

The distance between two clusters is defined as the average of the
distances between all pairs of units in the two clusters

Weighted average linkage method (also known as the
weighted pair group method average, i.e., WPGMA)

Similar to UPGMA, the average linkage is also used to calculate
the distance between two clusters. The difference is that the
distances between the newly formed cluster and the rest are
weighted based on the number of data units in each cluster

Centroid linkage method (known as the unweighted pair
group method centroid, i.e., UPGMC)

Two clusters are merged on the basis of the distance of their
centroids (means)

Ward’s method (also known as the minimum variance
method)

Clusters are merged aiming at minimizing the increase of the
so-called within-class sum of the squared errors

in the sequence representing the hierarchy, equivalent to
cutting a dendrogram at a particular height (sometimes
termed the best cut). This defines a partition such that
clusters below that height are distant from each other by
at least that amount, and the appearance of the dendro-
gram can thus informally suggest the number of clusters.
Large changes in merging levels are taken to indicate the
best cut. Other criteria based on the investigation of the
dendrogram are described in Reference 1. More formal ap-
proaches to the problem of determining the number of clus-
ters have been reviewed by authors in References 1, 6.

Nonhierarchical Clustering (Partitioning Clustering). In
contrast to hierarchical clustering, which yields a sequence
of partitions into clusters by iterative fusions or divisions,
nonhierarchical or partitioning clustering assigns a set of
data units to 𝑐 clusters without any hierarchical struc-
ture, thus requiring previous knowledge about the num-
ber of clusters. The process is accomplished by optimizing
a criterion function, usually by minimization of an objec-
tive function representing the variability of the clusters
within (4). The best-known and popular nonhierarchical
clustering method is the 𝑐-means clustering. Another very
common partitioning method is the 𝑐-medoids clustering.
In the following, we present briefly these methods and the
cluster validity criteria for determining the optimal num-
ber of clusters that in these methods have to be prespeci-
fied.

c-Means Clustering Method. The 𝑐-means clustering
method (7) is one of the best known and most popular
clustering methods. The optimal partition of the data in
𝑐-means clustering is obtained by minimizing the sum of
squared error criterion shown in equation 1 with an itera-
tive optimization procedure, which belongs to the category
of hill climbing algorithms (4). The basic clustering proce-
dure of 𝑐-means clustering is summarized as follows (1,4):

1. Initialize a 𝑐-partition randomly or on the basis of
some prior knowledge. Calculate the cluster proto-
types (centroids ormeans) (i.e., calculate themean
of the variables in each cluster considering only
the observations belonging to each cluster).

2. Assign each unit in the data set to the nearest
cluster by using an appropriate distance measure
between each unit and centroids.

3. Recalculate the cluster prototypes (centroids or
mean) based on the current partition.

4. Repeat steps 2 and 3 until no change is required
for each cluster.

Mathematically, the c-means clustering method is for-
malized as follows:

min ∶
𝑛∑
𝑖=1

𝑐∑
𝑘=1

𝑢𝑖𝑘 𝑑
2
𝑖𝑘 =

𝑛∑
𝑖=1

𝑐∑
𝑘=1

𝑢𝑖𝑘 ‖x𝑖 − h𝑘‖2
𝑐∑

𝑘=1
𝑢𝑖𝑘 = 1, 𝑢𝑖𝑘 ≥ 0, 𝑢𝑖𝑘 = {0, 1}

(1)

where 𝑢𝑖𝑘 indicates the membership degree of the 𝑖th unit
to the 𝑘th cluster; 𝐡𝑘 = (ℎ𝑘1,… , ℎ𝑘𝑗 ,… , ℎ𝑘𝐽 )′ represents the
𝑘th centroid, where ℎ𝑘𝑗 indicates the 𝑗th component (𝑗th
variable) of the 𝑘th centroid vector; 𝑢𝑖𝑘 = {0, 1}, that is,
𝑢𝑖𝑘 = 1 when the 𝑖th unit belongs to the 𝑐th cluster; 𝑢𝑖𝑘 = 0
otherwise; 𝑑2

𝑖𝑘 = ‖x𝑖 − h𝑘‖2 indicates the squaredEuclidean
distance between the 𝑖th unit and the centroid of the 𝑘th
cluster. For more details see Reference 1.

c-Medoids Clustering Method. By considering the
c-medoids clustering method (5,8), units are classified into
clusters where the prototype of each cluster is the so-
called 𝑚𝑒𝑑𝑜𝑖𝑑, that is, a unit belonging to the cluster rep-
resentative of the units of the cluster. Each medoid rep-
resents the prototypal features of the clusters and then
synthesizes the characteristics of the units belonging to
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each cluster. Following the c-medoids clustering method,
the objective function to be minimized is represented by
the sum (or mathematically equivalent, average) of the
dissimilarity of units to their closest representative unit.
The c-medoids clustering method first computes a set of
representative units, called medoids. After finding the set
of medoids, each unit of the data set is assigned to the
nearest medoid. The algorithm suggested by Kaufman and
Rousseeuw (5) for c-medoids clustering method proceeds in
two phases: (𝑖) selection of 𝑐 “centrally located” units to be
used as initial medoids and (𝑖𝑖) swapping of a selected (as
a medoid) with an unselected unit, if the objective func-
tion can be reduced by the swap. This is continued till the
objective function can no longer be decreased. Then, by
considering a set of 𝑛 units by X (set of the observations)
and a subset of X with 𝑐 units by X̃ (set of the medoids)
(where 𝑐 << 𝑛), the formalization of the model is as
follows:

min ∶
𝑛∑
𝑖=1

𝑐∑
𝑘=1

𝑢𝑖𝑘 𝑑
2
𝑖𝑘 =

𝑛∑
𝑖=1

𝑐∑
𝑘=1

𝑢𝑖𝑘 ‖x𝑖 − x̃𝑘‖2 (2)

𝑐∑
𝑘=1

𝑢𝑖𝑘 = 1, 𝑢𝑖𝑘 ≥ 0, 𝑢𝑖𝑘 = {0, 1}

where 𝑢𝑖𝑘 indicates the membership degree of the 𝑖th
unit to the 𝑘th cluster; 𝑢𝑖𝑘 = {0, 1}, that is, 𝑢𝑖𝑘 = 1 when
the 𝑖th unit belongs to the 𝑐th cluster; 𝑢𝑖𝑘 = 0 otherwise;
𝑑2
𝑖𝑘 = ‖x𝑖 − x̃𝑘‖2 indicates the squared Euclidean distance

between the 𝑖th unit and the medoid of the 𝑘th cluster.

Some Cluster Validity Criteria. Nonhierarchical cluster-
ing requires previous knowledge about the number of clus-
ters. Useful cluster validity criteria for determining the
number of clusters are as follows.

Calinski and Harabasz criterion: Calinski and
Harabasz (9) suggest taking the value of 𝑐, the number
of clusters, which corresponds to the maximum value of
𝐶𝑐 :

𝐶𝑐 =
trace (B)
(𝑐 − 1)

∶
trace (W)
(𝑛 − 𝑐)

where B is the between groups dispersion matrix andW is
the within-group dispersion matrix. The evaluation of this
criterion at a given number of groups, 𝑔, requires knowl-
edge of the group membership to determine the matrices
B andW. Notice that T = W +B, where T indicates the to-
tal dispersion matrix. See Reference 1 for more details. In
general, different clustering methods give rise to different
number of groups (1).

Silhouette criterion (10): A unit 𝑖 ∈ (1,… , 𝑛) belonging to
cluster 𝑘 ∈ (1,… , 𝑐) is considered,meaning, for example, by
a 𝑐-means clustering algorithm that the 𝑖th unit is closer to
the centroid of the 𝑘th cluster than to any other centroid.
Let the average (squared Euclidean) distance of the 𝑖th
unit to all other units belonging to cluster 𝑘 be denoted by
𝑎𝑖𝑘. Also, let the average distance of this unit to all units
belonging to cluster 𝑘′, 𝑘′ ≠ 𝑘, be denoted by 𝑑𝑖𝑘′ .
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Figure 4. Silhouette width for each unit, average for cluster,
average 𝐼CS (1).

Finally, let 𝑏𝑖𝑘′ be the minimum 𝑑𝑖𝑘′ computed over 𝑘′ =
1,… , 𝑐, 𝑘′ ≠ 𝑘, which represents the dissimilarity of the 𝑖th
unit to its closest neighboring cluster. Then, the silhouette
of 𝑖th unit is defined as follows:

𝑠𝑖 =
𝑏𝑖𝑘′ − 𝑎𝑖𝑘

max{𝑎𝑖𝑘, 𝑏𝑖𝑘′}

where the denominator is a normalization term. Evidently,
the higher 𝑠𝑖, the better the assignment of 𝑖th unit to 𝑐th
cluster.

The silhouette defined as the average of 𝑠𝑖 over 𝑖 =
1,… , 𝑛 is:

𝐼CS =
1
𝑛

𝑛∑
𝑖
𝑠𝑖.

The best partition is achieved when the silhouette is maxi-
mized, which impliesminimizing the intra cluster distance
(𝑎𝑖𝑘) while maximizing the intercluster distance (𝑏𝑖𝑘′ ). In
Figure 4, the silhouette widths for each unit 𝑠𝑖, their aver-
age for cluster, and the total average 𝐼CS are represented
for the two cluster partition of a data set of 91 university
students preferences and attitudes toward video games (1).
The silhouette widths for each cluster are ordered from the
highest to the smallest.

Co-clustering, Comparison Clustering, Consensus Cluster-
ing, Strategy of Analysis. Co-clustering (biclustering or two-
mode clustering) is a technique that allows simultane-
ous clustering of rows (units) and columns (variables) of
a data matrix 𝐗. The goal of co-clustering is to generate
biclusters/co-clusters: a subset of rows that exhibit similar
behavior across a subset of columns (11).

Comparison clustering deals with a variety of methods
proposed to measure the similarity of two clustering parti-
tions. Some of them – among which the Rand Index – are
based on counting the number of pairs in agreement (same
cluster)/disagreement (different clusters) in the compared
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partitions. Other indices have their foundation on concepts
from information theory (12).

Consensus clustering regards methods aiming at com-
bining multiple partitions of the same set of units into a
consensus partition. In the literature, there are three main
approaches for obtaining a consensus partition: the con-
structive, the axiomatic, and the optimization approach.
The most natural way for defining consensus of partitions
is by the optimization approach that maximizes some sim-
ilarity measure between the consensus partition and each
of the base partitions (13).

Some strategies of analysis combine regression analy-
sis and cluster analysis. Clusterwise linear regression is a
multivariate statistical procedure that attempts to cluster
units with the objective of minimizing the sum of the error
sums of squares for the within-cluster regression models
(14). Other strategies of analysis combine data reduction
methods and cluster analysis. These methods can use a
sequential approach or a simultaneous approach. Among
the strategies of analysis in the sequential approach there
are Tandem Analysis type 1, that is, application of a facto-
rial method on the data matrix and, sequentially, 𝑐-means
on the score matrix, and Tandem Analysis type 2, that is,
application of 𝑐-means on the data matrix and, sequen-
tially, a factorial method on the centroid matrix (15). The
simultaneous approach applies simultaneously dimension
reduction and cluster analysis on the data matrix identi-
fying the best partition of the units, described by the best
orthogonal linear combinations of the variables according
to an optimization criterion. It can be applied to quantita-
tive or qualitative data. Among the strategies of analysis in
this approach there are reduced K-means (RKM)/factorial
K-means (FKM) and multiple correspondence K-means
(MCKM), respectively, for quantitative and qualitative
data (16,17).

