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Anisotropy of the dc conductivity due to orbital-selective spin fluctuations in the nematic
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We study the dc conductivity of iron-based superconductors within the orbital-selective spin fluctuation
scenario. Within this approach, the anisotropy of spin fluctuations below the spin-nematic transition at TS is also
responsible for the orbital ordering, induced by nematic self-energy corrections to the quasiparticle dispersion.
As a consequence, the anisotropy of the dc conductivity below TS is determined not only by the anisotropy
of the scattering rates as expected within a spin-nematic scenario, but also by the modification of the Fermi
velocity due to the orbital reconstruction. More interestingly, it turns out that these two effects contribute to
the dc-conductivity anisotropy with opposite signs. By using realistic band-structure parameters we compute
the conductivity anisotropy for both 122 and FeSe compounds, discussing the possible origin of the different
dc-conductivity anisotropy observed experimentally in these two families of iron-based superconductors.
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I. INTRODUCTION

The driving force of electronic nematicity is one of the
most intriguing puzzles in iron-based superconductors (IBS).
The structural transition from tetragonal to orthorhombic at
TS comprised the nematic phase characterized by a marked
electronic anisotropy, much larger than the one expected by
the structural transition itself [1]. In most iron pnictides the
structural transition precedes or coincides with the magnetic
transition at TN . The proximity of the magnetic phase led to
the proposal of the band spin-nematic scenario [2,3] where the
spin fluctuations (SF) at QX = (π, 0) and at QY = (0, π ) be-
come anisotropic below TS . The lack of long-range magnetic
order in FeSe has cast some doubts on the validity of the spin-
nematic scenario in this compound. FeSe presents a nematic
phase below the structural transition at TS = 90 K down to the
critical superconducting temperature Tc ∼ 9 K. Even though
a magnetic phase is not stabilized in temperature, sizable SF
have been detected also in FeSe [4–8]. ARPES experiments
in the nematic phase report a momentum-modulated orbital
splitting between the � and M point of the Brillouin zone [9]
that has been interpreted via both the orbital-ordering scenario
[10–15] and the spin-nematic scenario [16]. In this situation
two related questions arise: what is the role of the spin-orbital
interplay and whether the origin of nematicity is universal in
IBS or material dependent [17–19].

Resistivity anisotropy is a hallmark of nematicity in
IBS. In detwinned electron (e)-doped 122 compounds
�ρ = ρx − ρy < 0 is found below the structural transition
[20–24] while detwinned hole (h)-doped compounds present
the opposite anisotropy [25]. There is an on-going debate in
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the literature on whether the observed dc anisotropy is due
to the anisotropy in the scattering rate or to the anisotropy in
Fermi surface (FS) parameters [26–34]. In principle, within
an orbital-ordering scenario the different occupation of the
various orbitals affects mainly the FS [35–37], while within
a spin-driven scenario the largest effect is expected to come
from an anisotropy in the inelastic scattering rate [26,38–41].
Specifically, in the band spin-nematic scenario, depending
on the FS shape and size, the band nesting is active at the
so called hot spots on the FS, where the scattering rate is
maximum. It has been argued that the location of the hot spots
could explain the different signs between e-doped compounds
and h-doped compounds [25] in pnictides. Besides the
spin-nematic or orbital order scenario, further attempts to
explain the dc anisotropy in pnictides taking into account the
spin-orbital interplay have been performed using the effective
spin-fermion model [42] or the multiorbital microscopic
model in the magnetic phase [43–45].

Recent experiments in FeSe have found the opposite
anisotropy with respect to the e-doped 122 compounds [46],
i.e., �ρ = ρx − ρy > 0. Given the significant FS reconstruc-
tion observed in the nematic phase of FeSe [9], we need to
revise the role of the scattering rate and velocity anisotropies
taking into account the spin-orbital interplay in order to theo-
retically address both pnictides and FeSe. Within an orbital-
ordering scenario, the opposite anisotropy of the resistivity
of 122 and FeSe compounds in the nematic phase has been
ascribed to the orbital-dependent inelastic quasiparticle scat-
tering by orbital-dependent SF [47]. However, an analogous
study of the dc conductivity anisotropy within a spin-nematic
scenario accounting for the spin-orbital interplay and able to
address pnictides and FeSe, is still missing.

The aim of this work is then to provide an interpretation for
the observed differences, using as a starting point the orbital-
selective spin fluctuation (OSSF) model. The model, derived
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FIG. 1. General sketch of the orbital content of the Fermi surface
of the four-pocket model for iron superconductors. The green and
red arrows show the OSSF with yz content in the x direction and
xz content in the y direction. Cold spots, where the scattering rate
is minimum, are shown by a circle and they are found on the xy
and xz orbitals in the nematic phase due to anisotropic self-energy
corrections. See the text.

in the itinerant approach [19], exploits the original idea of
the orbital-selective character of the SF in IBS discussed
in Ref. [48]. Within the OSSF model, due to the orbital
composition of the FS, the SF peaked at QX = (π, 0) involve
only the yz orbital, while the SF at QY = (0, π ) involve
only the xz orbital, Fig. 1. As in the spin-nematic scenario,
the nematic phase emerges when SF at QX = (π, 0) and at
QY = (0, π ) become anisotropic, however in the OSSF model
such anisotropy directly affects the yz/xz orbital symmetry.
The OSSF is a minimal model that explains successfully
the enhanced nematic tendency of FeSe as compared to 122
systems [19] and clarifies controversial experimental issues
in FeSe such as the temperature evolution of the FS of FeSe
and the odd orbital ordering observed by ARPES experiments
[16], the decrease of the nematic critical temperature, and
the emergence of magnetism in FeSe with pressure [19] as
recently observed in [9,49,50]. Moreover, the analysis of the
superconductivity mediated by anisotropic OSSF [51] suc-
cessfully account for the enigmatic anisotropy of the super-
conducting gap revealed by STM [52] and ARPES [53–55]
experiments in FeSe.

In this work we analyze, within the OSSF model, the effect
of anisotropic self-energy corrections on the conductivity
anisotropy in the nematic phase of IBS. In contrast to the
band spin-nematic scenario [2,3], where just the scattering
rate contributes to the conductivity anisotropy, we found
that also the velocity contributes. The contribution of the
scattering rate to the resistivity anisotropy is dominated by
the location of the cold spots where the scattering rate is
minimum (see Fig. 1), which, within our model, is determined
by the orbital composition of the FS and by the spin-orbital
interplay of the OSSF. The contribution of the velocity to
the resistivity anisotropy is counterintuitive and opposite to
the one of the scattering rate. We find indeed that the con-
ductivity is larger in the direction where the self-energy is

also larger. This interesting new effect is due to an orbital
character exchange in the pockets arising from the OSSF
self-energy in the nematic phase. Our study shows that the
sign of the anisotropy of the dc conductivity depends on
whether scattering rate or velocity anisotropy dominates on
each pocket, as well as other parameters such as the ellipticity
and the quasiparticle renormalization due to local interactions
[56]. Thus, different experimental results among the various
families of IBS can be explained within the same OSSF
scenario.

The structure of the paper is the following. In Sec. II
we introduce the OSSF model. In Sec. III we outline the
calculation of the dc conductivity. In Sec. III A we derive
analytical expressions for the dc anisotropy within the per-
fectly nested parabolic-band approximation. In Sec. III B we
discuss numerical results obtained using realistic parameters
for 122 compounds and FeSe, i.e., accounting for the effects
of spin-orbit coupling and elliptical e pockets. In Sec. III C
we discuss our results in connection to experiments in IBS. In
Sec. IV we summarize our results and draw the conclusions of
our work.

II. MODEL

The OSSF low-energy model has been derived in detail in
Ref. [19]. Here we summarize the main features of the model,
further details can be found in Appendix A. The starting
point is a general four-pocket model with two h pockets at
�, denoted as �±, and two e pockets at X and Y . The model
can be easily adapted to describe different compounds among
the 122 and 11 families. The kinetic part of the Hamiltonian
is derived following the low-energy approach considered in
Ref. [57], where each pocket is described using a spinor
representation in the orbital space:

Hl
0 =

∑
k,σ

ψ
†l
kσ Ĥ l

0kψ
l
kσ , Ĥ l

0k = hl
0kτ̂0 + �hl

k · �̂τ, (1)

where l = �, X,Y and τ̂ are the Pauli matrices representing
the orbital pseudospin. The spinors are defined as ψ�

kσ =
(cyz

k,σ
, cxz

kσ
) and ψ

X/Y
kσ = (cyz/xz

kσ
, cxy

kσ
). Rotating the Hamilto-

nian into the band basis we have

Hl
0 =

∑
k,σ

El±
k c†l±

kσ cl±
kσ , (2)

where El±
k = hl

0k ± hl
k, hl

k = |�hl
k| are the band dispersions.

The fermionic band operators cl± are obtained rotating the
orbital spinors via an unitary matrix Û l . Explicitly for the h
pockets at �, c�± ≡ h± we have(

h+
h−

)
=

(
u� −v�

v∗� u∗�

)(
cyz

cxz

)
= Û�

(
cyz

cxz

)
, (3)

where we have dropped the momentum and spin indices for
simplicity. Analogous expressions hold for the X/Y e-pockets
fermionic operators cX/Y ± ≡ eX/Y ±. Since only the EX/Y +
band crosses the Fermi level at X/Y , in the following we will
drop the + subscript from eX/Y .

