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Summary
Real‐time monitoring of the operation state of wide‐area transmission line links has

become possible with the help of phasor meter units. Synchronized information

acquired by phasor meter units needs to be adequately processed to permit the accu-

rate estimation of the line constants of the transmission link. In this paper, a novel

general rigorous compact procedure for correctly processing the measured voltage

and current phasors of uniform multiconductor transmission line systems is pro-

posed. The procedure based on the ABCD matrix and on modal analysis techniques

applies to transposed or untransposed multiconductor transmission lines, with arbi-

trary geometry, number of conductors, and length. The proposed algorithm, ade-

quate for multiport structures, avoids the approximations usually required by

ordinary methods mostly focused on lumped parameters and on 2‐port approaches.
The proposed matrix procedure is illustrated and validated using simulation results.

KEYWORDS

chain matrix, estimation of line constants, modal analysis, multiconductor transmission lines, phasor
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1 | INTRODUCTION

Smart grids digital communication technology is able to pro-
vide accurate real‐time measurement of voltages and currents
at the ends of multiconductor transmission line (MTL) sys-
tems, even when the ends of the line are many hundreds of
miles apart. This became possible with the advent of
synchrophasor measurement technology (SMT) based on
the utilization of phasor measurement units (PMUs), firstly
developed in the 1980s by Arun Phadke and collaborators.1

A historical perspective of SMT/PMU can be found else-
where.2,3 Very recent review papers on the subject, covering
state‐of‐the‐art applications and offering exhaustive biblio-
graphic references, are available.4,5

Among the various applications of SMT/PMU,6,7 we are
interested here in the important topic of remotely monitoring
- - - - - - - - - - - - - - - - - - - - - - - - - -
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the operation state of high‐ or extrahigh‐voltage long over-
head power lines (MTL systems). This can be done by
resorting to synchronized measurements of MTL voltage
and current phasors, enabling the estimation of the power line
constants (per unit length impedance Z and per unit length
admittance Y). Once the computed estimates are compared
with reference values stored in a database the state of opera-
tion of the MTL system can be checked, allowing planners
to make judicious decisions.

Although not new, the topic of the estimation of line con-
stants using SMT/PMU data has been attracting more and
more attention.8-19 In particular, the work in Lowe19 provides
a very good review and discussion of the main methods used
to estimate the line constants of perfectly transposed and
untransposed 3‐phase lines, with emphasis on the
untransposed case.
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FIGURE 1 Uniform multiconductor transmission line (MTL) section
of length l. Voltage and current phasors are acquired via synchrophasor
measurement technology with phasor meter units at the sending and
receiving ends of the MTL
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However, the analyses or approaches used in the past are,
in our view, not entirely satisfactory. On the one hand, they
use questionable assumptions and approximations, and on
the other, they do not make full use of the properties of the
physical system under observation. Some flaws encountered
in the literature are

1. Zero, positive and negative sequence modes are assumed
to decouple the MTL into equivalent 2‐port networks on
which the analysis is based. The problem is that none of
those “modes” exist; they do not coincide with actual
traveling wave modes.

2. The referred equivalent 2‐port networks are often given
the shape of pi‐circuits where the horizontal branch is
related to Z and the vertical branches related to Y/2.
The problem is that such circuits can only be used in
transmission lines of very small length.

3. In some cases, where long MTLs are tackled, the analy-
sis becomes too complicated, involving the solution of
unnecessary nonlinear equations;

4. Most of the solutions proposed use lumped parameter
approaches, avoiding the more physically adequate dis-
tributed parameter approach and associated modal analy-
sis techniques;

5. For untransposed lines, the set of math equations
required to describe the solution of the problem is unnec-
essarily heavy and quite cumbersome;

6. The particular physical properties of the MTL system (rec-
iprocity and symmetry), which can be used to simplify the
solution of parameters estimation, are not taken in account.

In this work, we establish a novel general rigorous com-
pact matrix method that, using PMU information, permits
the evaluation not only of the transmission line constants
(p.u.l. impedance and admittance matrices) but also of the
line wave parameters (characteristic wave impedance matrix,
propagation constants, and mode eigenvectors). The method
applies to uniform MTLs, with any number of conductors,
any geometry, single or double circuit, of any length, for
any frequency.

We will show that a minimum of n independent samples
of the voltage and current phasors at the sending and receiv-
ing ends of an MTL with n+1 conductors suffice to obtain all
its line constants. The only assumption required is that the
MTL system can be considered uniform. Otherwise, if the
system were considered nonuniform, the definition/concept
of “line constants” itself would make no sense.