Available Software. In R, clustering methods are imple-
mented in the following libraries, for example:

- kmeans.ddR (https://CRAN.R-project.org/
package=kmeans.ddR)

- NbClust (https://CRAN.R-project.org/package
=NbClust)

- stats (https://cran.r-project.org)

2.2. Fuzzy Clustering

Fuzzy c-Means (FcM) Clustering. Let 𝐗 = {𝑥𝑖𝑗 ∶
𝑖 = 1,… , 𝑛; 𝑗 = 1,… , 𝐽} = {𝐱𝑖 = (𝑥𝑖1,… , 𝑥𝑖𝑗 ,… , 𝑥𝑖𝐽 )′ ∶ 𝑖 =
1,… , 𝑛} be a data matrix, where 𝑥𝑖𝑗 represents the 𝑗th
quantitative variable observed on the 𝑖th unit and 𝐱𝑖
represents the vector of the variables observed for the 𝑖th
unit. The FcM clustering method proposed in Reference
18 is formalized in the following way:

min ∶
𝑛∑
𝑖=1

𝑐∑
𝑘=1

𝑢𝑚𝑖𝑘𝑑
2
𝑖𝑘 =

𝑛∑
𝑖=1

𝑐∑
𝑘=1

𝑢𝑚𝑖𝑘‖𝐱𝑖 − 𝐡𝑘‖2 (3)

𝑐∑
𝑘=1

𝑢𝑖𝑘 = 1, 𝑢𝑖𝑘 ≥ 0

where 𝑢𝑖𝑘 denotes the membership degree of the 𝑖th unit
to the 𝑘th cluster; 𝑑2

𝑖𝑘 = ‖𝐱𝑖 − 𝐡𝑘‖2 is the squared Euclidean

distance between the 𝑖th unit and the centroid of the 𝑘th
cluster; 𝐡𝑘 = (ℎ𝑘1,… , ℎ𝑘𝑗 ,… , ℎ𝑘𝐽 )′ represents the 𝑘th cen-
troid, where ℎ𝑘𝑗 indicates the 𝑗th component (𝑗th variable)
of the 𝑘th centroid vector; 𝑚 > 1 is a parameter controlling
the fuzziness of the partition (for the selection of𝑚, see Ref-
erence 19). The standard 𝑐-means (𝑐M) clustering method
(7) is obtained by setting 𝑚 = 1 in equation (3), (see Section
3). The optimal iterative solutions obtained by solving the
constrained optimization problem equation (3) with the
Lagrangian multipliers method are (see Reference 18):

𝑢𝑖𝑘 =
( 𝑐∑

𝑘′=1

[ ‖𝐱𝑖 − 𝐡𝑘‖‖𝐱𝑖 − 𝐡𝑘′‖
] 2

𝑚−1
)−1

, 𝐡𝑘 =
∑𝑛

𝑖=1 𝑢
𝑚
𝑖𝑘𝐱𝑖∑𝑛

𝑖=1 𝑢
𝑚
𝑖𝑘

. (4)

Reasons for adopting a fuzzy clustering approach are
discussed in the literature. As remarked in Reference
20, fuzzy clustering approach offers advantages over clas-
sic hard clustering approach. First, the fuzzy clustering
methods are computationally more efficient because heavy
changes in the value of cluster membership are less likely
to occur during the estimation procedures (21). Second,
fuzzy clustering has been shown to be less affected by lo-
cal optima problems (22). Finally, the memberships indi-
cate whether there is a second-best cluster almost as good
as the best cluster generally not possible with traditional
clustering methods (1).

A data set motivating fuzzy clustering is the butterfly
data set (Fig. 5). It consists of 15 points; 3 data points form
a bridge between the wings of a butterfly. The results of ap-
plying Ruspini’s algorithm (18) are listed as membership
functions reported in Figure 5 (membership to the second
cluster is the complement to 1 of the membership to the
first cluster). At the bottom of Figure 5, the memberships
to the two clusters (shown as continuous although dis-
crete) as functions of the horizontal coordinate illustrate
the way in which fuzzy clustering smooths hard clustering.
The point representing the geometric centroid of the data
has membership of 0.5 in each fuzzy cluster: progressing
away from the “core” of each wing, memberships become
more and more distinct.

For more details, see Reference 19.

Cluster Validity. In the FcM clustering method (eq. 3),
before computing the membership degrees and the cen-
troids iteratively, by means of (eq. 4), a suitable number of
clusters 𝑐 has to be selected. Many cluster–validity criteria
have been suggested. For a review on fuzzy cluster validity
criteria see, among others, References 23, 24.

The Xie–Beni Criterion. A widely used cluster validity
criterion for selecting 𝑐 is the Xie–Beni criterion (25):

min
𝑐∈Ω𝑐

∶ 𝐼XB =
∑𝑛

𝑖=1
∑𝑐

𝑘=1 𝑢
𝑚
𝑖𝑘‖𝐱𝑖 − 𝐡𝑘‖2

𝑛min𝑘,𝑘′ ‖𝐡𝑘 − 𝐡𝑘′‖2 (5)

where Ω𝑐 represents the set of possible values of 𝑐 (𝑐 < 𝑛).
The numerator of 𝐼XB represents the total within-cluster

distance. It is the objective function 𝐽 of FcM clustering
method. The ratio 𝐽∕𝑛 is a measure of the compactness of
the fuzzy partition. The smaller this ratio, the more com-
pact a partition with a fixed number of clusters and any
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Figure 5. Butterfly data: membership assignment using
Ruspini’s algorithm (18).

number of data units. The minimum squared distance be-
tween centroids in the denominator of 𝐼XB is a measure
of the separation of the fuzzy partition. The greater this
distance, the more separate a data partition with a fixed
number of clusters. Therefore, for a fixed number of clus-
ters, the partition with the smaller 𝐼XB is chosen.

The Silhouette Criterion. Another interesting cluster va-
lidity procedure is the fuzzy extension of the Silhouette
criterion (26) (see Section 3).

The fuzzy silhouette makes explicit use of the fuzzy par-
tition matrix 𝐔 = {𝑢𝑖𝑘 ∶ 𝑖 = 1,… , 𝑛; 𝑘 = 1,… , 𝑐}. It consid-
ers the information on the membership degrees contained
in the fuzzy partition matrix 𝐔 by stressing importance of
units concentrated in the vicinity of the cluster prototypes
(high membership) while reducing importance of units ly-
ing in overlapping areas (small membership). The fuzzy

silhouette (𝐼FS) is defined as follows:

𝐼FS =
∑𝑛

𝑖=1(𝑢𝑖𝑘 − 𝑢𝑖𝑘′ )𝛾𝑠𝑖∑𝑛
𝑖=1(𝑢𝑖𝑘 − 𝑢𝑖𝑘′ )𝛾

, (6)

where 𝑢𝑖𝑘 and 𝑢𝑖𝑘′ are the first and second largest elements
of the 𝑖th row of the fuzzy partition matrix, respectively,
and 𝛾 ≥ 0 is a weighting coefficient. The effect of varying
this parameter on the weighting terms in equation 6 is
investigated in Reference 26.

As remarked by Campello and Hruschka (26), the fuzzy
silhouette (eq. 6) differs from 𝐼CS “for being a weighted
average (instead of an arithmetic mean) of the individ-
ual silhouettes 𝑠𝑖. The weight of each term is determined
by the difference between the membership degrees of the
corresponding unit to its first- and second-best matching
fuzzy clusters, respectively. In this way, a unit in the near
vicinity of a cluster prototype is given more importance
than another unit located in an overlapping area (where
the membership degrees of the units to two or more fuzzy
clusters are similar).”

With respect to other well known validity criteria based
uniquely upon the fuzzy partition matrix (such as the par-
tition coefficient), the fuzzy silhouette (eq. 6) takes into
account the geometrical information related to the data
distribution by means of the term 𝑠𝑖.

Fuzzy c-Medoids (FcMd) Clustering. The 𝑐-medoids clus-
tering method has been introduced in the fuzzy framework
as fuzzy c-medoids (FcMd) clustering (27,28).

Let 𝐗 = {𝐱1,… , 𝐱𝑖,… , 𝐱𝑛} be a set of 𝑛 units (data ma-
trix) and let �̃� = {�̃�1,… , �̃�𝑖,… , �̃�𝑐} be a subset of 𝐗 =
{𝐱1,… , 𝐱𝑖,… , 𝐱𝑛} with cardinality 𝑐.

The FcMd clustering method is formalized as follows:

min ∶
𝑛∑
𝑖=1

𝑐∑
𝑘=1

𝑢𝑚𝑖𝑘𝑑
2
𝑖𝑘 =

𝑛∑
𝑖=1

𝑐∑
𝑘=1

𝑢𝑚𝑖𝑘‖𝐱𝑖 − �̃�𝑘‖2 (7)

𝑐∑
𝑘=1

𝑢𝑖𝑘 = 1, 𝑢𝑖𝑘 ≥ 0

where 𝑑2
𝑖𝑘 = ‖𝐱𝑖 − �̃�𝑘‖2 indicates the squared Euclidean dis-

tance between the 𝑖th unit and the medoid of the 𝑘th clus-
ter.

Solving the constrained optimization problem (eq. 7)
by means of the Lagrangian multiplier method the local
optimal solutions are as follows (28):

𝑢𝑖𝑘 =
( 𝑐∑

𝑘′=1

[ ‖𝐱𝑖 − �̃�𝑘‖‖𝐱𝑖 − �̃�𝑘′‖
] 2

𝑚−1
)−1

. (8)

FcMd clustering method belongs to the class of parti-
tioning around medoids (PAM) procedures. In FcMd clus-
tering, each cluster is represented by an observed unit and
not by an artificial one (prototype, i.e., centroid). The pos-
sibility of obtaining observed representative prototypes in
the clusters is very appealing and important for the in-
terpretation of the selected clusters in many applications.
In fact, as remarked by Kaufman and Rousseeuw (5) “in
many clustering problems one is particularly interested
in a characterization of the clusters by means of typical
or representative units. These are units that represent
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the various structural aspects of the set of units being in-
vestigated. These representative units not only provide a
characterization of the clusters, but can often be used for
further work or research, especially when it is more eco-
nomical or convenient to use a small set of 𝑐 units.”

FcMd clustering method does not depend on the order
in which the units are presented (except when equivalent
solutions exist, which very rarely occurs in practice). This
is not the case for many other algorithms present in the
literature (5).

FcMd clustering exhibits more robustness to the pres-
ence of outliers with respect to the 𝑐-means version be-
cause a medoid is less influenced by outliers or other
extreme values than a mean. Thus, FcMd can be con-
sidered more robust than its possible 𝑐-means version.
However, as remarked by Garcı́a-Escudero and Gordal-
iza (29,30), the FcMd provides only a timid attempt to
alleviate the negative effects of the presence of outliers
in the dataset, hence only a mild robustification of the
FcM.