The interacting Hamiltonian simplifies substantially once
the spin-exchange interaction is projected at low-energy
[19,48]. The generic intraorbital spin operator reads
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Sη
q = ∑

kαβ (cη†
kα

�σαβcη

k+qβ
), with η the orbital index and �σαβ

the Pauli matrices for the spin. Thus, taking into account the
orbital composition of the FS shown in Fig. 1, the relevant
intraorbital spin operator occurs at momenta q near QX =
(π, 0) and QY = (0, π ), which connect a h pocket with the
X and Y e pockets, respectively. Since the only common
orbital is the yz/xz along the x/y direction the spin interaction
reduces to

Hint = −Ũ

2

∑
q′

Syz/xz
X/Y · Syz/xz

X/Y . (4)

Here Ũ is the intraorbital interaction renormalized at low en-
ergy and Sη

X/Y ≡ �Sη

q=QX/Y
. The relevant magnetic fluctuations

peaked at QX /QY are orbital selective, as sketched in Fig. 1,
having only yz/xz orbital character:

〈S · S〉(QX ) ⇒ 〈
Syz

X · Syz
X

〉
, (5)

〈S · S〉(QY ) ⇒ 〈
Sxz

Y · Sxz
Y

〉
. (6)

The SF exchange between h- and e-like pockets renormal-
izes the quasiparticles via single-particle self-energy correc-
tions. Within the OSSF model, due to the orbital-selective
nature of SF, this mechanism is also orbital dependent. The
self-energy corrections in the orbital basis can be computed
within an Eliashberg-like treatment [16] for each pocket. For
the h pockets at � we find

�̂� (ω) =
(

��
yz(ω) 0
0 ��

xz(ω)

)
= ��

0 (ω)τ̂0 + ��
3 (ω)τ̂3,

(7)

with ��
0 (ω) = [��

yz(ω) + ��
xz(ω)]/2, ��

3 (ω) = [��
yz(ω) −

��
xz(ω)]/2, while for the e pockets we have

�̂X/Y (ω) =
(

�
X/Y
yz/xz(ω) 0

0 0

)
= �

X/Y
0 (ω)τ̂0 + �

X/Y
3 (ω)τ̂3,

(8)

with �
X/Y
0 (ω) = �

X/Y
3 (ω) = �

X/Y
yz/xz(ω)/2. In the tetragonal

state, above the structural transition, the isotropic SF lead
to equivalent self-energies for the C4 symmetric xz/yz or-
bitals, i.e., ��

3 = 0 and �X
3 = �Y

3 . In the nematic phase the
anisotropy of the OSSF below TS generates a differentiation
of the xz/yz self-energy corrections

��
3 (ω) 
= 0,

(9)
�X

3 (ω) 
= �Y
3 (ω),

and gives rise to an effective orbital nematicity. Equations
(7) and (8) are generic but their specific values are material
dependent and for FeSe were calculated at the RPA level
in Ref. [16]. The dressed Green’s functions are obtained via
the Dyson equation Ĝl−1

(k, ω) = Ĝl−1

0 (k, ω) − �̂l (ω), where
Ĝl−1

0 (k, ω) = ω1̂ − Ĥ l
0(k). We diagonalize the renormalized

Green’s function via the unitary transformation Û l
R(k, ω) de-

fined as

Ĝl (k, ω) = Û l
R(k, ω)

[
ω1̂ − �̂l

R(k, ω)
]−1Û l−1

R (k, ω), (10)

where �̂l
R = diag(El+

R , El−
R ) and

El±
R (k, ω) = hl

k0 + �l
0(ω) ± hl

Rk,ω,

hl
Rk,ω =

√[
hl

3 + �l
3(ω)

]2 + (
hl

1

)2 + (
hl

2

)2
. (11)

Since the self-energy is a complex function, Eq. (11) accounts
both for the renormalization of the band dispersion

ε
l±
R (k, ω) = Re El±

R (k, ω) (12)

and for the renormalized scattering rate

�
l±
R (k, ω) = δ� + ∣∣Im El±

R (k, ω)
∣∣, (13)

where we also added a residual constant broadening term δ�.
Equation (13) establishes a connection between the scattering
rate and the self-energy renormalizations contained in El±

R .
The qualitative behavior of the self-energies in the nematic
phase allows us to easily localize the minimum value of
�

l±
R on the FS, i.e., the cold spots shown in Fig. 1. As we

discussed in Ref. [16], the reconstruction of the FS below
TS is consistent with the Ising-nematic spin fluctuations be-
ing bigger at QX than at QY . This implies that self-energy
corrections are stronger on the yz orbital than on the xz one.
As a consequence on the h pockets the smaller scattering
rate corresponds to the xz orbital. On the e pockets instead,
the smaller scattering rate is found for the xy orbital, given the
absence of xy-SF within our model. The result is an example
of the spin-orbital interplay retained by the OSSF approach
that allows us to directly link the cold spots position with
the FS orbital character and is not present in the band-based
spin-nematic scenario [2].

The rotation matrix Û l
R(k, ω) in Eq. (10) has a structure

analogous to Eq. (3). The renormalized coherence factors ul
R

and vl
R, whose exact expressions are given in Appendix A,

depend now on the self-energies Eqs. (7) and (8). The approx-
imated expressions for ul

Rk(ω), vl
Rk(ω) obtained at low energy

ω by expanding in �l
3 at the first order read

∣∣ul
R(ω)

∣∣2 = |ul |2
(

1 + 2Re �l
3(ω)

hl
|vl |2

)
,

∣∣vl
R(ω)

∣∣2 = |vl |2
(

1 − 2Re �l
3(ω)

hl
|ul |2

)
,

(14)

where we neglected the imaginary part of the self-energy
which approaches zero at low energy and low temperature.
ul and vl are the bare coherence factors appearing in Eq. (3)
and detailed in Appendix A. From Eq. (14) one sees that
the correction term ∼Re �l

3(ω) mixes the orbital character in
each pocket, i.e., contribute to ul

R with a term proportional
to vl and vice versa. This effect of the OSSF self-energy in
the coherence factors will have important consequences for
the renormalized velocities as we will see in the following
section.

III. DC CONDUCTIVITY

The dc conductivity is the � → 0 limit of the longitudinal
optical conductivity given by

Re σα (�) = −e2

V

Im �α (q = 0, i�m → �)

�
, (15)
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where α = x, y, V is the unit-cell volume and �α is
the current-current correlation function that in the bubble
approximation reads

�α (q, i�m) = 2T
∑
lkn

Tr
[
Ĝl (k − q/2, iωn)V̂ l

kα

× Ĝl (k + q/2, iωn + i�m)V̂ l
kα

]
. (16)

V̂ l
kα

= ∂kα
Ĥ l

0 is the bare velocity operator and Ĝl (k, iωn) is
the renormalized Green’s function defined in Eq. (10). We
rotate Eq. (16) in the band basis using Eq. (10), perform the
trace, and take the � → 0 limit. The α = x, y component
of the dc conductivity in the band basis, σdcα = ∑

l± σ
l±
α , is

obtained from the sum over all the pockets l± = �+, �−, X,Y .
The pocket conductivity reads (see Appendix B for further
details)

σ l±
α = 2πe2

N

∑
k

∫ ∞

−∞
dω

(
−∂ f (ω)

∂ω

)[
V l±

Rkα
(ω)

]2[
Al±

k (ω)
]2

.

(17)

In this basis the spectral function is diagonal

Al±
k (ω) = 1

π

�
l±
R (ω)[

�
l±
R (ω)

]2 + [
ω − ε

l±
Rk(ω)

]2 , (18)

with �
l±
R (ω) and ε

l±
Rk(ω) defined in Eqs. (12) and (13). V l±

Rkα

in Eq. (17) is the bare velocity operator rotated into the band
basis. As a consequence of the orbital structure we have

V l±
Rkα

= V l11
kα

∣∣ul
R

∣∣2 ± V l12
kα

u∗l
R v∗l

R ± V l21
kα

ul
Rvl

R + V l22
kα

∣∣vl
R

∣∣2
.

(19)

Hereafter we omit the dependence on ω for simplicity. V
lηη′

kα

are the ηη′ component of the velocity and (u/v)l
R are the

renormalized coherence factors. Via the coherence factors
V l±

Rkα
depends on the τ̂3 component of the self-energies �l

3(ω)
that mixes the orbital content of each pocket. This effect can
be easily understood considering the approximated expres-
sions in Eq. (14). By neglecting the imaginary part of the
self-energy in (u/v)l

R, Eq. (19) can also be written as

V l±
Rkα

= ∂ε
l±
R (k)/∂kα. (20)

In the T → 0 limit we can approximate the Fermi function
with a δ(ω) which selects only states at the Fermi level ω = 0.
By further assuming �

l±
R to be small we can also approximate

the spectral functions with a delta function and Eq. (17)
reduces to

σ l±
α = e2

N

∑
k

(
V l±

Rkα

)2

�
l±
Rk

δ
(
ε

l±
Rk

)
. (21)

A. Analytical calculation

To gain physical insight on the dc anisotropy and disentangle
the effect of the velocity and scattering rate in Eq. (21), we
estimate analytically σα . We approximate the h and e bands
with perfectly nested parabolic bands and assume that the
nematic order is small enough to allow one for a perturbative

expansion of the renormalized energy El±
R . We use a sym-

metric nematic splitting around the isotropic value �l
0 in the

tetragonal phase. By expanding Eq. (11) at first order in the τ3

self-energy component we can estimate analytically for each
pocket V l±

Rkα
and �

l±
Rk via Eqs. (12), (13), and (20).

Deriving for example with respect to kx, the renormalized
energy of the pocket �+, we find

V �+
Rkx = −k cos θ

m�+
+ 4 Re �

�+
3 sin2 θ

k cos θ

k2
, (22)

where m�+ is the bare mass of the �+ pocket whose def-
inition in terms of the Hamiltonian parameters is given in
Appendix B. The first term on the right-hand side of Eq. (22),
is the x component of the bare velocity, while the second
term O(Re ��

3 ) is an additional contribution due to the orbital
mixing induced by the nematic order as expected from the
(u, v)l

R factors in Eq. (19). To compute the k integration
in Eq. (21) we use the delta function and evaluate V �+

Rkx
at the renormalized FS. Notice that in the nematic phase
k�+

F (θ ) is no longer constant but gets deformed because of the
anisotropic self-energy renormalization. This effect is also of
order O(Re ��

3 ) and has to be taken into account. We estimate
the change in the Fermi wave vector at the first order in the
self-energy. Replacing the expression of k�+

F (θ ) into Eq. (22)
we find

V �+
Rx = V0

�+
x

(
1 + cos 2θ

Re ��
3

2εh
0

− 4 sin2 θ
Re ��

3

2εh
0

)
, (23)

where V0
�+
x = −k0

�+
Fx/m�+ and εh

0 = ε� + Re ��
0 are the ve-

locity and the Fermi energy in the tetragonal phase, respec-
tively. From Eq. (23) one sees that the bare Fermi velocity in
the nematic phase has two contributions O(Re ��

3 ) opposite in
sign: the first one is due to the change in k�+

F , while the second
one comes from the orbital mixing produced by the nematic
order. Analogous calculation of the velocity contributions
along y for the �+ as well as for the other pockets lead to sim-
ilar expressions [see Eq. (B12)] with the band velocity of the
tetragonal phase renormalized by two additional contributions
O(Re �l

3) of opposite sign. The scattering rate is analytically
estimated from Eq. (13) using again the expansion of E�+