One can argue that MTLs are indeed nonuniform systems.
However, the chain connection of many line segments (span
lengths) acts in a way to homogenize the disturbing effect of
the local nonuniformities occurring along the entire line
length. This is so because, for 50 or 60 Hz, the size of the
perturbations is negligibly small at the scale of the wavelength
(6 or 5 Mm). As an elucidative example, take the case of over-
head power line analysis considering the nonuniform problem
arising from the effect of conductors sagging between
towers.20 When high frequency regimes are studied, the sag
effect is important and manifests itself through resonance
phenomena; however, when 50 or 60 Hz frequencies are con-
sidered, the sag effect produces no noticeable consequences;
the analysis can be conducted successfully considering that
the system is uniform, assigning an average height to each
conductor.20

This paper is organized into 6 sections, the first of which
is introductory. Section 2 is dedicated to background material
on the chain matrix description of MTL systems. The pro-
posed general procedure for the evaluation of the chain
matrix, based on PMU information, is presented in Section 3.
The determination of the MTL line constants, using modal
analysis, based on the computed chain matrix, is addressed
in Section 4. The effectiveness of the developed method is
validated in Section 5 using numerical simulation results.
At last, conclusions are outlined in Section 6.
2 | THE CHAIN MATRIX

Consider a uniform MTL section with n + 1 conductors, one
of them being the ground return (reference conductor #0).

As shown in Figure 1, the MTL connects two n‐port
networks, the generator side and the load side, both enforcing
the MTL boundary conditions at x = 0 (sending end) and
x = l (receiving end). Due, mainly, to minute changes in the
load network, the MTL boundary conditions can fluctuate
over time. Voltage and current phasors are acquired, from
synchronized measurements, at the sending (S) and receiving
(R) ends of the system.

The purpose of this research work is the presentation of a
general compact procedure for the determination of the
following line constants:

• per unit length series impedance matrix, Z = R + jX and
• per unit length shunt admittance matrix, Y = G + jS.
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In the process, at an intermediate stage, the following
wave parameters are also obtained:

• characteristic wave impedance matrix Zw,
• modal propagation constants γ = α + jβ, and
• modal voltage eigenvectors t (transformation matrix).

Since the MTL linear system is a 2n‐port network it can be
adequately described in the frequency domain by its chain
matrix orABCDmatrix, fromwhich all of the abovementioned
line constants and wave parameters can be computed. There-
fore, the key problem to be solved is the calculation of the
entries of theA,B,C, andDmatrices from PMUmeasurements
at theMTL ports. Note, however, that the chain matrix does not
depend on the particular boundary conditions of the MTL; the
chain matrix is an intrinsic property of the MTL system.

Most of the research on the subject of the estimation of line
constants using PMU does not take into account the physical
properties of the MTL and the corresponding mathematical
properties of the ABCD matrix. If that is done, several
simplifications can be used, and a lot of work can be saved.

The chain matrix is a 2n×2n matrix that relates voltages
and currents phasors at the sending port with those at the
receiving port:

US

IS

� �
¼ A B

C D

� �
UR

IR

� �
;

UR

IR

� �
¼ A B

C D

� �−1 US

IS

� �
; (1)

whereUS, IS,UR, and IR are complex column vectors of size n,

US ¼

US1

US2

⋮
USn

2
6664

3
7775; IS ¼

IS1
IS2
⋮
ISn

2
6664

3
7775; UR ¼

UR1

UR2

⋮
URn

2
6664

3
7775; IR ¼

IR1
IR2
⋮
IRn

2
6664

3
7775: (2)

The vector phasor quantities US, IS, UR, and IR are
determined by the boundary conditions of the MTL system,
which vary over time.

The MTLs are 2n‐port networks containing linear passive
nonanisotropic components; therefore, they are reciprocal.
Consequently, the following properties must be obeyed:21

ABT ¼ BAT ; DCT ¼ CDT

BTD ¼ DTB ; CTA ¼ ATC

ADT−BCT ¼ ATD−CTB ¼ 1

8><
>: ; (3)

A B

C D

� �−1
¼ DT −BT

−CT AT

" #
; (4)

det
A B

C D

� �
¼ 1; (5)

where superscript T stands for transposition and 1 is the
identity matrix of order n.
Moreover, for uniform MTLs, the network is symmetrical
(the S and R ports can be interchanged) and, in this case, the
following properties add on:21

B ¼ BT ; C ¼ CT ; D ¼ AT (6)