Themedoids �̃� = {�̃�1,… , �̃�𝑖,… , �̃�𝑛} obtained byminimiz-
ing the objective function in equation 7 provide a fuzzy
partition via equation 8. However, the objective function
in equation 7 cannot be minimized by means of the al-
ternating optimization algorithm, because the necessary
conditions cannot be derived by differentiation with re-
spect to the medoids. A fuzzy clustering solution minimiz-
ing the objective function in equation 7 can nonetheless be
obtained following the heuristic algorithm of Reference 31
for a crisp version of the objective function in equation 7
(28).

As for the classical case, the algorithm utilized for equa-
tions 7 and 8 falls in the category of alternating cluster es-
timation paradigm (32). The algorithm does not guarantee
to find the global minimum. Thus, more than one random
start is suggested.

The algorithm utilized for equations 7 and 8 is based
on an exhaustive search for the medoids, which with large
datasets could be too computationally heavy. The compu-
tational complexity of FcMd can be reduced by considering
the “linearized” algorithm introduced in References 28, 33.
In this way, when updating the medoids for cluster 𝑘 only
the subset of units with the higher membership degree in
cluster 𝑘 are considered.

Since the medoid always has a membership of 1 in the
cluster, raising its membership to the power 𝑚 has no ef-
fect. Thus, when𝑚 is high, the mobility of the medoids may
be lost. For this reason, a value between 1 and 1.5 for 𝑚 is
recommended (34).

Fuzzy Relational Clustering. The FcM-based clustering
methods and their variants consider the case where the
vector of observed variables is available for each unit in
the data set. In many real cases, the input data takes
the form of a (𝑛 × 𝑛)-pairwise dissimilarity matrix, each
element of which indicates the dissimilarity between a pair
of units. Relational clustering aims at identifying clusters
using this information.

In a fuzzy framework, there exists a large variety of
clustering techniques for such settings (35,36,37). In the
literature, the first fuzzy clustering method for relational

data (fuzzy relational clustering) has been proposed by
Trauwaert (38) and successively extended byKaufman and
Rousseeuw (5). This clustering method can be formalized
as follows:

min ∶
𝑐∑

𝑘=1

∑𝑛
𝑖,𝑖′=1 𝑢

𝑚
𝑖𝑘𝑢

𝑚
𝑖′𝑘𝑑𝑖𝑖′

2
∑𝑛

𝑖′=1 𝑢
𝑚
𝑖′𝑘

(9)

where 𝑢𝑖𝑘 and 𝑢𝑖′𝑘 represent, respectively, the membership
degrees of the 𝑖th and 𝑖′th units to the 𝑘th cluster and 𝑑𝑖𝑖′
indicates a dissimilarity measure between each pair of 𝑖th
and 𝑖′th units. In equation (9), any type of dissimilarity
measures (city-block distance, Lagrange distance, and so
on) can be used. The factor 2 in the denominator compen-
sates the duplicity (5) of each term in the multiple sums.

A local optimal solutions of equation (9) can be found
by using the Lagrangian multiplier method, by taking into
account the Kuhn–Tucker conditions (see, e.g., Reference
39). Notice that the optimization of equation (9) is not al-
ternating optimization, but simply optimization. For the
detailed technical description of the numerical algorithm
used for equation (9), see, for example, Reference 5.

We remark that the principal advantage of the fuzzy re-
lational clustering approach is that we can utilize any type
of dissimilaritymeasure in the clustering framework.With
the choice in the fuzzy relational algorithm the squared
Euclidian distance is used as a dissimilarity measure, it
corresponds to the FcM (for the proof, see Reference 5).

Other useful readings on fuzzy relational clustering can
be found in References 28, 40.

Possibilistic Clustering. In FcM, the constraint of sum-
ming up to one of the membership degrees for each unit
(see eq. 3) may give rise to meaningless results, especially
in the presence of noise. Following the Possibility Theory
(41) by dropping the normalization constraint

∑𝑐
𝑘=1 𝑢𝑖𝑘 = 1

a more intuitive assignment of degrees of membership is
obtained. The possibilistic 𝑐-means (PcM) clusteringmodel
provides “degrees of compatibility” of the units with each
of the clusters (42).

In the possibilistic perspective, 𝑢𝑖𝑘 represents the degree
of possibility of unit 𝑖 belonging to cluster 𝑘 or, in other
terms, the degree of “compatibility” of the profile 𝐱𝑖 with the
characteristics of cluster 𝑘 embodied the related prototype
𝐡𝑘. The FcM objective function is consequently modified by
introducing a “penalization” term that takes care of the
balance between the fuzziness of the clustering structure
and the “compactness” of the clusters.

Two possible implementations of the PcM objective
function (see Reference 43) are as follows:

𝑛∑
𝑖=1

𝑐∑
𝑘=1

𝑢𝑚𝑖𝑘‖𝐱𝑖 − 𝐡𝑘‖2 + 𝑐∑
𝑘=1

𝜂𝑘
𝑛∑
𝑖=1

(1 − 𝑢𝑖𝑘)𝑚 (10)

𝑛∑
𝑖=1

𝑐∑
𝑘=1

𝑢𝑚𝑖𝑘‖𝐱𝑖 − 𝐡𝑘‖2 + 𝑐∑
𝑘=1

𝜂𝑘
𝑛∑
𝑖=1

(𝑢𝑖𝑘 log 𝑢𝑖𝑘 − 𝑢𝑖𝑘) (11)

where 𝜂𝑘 is a tuning parameter associated with cluster 𝑘,
weighting its contribution to the penalization function. For
details on 𝜂𝑘 see References 43, 44.

Krishnapuram and Keller (43) argue that the pos-
sibilistic approach provides a “mode-seeking” clustering
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procedure, to be confronted with the “partition-seeking”
property of FcM. Thus, PcM clustering methods tend to
be more robust with respect to noise, as compared to FcM
techniques. Minimization of equation (10), leads to the fol-
lowing solutions:

𝑢𝑖𝑘 =
1

1 +
( ‖𝐱𝑖−𝐡𝑘‖2

𝜂𝑘

) 1
𝑚−1

. (12)

The solutions obtained using objective functions such
as equations (10) and (11) are mainly affected by the 𝜂𝑘
parameters. Limitations in the use of PcM algorithms are
due to the possibility of “coincident clusters” (45). A proper
initialization of the parameters is required for the algo-
rithm to work (42).

An alternative possibilistic clustering approach has
been given by Yang and Wu (46):

𝑛∑
𝑖=1

𝑐∑
𝑘=1

𝑢𝑚𝑖𝑘‖𝐱𝑖 − 𝐡𝑘‖2 + 𝛽
𝑚2

√
𝑐

𝑛∑
𝑖=1

𝑐∑
𝑘=1

(𝑢𝑚𝑖𝑘 log 𝑢
𝑚
𝑖𝑘 − 𝑢𝑚𝑖𝑘) (13)

where 𝛽
𝑚2

√
𝑐
is a suitable tuning parametric function (46).

In this case the iterative solutions are as follows:

𝑢𝑖𝑘 = exp

(
−
𝑚
√
𝑐‖𝐱𝑖 − 𝐡𝑘‖2

𝛽

)
. (14)

Possibilistic clustering methods based on a “partition-
ing around medoids” approach can be obtained substitut-
ing in the previousmethods themedoids �̃�𝑘 to the centroids
𝐡𝑘.

Robust Fuzzy Clustering. In this section, three robust
fuzzy clustering models able to neutralize the negative ef-
fects of noise and outliers data in the clustering process
are introduced. They are robust variants of FcM or FcdM.

Fuzzy Clustering with Noise Cluster. The fuzzy c-means
clustering with noise cluster (FcM-NC) neutralizes the
negative effects of noise and outliers data in deviating
the centroids from their true positions introducing the so-
called noise cluster, a cluster collecting units far away from
the natural 𝑐 clusters in the data. FcM-NC has been ini-
tially proposed by Davé (47), which uses a criterion similar
to Ohashi (48), and later extended by Davé and Sen (49).
The noise cluster is not explicitly associated with a pro-
totype, but to a fictitious prototype (noise prototype) at a
constant distance (noise distance) from every unit in the
data. A unit belongs to a real cluster only if its distance
from a prototype (centroid) is lower than the noise dis-
tance; otherwise, the object belongs to the noise cluster.

FcM-NC clustering method can be formalized as fol-
lows:

min ∶
𝑛∑
𝑖=1

𝑐−1∑
𝑘=1

𝑢𝑚𝑖𝑘‖𝐱𝑖 − 𝐡𝑘‖2 + 𝑛∑
𝑖=1

𝛿2
(
1 −

𝑐−1∑
𝑘=1

𝑢𝑖𝑘

)𝑚

(15)

𝑐∑
𝑘=1

𝑢𝑖𝑘 = 1, 𝑢𝑖𝑘 ≥ 0

where 𝛿 is a suitable scale parameter, the so-called noise
distance, to be chosen in advance. Such parameter plays

the role to increase (for high values of 𝛿) or to decrease (for
low values of 𝛿) the emphasis of the “noise component” in
the minimization of the objective function in equation (15),
for example, 𝛿2 = 𝜆[𝑛(𝑐 − 1)]−1[

∑𝑛
𝑖=1

∑𝑐−1
𝑘=1 ‖𝐱𝑖 − 𝐡𝑘‖2], where 𝜆

is a scale multiplier that needs to be selected depending
on the type of data.

It has to be observed that the model provides 𝑐 clusters,
(𝑐 − 1) of which are “real” cluster. The difference in the
second term of the objective function shown in equation
(15) expresses the membership degree of each unit to the
noise cluster, and shows that the sum of the membership
degrees over the first (𝑐 − 1) clusters is lower than or equal
to 1. Indeed, the membership degree (𝑢𝑖∗) of the 𝑖th object
to the noise cluster is defined as 𝑢𝑖∗ = 1 −

∑𝑐−1
𝑘=1 𝑢𝑖𝑘 and the

usual constraint of the FcM (
∑𝑐−1

𝑘=1 𝑢𝑖𝑘 = 1) is not required.
Thus, the membership constraint for the real clusters is
relaxed to

∑𝑐−1
𝑘=1 𝑢𝑖𝑘 ≤ 1. This allows noise object to have

small membership values in good clusters (40).
By solving equation (15), we obtain

𝑢𝑖𝑘 =

[
𝑐−1∑
𝑘′=1

[ ‖𝐱𝑖 − 𝐡𝑘‖‖𝐱𝑖 − 𝐡𝑘′‖
] 2

𝑚−1
+
[‖𝐱𝑖 − 𝐡𝑘‖

𝛿

] 2
𝑚−1

]−1

.

A FcMd version of equation (15), called FcMd-NC, can
be obtained considering the medoid �̃�𝑘 instead of the cen-
troid 𝐡𝑘.