R at
the first order in �l

3:

�
�+
R (θ ) = �h

0 + cos 2θ
∣∣Im ��

3

∣∣. (24)

Here we separate the tetragonal phase scattering rate �h
0 =

δ� + |Im ��
0 | from the the angular-dependent correction due

to the nematic effect ∼Im ��
3 . The explicit expression of

the �+ pocket dc conductivity follows from Eq. (21) using
Eqs. (23) and (24):

σ�+
x = σ h

(
1 + Re ��

3

2εh
0

− Re ��
3

εh
0

−
∣∣Im ��

3

∣∣
2�h

0

)

= σ h

(
1 − �h

2εh
0

+ �h

εh
0

− ��h

2�h
0

)
, (25)

εh
0 , �h

0 , and σ h = e2εh
0/(2π h̄)�h

0 are, respectively, the Fermi
energy, the scattering rate, and the dc conductivity in the
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tetragonal phase. We also defined the real and imaginary part
of the nematic order parameter for the h pockets (�h,��h) as

�h ≡ Re ��
xz − Re ��

yz

2
= −Re ��

3 ,

��h ≡ ∣∣Im ��
3

∣∣, (26)

taking also into account that stronger spin fluctuation at QX

implies Re ��
3 < 0, so that now the nematic order parameters

are all positive defined.
Performing analogous calculations (see Appendix B) we

derive the dc conductivities along x and y for each pocket. For
the h pockets we find

σ
�+
x/y = σ h

(
1 ∓ �h

2εh
0

± �h

εh
0

∓ ��h

2�h
0

)
,

σ
�−
x/y = σ h

(
1 ± �h

2εh
0

∓ �h

εh
0

± ��h

2�h
0

)
. (27)

In the absence of spin-orbit interaction the h pockets have
the same εh

0 , so they also have the same conductivity σ h in
the tetragonal phase. Additional terms proportional to �h and
��h arise in the nematic phase and make the conductivity
different for the two h pockets. As extensively discussed
within the calculation of the velocity operator for the �+
pocket in Eq. (23), the nematic order has two opposite effects
O(�h) in the velocity and this is reflected into the pocket dc
conductivity anisotropy as one sees from Eq. (27). The first
correction comes directly from the k�±

F changes due to the
nematic FS reconstruction, while the second one, opposite
in sign, is due to the orbital mixing. Notice that this last
term also determines the overall sign of the correction ∼�h

in each pocket. Due to the xz/yz orbital arrangement of the
�± FS, the two h pockets contribute with opposite sign to
the conductivity anisotropy, i.e., in Eq. (27) we find the same
sign of the nematic terms in the conductivity along x of the
�+ pocket and in the conductivity along y of the �− one. In
particular the opposite sign of the contribution O(��h) giving
negative/positive anisotropy for the �+/− pocket is a direct
consequence of the cold-spots physics, Fig. 1, from where
we can easily infer the sign of the anisotropic contribution
for �± having in mind that lower scattering implies a bigger
conductivity. By computing the h-dc conductivity anisotropy,
�σ h± ≡ σ

�±
x − σ

�±
y , we find

�σ h+ = σ h

(
�h

εh
0

− ��h

�h
0

)
,

�σ h− = σ h

(
−�h

εh
0

+ ��h

�h
0

)
. (28)

The dc conductivity components for the e pocket at X read

σ X
x = σ e

(
1 − Re �X

yx

4εe
0

+
∣∣Im �X

yz

∣∣
4�e

0

)
,

σ X
y = σ e

(
1 + 3Re �X

yx

4εe
0

−
∣∣Im �X

yz

∣∣
4�e

0

)
. (29)

As already done in Eq. (25) we defined the nematic correction
with respect to the tetragonal x/y dc conductivities. σ e

x/y

are both equivalent to σ e = e2εe
0/(2π h̄)�e

0 since within the
parabolic band approximation we neglect the ellipticity of the
e pockets. The same expressions of Eq. (29) hold for the Y
pocket once it replaced �X

yz → �Y
xz and kx → ky. Thus also the

X/Y pockets contribute with the opposite sign to the overall
dc conductivity. By defining the real and imaginary part of the
e-pocket nematic order parameter (�e,��e):

�e ≡ Re �X
yz − Re �Y

xz

2
, ��e =

∣∣Im �X
yz

∣∣ − ∣∣Im �Y
xz

∣∣
2

,

(30)

we can write the electronic dc conductivity anisotropy �σ e ≡
�σ X + �σY as

�σ e = σ e

(
−�e

εe
0

+ ��e

�e
0

)
. (31)

Also for the e pockets we find that the renormalized velocity
and the scattering rate contribute with opposite sign to the dc
conductivity anisotropy. The balance between the two effects
is controlled by the nematic order parameters normalized to
the Fermi energy and isotropic scattering rate, respectively,
i.e., �e/εe

0 vs ��e/�e
0.

Summarizing, we computed analytically the anisotropy
of the dc conductivity of the various pockets using the
parabolic-band approximation. We find for all the pockets
that the anisotropy is given by a contribution O(Re �l ) and
another O(Im �l ), opposite in sign with respect to each other,
whose relevance is controlled by the values of �h/e/ε

h/e
0 vs

��h/e/�
h/e
0 . Summing up the h and e pockets �σ h/e we

find that the sign of the anisotropy of the total dc conduc-
tivity depends on which pocket contributes more to the total
conductivity and on which effect, among the scattering rate
and velocity renormalization, dominates. Within the perfectly
nested parabolic band approximation, in which the two h
pockets are equivalent, their anisotropic contributions Eq. (28)
are opposite in sign and cancel out, so that the dc anisotropy
is determined only by the e pockets. In this situation the
overall sign of �σ depends on which effect dominates in �σ e,
Eq. (31), i.e., the anisotropy of the velocity or the one of the
scattering rate.

In real IBS systems, however, we need to account for the
presence of the spin-orbit interaction that splits the h pockets
at � and mixes their orbital content at the FS already in the
tetragonal phase. Moreover, the parabolic band approximation
is particularly inaccurate for the e pockets that are strongly
elliptical in all IBS. Furthermore, especially for FeSe, the
nematic self-energy components �l

3 are not small [16], thus
the expansion of the renormalized energy in �l

3 performed
above is not longer justified. For realistic cases then, we
cannot use analytical expressions as Eqs. (23) and (24) and
we need to compute the dc conductivity from Eq. (21) using
a numerical estimate of the velocity and scattering rate from
Eqs. (11)–(13) and (20).

B. Beyond the analytical approach

We perform a numerical estimate of the conductivity
anisotropy using realistic parameters for 122 and FeSe sys-
tems in order to assess the limits of validity of the analytical
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FIG. 2. Numerical computation of FS wave vectors and velocity
components for 122 system parameters in the tetragonal and nematic
phase. �h = �e = 4 meV, the spin-orbit interaction is 5 meV, other
band parameters are detailed in Appendix C. The kF are measured
in units 1/a ∼ 0.375 Å, where a = aFeFe is the lattice constant of the
1-Fe unit cell. The velocities are in eV.

expressions (28) and (31) and qualitatively discuss our results
in the context of the experimental outcomes found for 122
pnictides and FeSe. We assume for both 122 and FeSe equiva-
lent band-structure parameters that result in the tetragonal FS
shown in Fig. 1. The FS topology of FeSe with just the outer h
pocket crossing the Fermi level at � already in the tetragonal
phase is achieved in the calculation using a larger value of the
spin-orbit interaction as well as larger values of the real part of
the self-energy renormalizations in agreement with previous
analysis [16]. The numerical values of the parameters used in
the following are detailed in Appendix C.

a. 122 pnictides. In Fig. 2 we show for each pocket the
FS wave vectors and velocities along x/y. To better appre-
ciate the changes induced by the nematic order, we plot
in the first row the results for the tetragonal phase and in
the second ones the results obtained in the nematic phase
assuming �h = �e = 4 meV. The h pockets, circular in the
tetragonal phase, are weakly deformed in the nematic phase
due to the small nematic order that also makes the X/Y
pockets slightly different [Figs. 2(a)–2(d)]. The changes in
the velocities for the �± pockets appear to be quite small
and do not follow monotonously the renormalization of the
Fermi vectors as one could have expected [Figs. 2(e) and
2(f)]. This is in agreement with the analytical calculation
outlined above, where we found that the renormalization in
the velocities due to the orbital mixing and the one coming
from the Fermi vector renormalization are opposite in sign,
reducing the overall anisotropic effect on the velocity [see
Eq. (23)]. Due to the ellipticity of the FS, the e pockets
have anisotropic velocities already in the tetragonal phase
[Figs. 2(b) and 2(c)] with the X/Y pockets showing larger
velocity along y/x. No qualitatively changes are visible in
the nematic phase [Figs. 2(e) and 2(f)]. In Fig. 3 we show
for each pocket the scattering rate obtained from Eq. (13). In
the three panels we show the tetragonal value �0, the nematic
one �R, and their difference. We find again a good agreement

FIG. 3. Renormalized scattering rate (in meV) computed using
realistic 122 system parameters. Here �h

0 = 3 meV and �e
0 = 2 meV.

We fix ��h and ��e considering the imaginary part of the self-
energy for each pocket changing proportionally to the real part in
the nematic phase (Appendix C).

between the analytical calculations and the numerical results
for the h pockets. As in Eq. (24), the angular dependence
of the correction �

�±
R − �

�±
0 goes almost as a cos 2θ , even

if the weak ellipticity of the h-FS induced by the nematic
order causes minor deviations, e.g., the correction vanishes
for the �+/�− slightly before/after π/4. No renormalizations
are found along x/y for the X/Y pockets since, within our
model, no scattering is allowed in the xy channel (Fig. 1). The
location of the so-called cold spots, i.e., the position of the
minima of the scattering rate for both h and e pockets, does
not change once a realistic FS is considered and corresponds
to the ones shown in Fig. 1.