Substituting Equation 6 into Equations 3, 4, and 5 leads to

AB ¼ BD; DC ¼ CA

A2−BC ¼ D2−CB ¼ 1

�
; (7)

A B

C D

� �−1
¼ A −B

−C D

� �
: (8)

According to the above properties, the unimodular chain
matrix can be fully described by the pair A and B, from
where the remaining matrices C and D may be obtained
through

D ¼ AT ;C ¼ B−1 A2−1
� �

: (9)

3 | EVALUATION OF THE A AND B
MATRICES

The evaluation of A= [ajk] and B= [bjk] requires only 2
matrix equations. From Equation 1,

US ¼ AUR þ BIR; (10)

and from Equations 1 and 8,

UR ¼ AUS−BIS: (11)

3.1 | Case n = 1

For n = 1, all the matrices and vectors in Equations 10 and 11
are simple scalars. The solution of Equations 10 and 11 is
trivial:

A

B

� �
¼ UR IR

US −IS

� �−1 US

UR

� �
: (12)

From Equations 12 and 9, all the entries of the chain
matrix can be found through

A ¼ D ¼ USIS þ URIR
USIR þ URIS

; B ¼ U2
S−U

2
R

USIR þ URIS
;

C ¼ I2S−I
2
R

USIR þ URIS
;

(13)

which complies with the general properties in Equation 6.
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3.2 | General case

Things are more intricate when A and B are not scalars but
matrices. For generic n, the A and B matrices have n2 entries;
therefore, 2n2 scalar complex equations are required for their
evaluation.

B being symmetric would permit the elimination of
n(n − 1)/2 equations, but we will not take advantage of
that possibility. Reasons are twofold. On the one hand,
that would complicate the computational algorithm, that
is, more steps would be required to get lesser final
equations to be solved (lesser unknowns) but that would break
the formal simplicity and compactness of the proposed matrix
method, without gained benefit for small n, as is the case of
3‐phase power lines. On the other hand, the computed results
of matrix B will allow, at an intermediate stage, to control/
check its symmetry—a strong asymmetry of B will be a
symptom that the MTL under concern clearly deviates from
a uniform system, precluding, in that case, reliable conclu-
sions about the estimated line constants.

For a 2n‐port MTL, the results in Equations 10 and 11
provide 2n simultaneous scalar equations, but we need 2n2

scalar equations to find the matrix entries of A and B. This
means that Equations 10 and 11 must be used not once but
n times to allow a complete formulation of the problem. A
set of n independent phasor measurements are required to
be performed at n time instants.

The time gap between measurements should be long
enough to permit significant changes of the MTL boundary
conditions at one or both ports (for example, considering dif-
ferent load conditions at the receiving port). The meaning of
“significant changes of the boundary conditions” will be
discussed in Section 5.

To understand the procedure for the general case, we start
by introducing the column vectors with all the voltages and
currents phasors acquired in measurement (k), with k running
from 1 to n:

U kð Þ
S ¼

U kð Þ
S1

U kð Þ
S2

⋮
U kð Þ

Sn

2
66664

3
77775; I kð Þ

S ¼

I kð Þ
S1

I kð Þ
S2

⋮
I kð Þ
Sn

2
66664

3
77775; U kð Þ

R ¼

U kð Þ
R1

U kð Þ
R2

⋮
U kð Þ

Rn

2
66664

3
77775; I kð Þ

R ¼

I kð Þ
R1

I kð Þ
R2

⋮
I kð Þ
Rn

2
66664

3
77775;

(14)

which, according to Equation 10, must satisfy the matrix
equation:

A B½ �
U kð Þ

R

I kð Þ
R

2
4

3
5 ¼ U kð Þ

S →

A B½ �
U 1ð Þ

R ⋯U nð Þ
R

I 1ð Þ
R ⋯ I nð Þ

R

2
4

3
5 ¼ U 1ð Þ

S ⋯U nð Þ
S

h i
:

(15)
Likewise, according to Equation 11, we have

A B½ �
U kð Þ

S

−I kð Þ
S

2
4

3
5 ¼ U kð Þ

R →

A B½ �
U 1ð Þ

S ⋯ U nð Þ
S

−I 1ð Þ
S ⋯ −I nð Þ

S

2
4

3
5 ¼ U 1ð Þ

R ⋯U nð Þ
R

h i
:

(16)

Next, 4 square matrices n×n, gathering all the measured
quantities, are defined:

USS ¼ U 1ð Þ
S ⋯U nð Þ

S

h i
; ISS ¼ I 1ð Þ

S ⋯I nð Þ
S

h i
URR ¼ U 1ð Þ

R ⋯U nð Þ
R

h i
; IRR ¼ I 1ð Þ

R ⋯I nð Þ
R

h i
8><
>: ; (17)

and by using them, the results in Equations 15 and 16 can be
recast into a single equation:

A B½ � URR USS

IRR −ISS

� �
¼ USS URR½ �; (18)

which, finally, allows the determination of the A and B
matrices:

A B½ � ¼ USS URR½ � URR USS

IRR −ISS

� �−1
: (19)

4 | EVALUATION OF MTL
PARAMETERS

The key matrices A and B belonging to the chain matrix are
extracted according to the general compact procedure
established in Section 3.2, with the final result given in
Equation 19.

However, although not required, individual solutions for
A and for B may be found from Equation 19. In fact, after
some matrix algebra, one may write:

A ¼ M1AN−1
1A; with

M1A ¼ USS þ URR I−1SS IRR

N1A ¼ URR þ USS I−1SS IRR

(

B ¼ M1BN−1
1B; with

M1B ¼ USSU−1
RR USS−URR

N1B ¼ ISS þ IRRU−1
RR USS

(
8>>>>><
>>>>>:

: (20)

At this point, 2 remarks are convenient.
Firstly, one may notice that in the limit case n = 1, all of

the intervening matrices in Equation 20 turn into scalars,
yielding

A ¼ USIS þ URIR
USIR þ URIS

; B ¼ U2
S−U

2
R

USIR þ URIS
;

which confirms the conclusion found in Equation 13.
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As a second remark, for the general case n>1, one may
notice that the direct application of the result in Equation 20,
obtained using partitioned matrix techniques, requires that
ISS, URR, N1A, and N1B are nonsingular matrices. However,
it must be underlined that these conditions, although suffi-
cient, are not necessary for calculating [A B] from
Equation 19. To make clear that ISS and URR can be singular
and the problem can still be solved, we can go back to
Equation 18 and, using Pauli matrices, rewrite the equation as

A B½ � 0 1

1 0

� �
0 1

1 0

� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

1 0

0 1

� �
URR USS

IRR −ISS

� �
¼ USS URR½ � (21)

from where we get

B A½ � ¼ USS URR½ � IRR −ISS
URR USS

� �−1
: (22)

Using again partitioned matrix techniques, individual
solutions for A and B, similar to Equation 20, but with differ-
ent shape, can be found:

A ¼ M2AN−1
2A; with

M2A ¼ URR þ USS I−1RR ISS

N2A ¼ USS þ URR I−1RR ISS

(

B ¼ M2BN−1
2B; with

M2B ¼ USS−URRU−1
SS URR

N2B ¼ IRR þ ISSU−1
SS URR

(
8>>>>><
>>>>>:

:

(23)

In this case, the direct application of Equation 23 would
not require the nonsingularity of ISS and URR but would
require the nonsingularity of IRR and USS.

This shows that the calculation of A and B, from
Equation 19 or 22, is not conditioned by the occasional sin-
gularity of some of the individual submatrices IRR, ISS, USS,
and URR. If A or B fail to be individually computed using
the n×n matrix equations in Equation 20 or 23, then the pair
[A B] will have to be globally computed from the inversion of
the 2n×2n matrices in Equation 19 or 22.

In addition, it can be noted from the results in Section 4.1
(Equations 24 and 28) that, for actual MTLs with losses, one
can be sure that nonsingular A and B matrices do always
exist, since none of their eigenvalues can be 0.

Is the process fool proof? No, of course.
If, for example, the set of enforced sending end voltages is

kept constant during measurements, and the load impedance
at the receiving end does not vary when 2 or more of the
measurements are executed, then all the submatrices IRR,
ISS, USS, and URR turn out to be singular, and the problem
cannot be solved. If the load impedance varies only very
slightly then the problem can be solved but with large errors.
In short, the success of the method relies on the degree of
linear independence of the set of n measurements—see
discussion in Section 5.2.
4.1 | Wave propagation parameters

From the theory of modal analysis of uniform MTL,22,23 we
know that

A ¼ T coshγlð ÞT−1; (24)

where γ is a diagonal matrix gathering the modal propagation
constants and T is the modal transformation matrix, whose
columns provide the voltages distribution among conductors
for each and every traveling mode,

γ ¼
γ1

⋱
γn

2
64

3
75; T ¼ t1⋯tn½ � ;

U1

⋮
Un

2
64

3
75
mode

k

∝ tk:

(25)