Fuzzy Clustering with Exponential Distance. The fuzzy
c-means clustering with exponential distance (FcM-Exp)
neutralizes the negative effects of noise and outliers data
in deviating the centroids from their true positions intro-
ducing in the objective function the exponential distance,
resulting in the following objective function to be mini-
mized:

min ∶
𝑛∑
𝑖=1

𝑐∑
𝑘=1

𝑢𝑚𝑖𝑘
[
1 − exp

{
−𝛽‖𝐱𝑖 − 𝐡𝑘‖2}] (16)

𝑐∑
𝑘=1

𝑢𝑖𝑘 = 1, 𝑢𝑖𝑘 ≥ 0

where 𝑚 > 1 is a weighting exponent that controls the
fuzziness of the obtained partition.

FollowingWu and Yang (50), the local optimal solutions
for the objective function in equation (16) are as follows:

𝑢𝑖𝑘 =
⎛⎜⎜⎝

𝑐∑
𝑘′=1

[
1 − exp

{
−𝛽‖𝐱𝑖 − 𝐡𝑘‖2}

1 − exp
{
−𝛽‖𝐱𝑖 − 𝐡𝑘′‖2}

] 1
𝑚−1 ⎞⎟⎟⎠

−1

(17)

and

𝐡𝑘 =
∑𝑛

𝑖=1 𝑢
𝑚
𝑖𝑘 exp

{
−𝛽‖𝐱𝑖 − 𝐡𝑘‖2} 𝐱𝑖∑𝑛

𝑖=1 𝑢
𝑚
𝑖𝑘 exp

{
−𝛽‖𝐱𝑖 − 𝐡𝑘‖2} . (18)

The exponential distance assigns small influence in de-
termining the centroids to outliers being a monotone in-
creasing function of the distance (50). Following Wu and
Yang (50), 𝛽 is set as the inverse of the total variance of
the data.

Wu and Yang (50) showed that the 𝑐-means clustering
model based on the exponential distance is more robust
than the model based on the Euclidean norm.
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Wu and Yang (50) also used the fixed-point iterative
method to solve 𝐡𝑘 in equation (18).

The medoids version (i.e., FcMd-Exp) of the FcM-Exp
model is obtained considering the medoid �̃�𝑘 instead of the
centroid 𝐡𝑘.

Trimmed Fuzzy Clustering. The trimmed fuzzy 𝑐-means
clustering model (Tr-FcM) neutralizes the negative effects
of noise and outliers data in deviating the centroids from
their true positions by adopting the “impartial trimming”
procedure (29,51) to identify the units more distant from
the data. The procedure is said to be “impartial” because
the trimming is led by the data. This approach is also
suitable to detect both “outlying clusters” (outliers grouped
in one small cluster) and “radial outliers” (isolated outliers)
(52).

Given a trimming size 𝛼 that ranges between 0 and 1,
the double minimization problem is the following:

min
𝑌

min
𝑢𝑖𝑘

∶
𝐻(𝛼)∑
𝑖=1

𝑐∑
𝑘=1

𝑢𝑚𝑖𝑘‖𝐱𝑖 − 𝐡𝑘‖2 (19)

𝑐∑
𝑘=1

𝑢𝑖𝑘 = 1, 𝑢𝑖𝑘 ≥ 0

where 𝑢𝑖𝑘 is the membership degree of the 𝑖th unit to
the 𝑘the cluster; 𝑚 > 1 is the fuzziness parameter –the
greater the value of 𝑚 the more fuzzy is the obtained
partition–; 𝑌 ranges on all the subsets of the objects
{𝐱𝑖 = (𝑥𝑖1,… , 𝑥𝑖𝑠,… , 𝑥𝑖𝑝)′ ∶ 𝑖 = 1,… , 𝑛}, containing 𝐻(𝛼) =⌊𝑛 ⋅ (1 − 𝛼)⌋ units (⌊.⌋ is the integer part of a given value).
Using the above described trimming rule we allow for a
proportion 𝛼 of units to be left unassigned (51). Notice that
equation (19) includes FcM as a limit case when 𝛼 = 0.
Then, each non-trimmed object is allocated into the clus-
ter corresponding to its closest centroid.

The local optimal solutions are as follows:

𝑢𝑖𝑘 =
( 𝑐∑

𝑘′=1

[ ‖𝐱𝑖 − 𝐡𝑘‖‖𝐱𝑖 − 𝐡𝑘′‖
] 2

𝑚−1
)−1

, 𝐡𝑘 =
∑𝐻(𝛼)

𝑖=1 𝑢𝑚𝑖𝑘𝐱𝑖∑𝐻(𝛼)
𝑖=1 𝑢𝑚𝑖𝑘

. (20)

For more details, see, for example, Reference 53.
Also, in this case the partitioning around medoids ver-

sion is easily obtained.

Other Fuzzy Clustering Methods: Gustafson–Kessel
Clustering, Fuzzy Shell Clustering, Kernel-Based Fuzzy
Clustering. The Gustafson–Kessel clustering method re-
places the Euclidean distance by a cluster-specific Maha-
lanobis distance (Section “Distance Measures”), adapting
various sizes and forms of the clusters, to extract from the
data more information than the methods based on the Eu-
clidean distance. For cluster 𝑐, the associatedMahalanobis
distance between unit 𝑖 and prototype 𝐡𝑐 of cluster 𝑐 is

𝑀𝑑𝑖𝑐 =
[
(𝐱𝑖 − 𝐡𝑐)𝑇𝐒𝑐

−1(𝐡𝑐 − 𝐱𝑗)
] 1
2

where 𝐒𝑐 is the covariance matrix among the variables in
the 𝑐th cluster. The objective function and the update equa-
tions of the prototypes of the Gustafson–Kessel algorithm
are the same as Fuzzy 𝑐-means with the replacement of

the Euclidean distance with the Mahalonobis distance. In
addition there is an update equation for the covariancema-
trices of each cluster that are modified to incorporate the
fuzzy information (54). Some techniques have been pro-
posed to improve the calculation of the fuzzy covariance
matrix in the Gustafson–Kessel clustering algorithm.

Fuzzy shell clustering is a generalization of fuzzy clus-
ter analysis – in particular of the fuzzy 𝑐-means algorithm
– to shell like clusters, that is, clusters that lie in nonlin-
ear subspaces (55) and resemble shells or surfaces with
no interior points. The Euclidean distance is replaced by
other distances to allow the comparison between input
data and prototypes. Fuzzy shell algorithm can detect el-
lipses, quadrics, and so on. There is a large number of fuzzy
shell clustering algorithms that use different kinds of pro-
totype and different distance measures. For example, the
fuzzy c ellipsoidal shell algorithm searches for shell clus-
ters with the shape of ellipses, ellipsoids, or hyperellip-
soids. At this point a distance between an input unit and
the closest ellipse is introduced (55).

Kernel-based variants of fuzzy clusteringmodify the dis-
tance function to handle nonvectorial data, such as trees,
sequences, or graphs without modifying completely the
standard algorithm. The essence of kernel-based meth-
ods involves performing an arbitrary nonlinear mapping
from the original feature space to the kernel space. There
are two major forms of kernel-based fuzzy clustering. The
first one comes with prototypes constructed in the feature
space and the second one with prototypes retained in the
kernel space thus requiring an inverse mapping from ker-
nel space to feature space. The optimization of the objective
function, the updating rules for the membership degrees,
and the derivation of the prototypes are obtained as in
fuzzy 𝑐-means and depend on the specific selection of the
kernel function (56).

Fuzzy Co-clustering, Comparison of Fuzzy Clustering, Con-
sensus of Fuzzy Clustering, Strategy of Analysis. In a fuzzy
framework, some fuzzy co-clustering methods have been
proposed by Frigui and Nasraoui (57).

With regard to comparison of fuzzy clustering, a useful
criterion for comparing each pair of fuzzy partitions ob-
tained by fuzzy methods is the fuzzy Rand index. It is a
fuzzy extension of the original Rand index based on the
comparison of agreements (consistent classifications) and
disagreements (inconsistent classifications) of the two par-
titions, the fuzzy partition and the hard partition (58).

Consensus of fuzzy clustering arises by the availability
of different fuzzy partitions of the same set of objects and it
can be relevant to obtain a consensus partition that sum-
marizes the information contained in the different fuzzy
partitions. The most natural way for obtaining fuzzy con-
sensus of fuzzy partitions is by the optimization approach:
it considers a criterion thatmeasures the distance between
the set of fuzzy partitions in the profile and a fuzzy clas-
sification, and one seeks a fuzzy consensus classification
that optimizes the stated criterion (59).

The strategies af analysis described in Section “Co-
clustering, Comparison Clustering, Consensus Clustering,
Strategy of Analysis” apply to fuzzy data. In particular,
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fuzzy clusterwise regression analysis (60), and the com-
bination of data reduction and fuzzy cluster analysis (61)
have been proposed.

Available Software. In R, fuzzy clustering methods are
implemented in the following libraries, for example

- clue (https://CRAN.R-project.org/package=clue)
- cluster (https://CRAN.R-project.org/package=
cluster)

- clustrd (https://CRAN.R-project.org/package=
clustrd)

- e1071 (https://CRAN.R-project.org/package=
e1071)

- kml (https://CRAN.R-project.org/package=kml)
- skmeans (https://CRAN.R-project.org/package=
skmeans)

- vegclust (https://CRAN.R-project.org/package=
vegclust)

2.3. Clustering of Nonstandard Data

In this section, clustering methods of nonstandard data,
in particular based on the fuzzy approach, are reviewed.
In the previous section, we have analyzed FcM and its
variants for standard data structures, that is, standard
quantitative/numerical data.

Here, we focus our attention on data feature-based vari-
ants of FcM, that is, fuzzy clustering methods for non-
standard data. In particular, we consider fuzzy clustering
methods for data with different nature (i.e., fuzzy data,
symbolic data, interval data, categorical data, text data,
time and/or spatial data, three-way data, sequence data,
functional data, network data, directional data, mixed
data) and data with particular structural features (i.e.,
outlier data, incomplete data, big data).

Fuzzy Data. In the last years, a great deal of attention
has been paid to fuzzy cluster analysis for imprecise/vague
data, where the impreciseness/vagueness is modelled fol-
lowing a fuzzy approach (fuzzy data). For a formal defini-
tion of fuzzy data, see, for example, Reference 62. Hath-
away et al. (63) analyzed heterogeneous fuzzy data by uti-
lizing fuzzy clustering. Pedrycz et al. (64) suggested non-
parametric methods for fusing heterogeneous fuzzy data.
Yang and Ko (65) developed fuzzy clustering methods for
univariate fuzzy data. Yang and Liu (66) extended the
Yang–Ko’s clustering methods to conical fuzzy vectors.
Auephanwiriyakul and Keller (67) suggested a linguistic
fuzzy clustering method for fuzzy data based on the exten-
sion principle and the decomposition theorem. Yang et al.
(68) proposed a fuzzy clustering method for fuzzy and sym-
bolic data (see also Section “Symbolic Data”), by defining
a “composite” dissimilarity measure. Hung and Yang (69)
developed a robust fuzzy clustering method for univariate
fuzzy data based on exponential-type distance measure.
D’Urso and Giordani (70) suggested a fuzzy clustering
method for symmetrical fuzzy data by using a “weighted”
dissimilarity for comparing pairs of fuzzy data that is com-
posed of two distances, the so-called center distance, and
spread distance. The method tunes automatically the in-

fluence of the two components of the fuzzy data for calculat-
ing the center and spreads centroids in the fuzzy clustering
procedure. Coppi et al. (42) proposed two clusteringmodels
for fuzzy data by adopting, respectively, fuzzy and possi-
bilistic approaches. Coppi and D’Urso (71,72) suggested
fuzzy clustering methods for fuzzy time-varying data. For
an application of the fuzzy clustering for fuzzy data, see,
for example, Reference 73. For a survey on fuzzy clustering
for fuzzy data see References 62, 74–76.