We can disentangle the effect of the velocity and of the
scattering rate on the dc anisotropy by computing Eq. (21)
using a constant scattering rate. This result just accounts for
the anisotropic effects coming from the velocity so we will
refer to it as �σV . In Fig. 4 we show for each pocket �σV

[Figs. 4(a)–4(c)] and the complete conductivity anisotropy
�σ [Figs. 4(d)–4(f)] as a function of �h/e. To easily compare

Φh(meV) Φe
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FIG. 4. Numerical computation of the velocity contribution to
the dc conductivity anisotropy �σV and of the total dc conductivity
anisotropy �σ for realistic parameter for 122. In (a) and (b) we
renormalized the pocket contributions to their value in the tetragonal
phase, i.e., �σ

l±
V (�h/e = 0) and analogously in (d) and (e). In (c) and

(f) instead we renormalize the h and e contributions to the total
tetragonal values, i.e., σV tot = σV (�h/e = 0) and σtot = σ (�h/e = 0).
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the results of the numerics with the analytical estimate
of Eqs. (28) and (31) we renormalized the h±/e pocket
anisotropy in Figs. 4(a) and 4(b) and Figs. 4(d) and 4(e) to
their value in the tetragonal phase. In Figs. 4(c) and 4(f) we
renormalize instead the h and e anisotropy to the total values
of σV and σ obtained summing all the pockets contributions
in the tetragonal phase. From the analysis of �σV we find
that the sign of the anisotropic contribution proportional to
�h/e found in Eqs. (28) and (31) is robust, with the �+/−
and the Y/X pockets contributing with positive/negative terms
to the dc-conductivity anisotropy [see Figs. 4(a), 4(b) and
the 4(b) inset]. The h-pockets anisotropy due to the velocity
[Figs. 4(a)–4(c)] is opposite in sign and grows as �h/εh

0 in
agreement with the analytical expectation. Even if the �± are
not longer equivalent due to a small spin-orbit interaction,
their anisotropic contributions almost cancel out so that the
negative anisotropy of the e pocket is the one that determines
the final results. Once the effect of the scattering rate is
included in the calculation we see in Fig. 4(d) a reduction
of the conductivity anisotropy for the h pocket that however
still sums up to an anisotropic conductivity term close to
zero [Fig. 4(f)]. In contrast, a change of sign in the overall
electronic term is observed due to the larger positive contri-
bution �σY of the Y pocket once the anisotropic scattering
rate is correctly taken into account. For the set of parameters
used, we find a final �σ > 0. The result comes from the
change in the relative weight of the contribution of the X
and Y pockets in the e term due to the different scattering
rate �

X/Y
R . The final outcome is thus particularly sensitive to

the �e
0 and ��e used and could be strongly affected by any

mechanism (temperature, disorder, interactions, etc.) affecting
their absolute values.

b. FeSe. We repeat the numerical analysis considering the
case of FeSe. In Fig. 5 we show the pockets FS wave vectors
and velocities both in the tetragonal and in the nematic phase
assuming �h = �e = 15 meV.

With respect to the previous case, here we clearly see
that the outer h pocket, the only one crossing the Fermi

FIG. 5. Numerical computation of the tetragonal and nematic
FS and Fermi velocity components for FeSe parameters. �h =
�e = 15 meV, the spin-orbit interaction is 20 meV, the other band
parameters are detailed in Appendix C.

FIG. 6. Renormalized scattering rate for FeSe. �h
0 = 5 meV and

�e
0 = 2.5 meV. ��h and ��e are considered as proportional to the

nematic variation of the real parts (Appendix C).

level, becomes strongly elliptical in the nematic phase due to
the large nematic order which also makes the X/Y pockets
consistently different in size [Figs. 5(a)–5(d)]. The changes
in the velocities [Figs. 5(e) and 5(f)] are similar to the ones
observed for the 122 case but quantitatively more pronounced
here due to the larger value of the nematic order parameters.
The scattering rates for all the pockets are shown in Fig. 6. For
all the pockets we find a clear deviation of the renormalized
scattering rate from the analytical estimate. In particular, the
angular dependence of the �+ scattering rate is very weak and
does not resemble the cos 2θ predicted by Eq. (24). This is a
consequence of the FS nematic reconstruction of FeSe. In fact,
the nematic order not only makes the �+ pocket elliptical but
also affects its orbital content that becomes almost completely
xz at the Fermi level [16,54,55]. As a consequence, the cold
spots of the outer pocket shown in Fig. 1 do not represent
anymore a minimum of the scattering since the �+ FS is
mostly xz also at θ = 0.

We study also in this case for each pocket the behavior
of �σV and �σ as a function of �h/e, Fig. 7. We use the
same renormalizations used in Fig. 4. The analysis of the
velocity contribution reveals that the sign of the �h/e terms
of Eqs. (28) and (31) is robust also in this case. We are no
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FIG. 7. Numerical computation of the velocity contribution to
the dc conductivity anisotropy and of the total dc conductivity
anisotropy for a realistic parameter for FeSe. All the pockets show
consistent deviations of the dc anisotropy with respect the analytical
expectations Eqs. (28) and (31).
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longer in the perturbative regime as one can see from the
nonlinear behavior of �σ

h+
V , shown in Fig. 7(a), where the �+

pocket anisotropy contribution grows much faster than what
is expected from the linear dependence in Eq. (28). The final
anisotropy of �σV is the result of the competition between
the h and e terms. The inclusion of the scattering rate in the
calculation strongly affects the e-pockets contribution while
leaving �σ h+ almost unchanged. As a matter of fact, the
scattering rate of the outer h-pocket �

�+
R is almost isotropic,

see Fig. 6, so that the anisotropic velocity is the only factor
which contributes to the dc anisotropy of the �+ pocket. The
final result for the dc conductivity strongly depends on the
set of �

h/e
0 and ��h/e used. In Figs. 7(d)–7(f) we show a

case in which the inclusion of the scattering rate enhances
the relative weight of the e contribution with respect the h
term, so that overall the negative anisotropy of the e part,
due to the X pocket, determines the final results shown in
Fig. 7(f).

c. High-energy renormalization and nesting. An effect ne-
glected in the above calculation is the renormalization of
the quasiparticle due to local electronic interactions. It is
well established that in IBS the high-energy renormaliza-
tions of the quasiparticle Zorb coming from local interactions
are quite strong and orbital dependent. This effect, usually
named orbital-selective renormalization in the literature [52],
should not be confused with the effects discussed in the
present work, where the orbital selectivity refers to the spin
fluctuations, which affect the various orbital in a different
way in the nematic phase. The high-energy renormalizations
have noticeable effects on the optical conductivity in the
tetragonal phase of IBS, as discussed in Ref. [58] and should
be included in the above calculation. We then repeated the
numerical analysis including phenomenologically the orbital
renormalizations into the coherence factors (u/v)l

R entering in
Eq. (19). This allows us to estimate the effects of the high-
energy renormalization on the velocity contributions to the
dc conductivity �σV . As expected, the inclusion of a severe
reduction of the coherence of the xy orbital (Zxy ∼ 0.3), which
is the most correlated orbital in all IBS, leads to the suppres-
sion of the V x/y

X/Y contributions enhancing the dc anisotropy in
the e pockets. Moreover, the small differentiation (∼10%) of
the quasiparticle masses for the xz/yz orbitals in the nematic
phase [59] contributes to enhance the differentiation of the
�± and X/Y pockets. However, the sign of the velocity
contribution to the dc anisotropy is robust within the set of
Zorb considered. The quasiparticle renormalizations affect also
the conductivity via the renormalized scattering rate, however
their relevance strongly depends on the set of parameters
used, whose analysis goes beyond the scope of the present
work.

Finally, it is worth noting that the analysis presented
here, as well as the one carried out previously [16] within a
momentum-independent Eliashberg scheme, does not include
the physics of the band-nesting effects, which are the only
ones to determine the location of the hot spots in the band-
based description [25,38]. In particular, the ellipticity of the
X/Y pockets suggests that the scattering rate is maximum at
the location where the nesting with the h pockets is realized.
Within the OSSF both the orbital character and the degree

of band nesting will contribute to the hot-spot location. Re-
cent multiorbital RPA calculation in the paramagnetic state
support the idea that the dominant effect in determining the
scattering rate is still the orbital character of the FS [60,61].
How these results evolve below TS within an orbital-selective
spin-nematic scenario is still an open question which certainly
deserves further investigation.

C. Comparison with experiments

In the previous section we computed numerically the dc
anisotropy for realistic parameters of 122 pnictides and FeSe.
The values of the band structure parameters and self-energies
used in the calculations quantitatively reproduce the main
features of the FS, including the FS shrinking and the orbital
FS reconstruction experimentally observed in the nematic
phase of 122 and FeSe. In 122, where the nematic order
parameters �h/e are small, the h-pockets contribution to the dc
conductivity anisotropy is well approximated by the analytical
estimate Eq. (28), while we observe consistent deviations in
FeSe. Nonetheless, for both 122 and FeSe systems the sign
of the anisotropic contribution coming from the renormalized
velocity �σV is robust. In both cases considered in Sec. III B
we managed to match the experimental result �σdc(FeSe)<0
and �σdc(122) > 0, once the renormalization of the scattering
rate is included in the calculation. As already mentioned, the
final result is still somehow sensitive to the set of parameters
used. Thus, in this last section we discuss in general which are
the possibilities to match the experimental results regardless
the precise choice of parameters used in Sec. III B.

Concerning 122 systems, as long as the h-pocket contri-
butions to the dc anisotropy cancel out, the final result is
controlled by the e pockets. Since they have a strong elliptical
deformation, their overall contribution to the dc anisotropy
cannot be predicted from the analytical result Eq. (31), and the
final outcome depends on the relative weight of the X and Y
pockets and on the relevance of the scattering-rate anisotropy
over the contribution �σ e

V . Even in doped 122 compounds the
h-pocket contributions cancellation still occurs since the rel-
atively small value of the spin-orbit splitting at � guarantees
that the Fermi energy is the same for the h pockets. However,
doping changes both the size of the pockets and the degree
of nesting between h and e pockets. Both effects contribute
to change the relative weight of the X/Y e pockets as well as
the balance between the velocity vs scattering-rate anisotropic
contributions and can be at the origin of the different sign
of �σdc experimentally observed between the h- and e-doped
side of the 122 phase diagram.

For what concerns FeSe, the presence of a single h pocket
and its strong orbital reconstruction lead to rather different
physics. In particular, since the nematic FS reconstruction
makes the whole �+ FS mostly xz even at θ = 0, the expected
anisotropy of the renormalized scattering rate is absent, see
Fig. 6. As a consequence the �+ anisotropic contribution is
more likely controlled by the velocity anisotropy. This result
should be contrasted with the outcomes of Ref. [47], where
the difference between 122 and FeSe is fully ascribed to a
different behavior of the scattering-rate anisotropy in the two
compounds. In our picture the FeSe dc-conductivity
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anisotropy emerges from a subtle interplay between the com-
peting effects coming from the scattering rate and the velocity,
as it has been recently suggested by optical conductivity ex-
periments in FeSe [62]. It is worth noting that recent ARPES
experiments reveal a strong kz dependence of the orbital com-
position of the �+ FS [53], with the FS a kz = π recovering yz
character at θ = 0. As a consequence, also the scattering rate
anisotropy on �+ is expected to be larger at kz = π and its
effect on the dc-conductivity anisotropy can possibly compete
with the velocity term at this kz. This observation calls for a
more complete analysis of the dc anisotropy involving also the
kz dependence of the FS.

IV. CONCLUSIONS

In conclusion, we computed the dc-conductivity anisotropy
in the nematic phase of IBS using the orbital-selective spin-
nematic scenario that accounts for the orbital content of the FS
[19,48]. In this scenario the dc anisotropy of the nematic phase
of IBS depends on the scattering rate and velocity renormal-
izations due to self-energy corrections. Both scattering rate
and velocity are affected by the FS nematic reconstruction.
The scattering rate is strongly affected by the orbital content
of the FS, and the location of its minima on the FS is found in
correspondence of the less renormalized orbitals giving rise
to cold spots. The velocity renormalization is sensitive both
to the orbital mixing and to the shrinking of the FS induced
by the nematic order, with the former effect dominating over
the latter. Due to this effect we find the unexpected result
that the conductivity increases in the direction in which the
self-energy is larger and the shrinking is stronger. For both
h and e carriers the contribution of the velocity to the dc
anisotropy is opposite in sign to the one of the scattering
rate. This is in agreement with recent optical conductivity
experiment in FeSe [62] where it is shown that scattering
rate and velocity contribute to the conductivity anisotropy
with opposite signs. Our results naturally follow from the
spin-orbital entanglement implicit in the OSSF model and
are new results in contrast to the band spin-nematic scenario
[2,3]. In particular we demonstrated that the usual expectation
of anisotropic magnetic fluctuations giving rise only to an
anisotropy in the inelastic scattering rate [38] is not longer
valid once the orbital degree of freedom is taken into account
in the theoretical description.

We performed numerical calculation for representative pa-
rameters for 122 pnictides and FeSe. We verified that for
the 122 system the analytical estimate represents a good
approximation of the numerical with the overall h-pockets
contribution vanishing even once a finite spin-orbit splitting
at � is considered. Numerical results for FeSe instead deviate
from the analytical expectations due to the huge nematic
FS reconstruction. We also discuss how the conductivity
anisotropy depends on the system parameters. It can be
dominated by either electron or hole pocket conductivity and
depends on ellipticity and high-energy renormalizations. The
OSSF scenario provides then a suitable framework where the
same mechanism due to orbital-spin interplay can reconcile
the experimental observations reported in different families of
iron-based superconductors.
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APPENDIX A: GREEN’S FUNCTION AND PERFECTLY
NESTED PARABOLIC BAND APPROXIMATION

In this Appendix we calculate the dressed Green’s function
to be used in the dc conductivity. We also detail the perfect
nested parabolic band approximation to perform the analytical
calculation of the conductivity.

1. Green’s function

The bare Hamiltonian consists of a four-pocket model
with two h pockets at �, �± and two e pockets at X and Y
adapted from the low-energy model considered in Ref. [57].
Each pocket is described using a spinor representation in the
pseudo-orbital space:

Hl
0 =

∑
k,σ

ψ
†l
kσ

Ĥ l
0kψ

l
kσ , (A1)

where l = �, X,Y and the spinors are defined as ψ�
kσ =

(cyz
k,σ

, cxz
kσ

) and ψ
X/Y
kσ = (cyz/xz

kσ
, cxy

kσ
). The matrix Ĥ l

0k has the
general form

Ĥ l
0k = hl

0τ̂0 + �hl · �̂τ =
(

hl
0 + hl

3 hl
1 − ihl

2

hl
1 + ihl

2 hl
0 − hl

3

)
, (A2)

with τ̂ matrices representing the pseudo-orbital spin. The h�

components read as

h�
0 = ε� − a�k2,

h�
1 = −2b�kxky, (A3)

h�
3 = b�

(
k2

x − k2
y

)
,

and for the X pocket,

hX
0 = (hyz + hxy)/2,

hX
2 = vky, (A4)

hX
3 = (hyz − hxy)/2 − b

(
k2

x − k2
y

)
,

where hyz = −εyz + ayzk2 and hxy = −εxy + axyk2. Analo-
gous expressions hold for the Y pocket provided that one
exchange kx by ky. Rotating the Hamiltonian Ĥ l

0k into the band
basis we have Ĥ l

0k = Û l−1
�̂l Û l where �̂l = diag(El+

k , El−
k ) is

the eigenvalue matrix and El±
k is given by

El±
k = hl

0 ± hl = hl
0 ±

√(
hl

1

)2 + (
hl

2

)2 + (
hl

3

)2
. (A5)

The fermionic band operators cl± from Hl
0 =∑

k,σ El±
k c†l±

kσ cl±
kσ

are obtained rotating the orbital spinors
via Û l . The unitary Û l matrix has the common form:

Û l =
(

ul −vl

v∗l u∗l

)
, (A6)
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where we drop the momentum and spin indices for simplicity.
Explicitly for the h pockets at �, c�± ≡ h± we have(

h+
h−

)
=

(
u� −v�

v∗� u∗�

)(
cyz

cxz

)
= Û�

(
cyz

cxz

)
. (A7)

Analogous expressions hold for the X/Y e-pockets fermionic
operators cX/Y ± ≡ eX/Y ±, provided that the corresponding
orbital spinors ψX/Y = (cyz/xz, cxy) are used. The coherence
factors are

ul = 1√
2

√
1 + hl

3

hl
,

v∗l = 1√
2

hl
1 + ihl

2√
(hl

1)2 + (hl
2)2

√
1 − hl

3

hl
. (A8)

Knowing the dispersion relation and the coherence factors
inside the rotation matrix Û l we can obtain the bare pocket
Green’s functions. Since Ĝl−1

0 = ω1̂ − Ĥ l
0k simply Ĝl−1

0 =
Û l−1

(ω1̂ − �̂l )Û l with �̂l = diag(El+ , El− ).
We now turn our attention to the OSSF self-energy. The

low-energy interacting Hamiltonian describing the spin ex-
change between h and e pockets is given in Eq. (4). The
corresponding Dyson equation for each pocket is

Ĝl−1
(k, ω) = Ĝl−1

0 (k, ω) − �̂l (ω), (A9)

where Ĝl−1

0 (k, ω) = ω1̂ − Ĥ l
0k and �̂l (ω) = �l

0(ω)τ̂0 +
�l

3(ω)τ̂3 is the self-energy due to the OSSF defined in
the main text. From now on we do not display the (k, ω)
dependence. We can define the renormalized Hamiltonian as
Ĥ l = Ĥ l

0 + �̂l . Rotating the Hamiltonian Ĥ l into the band
basis we have Ĥ l = Û l−1

R �̂l
RÛ l

R where �̂l
R = diag(El+

R , El−
R ) is

the eigenvalue matrix and El±
R is given by

El±
R = hl

0 + �l
0 ± hl

R = hl
0 + �l

0

±
√(

hl
1

)2 + (
hl

2

)2 + (
hl

3 + �l
3

)2
. (A10)

Since the self-energy given in Eq. (A9) is complex, we define
the renormalized energy dispersion relation as ε

l±
R = Re El±

R

and the renormalized scattering rate as �
l±
R = δ� + |Im El±

R |
with δ� some scattering background. The unitary Û l

R matrix
has a structure analogous to Eq. (A6) provided that the coher-
ence factors are given by

ul
R = 1√

2

√
1 + hl

3 + �l
3

hl
R

,

v∗l
R = 1√

2

hl
1 + ihl

2√(
hl

1

)2 + (
hl

2

)2

√
1 − hl

3 + �l
3

hl
R

. (A11)

We can take into account in our model the presence of
a finite spin-orbit interaction by replacing h�

R → h�
R,SO =√

(h�
1 )2 + (h�

3 + ��
3 )2 + (λ2/4). This affects both the E�±

R
and the coherence factors (u/v)�R .

2. Perfectly nested circular Fermi surfaces model

For the analytical approach, we write the bare pocket
Hamiltonian Eq. (A2) in polar coordinates with θ =
arctan ky/kx, for the hole

h�
0 = ε� − ak2,

h�
1 = −bk2 sin(2θ ), (A12)

h�
3 = bk2 cos(2θ ),

and for the electron pockets

hX/Y
0 = −εX/Y + ak2,

hX/Y
2 = bk2 sin(2θ ), (A13)

hX/Y
3 = ∓bk2 cos(2θ ).

For simplicity let us further assume εX ≡ εY ≡ εe. It is easy
to check that the orbital content of the four-pocket model for
IBS in Fig. 1 is reproduced in the parabolic approximation.
Using Eq. (A8) the coherence factors take the expression

|u�|2 = |uY |2 = |vX |2 = cos θ2,

|v�|2 = |vY |2 = |uX |2 = sin θ2.
(A14)

To allow analytical treatment, we expand El±
R and (u/v)l

R
Eqs. (A10) and (A11) up to first order in �3 and we neglect
the imaginary part of the self-energy since it goes to zero at
low ω and T = 0. The dressed coherence factors are given by∣∣ul

R

∣∣2 =|ul |2
(

1 + 2Re �l
3

hl
|vl |2

)
,

∣∣vl
R

∣∣2 =|vl |2
(

1 − 2Re �l
3

hl
|ul |2

)
,

(A15)

which are the expressions quoted in Eq. (14). The dressed
dispersion relations ε

l±
R = Re El±

R become

ε
l±
R = εl± + Re �l

0 ± hl
3

hl
Re �l

3. (A16)

Replacing the values for the case of circular FS given in
Eqs. (A12) and (A13) and calculate it at the Fermi surface
we get

ε
�±
R = εh

0 ± cos 2θRe ��
3 ,

(A17)
ε

X/Y
R = −εe

0 ∓ cos 2θRe �
X/Y
3 ,

where we defined the tetragonal band energy for the h pockets
as εh

0 = ε� + Re ��
0 and εe

0 = εe − Re �
X/Y
0 for the e pockets.