In a fuzzy framework, an interesting nonhierarchical
clustering for symbolic data has been proposed by El-
Sonbaty and Ismail (77). El-Sonbaty and Ismail (77), ana-
lyzing different types of symbolic data, remarked that the
fuzzy methodological approach improve the performance
of the clustering process, giving more meaning and easier
interpretation of the results obtained from their clustering
method.

Interval-Valued Data. Interval-valued data refers to
variables observed in the form of intervals, rather than
single numbers. There are different studies regarding the
clustering of interval-valued data. For instance, by defin-
ing a suitable distance measure for interval-valued data
and following a fuzzy approach, D’Urso and Giordani (78)
- assuming that an interval-valued datum is represented
by the center and the radius of the interval (the radius is
the distance between the center and lower/upper bound of
the interval) – suggested a robust FcM clustering method
for classifying interval–valued data. The peculiarity of
this method is the capability of managing outlier interval-
valued data by reducing the effects of such outliers in the
clustering process. Notice that, in the interval case, the
concept of outlier data involves both the center and the
width (the radius) of an interval. Other useful references
are References 79–81.

We observe that, since interval-valued data can be con-
sidered as a particular case of fuzzy data (fuzzy data with
uniform membership function) or a particular case of sym-
bolic data, the fuzzy clustering methods for fuzzy and sym-
bolic data (see Sections “Fuzzy Data” and “Symbolic Data”)
can also be suitably utilized for classifying interval-valued
data.

Categorical Data. Recently, in the clustering literature,
increasing attention has been paid to cluster analysis for
categorical data, since this task is of great practical rel-
evance in several fields. Several methods for categorical
data have been suggested. Among them, the 𝑘-modes clus-
tering method proposed by Huang (1997) is one of the
most efficient clustering algorithm. It uses a dissimilar-
ity measure between two categorical data defined by the
total mismatches of the corresponding categories instead
of the Euclidean distance and 𝑚𝑒𝑎𝑛𝑠 instead of 𝑚𝑜𝑑𝑒𝑠 for
cluster prototypes. A fuzzy version of the 𝑘-modes clus-
tering algorithm has been proposed by Huang and Ng
(1999). In this method each pattern is allowed to have
memberships in all clusters rather than just a distinct
membership to a single cluster. The membership matrix
provides more information to help the users to decide the
core and boundary objects of clusters. Lee and Pedrycz (82)
introduced a generalization of the 𝑘-modes type clustering
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algorithm with fuzzy 𝑝-mode prototypes. The fuzzy 𝑝-mode
algorithm incorporates a weighting scheme for the dissim-
ilarity measure by which each category is automatically
assigned with a weight measuring its individual contribu-
tion for the clusters. Recently, a fuzzy clustering method
with between-cluster information for categorical data has
been suggested by Bai et al. (83). For other fuzzy clustering
methods for categorical data, see References 84–86.

Symbolic Data. Symbolic data occur as multi valued
(as in lists) interval-valued or categorical-valued obser-
vations. There are different non-fuzzy clustering methods
for classifying symbolic data. Most of these techniques are
based on hierarchical methodologies, which use the con-
cept of agglomerative or divisive methods as the core of
the algorithm.

Textual Data (Text Data). In the recent years, text data
has gradually become a new research topic. Among them,
the study of text clustering has attracted wide attention.
Different fuzzy clustering methods have been suggested in
the literature. For instance, Krishnapuram et al. (27) in-
troduced a fuzzy 𝑘-medoids algorithm with application to
web document. Runkler and Bezdek (37), considering dis-
tancemeasures for text strings (i.e., Levenshtein distance),
proposed a fuzzy clustering method. Recently, Deng et al.
(87) proposed fuzzy clustering for text data. They intro-
duced the feature evaluation method to reduce the dimen-
sion of the text vector, and therefore they introduced the
high power sample point set, the field radius, and weight
to calculate the initial clustering center of the text and
to keep the clustering results stable. Finally, they use the
edit distance to recalculate the sample points on the bound-
ary value among the clusters and to determine the type of
sample points and optimize the clustering results.

Time Series Data. Several fuzzy clustering for time-
varying data have been suggested. For instance, follow-
ing a model-based approach, (88) proposed an autoregres-
sive model-based FcMd clustering method and some of its
variants for classifying univariate time series. By adopt-
ing a partitioning around medoids approach, D’Urso et al.
(89) proposed GARCH-based FcMd clustering methods for
classifying financial time series. Following a feature-based
approach, Maharaj et al. (90) proposed a wavelet-based
FcM clustering for univariate time series, and successively
D’Urso and Maharaj (91) suggested different wavelet-
based fuzzy clustering methods for multivariate time se-
ries. In Reference 92, Maharaj and D’Urso introduced
different fuzzy clustering methods of univariate time se-
ries in the frequency domain. Following an observation-
based approach, different FcM clustering methods (also
robust methods) for classifying multivariate time trajec-
tories were proposed. Coppi and D’Urso (93) suggested
an entropy-based fuzzy clustering for time trajectories.
They introduced a FcMd clustering for time trajectories.
Coppi and D’Urso (71,72,94,95) suggested, respectively,
FcM, FcMd, and entropy-based clustering methods for
fuzzy multivariate time trajectories. See also References
53, 96–99. For more details on time series clustering –also
in a fuzzy framework– see Caiado et al. (100).

Spatial Data. In the literature, many works devoted to
the development of clustering methods for spatial units
have been suggested. The peculiarity of these techniques
consists in their capability to suitably deal with the dis-
tinguishing characteristics of spatial data, that is, spatial
dependence and spatial heterogeneity.

The fuzzy clustering methods for spatial data can be
classified with respect to the objects to be clustered:

1. Geographical Areas (usually defined by means of
administrative boundaries): In this class, the clus-
tering methods aim at determining clusters of ge-
ographical areas such that the within cluster dis-
persion is minimized with the additional assump-
tion that the configuration of the obtained clus-
ters should satisfy particular spatial constraints
(e.g., that the obtained clusters are formed by spa-
tially contiguous areas). The empirical evidence
suggests that spatial data are often characterized
by positive spatial autocorrelation: neighboring
sites tend to have similar features. If such spa-
tial autocorrelation affects the observed data, this
should be explicitly considered in the clustering
method (instead of arbitrarily ignoring it) so that
the resulting clusters may detect it (101). For an
example of fuzzy clustering methods belonging to
this class, see Reference 102.

2. Pixels (image segmentation): In this class, the
clustering methods basically aim at assigning the
pixels (i.e., the observation objects) in an image
to different clusters according to their features.
The standard clustering methods do not take into
account the information given by the spatial dis-
tribution of the pixels, but only the one given by
the observed features. To overcome this problem,
clustering algorithms have been adapted by suit-
ably taking into account spatial information (101).
Among the spatial fuzzy clustering methods be-
longing to this class, wemention themethods sug-
gested by Tolias and Panas (103,104), Pham and
Prince (105), Liew, et al. (106,107), Pham (108),
and Liew and Yan (109–111).

We remark that a possible way for extending the
FcM clustering method to spatial data consists of adding
a suitable spatial penalty term in the objective func-
tion of the clustering method. A reasonable choice for
the spatial penalty term has been developed by Pham
(108). Such a proposal has been introduced for solv-
ing the image segmentation problem. However, it also
appears to be applicable to the case of geographical
areas (101).

Spatial–Time Data. By considering two types of dissimi-
larity measures for multivariate trajectories – that is, the
cross sectional dissimilarity that compares the instanta-
neous (positional) features of the trajectories and the lon-
gitudinal dissimilarity that captures the differences con-
cerning the evolutive features (i.e., the “variational” pat-
terns) of the trajectories measured by means of their ve-
locities - and following a fuzzy approach, Coppi et al. (101)
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proposed two types of objective function-based fuzzy clus-
tering methods for classifying spatial units on the basis of
multivariate time-varying empirical information (spatial–
time data): the cross-sectional fuzzy c-means clustering for
spatial-time data (CS-FcM-ST) and the longitudinal fuzzy
c-means clustering for spatial-time data (L-FcM-ST). In
particular, for the CS-FcM-ST, the objective function is
constituted by two terms:

- The instantaneous within cluster dispersion term.
It is a measure of the within cluster (cross-
sectional) dissimilarities of the multivariate tra-
jectories with respect to the centroids, appropri-
ately weighted by membership degrees. There-
fore, by minimizing this term we maximize the
internal cohesion of the clusters, conditional on
allowing for a certain degree of flexibility as indi-
cated by the fuzziness parameter 𝑚.

- The spatial penalty term (spatial regularization
term). The aim of this term is the following: for
each spatial object 𝑖 and each generic cluster 𝑘,
the sum of themembership degrees of the contigu-
ous/neighboring spatial objects in all the clusters
except cluster 𝑘 is constrained to be as small as
possible.

For analytical details of these methods see Reference
101. Another interesting reference is Reference 112.

Three-Way Data. Many fuzzy clustering methods have
been proposed for three-way data arrays (i.e., arrays of the
type objects × variables × occasions). Interested readers
may refer to References 113, 114. Other examples of fuzzy
clustering for three-way data can be found, for instance, in
References 59, 101, 115, 116.

Sequence Data. In the context of human activity pattern
analysis based on “virtual” (e.g., web usability) or physi-
cal movements (i.e., grocery shopping activity, pedestrian
urban activity), it is very interesting to classify persons by
considering their activity patterns, that is, their individ-
ual behaviors in an actual or virtual domain represented
by sequences (paths). Following a fuzzy approach, D’Urso
and Massari (117) proposed some clustering methods for
classifying individuals by taking into account their activ-
ity behaviors. A fuzzy approach is suitable for sequence
data, since sequences (e.g., sequences of human activities)
are typically characterized by switching behaviors, which
are likely to produce overlapping clusters. D’Urso and
Massari (117) adopted a partitioning around medoids
strategy since in human activity patterns analysis it is
useful to represent each cluster by means of a not fictitious
prototypes (i.e., medoids). To measure pairwise distances
among all sequence pairs they make use of the Leven-
shtein distance, which allows for the comparison between
sequences of different length and explicitly takes into ac-
count the sequential nature of the data. In particular, they
proposed a FcMd clustering for sequence data and two
of its robust versions based, respectively, on noise clus-
ter and on trimming technique. Suggestive applications of
the three suggested methods to shopping path, Web usage

mining, travel behavior, tourists path, and skiers paths
are also shown in their paper.