The scattering rate �
l±
R = δ� + |Im El±

R | acquires the expres-
sion

�
l±
R ≈ δ� + ∣∣Im �l

0

∣∣ ± hl
3

hl

∣∣Im �l
3

∣∣. (A18)

Using Eqs. (A12) and (A13) we get

�
�±
R = �h

0 ± cos 2θ
∣∣Im ��

3

∣∣,
(A19)

�
X/Y
R = �e

0 ∓ cos 2θ
∣∣Im �

X/Y
3

∣∣,
where we have separated the angular dependent renormaliza-
tion ∼Im �l

3 from the tetragonal constant part �
h/e
0 = δ� +

|Im �
�/e
0 |. From Eq. (A19) we find analytically the locations
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of the cold spots on the FS where the minimum value of the
scattering rate is found:

�
�+
R

(
θ = π

2

)
= δ� + ∣∣Im ��

xz

∣∣,
�

�−
R (θ = 0) = δ� + ∣∣Im ��

xz

∣∣, (A20)

�
X/Y
R (θ = 0) = �Y

R

(
θ = π

2

)
= δ�.

This result is easy to understand due to the OSSF shown in
Fig. 1 where cold spots are also shown. In the nematic phase,
SF with momentum QX are bigger than the ones with QY . As
a consequence, the largest scattering is found in the yz orbital
due to the orbital-selective nature of SF, while the xy-orbital
component is not renormalized given the absence of xy-OSSF.

APPENDIX B: COMPUTATION OF THE DC
CONDUCTIVITY AND ANALYTICAL RESULTS
FOR THE PERFECTLY NESTED CIRCULAR FS

We calculate the dc conductivity in the bubble approx-
imation. The self-energy corrections computed within an
Eliashberg-like treatment are momentum independent so that
vertex corrections vanish identically. The dc conductivity is
given by

Re σα (�) = −e2

V

Im �α (q = 0, i�m → �)

�
, (B1)

where α = x, y, V is the unit-cell volume, and �α is the
current-current correlation function in the bubble approxima-
tion given by

�α (i�m) = 2T
∑
lkn

Tr
[
Ĝl (k, iωn)V̂ l

kα
Ĝl (k, iωn + i�m)V̂ l

kα

]
.

(B2)
V̂ l

kα
= ∂kα

Ĥ l
0 is the bare velocity operator and Ĝl (k, iωn) is

the renormalized Green’s function from the orbital-selective
spin fluctuations. We work in the rotated basis and replace
Ĝl (k, iωn) = Û l

R(k, iωn)[iωn1̂ − �̂l
R(k, ω)]−1Û l−1

R (k, iωn) in
Eq. (B2). Since we are interested in the dc conductivity (� →
0) the important term in the trace is

Tr
{
Û l

R(k, iωn)
[(

iωn1̂ − �̂l
R(k, ω)

]−1Û l−1

R (k, iωn)V̂ l
kα

× Û l
R(k, iωn)

[
iωn1̂ − �̂l

R(k, ω)
]−1Û l−1

R (k, iωn)V̂ l
kα

}
.

Using the cyclic property of the trace allows us to define
the renormalized velocity V̂ l

Rkα
= Û l−1

R (k, iωn)V̂ l
kα
Û l

R(k, iωn).
Operating the trace and taking the limit � → 0 we get that
the trace in Eq. (B3) can be written as

g2
+(k, iωn)

(
V l+

Rkα

)2 + g2
−(iωn)

(
V l−

Rkα

)2
, (B3)

where V l±
Rkα

are given by

V l±
Rkα

= V l11
kα

∣∣ul
R

∣∣2 ± V l12
kα

u∗l
R v∗l

R ± V l21
kα

ul
Rvl

R + V l22
kα

∣∣vl
R

∣∣2
. (B4)

Here V
lηη′

kα
are the ηη′ component of V̂ l

kα
= ∂kα

Ĥ l
0 and (u/v)l

R
are the renormalized coherence factors defined in Eq. (A11).
The multiorbital character of the problem gives rise to self-
energy effects in the velocities via the coherence factors espe-
cially in the nematic phase. Expressing the Green’s function

in terms of the spectral functions Al± (k, ω) we finally arrive
to the results of Eq. (17):

σ l±
α = 2πe2

N

∑
k

∫ ∞

−∞
dω

(
−∂ f (ω)

∂ω

)[
V l±

Rkα
(ω)

]2[
Al±

k (ω)
]2

,

(B5)

where f (ω) the Fermi distribution function. Notice that the
renormalized velocities V l±

Rkα
(ω) depend on frequency and on

the orbital self-energy through the dependence of the coher-
ence factors on �l

3(ω). The renormalized spectral function can
be written as

Al±
k (ω) = 1

π

�
l±
Rk(ω)[

�
l±
Rk(ω)

]2 + [
ω − ε

l±
Rk(ω)

]2 , (B6)

where ε
l±
Rk(ω) = Re El±

R (k, ω) and �
l±
Rk(ω) = δ� +

|Im El±
R (k, ω)|. At low temperature − ∂ f (ω)

∂ω
→ δ(ω) selects

only states at the Fermi level

σ l±
α = 2πe2

N

∑
k

(
V l±

Rkα

)2(
Al±

k

)2
. (B7)

Moreover, assuming �
l±
R → 0, the spectral function Al±

k can be
approximated as

(
Al±

k

)2 −→ 1

2π�
l±
Rk

δ
(
ε

l±
Rk

)
. (B8)

Replacing this expression in Eq. (B7) we get that the conduc-
tivity is

σ l±
α = e2

N

∑
k

(
V l±

Rkα

)2

�
l±
Rk

δ
(
ε

l±
Rk

)

= e2

N

∫
dk2

(2π )2

(
V l±

Rkα

)2

�
l±
Rk

δ(k − kF )∣∣∇ε
l±
Rk

∣∣ . (B9)

Within the parabolic band approximation and using the
expansion up to the first order in �l

3 of the renormalized
energy, we can derive analytically the conductivity given
in Eq. (B9). We use the expressions of the renormalized
energies and scattering rates derived in Appendix A. Using
the expressions Eq. (A15) for the coherence factors, it is easy
to check the velocity given in Eq. (B4) can be expressed as
the derivative of the renormalized dispersion relation given in
Eq. (A16), so V l±

Rkα = ∂kα
ε

l±
R (k). Explicitly for the h pockets at

� we have

V �±
Rkα

= ∂kα
h�

0 ± ∂kα
h�

1
h�

1

h�
± ∂kα

h�
3

h�
3

h�

± Re ��
3

h�
1

(h� )2

[
∂kα

h�
3

h�
1

h�
− ∂kα

h�
1

h�
3

h�

]
(B10)

and analogous expressions for V X
Rkα and V Y

Rkα . The first three
terms in Eq. (B10) corresponds to the bare velocity, while the
term multiplied by Re ��

3 accounts for the renormalization in
the velocity due to OSSF self-energy corrections. Using the
explicit definition of hl

0 and �hl , the velocities for the various
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pockets read

V �±
Rx = −k cos θ

m�±
± 4Re ��

3
k cos θ sin θ2

k2
,

V �±
Ry = −k sin θ

m�±
∓ 4Re ��

3
k sin θ cos θ2

k2
,

(B11)

V X/Y
Rx = k cos θ

mX/Y
∓ 4Re �

X/Y
3

k cos θ sin θ2

k2
,

V X/Y
Ry = k sin θ

mX/Y
± 4Re �

X/Y
3

k sin θ cos θ2

k2
,

where Eqs. (A12) and (A13) have been used and ml± is the
bare mass of the l± pocket whose definition in terms of
the Hamiltonian parameters is given by m�± = 2(a ∓ b)−1

and mX/Y = me = 2(a + b)−1. To compute the k integration
in Eq. (B9) we evaluate the velocity in Eq. (B12) at the
renormalized FS. In the nematic phase kF (θ ) is no longer
constant. Using again the expansion up to the first order in �3

of the renormalized energy we can estimate kF (θ ) and replace
it in Eq. (B12). We find

V �±
Rx = V0

�±
x

(
1 ± cos 2θ

Re ��
3

2εh
0

∓ 4 sin2 θ
Re ��

3

2εh
0

)
,

V �±
Ry = V0

�±
y

(
1 ± cos 2θ

Re ��
3

2εh
0

± 4 cos2 θ
Re ��

3

2εh
0

)
,

V X/Y
Rx = V0

X/Y
x

(
1 ± cos 2θ

Re �
X/Y
3

2ε
X/Y
0

∓ 4 sin2 θ
Re �

X/Y
3

2ε
X/Y
0

)
,

V X/Y
Ry = V0

X/Y
y

(
1 ± cos 2θ

Re �
X/Y
3

2ε
X/Y
0

± 4 cos2 θ
Re �

X/Y
3

2ε
X/Y
0

)
.

(B12)

where εh
0 and εe

0 are the Fermi energy in the tetragonal
phase defined in Eq. (A17) and V0

�±
α = −k0

�±
Fα/m�± , V0

X/Y
α =

k0
e
Fα/me is the α component of the bare velocity with k0

�±
F =√

εh
0/(2m�± ) and k0

e
F = √

εe
0/(2me).

The last term we need to evaluate is the |∇ε
l±
Rk| [see

Eq. (B9)]. In the � pocket turns out to be |∇ε
l±
Rk| = k/m�+

with similar results for the other pockets. The important point
is that the norm of the pocket velocity is independent of
the self-energy while the pocket velocity in a given direction
x/y depends on the self-energy, Eq. (B12). Replacing all the
analytical expressions found for the velocities [Eq. (B12)] and
the scattering rate [Eq. (A19)] in Eq. (B9) the pockets dc
conductivities read

σ
�+
x/y = σ h

(
1 ± Re ��

3

2εh
0

∓ Re ��
3

εh
0

∓
∣∣Im ��

3

∣∣
2�h

0

)
,

σ
�−
x/y = σ h

(
1 ∓ Re ��

3

2εh
0

± Re ��
3

εh
0

±
∣∣Im ��

3

∣∣
2�h

0

)
,

(B13)

σ X
x/y = σ e

(
1 ± Re �X

3

2εe
0

∓ Re �X
3

εe
0

±
∣∣Im �X

3

∣∣
2�e

0

)
,

σY
x/y = σ e

(
1 ∓ Re �Y

3

2εe
0

± Re �Y
3

εe
0

∓
∣∣Im �Y

3

∣∣
2�e

0

)
,

where σ h/e = e2ε
h/e
0 /(2π h̄)�h/e

0 is the x/y component of the
dc conductivity in the tetragonal phase for the h/e pocket.
The dc conductivity anisotropy for the h and e pockets can
be finally written as

�σ h+
dc = σ�

(
�h

εh
0

− ��h

�h
0

)
,

�σ h−
dc = σ�

(
−�h

εh
0

+ ��h

�h
0

)
, (B14)

�σ e
dc = σ e

(
−�e

εe
0

+ ��e

�e
0

)
,

with the nematic order parameters for the h pockets (�h,��h)
and the e pockets (�e,��e) defined as

�h ≡ Re ��
xz − Re ��

yz

2
= −Re ��

3 , ��h ≡ ∣∣Im ��
3

∣∣,
�e ≡ Re �X

yz − Re �Y
xz

2
, ��e ≡

∣∣Im �X
yz

∣∣ − ∣∣Im �Y
xz

∣∣
2

.

(B15)

APPENDIX C: MODEL PARAMETERS
FOR FESE AND 122 SYSTEMS

To perform the numerical analysis discussed in the main
text we used a set of band parameters which reproduce the
experimental dispersions observed in 122 and FeSe systems.
Using the band parameters listed in Table I, a spin-orbit inter-
action of λ = 5 meV and |Re ��

yz/xz| = Re �
X/Y
yz/xz = 15 meV,

we obtain the FS topology shown in Fig. 1 that reproduce
qualitatively well the FS of 122 systems in the tetragonal
phase. The nematic phase is computed with a symmetric
nematic splitting of �h = �e = 4 meV. For the FeSe case
we used the same set of band parameters listed in Table I,
with spin-orbit interaction λ = 20 meV, and |Re ��

yz/xz| =
70/40 meV and Re �

X/Y
yz/xz = 45/15 meV that result in a ne-

matic order parameter �h/e = 15 meV. This set reproduces the
FS and their orbital distribution as experimentally observed by
ARPES [9,16,54] in the nematic phase.

We fix the background scattering to δ� = 1 meV. The
scattering rates used in the tetragonal phase for 122 are
Im ��

yz/xz = Im �
X/Y
yz/xz = −2 meV, while for the FeSe case we

used Im ��
yz/xz = −4 meV and Im �

X/Y
yz/xz = −3 meV. In both

TABLE I. Low-energy model parameters used for FeSe and 122
system. All the parameters are in meV, the k vector is measured in
units 1/a ∼ 0.375 Å, where a = aFeFe is the lattice constant of the
1-Fe unit cell (so that ã = √

2a = 3.77 Å is the lattice constant of
the 2Fe unit cell).

� X

ε� 46 εxy 72 εyz 55
a� 263 axy 93 ayz 101
b� 182 b 154

v 144
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cases their variations of the imaginary part of the self-energies
in the nematic phase are assumed to be proportional to the

variation of their real parts, i.e., ��h ∼ ch (�h/Re ��
0 ) and

��e ∼ ce (�e/Re �
X/Y
0 ) with ch/e arbitrary coefficients.
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Jeschke, R. Valentí, I. Paul, and P. J. Hirschfeld, Phys. Rev. Lett.
114, 097003 (2015).

[42] S. Liang, G. Alvarez, C. Şen, A. Moreo, and E. Dagotto, Phys.
Rev. Lett. 109, 047001 (2012).

[43] B. Valenzuela, E. Bascones, and M. J. Calderón, Phys. Rev.
Lett. 105, 207202 (2010).

[44] E. Bascones, B. Valenzuela, and M. J. Calderón, C. R. Phys. 17,
36 (2016).

[45] K. Sugimoto, P. Prelovšek, E. Kaneshita, and T. Tohyama, Phys.
Rev. B 90, 125157 (2014).

[46] M. A. Tanatar, A. E. Böhmer, E. I. Timmons, M. Schütt, G.
Drachuck, V. Taufour, K. Kothapalli, A. Kreyssig, S. L. Bud’ko,
P. C. Canfield et al., Phys. Rev. Lett. 117, 127001 (2016).

[47] S. Onari and H. Kontani, Phys. Rev. B 96, 094527 (2017).
[48] L. Fanfarillo, A. Cortijo, and B. Valenzuela, Phys. Rev. B 91,

214515 (2015).

155117-13

https://doi.org/10.1016/j.crhy.2015.10.001
https://doi.org/10.1016/j.crhy.2015.10.001
https://doi.org/10.1016/j.crhy.2015.10.001
https://doi.org/10.1016/j.crhy.2015.10.001
https://doi.org/10.1103/PhysRevB.85.024534
https://doi.org/10.1103/PhysRevB.85.024534
https://doi.org/10.1103/PhysRevB.85.024534
https://doi.org/10.1103/PhysRevB.85.024534
https://doi.org/10.1038/nphys2877
https://doi.org/10.1038/nphys2877
https://doi.org/10.1038/nphys2877
https://doi.org/10.1038/nphys2877
https://doi.org/10.1103/PhysRevB.91.180501
https://doi.org/10.1103/PhysRevB.91.180501
https://doi.org/10.1103/PhysRevB.91.180501
https://doi.org/10.1103/PhysRevB.91.180501
https://doi.org/10.1038/nmat4492
https://doi.org/10.1038/nmat4492
https://doi.org/10.1038/nmat4492
https://doi.org/10.1038/nmat4492
https://doi.org/10.1103/PhysRevB.97.104107
https://doi.org/10.1103/PhysRevB.97.104107
https://doi.org/10.1103/PhysRevB.97.104107
https://doi.org/10.1103/PhysRevB.97.104107
https://doi.org/10.1103/PhysRevB.96.180502
https://doi.org/10.1103/PhysRevB.96.180502
https://doi.org/10.1103/PhysRevB.96.180502
https://doi.org/10.1103/PhysRevB.96.180502
https://doi.org/10.1103/PhysRevB.98.020507
https://doi.org/10.1103/PhysRevB.98.020507
https://doi.org/10.1103/PhysRevB.98.020507
https://doi.org/10.1103/PhysRevB.98.020507
https://doi.org/10.1146/annurev-conmatphys-033117-054137
https://doi.org/10.1146/annurev-conmatphys-033117-054137
https://doi.org/10.1146/annurev-conmatphys-033117-054137
https://doi.org/10.1146/annurev-conmatphys-033117-054137
https://doi.org/10.1038/nmat4138
https://doi.org/10.1038/nmat4138
https://doi.org/10.1038/nmat4138
https://doi.org/10.1038/nmat4138
https://doi.org/10.1103/PhysRevLett.116.227001
https://doi.org/10.1103/PhysRevLett.116.227001
https://doi.org/10.1103/PhysRevLett.116.227001
https://doi.org/10.1103/PhysRevLett.116.227001
https://doi.org/10.1088/0953-8984/27/10/105702
https://doi.org/10.1088/0953-8984/27/10/105702
https://doi.org/10.1088/0953-8984/27/10/105702
https://doi.org/10.1088/0953-8984/27/10/105702
https://doi.org/10.1103/PhysRevLett.115.026402
https://doi.org/10.1103/PhysRevLett.115.026402
https://doi.org/10.1103/PhysRevLett.115.026402
https://doi.org/10.1103/PhysRevLett.115.026402
https://doi.org/10.1103/PhysRevB.93.115138
https://doi.org/10.1103/PhysRevB.93.115138
https://doi.org/10.1103/PhysRevB.93.115138
https://doi.org/10.1103/PhysRevB.93.115138
https://doi.org/10.1103/PhysRevB.95.085108
https://doi.org/10.1103/PhysRevB.95.085108
https://doi.org/10.1103/PhysRevB.95.085108
https://doi.org/10.1103/PhysRevB.95.085108
https://doi.org/10.1103/PhysRevB.94.155138
https://doi.org/10.1103/PhysRevB.94.155138
https://doi.org/10.1103/PhysRevB.94.155138
https://doi.org/10.1103/PhysRevB.94.155138
https://doi.org/10.1103/PhysRevX.6.041045
https://doi.org/10.1103/PhysRevX.6.041045
https://doi.org/10.1103/PhysRevX.6.041045
https://doi.org/10.1103/PhysRevX.6.041045
https://doi.org/10.1103/PhysRevX.6.021032
https://doi.org/10.1103/PhysRevX.6.021032
https://doi.org/10.1103/PhysRevX.6.021032
https://doi.org/10.1103/PhysRevX.6.021032
https://doi.org/10.1103/PhysRevB.97.121109
https://doi.org/10.1103/PhysRevB.97.121109
https://doi.org/10.1103/PhysRevB.97.121109
https://doi.org/10.1103/PhysRevB.97.121109
https://doi.org/10.1103/PhysRevB.81.184508
https://doi.org/10.1103/PhysRevB.81.184508
https://doi.org/10.1103/PhysRevB.81.184508
https://doi.org/10.1103/PhysRevB.81.184508
https://doi.org/10.1209/0295-5075/93/37002
https://doi.org/10.1209/0295-5075/93/37002
https://doi.org/10.1209/0295-5075/93/37002
https://doi.org/10.1209/0295-5075/93/37002
https://doi.org/10.1088/0034-4885/74/12/124506
https://doi.org/10.1088/0034-4885/74/12/124506
https://doi.org/10.1088/0034-4885/74/12/124506
https://doi.org/10.1088/0034-4885/74/12/124506
https://doi.org/10.1088/1367-2630/14/2/023020
https://doi.org/10.1088/1367-2630/14/2/023020
https://doi.org/10.1088/1367-2630/14/2/023020
https://doi.org/10.1088/1367-2630/14/2/023020
https://doi.org/10.1103/PhysRevB.90.155125
https://doi.org/10.1103/PhysRevB.90.155125
https://doi.org/10.1103/PhysRevB.90.155125
https://doi.org/10.1103/PhysRevB.90.155125
https://doi.org/10.1038/ncomms2933
https://doi.org/10.1038/ncomms2933
https://doi.org/10.1038/ncomms2933
https://doi.org/10.1038/ncomms2933
https://doi.org/10.1126/science.1181083
https://doi.org/10.1126/science.1181083
https://doi.org/10.1126/science.1181083
https://doi.org/10.1126/science.1181083
https://doi.org/10.1103/PhysRevLett.109.217003
https://doi.org/10.1103/PhysRevLett.109.217003
https://doi.org/10.1103/PhysRevLett.109.217003
https://doi.org/10.1103/PhysRevLett.109.217003
https://doi.org/10.1103/PhysRevLett.110.207001
https://doi.org/10.1103/PhysRevLett.110.207001
https://doi.org/10.1103/PhysRevLett.110.207001
https://doi.org/10.1103/PhysRevLett.110.207001
https://doi.org/10.1038/nphys2544
https://doi.org/10.1038/nphys2544
https://doi.org/10.1038/nphys2544
https://doi.org/10.1038/nphys2544
https://doi.org/10.1103/PhysRevLett.112.227001
https://doi.org/10.1103/PhysRevLett.112.227001
https://doi.org/10.1103/PhysRevLett.112.227001
https://doi.org/10.1103/PhysRevLett.112.227001
https://doi.org/10.1103/PhysRevLett.115.107001
https://doi.org/10.1103/PhysRevLett.115.107001
https://doi.org/10.1103/PhysRevLett.115.107001
https://doi.org/10.1103/PhysRevLett.115.107001
https://doi.org/10.1103/PhysRevB.93.085114
https://doi.org/10.1103/PhysRevB.93.085114
https://doi.org/10.1103/PhysRevB.93.085114
https://doi.org/10.1103/PhysRevB.93.085114
https://doi.org/10.1103/PhysRevB.94.075111
https://doi.org/10.1103/PhysRevB.94.075111
https://doi.org/10.1103/PhysRevB.94.075111
https://doi.org/10.1103/PhysRevB.94.075111
https://doi.org/10.1103/PhysRevB.96.121112
https://doi.org/10.1103/PhysRevB.96.121112
https://doi.org/10.1103/PhysRevB.96.121112
https://doi.org/10.1103/PhysRevB.96.121112
https://doi.org/10.1103/PhysRevLett.103.267001
https://doi.org/10.1103/PhysRevLett.103.267001
https://doi.org/10.1103/PhysRevLett.103.267001
https://doi.org/10.1103/PhysRevLett.103.267001
https://doi.org/10.1103/PhysRevB.82.045125
https://doi.org/10.1103/PhysRevB.82.045125
https://doi.org/10.1103/PhysRevB.82.045125
https://doi.org/10.1103/PhysRevB.82.045125
https://doi.org/10.1103/PhysRevB.84.024528
https://doi.org/10.1103/PhysRevB.84.024528
https://doi.org/10.1103/PhysRevB.84.024528
https://doi.org/10.1103/PhysRevB.84.024528
https://doi.org/10.1103/PhysRevLett.105.157003
https://doi.org/10.1103/PhysRevLett.105.157003
https://doi.org/10.1103/PhysRevLett.105.157003
https://doi.org/10.1103/PhysRevLett.105.157003
https://doi.org/10.1103/PhysRevB.90.121104
https://doi.org/10.1103/PhysRevB.90.121104
https://doi.org/10.1103/PhysRevB.90.121104
https://doi.org/10.1103/PhysRevB.90.121104
https://doi.org/10.1103/PhysRevLett.113.127001
https://doi.org/10.1103/PhysRevLett.113.127001
https://doi.org/10.1103/PhysRevLett.113.127001
https://doi.org/10.1103/PhysRevLett.113.127001
https://doi.org/10.1103/PhysRevLett.114.097003
https://doi.org/10.1103/PhysRevLett.114.097003
https://doi.org/10.1103/PhysRevLett.114.097003
https://doi.org/10.1103/PhysRevLett.114.097003
https://doi.org/10.1103/PhysRevLett.109.047001
https://doi.org/10.1103/PhysRevLett.109.047001
https://doi.org/10.1103/PhysRevLett.109.047001
https://doi.org/10.1103/PhysRevLett.109.047001
https://doi.org/10.1103/PhysRevLett.105.207202
https://doi.org/10.1103/PhysRevLett.105.207202
https://doi.org/10.1103/PhysRevLett.105.207202
https://doi.org/10.1103/PhysRevLett.105.207202
https://doi.org/10.1016/j.crhy.2015.05.004
https://doi.org/10.1016/j.crhy.2015.05.004
https://doi.org/10.1016/j.crhy.2015.05.004
https://doi.org/10.1016/j.crhy.2015.05.004
https://doi.org/10.1103/PhysRevB.90.125157
https://doi.org/10.1103/PhysRevB.90.125157
https://doi.org/10.1103/PhysRevB.90.125157
https://doi.org/10.1103/PhysRevB.90.125157
https://doi.org/10.1103/PhysRevLett.117.127001
https://doi.org/10.1103/PhysRevLett.117.127001
https://doi.org/10.1103/PhysRevLett.117.127001
https://doi.org/10.1103/PhysRevLett.117.127001
https://doi.org/10.1103/PhysRevB.96.094527
https://doi.org/10.1103/PhysRevB.96.094527
https://doi.org/10.1103/PhysRevB.96.094527
https://doi.org/10.1103/PhysRevB.96.094527
https://doi.org/10.1103/PhysRevB.91.214515
https://doi.org/10.1103/PhysRevB.91.214515
https://doi.org/10.1103/PhysRevB.91.214515
https://doi.org/10.1103/PhysRevB.91.214515