Runkler and Bezdek (37) suggested a relational clus-
tering algorithm by introducing an alternating cluster es-
timation procedure for relational data, that is, relational
alternating cluster estimation (RACE) that is very sim-
ilar to ACE (alternating cluster estimation); it is useful
for relational matrices, when the starting point is repre-
sented, for example, by a distance matrix. We remark that
in ACE (and RACE), membership degrees and prototypes
are specified by the user. In the Runkler–Bezdek’s method,
the RACE algorithm is specifically devoted to web mining.
In particular, in a web content mining context, the authors
consider distance measures for text strings, that is, Lev-
enshtein distance; in a web log mining framework, they
introduce a graph-based distance measure and the Leven-
shtein distance for graph traversal sequences, in particu-
lar forweb page sequences. TheD’Urso–Massari’smethods
can be adopted for a wide range of types of human activ-
ity patterns (e.g., grocery shopping paths, travel behavior
paths, tourist behavior paths, skiers paths, pedestrian ac-
tivity paths, web log paths, web content paths, eye tracking
paths, mouse tracking paths, and so on). Furthermore, we
remark the two robust clustering methods suggested by
D’Urso and Massari (117) are more resistant to disruptive
effects of outliers in path data thanRACE-based clustering
algorithm proposed by Runkler and Bezdek (37).

Functional Data. Functional data are multivariate data
with an ordering on the dimensions, thus a collection of
functions. Typical examples include time series data such
as weather data and human growth data. Functional data
analysis has recently attracted many researchers. In the
clustering literature, several non-fuzzy methods for clas-
sifying functional data have been proposed. However, re-
cently, also in the fuzzy framework, some methodological
proposals for classifying in a fuzzy manner functional data
have been suggested. For instance, we point out the fuzzy
clustering method proposed by Tokushige et al. (118).

Network Data. Network data refer to the structure of a
communication networkmodeling social interaction. As re-
marked by Liu (119), “in recent years an explosive growth
of interest and activity on the structure and dynamics of
complex networks has appeared. This is partly due to the
influx of new ideas, particularly ideas from statistical me-
chanics, to the subject, and partly due to the emergence
of interesting and challenging new examples of complex
networks such as the internet and wireless communica-
tion networks”. In this regard to find the best partition of
a large and complex network into a small number of clus-
ters has been addressed in many different ways. Following
a fuzzy approach, Liu (119) proposed a partitioning formu-
lation, which is extended from a deterministic framework
for network partition based on the optimal prediction of a
random walker Markovian dynamics. See Reference 119
for more details.

Directional Data. In directional data the data, are rep-
resented by observed 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠. The directions are re-
garded as points on the circumference of a circle in two
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dimensions or on the surface of a sphere in three dimen-
sions. Directional data are oftenmet in astronomy, biology,
and medicine. Fuzzy clustering is a useful tool for classify-
ing directional data. Yang and Pan (120) suggested a fuzzy
clustering method, called the fuzzy c-directions clustering
method, applying the class of fuzzy classification maxi-
mum likelihood procedures to two-dimensional von Mises
distribution (the von Mises distribution is the most used
probability density on directional data).

Mixed Data. In many real situations, we may have
datasets with mixed types of data, that is, quantita-
tive data, categorical data, symbolic and fuzzy data, time
and/or spatial-varying data, and so on.

Yang, et al. (68) proposed fuzzy clusteringmethods with
feature vectors, including numeric, symbolic, and fuzzy
data. Chatzis (121) introduced an extension of the FcM
algorithm to allow for handling data with mixed numeric
and categorical variables. For other recent references on
fuzzy clustering with mixed data (i.e., numeric and cate-
gorical variables) see, for example, References 122, 123.

Incomplete Data. In classification, an interesting topic
is the cluster analysis with incomplete datasets, that is
datasets with missing values. In a fuzzy framework, in-
teresting methods have been introduced by Hathaway and
Bezdek (124,125). A kernel-based FcM clustering method
for incomplete data has been proposed by Zhang and Chen
(126). Different approaches to fuzzy clustering of incom-
plete data are illustrated in Timm et al. (127). Honda and
Ichihashi (128) proposed two methods for partitioning an
incomplete dataset with missing values into several linear
clusters by extracting local principal components. The first
method is an extension of the fuzzy 𝑐-varieties clustering
that can be regarded as the method for local principal com-
ponent analysis of fuzzy covariance matrices. The second
method is a simultaneous application of fuzzy clustering
and principal component analysis (strategy of analyses) of
fuzzy correlation matrices. Both methods estimate proto-
types ignoring only missing values and they need no data
preprocessing such as elimination of samples with missing
values or imputation of missing cases.

Big Data. Big data are any data that you cannot load
into your computer’s working memory (129). Huber (130)
classified dataset sizes as follows: tiny (102 bytes), small
(104 bytes), medium (106 bytes), large (108 bytes), huge
(1010 bytes), monster (1012 bytes), big (10>12 bytes) (added
by Hathaway and Bezdek (131)). As remarked by Havens
et al. (129), there are two main approaches for cluster-
ing very large data: distributed clustering based on vari-
ous incremental styles and clustering a sample found by
either progressive or random sampling. Each approach
has been applied in the context of FcM clustering of very
large data. The most well-known fuzzy clustering method
for very large data is the generalized extensible fast FcM
(geFFcM) proposed by Hathaway and Bezdek (131). This
method utilizes statistics-based progressive sampling to
produce a reduced dataset that is large enough to capture
the overall nature of the data. Thus, the algorithm clusters
this reduced dataset and non-iteratively extends the par-

tition to the full dataset. However, as remarked by Hevens
et al. (129), the sampling method utilized in geFFcM can
be inefficient and, in some cases, the data reduction is
not sufficient for very large data. Hence, these authors
adapted geFFcM into a simple random sampling plus ex-
tension FcM (rseFcM) algorithm. Other leading algorithms
include single-pass FcM (spFcM) (132) and online FcM
(oFcM) (133), which are incremental algorithms to com-
pute an approximate FCM solution. The bit-reduced FcM
(brFcM) (134) algorithm uses a binning strategy for data
reduction. Successively, a kernel-based strategy called ap-
proximate kernel FCM (akFcM) developed by Chitta et al.
(135,136), relies on numerical approximation that uses
sampled rows of kernel matrix to estimate the solution
to a 𝑐-means problem.

Other fuzzy clustering methods for very large data are
the fast FcM (fFcM) suggested by Shankar and Pal (137),
in which FcM is applied to larger and larger nested sam-
ples until there is little change in the solution, and the
multistage random FcM developed by Cheng et al. (138),
which combines fFcM with a final literal run of FcM on the
full dataset. Both these schemes are more in the spirit of
acceleration, rather than scalability, as they both contain
a final run on the full dataset (129). Other algorithms that
are related, but were also developed for efficiency, include
those proposed by Cannon et al. and Kolen et al. (139,140).
Finally, we remark fast kernel FcM (fkFcM) proposed by
Liao and Lin (141).

2.4. Clustering with Other Types of Uncertainty
Management

In addition to fuzzy and possibilistic clustering, in the lit-
erature there are other clustering approaches for man-
aging the uncertainty in the clustering process, that is,
we remark: shadowed clustering (142), rough set-based
clustering (143), intuitionistic fuzzy clustering (144), evi-
dential clustering or credal clustering or belief clustering
(145), credibilistic clustering (146), type-2 fuzzy clustering
(147), neutrosophic clustering (148), hesitant fuzzy clus-
tering (149), interval-based fuzzy clustering (150), picture
fuzzy clustering (151). See also Reference 152 for a deep
review on these clustering approaches.

3. MODEL-BASED UNSUPERVISED CLUSTERING

3.1. Mixture Clustering

Cluster analysis can be based on probability models of the
data. Model-based clustering consists of fitting a mixture
model to data and identifying each cluster with one of its
components. For continuous data, the most common com-
ponent distribution is amultivariate Gaussian (or Normal)
distribution. Model-based clustering assumes that the
multivariate observations 𝐱 = (𝑥1,⋯ , 𝑥𝑝) are a sample from
a finite mixture density 𝑝(𝑥∕𝜃) =

∑𝐾
𝑘=1 𝑝𝑘𝑓𝑘(𝑥∕𝜃𝑘) where 𝑓𝑘

and 𝜃𝑘 are the density and the parameters of the 𝑘th compo-
nent in the mixture (𝜃 = 𝜃1,⋯ , 𝜃𝐾 ) and 𝑝𝑘 is the probability
that an observation belongs to the 𝑘th component (𝑝𝑘 ≥ 0,∑𝐾

𝑘=1 𝑝𝑘 = 1). For estimation purposes, the mixture model
is often expressed in terms of complete data, including
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the groups to which the observation belongs. The com-
plete data are 𝐲 = (𝑦1,⋯ , 𝑦𝑛) = ((𝑥1, 𝑧1),⋯ , (𝑥𝑛, 𝑧𝑛)), where
the missing data are 𝐳 = (𝑧1,⋯ , 𝑧𝑛), with 𝐳𝑖 = (𝑧𝑖1,⋯ , 𝑧𝑖𝐾 )
indicating the binary vectors such that 𝑧𝑖𝑘 = 1 if 𝑥 comes
from group 𝑘. The 𝐳𝑖’s define a partition of the observed
data in sets of 𝐱𝑖 such that 𝑧𝑖𝑘 = 1. Geometric features
(shape, volume, orientation) of the clusters are determined
by the covariance matrices of the densities of the com-
ponents. Banfield and Raftery (153) proposed a general
framework for geometric constraints in multivariate nor-
mal mixtures by parametrizing the covariance matrix of
each component through eigenvalue decomposition so that
three parameters of the eigenvalue decomposition corre-
spond to shape, size, and orientation of the clusters (by
size the volume occupied by the cluster in the multidi-
mensional space rather than the number of units it con-
tains is intended). Banfield and Raftery also proposed
methods for parameter estimation for clusters with non
Gaussian distribution. The standard methodology to esti-
mate the finite mixture parameters corresponding to each
cluster in the presence of incomplete data consists of us-
ing the EM (expectation maximization) algorithm (154).
The clustering is then done by assigning each unit to
the cluster to which it is most likely to belong a poste-
riori, conditionally on the selected model and its estimated
parameters.

Banfield and Raftery applied model-based clustering
on a diabetes dataset containing three measurements,
the area under a plasma glucose curve, the area under
a plasma insulin curve, and steady-state plasma glucose
curve for each of 145 subjects. The dataset is considered
a standard introductory example for model-based clus-
tering. The subjects were clinically diagnosed into three
groups: normal, chemically diabetic, and overtly diabetic.
The two-dimensional projection of the data shows a three-
dimensional shape of a boomerang with two wings and
a fat middle (Figure 6). One of the wings corresponds to
patients with overt diabetes, the other wing is composed
primarily of patients with chemical diabetes and the fat
middle is composed of normal patients.

The data are modeled with a trivariate Gaussian dis-
tribution with a different covariance matrix for each
component. The corresponding three-group classification
matches the three clinically diagnosed groups with 90%
accuracy.