RAQUEL FERNÁNDEZ-MARTÍN et al. PHYSICAL REVIEW B 99, 155117 (2019)

[49] J. P. Sun, K. Matsuura, G. Z. Ye, Y. Mizukami, M. Shimozawa,
K. Matsubayashi, M. Yamashita, T. Watashige, S. Kasahara, Y.
Matsuda et al., Nat. Commun. 7, 12146 (2016).

[50] K. Kothapalli, A. E. Böhmer, W. T. Jayasekara, B. G. Ueland,
P. Das, A. Sapkota, V. Taufour, Y. Xiao, E. Alp, S. L. Bud’ko
et al., Nat. Commun. 7, 12728 (2016).

[51] L. Benfatto, B. Valenzuela, and L. Fanfarillo, npj Quantum
Mater. 3, 56 (2018).

[52] P. O. Sprau, A. Kostin, A. Kreisel, A. E. Böhmer, V. Taufour,
P. C. Canfield, S. Mukherjee, P. J. Hirschfeld, B. M. Andersen,
and J. C. S. Davis, Science 357, 75 (2017).

[53] Y. S. Kushnirenko, A. V. Fedorov, E. Haubold, S.
Thirupathaiah, T. Wolf, S. Aswartham, I. Morozov, T. K.
Kim, B. Büchner, and S. V. Borisenko, Phys. Rev. B 97,
180501 (2018).

[54] L. C. Rhodes, M. D. Watson, A. A. Haghighirad, D. V.
Evtushinsky, M. Eschrig, and T. K. Kim, Phys. Rev. B 98,
180503 (2018).

[55] D. Liu, C. Li, J. Huang, B. Lei, L. Wang, X. Wu, B. Shen, Q.
Gao, Y. Zhang, X. Liu et al., Phys. Rev. X 8, 031033 (2018).

[56] L. de’ Medici, Weak and Strong Correlations in Fe Superconduc-
tors, Springer Series in Materials Science Vol. 211 (Springer,
New York, 2015).

[57] V. Cvetkovic and O. Vafek, Phys. Rev. B 88, 134510 (2013).
[58] M. J. Calderón, L. de’ Medici, B. Valenzuela, and E. Bascones,

Phys. Rev. B 90, 115128 (2014).
[59] L. Fanfarillo, G. Giovannetti, M. Capone, and E. Bascones,

Phys. Rev. B 95, 144511 (2017).
[60] A. F. Kemper, M. M. Korshunov, T. P. Devereaux, J. N. Fry,

H.-P. Cheng, and P. J. Hirschfeld, Phys. Rev. B 83, 184516
(2011).

[61] M. M. Korshunov, in Perturbation Theory: Advances in Re-
search and Applications, edited by Z. Pirogov (Nova Science
Publishers Inc., New York, 2018), p. 276.

[62] M. Chinotti, A. Pal, L. Degiorgi, A. E. Böhmer, and P. C.
Canfield, Phys. Rev. B 98, 094506 (2018).

155117-14

https://doi.org/10.1038/ncomms12146
https://doi.org/10.1038/ncomms12146
https://doi.org/10.1038/ncomms12146
https://doi.org/10.1038/ncomms12146
https://doi.org/10.1038/ncomms12728
https://doi.org/10.1038/ncomms12728
https://doi.org/10.1038/ncomms12728
https://doi.org/10.1038/ncomms12728
https://doi.org/10.1038/s41535-018-0129-9
https://doi.org/10.1038/s41535-018-0129-9
https://doi.org/10.1038/s41535-018-0129-9
https://doi.org/10.1038/s41535-018-0129-9
https://doi.org/10.1126/science.aal1575
https://doi.org/10.1126/science.aal1575
https://doi.org/10.1126/science.aal1575
https://doi.org/10.1126/science.aal1575
https://doi.org/10.1103/PhysRevB.97.180501
https://doi.org/10.1103/PhysRevB.97.180501
https://doi.org/10.1103/PhysRevB.97.180501
https://doi.org/10.1103/PhysRevB.97.180501
https://doi.org/10.1103/PhysRevB.98.180503
https://doi.org/10.1103/PhysRevB.98.180503
https://doi.org/10.1103/PhysRevB.98.180503
https://doi.org/10.1103/PhysRevB.98.180503
https://doi.org/10.1103/PhysRevX.8.031033
https://doi.org/10.1103/PhysRevX.8.031033
https://doi.org/10.1103/PhysRevX.8.031033
https://doi.org/10.1103/PhysRevX.8.031033
https://doi.org/10.1103/PhysRevB.88.134510
https://doi.org/10.1103/PhysRevB.88.134510
https://doi.org/10.1103/PhysRevB.88.134510
https://doi.org/10.1103/PhysRevB.88.134510
https://doi.org/10.1103/PhysRevB.90.115128
https://doi.org/10.1103/PhysRevB.90.115128
https://doi.org/10.1103/PhysRevB.90.115128
https://doi.org/10.1103/PhysRevB.90.115128
https://doi.org/10.1103/PhysRevB.95.144511
https://doi.org/10.1103/PhysRevB.95.144511
https://doi.org/10.1103/PhysRevB.95.144511
https://doi.org/10.1103/PhysRevB.95.144511
https://doi.org/10.1103/PhysRevB.83.184516
https://doi.org/10.1103/PhysRevB.83.184516
https://doi.org/10.1103/PhysRevB.83.184516
https://doi.org/10.1103/PhysRevB.83.184516
https://doi.org/10.1103/PhysRevB.98.094506
https://doi.org/10.1103/PhysRevB.98.094506
https://doi.org/10.1103/PhysRevB.98.094506
https://doi.org/10.1103/PhysRevB.98.094506