For a survey of probabilistic models in the literature
see References 155, 156. For reviews of model-based clus-
tering, see References 157–159. A limitation of model-
based clustering with high-dimensional data is the growth
of the number of parameters of each component of the
mixture. Their use can be limited for non Gaussian,
high dimensional very large datasets. See also References
160, 161.

3.2. Available Software

In R, mixture clustering methods are implemented in the
following library:

- mclust (https://CRAN.R-project.org/package=
mclust)

Figure 6. Two-dimensional projection of diabetes data set (circle
chemical, square overt, triangle normal) (153).

4. UNSUPERVISED ARTIFICIAL NEURAL NETWORKS:
THE SELF-ORGANIZING MAP

4.1. Neural Modeling and Early Work

The network architectures used to model neural systems
can roughly be divided in two categories, supervised and
unsupervised networks. Supervised networks are feedfor-
ward networks of cells (neurons) that transform sets of in-
put data into sets of output data. The desired input–output
transformation is determined by supervised adjustment of
the system parameters. Unsupervised networks are com-
petitive self-organizing networks of cells in which neigh-
boring cells compete in their activities by means of mutual
lateral interactions, and develop adaptively into specific
sensors of different input patterns.

The self-organizing map belongs to the second category.
It is an artificial neural network, the cells of which become
specifically tuned to various input patterns or classes of
patterns through an unsupervised learning process. In the
basic version, only one cell or local group of cells at a time
gives the active response to the current input. The loca-
tions of the responses tend to become ordered in a coordi-
nate system created over the network for different input
features. The spatial location or coordinates of a cell in the
network then correspond to a particular domain of input
pattern. Each cell or local cell group acts like a separate
sensor for the same input. The interpretation of the input
information does not produce an input–output transforma-
tion as in supervised networks, but gives rise to an active
response in a spatial location.

The self-organizing map is “neural” as it behaves like
various areas of the brain specialized to different cogni-
tive functions. Some researchers in the 1950s (162) found
that certain single neural cells in the brain respond se-
lectively to some specific sensory stimuli. These cells are
often organized into local groups (brain maps), in which
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their location corresponds to some feature value of a spe-
cific stimulus in an orderly manner.

Some biologists in the 1970s (163,164) tried to under-
stand if feature-sensitive cells could also be formed in arti-
ficial systems automatically, by learning. Malsburg (165),
and later Amari (166) implemented by the so-called com-
petitively learning neural networks. In a subset of cells,
adaptation of the strongest-activated cells made them be-
come tuned to specific input. The above studies are of
great theoretical importance because they involve a self-
organizing tendency, but the ordering power they demon-
strated was however still weak.

In 1981, Kohonen studied a process that seemed gen-
erally to produce globally well-organized maps, proposing
the algorithm known as The Self-Organizing Map algo-
rithm. Since then a wealth of contributions have been de-
veloped. In Oja et al. (167), many of them are collected
and divided by type of contribution. The first few books
edited by Kohonen are Self-Organization and Associative
Memory and Self-Organizing Maps (3,168). Also, refer to
References 169, 170.

4.2. The Self-Organizing Map

The Learning Rule. The two essential effects leading to
spatially organized maps are as follows: (1) Spatial con-
centration of the network activity on the cell (or its neigh-
borhood) that is best tuned to the present input (winner)
and (2) further sensitization or tuning of the best-matching
cell and its topological neighbors to the present input.

In biologically inspired neural network models, corre-
lated learning by spatially neighboring cells can be imple-
mented using various kinds of lateral feedback connection
and other lateral interactions. In the process presented by
Kohonen, lateral interaction is induced directly by defining
a neighborhood set 𝑁𝑐 around cell 𝑐. At each learning step
all the cells within 𝑁𝑐 are updated, whereas cells outside
𝑁𝑐 are left intact. This neighborhood is centered around
the cell for which the best match with input 𝐱 is found.
The width or radius of 𝑁𝑐 can be time variable; in fact, for
a global ordering, it has experimentally turned out to be
advantageous to let 𝑁𝑐 be very wide at the beginning and
decreasing monotonically with time.

The explanation for this may be that a wide initial spa-
tial resolution 𝑁𝑐 in the learning process first induces a
rough global order in the 𝑚𝑖 values, after which narrow-
ing the 𝑁𝑐 improves the spatial resolution of the map. The
global order is not altered afterward. It is even possible to
end the process with𝑁𝑐 = {𝑐}, that is, finally updating the
best-matching unit (winner) only, in which case the pro-
cess is reduced to simple competitive learning. Before this,
however, the “topological order” of the map would have to
be formed. The basic idea underlying what is called com-
petitive learning is roughly as follows.

Assume a sequence of 𝑛 statistical samples of a vecto-
rial observable variable in the real 𝐽 -dimensional space
𝐱 = 𝐱𝑖(𝑡) ∈ ℝ𝐽 , 𝑖 = 1, 2… , 𝑛 where 𝑡 is the time coordinate,
and a set of 𝑃 vectors {𝐦𝑝(𝑡) ∈ ℝ𝐽 , 𝑝 = 1, 2… , 𝑃 } (weight
vectors or reference vectors or codebook vectors) each as-
sociated with a cell (neuron) of a network (topology, lattice,
array) of 𝑃 neurons. Each cell, beside the reference vector

𝐦𝑝, has a (scalar or vectorial) location (coordinate) 𝐫𝑝 de-
pendent on the configuration of the network of neurons,
one-dimensional or multidimensional. It is worth noting
that the dimension 𝐽 of the 𝐦𝑝 vectors (the same of the
input vectors) and the coordinate system 𝐫𝑝 of the network
arrangement of the cells may be different (Figure 7): the
𝐦𝑝 can be multidimensional, whereas the cells may inter-
connect even in the lowest dimensional linear chain (scalar
𝐫𝑝).

Assume that the 𝐦𝑝(0) are initialized with random val-
ues. If 𝐱(𝑡) can somehow be simultaneously compared with
each 𝐦𝑝(𝑡) at each successive instant of time 𝑡 = 1, 2, 3,…,
then the best-matching 𝐦𝑝(𝑡) is updated to match even
more closely the current 𝐱(𝑡). If the comparison is based
on some distance measure 𝑑(𝐱,𝐦𝑝), updating 𝐦𝑝 must be
such that if 𝑝 = 𝑐 is the index of the best-matching refer-
ence vector, then 𝑑(𝐱,𝐦𝑐) is decreased, and all the other
reference vectors 𝐦𝑝, with 𝑝 ≠ 𝑐, are left intact.

In this way the different reference vectors tend to be-
come specifically “tuned” to different variable domains of
the input variable 𝑥.

The updating process or learning rule (in discrete time
notation) may read:

𝐦𝑝(𝑡 + 1) = 𝐦𝑝(𝑡) + 𝛼(𝑡)[𝐱(𝑡) −𝐦𝑝(𝑡)] 𝑝 ∈ 𝑁𝑐

𝐦𝑝(𝑡 + 1) = 𝐦𝑝(𝑡) 𝑝 ∉ 𝑁𝑐

(21)

where 𝛼(𝑡) is a scalar value (0 < 𝛼(𝑡) < 1) decreasing with
time. An alternative notation is to introduce a scalar “ker-
nel” function ℎ𝑐𝑝(𝑡):

𝐦𝑝(𝑡 + 1) = 𝐦𝑝(𝑡) + ℎ𝑐𝑝(𝑡)[𝐱(𝑡) −𝐦𝑝(𝑡)]

where ℎ𝑐𝑝(𝑡) = 0 outside 𝑁𝑐 (the proper notation should be
ℎ𝑐(𝑥)𝑝(𝑡)). A biological lateral interaction often has the form
of a “bell curve.” Denoting the coordinates of cells 𝑐 and 𝑝
by the vectors 𝐫𝑐 and 𝐫𝑝, respectively, a proper form for ℎ𝑐𝑝
might be:

ℎ𝑐𝑝(𝑡) = ℎ0 exp−
||𝐫𝑐 − 𝐫𝑝||2

𝜎2

with ℎ0 = ℎ0(𝑡) and 𝜎 = 𝜎(𝑡) a suitable decreasing functions
of time.

The computations for producing the ordered set of the
SOMmodels can be implemented by either of the following
main types of algorithms: (1) the reference vectors 𝑚𝑝 are
updated by a stepwise updating process in which the input
vectors are applied to the algorithm one at a time, in a pe-
riodic or random sequence, for the time steps necessary to
reach a reasonably stable state; (2) all of the input vectors
are applied to the algorithm as one batch, and all of the
reference vectors are updated in a single operation (batch
algorithm).

Setting of the Parameters. Suggestions for the applica-
tion of the algorithm in terms of learning rate, number of
steps, value of 𝛼(𝑡), topology, and size of the network can
be found in Kohonen (171).
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Figure 7. A two-dimensional input space mapped to a one-dimensional configuration of neurons (left: neural network top, input space
bottom); a 𝐽 -dimensional input space mapped to a two-dimensional configuration of neurons (right).

(1) The final statistical accuracy of the mapping de-
pends on the number of time steps, which must be rea-
sonably large. A rule of thumb is that, a good statistical
accuracy is a number of time steps at least 500 times the
number of network units. On the other hand, the dimen-
sion of the input has no on effect on the number of iteration
steps.

(2) For approximately the first 1000 time steps, 𝛼(𝑡)
should start with a value that is close to unity, thereafter
decreasing monotonically. The functional type of decreas-
ing of 𝛼(𝑡) can be linear, exponential, or inversely propor-
tional to 𝑡. The ordering of the 𝑚𝑝 occurs during the initial
period, while the remaining steps are only needed for the
fine adjustment of the map.

(3) The suggestion for the the choice of 𝑁𝑐(𝑡) is start-
ing with a wide 𝑁𝑐(0) and letting it decrease with
time.

(4) In order to define the network structure and the
number of cells of the network a preliminary visual in-
spection of 𝑝(𝐱) by, for example, Sammon projection is sug-
gested.

Quality of Learning. The quality of learning in the SOM
is measured through the average expected quantization er-
ror (AEQE) and the expected distortion measure (EDM),

defined as:

AEQE = ∫ℝ𝐽 𝑑𝑔(𝒎𝑐(𝑥),𝒙)𝑝(𝒙) (22)

EDM = ∫ℝ𝐽
∑𝑃

𝑝=1 ℎ𝑝,𝒄(𝒙)(𝑡)𝑑𝑔(𝒎𝑝,𝒙)𝑝(𝒙) (23)

respectively, where 𝑑𝑔 is a generic distance function (3),
𝒙 ∈ ℝ𝐽 is the input vector, 𝒎𝑐(𝑥) is the weight vector closest
to the input vector 𝒙 according to 𝑑𝑔, and ℎ𝑝,𝒄(𝒙)(𝑡) is the
degree of neighborhood between the locations of the neuron
𝑝 and of the winner neuron 𝑐 of 𝒙.

The average quantization error (AQE) and thedistortion
measure (DM) are the sample counterpart of equations (22)
and (23) and are defined as

AQE = 𝑛−1
∑𝑛

𝑖=1 𝑑𝑔(𝒎𝑐(𝑥𝑖),𝒙𝑖) (24)

DM =
∑𝑛

𝑖=1
∑𝑃

𝑝=1 ℎ𝑝,𝑐(𝑥𝑖)(𝑡)𝑑𝑔(𝒎𝑝,𝒙𝑖). (25)

Generally, in equations (22) and (24) the Euclidean dis-
tance (‖… ‖) is used as distance function 𝑑𝑔, while in equa-
tions (23) and (25), the squared Euclidean distance (‖… ‖2)
is adopted.

These measure can also be considered at the individual
level, yielding the individual quantization error (IQE) and
the individual distortion measure (IDM), respectively:

IQE = 𝑑𝑔(𝒎𝑐(𝑥𝑖),𝒙𝑖) (26)



Unsupervised Learning 17

IDM =
∑𝑃

𝑝=1 ℎ𝑝,𝑐(𝑥𝑖)(𝑡)𝑑𝑔(𝒎𝑝,𝒙𝑖). (27)

The ordering ability of the SOMs-ID is measured
through the analysis of the distances between the
weight vectors and the related distances between their
locations (closest neurons should have closest weight
vectors).

The topology preservation ability of the SOMs-ID (clos-
est input vectors should have closest neurons in the SOMs)
is measured through the Spearman correlation coefficient
between the ranks of the 𝐼(𝐼 − 1)∕2 distances between in-
put vectors and the ranks of the distances of the weight
vectors of the related closest neurons. Another measure of
topology preservation is the topographic error that consid-
ers the ratio of input vectors for which the first and second
best-matching cells are not adjacent. For other measures
see Reference 172.

SOM Mathematics. Although the basic principles of
the self-organizing systems are simple, the process be-
havior is difficult to be described in mathematical
terms.

Convergence to an ordered state. In References 3, 168
the (self-)ordering of the weights is proved, restricting the
considerations to a one-dimensional topology of neurons
to each of which a scalar-valued input vector 𝒙 is con-
nected, showing that if 𝒙(𝑡) is a random variable, consid-
ering the intermediate “states” (various types of partial
sequences of the 𝒎𝑝) of the process, then an index of disor-
der, 𝐷 =

∑𝑃
𝑝=2 |𝒎𝑝 −𝒎𝑝−1| − |𝒎1 −𝒎𝑃 |, more often decreases

than increases in updating (|𝑥| denoting absolute value of
𝑥).

In Reference 173, (self-)ordering of the weights with
respect to a one-dimensional topology and scalar-valued
input vector is rigorously justified. The results hold for gen-
eral metrics. The conditions regarding the learning rate
under which convergence to an ordered state is obtained
are

∑∞
𝑠=0 𝛼(𝑠) = ∞, lim𝑠→∞ 𝛼(𝑠) = 0. See also References

174–177.
Generalizations of the (self-)ordering ability of the SOM

to multidimensional input space and multidimensional
topologies of the neurons have been considered.

With respect to the dimension of the input space,
Budinich and Taylor (178) gave an intuitive necessary and
sufficient condition of the decrease of 𝐷 that applies to the
case of multidimensional input space and one-dimensional
topologies.

With respect to the topology of the network, Koho-
nen (3,168) assumes that in considering multidimensional
topologies results similar to the one-dimensional case can
be obtained. In Budinich and Taylor (178), the problems
at the origin of ordering in higher dimensional topologies
are intuitively explained.

Vector quantization. Vector Quantization (VQ) is a clas-
sical method, that produces an approximation to a continu-
ous probability density function 𝑝(𝐱) of the vectorial input
variable 𝐱 using a finite number of codebook vectors 𝐦𝑝,
𝑝 = 1, 2… , 𝑃 . Once the “codebook” is chosen, the approxi-
mation of 𝐱 involves finding the reference vector𝐦𝑐 closest
to 𝐱. One kind of optimal placement of the 𝐦𝑝 minimizes

𝐸, the expected 𝑟th power of the quantization error:

𝐸 = ∫ ||𝐱 −𝐦𝑐||𝑟𝑝(𝑥)d𝑥 (28)

where d𝑥 is the volume differential in the 𝐱 space, and
the index 𝑐 = 𝑐(𝑥) of the best matching reference vector
(winner) is a function of the input vector 𝐱:

𝐦𝑐(𝑥) = min
p
{||𝐱 −𝐦𝑝||}. (29)

As far as the vector quantization ability of the SOM
is concerned, Ritter (179) studies the probability density
function of the weight vectors in simple cases showing that
it approximates some monotonic function of the probabil-
ity density function 𝑝(𝒙) of the 𝐽 -dimensional continuous
random variable 𝐱.

Moreover in Reference 180 it is shown that the SOM
learning process finds weight vectors minimizing the ex-
pected distortion measure and study under appropriate
conditions.

At the end of the learning process each input is assigned
to the closest reference vector, thus allowing clustering of
the input data.

Simulations. The simulations presented are taken by
Kohonen (3,168) and have been the first ones used to il-
lustrate the effect that the reference vectors tend to ap-
proximate to the density function of the input vectors in
an orderly faction. In these examples, the input vectors
were chosen to be two-dimensional for visual display pur-
poses, and their probability density function was arbitrar-
ily selected to be uniform over the area demarcated by
the borderlines (square or triangle). Outside the frame the
density was zero. The vectors 𝐱(𝑡) were drawn from this
density function independently and at random, after which
they caused adaptive changes in the reference vectors 𝐦𝑝.
The 𝐦𝑝 vectors appear as points in the same coordinate
system as that in which the 𝐱(𝑡) are represented; in order
to indicate to which cell𝐦𝑝 value belongs, the points corre-
sponding to the𝐦𝑝 vectors have been connected by a lattice
of lines conforming to the topology of the cells. A line con-
necting two reference vectors 𝐦𝑝 and 𝐦𝑗 is only used to
indicate that the corresponding cells 𝑝 and 𝑗 are adjacent
in the array of cells. In Figure 8, the arrangement of the
two-dimensional cells is rectangular (square); whereas in
Figure 9, the two-dimensional cells are interconnected in
a linear chain.

4.3. Relation with Other Methods

It has been noted that in the SOM the dimension 𝐽 of
the 𝐦𝑝 reference vectors (the same of the input vectors)
and the coordinate system 𝐫𝑝 of the network arrangement
of the cells may be different. So the SOM is related with
methods either of vector quantization or of dimensional-
ity reduction. Among the others clustering methods and
projection methods (linear and nonlinear) are considered.
The 𝑐-means algorithm and the SOM algorithm are both
vector quantization methods aiming at minimizing the
distance between the input 𝐱 and its representative.The
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Figure 8. A square two-dimensional input space mapped to a one-dimensional configuration of neurons (168).
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Figure 9. A triangular two-dimensional input space mapped to a one-dimensional configuration of neurons (168).

representative is the closest reference vector 𝐦𝑐𝑥 in the
SOM and the prototype of the cluster in the 𝑐-means algo-
rithm. With respect to the 𝑐-means clustering a side prod-
uct of the SOM is the possibility to visualize the multivari-
ate reference vectors 𝐦𝑝 in the reduced low-dimensional
(at least one-dimensional) coordinate system 𝐫𝑝 of the re-
lated locations in the network arrangement. An advantage
of the SOM is that the size of the network can be chosen
much larger than the cluster structure of the input data
as the clusters become visible on the network, thus over-

coming the problem of the choice of the number of clusters
in the 𝑐-means algorithm.

Linear (e.g., principal components analysis, PCA) and
nonlinear (e.g., multidimensional scaling, MDS, or Sam-
mon’ mapping) projection methods can be used as meth-
ods of projection of the input vectors on a reduced space by
preserving the variance of the data or the dissimilarities
among the input vectors, respectively. The SOM repre-
sents the 𝐽 -dimensional reference vectors associated with
the neurons in the low-dimensional coordinate system 𝐫𝑝
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of the neuron network arrangement. Among all the pre-
vious dimensionality reduction methods, the essential dif-
ference between SOM and MDS is that the SOM tries to
form a locally correct projection as a consequence of the
lateral interaction between neurons, while MDS preserves
all interpoint dissimilarities. Moreover, the projection in
the SOM is a mapping into the coordinate system of the
network arrangement of the reference vector and not the
computation of artificial lower dimension variables as in
PCA (181).

4.4. Variants, Developments, and Applications of the
SOM

Kohonen proposed the LVQ (learning vector quantiza-
tion) algorithm and its variants as supervisioned reward–
punishment SOM in case of input vectors with known clas-
sification. The aims of the unsupervised and supervised
learning processes are different. The unsupervised SOM
is mainly intended to approximate the probability density
function of the input by quantized reference vectors that
are localized in the input space to minimize a quantization
error functional. The supervised SOM (LVQ) in mainly in-
tended to minimize the average expected misclassification
probability (3,182).

A variety of versions of the basic SOM has been pro-
posed. The SOM has been linked with density matching
model and the point density that the SOM produces is
linked to the density of the data. In the probabilistic SOM
(183–185) a probabilistic mixture model is associated with
the map, where each mixture component corresponds to
a cell of the map, with related parameters. The optimal
estimate of the parameters characterizing each mixture
component is obtained by minimizing the Bregman diver-
gences via partial differentials in respect to model param-
eters. The computation of the winning cell can be reformu-
lated as the computation of the neuron that has the highest
likelihood to have generated the observed input vector.

The Kernel method has been applied to the SOM (186).
A kernel is a real function defined on couples of vectors in
the input space. It is based on a (unknown or imaginary)
nonlinearmapping function defined on each input vector 𝑥.
The SOM is then operated entirely in the space defined by
the kernel function. In hierarchical SOM GSOM (Growing
SOM (187)) the topology of the SOM is dynamically de-
fined in terms of size or structure of the map depending on
intermediate results.

With regard to the input, an extension of the SOM for
data imprecisely observed (self-organizing maps for im-
precise data, SOMs-ID) has been proposed in which the
learning algorithm is based on distances for imprecise
data (188).

The main application areas of the self-organizing maps
are, among the others, pattern recognition, robotics, pro-
cessing of semantic information, industrial analyses and
control, telecommunications, biomedical analyses, and fi-
nance. The spatial segregation of different responses and
their organization into topologically related subsets result
in a high degree of efficiency. By the end of the year 2005,
more than 10,000 scientific works have been published
that develop or apply the SOM (167,189,190).

SOMs have been applied to complex structures of data:
fuzzy data (191), time series (192), interval data (188),
three way data (193), high-dimensional data (187). See
References 167, 189, 190.

4.5. Available Software

In R, self-organizing maps are implemented in the follow-
ing libraries, for example,

- kohonen (https://CRAN.R-project.org/package=
kohonen)

- som (https://CRAN.R-project.org/package=som)
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40. R. N. Davé, and S. Sen. IEEETrans. Fuzzy Syst., 2002, 10(6),
pp 713–727.

41. D. Dubois andH.M. Prade.Possibility Theory. Plenumpress:
New York, 1988.

42. R. Coppi, P. D’Urso, and P. Giordani. Comput. Stat. Data
Anal., 2012, 56(4), pp 915–927.

43. R. Krishnapuram and J. M. Keller. IEEE Trans. Fuzzy Syst.,
1996, 4(3), pp 385–393.
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