Therefore, the diagonalization of the A matrix,

T−1AT ¼
~a1

⋱
~an

2
64

3
75 (26)

gives, at once, all the modal voltage eigenvectors tk and all
the propagation constants:

γk ¼ αk þ jβk ¼
1
l
arccosh ~ak: (27)

Also, from modal analysis theory,22 we know that

B ¼ T sinhγlð ÞT−1Zw; (28)

which permits the evaluation of the characteristic wave
impedance matrix Zw of the MTL,

Zw ¼ T T sinhγlð Þ−1B: (29)

4.2 | Line constants

At last, the per unit length impedance Z and shunt admittance
matrix Y of the MTL system can be estimated. From modal
analysis theory,22,23 we know that Z and Y can be directly
obtained from γ and T in Equation 25, and from Zw in
Equation 29, through

Z ¼ Rþ jX ¼ ΓZw

Y ¼ Gþ jS ¼ Z−1
w Γ

�
; (30)



FIGURE 2 Geometry of the reference 3‐phase line system.
Conductors 1, 2, and 3 are phase conductors, whereas 4 and 5 are
shield conductors. Values displayed for conductor heights are average
heights, taking the sag effect into account (hav = hmax – 2s/3)
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where

Γ ¼
ffiffiffiffiffiffiffi
ZY

p
¼ TγT−1: (31)

5 | SIMULATION RESULTS AND
VALIDATION

The methodology proposed in this paper has been put to the
proof. In this section, numerical simulation results are pro-
vided, validating the theoretical procedure and showing the
effectiveness of the method.

The problem of the estimation of the line constants and
wave parameters of an MTL system based on measurements
made at the external accessible ends of the system is an
inverse engineering problem. To validate the successful solu-
tion of the inverse problem addressed in the preceding sec-
tions, one needs to know beforehand the targeted answer to it.
5.1 | Characterization of the reference MTL

Here, we describe in detail the physical constitution of the
MTL system under analysis and solve the much simple direct
problem, and find numerically its line constants, its wave
parameters, and its ABCD matrix.

The reference MTL system is a 400 kV (1.4 GVA) 3‐
phase line, in flat configuration, 500‐km long, with 2 shield
conductors. The cross section of the bilaterally symmetric
MTL structure is depicted in Figure 2.

The soil is assigned a typical resistivity value of 100 Ωm
(average soil).

Each phase conductor is a bundle of 2 identical stranded
cables separated of 40 cm. The characteristics of the cables are

total number of wires: 42;

number of peripheral wires: 20;

wire diameter: 4:14 mm; :

cable external diameter: 31:8 mm;

cable DC resistance: 57:3 mΩ=km:

8>>>>>><
>>>>>>:

The shield conductors are single‐stranded cables. The
characteristics of the cables are

total number of wires: 12;

number of peripheral wires: 12;

wire diameter: 2:92 mm; :

cable external diameter: 14:6 mm;

cable DC resistance: 372 mΩ=km:

8>>>>>><
>>>>>>:

The shield conductors are grounded at each tower along
the line length; the tower‐to‐tower distance varying typically
in the range 300 to 400 m. For the frequency under analysis
(f = 50 Hz), the grounding of the shield conductors can be
seen as a continuous effect, and therefore, in the MTL prop-
agation equations, one can set shield conductor voltages
equal to 0. This transforms the 5‐conductor system into a
reduced order 3‐conductor system (n = 3).

The corresponding p.u.l. series impedance matrix Z and
p.u.l. shunt admittance matrix Y were computed, at 50 Hz,
using the MNLA software (see Appendix A), yielding

Z ¼
85:0505þ j476:848 54:5467þ j113:527 56:5485þ j151:175

54:5467þ j113:527 85:0505þ j476:848 56:5485þ j151:175

56:5485þ j151:175 56:5485þ j151:175 86:9177þ j467:730

2
64

3
75 mΩ=km;

Y ¼
þj3:048732 −j0:132117 −j0:450299
−j0:132117 þj3:048732 −j0:450299
−j0:450299 −j0:450299 þj3:133415

2
64

3
75 μS=km:

Next, the eigenvalues and eigenvectors of the ZY product
were computed using MNLA, yielding the set of modal
propagation constants:

γ ¼
γ1

γ2
γ3

2
64

3
75;

with

γ1 ¼ 5:01229 × 10−5 þ j1:06076×10−3 km−1

γ2 ¼ 1:74537 × 10−4 þ j1:35017×10−3 km−1

γ3 ¼ 4:50887 × 10−5 þ j1:07596×10−3 km−1

8><
>: ;

yielding the set of modal characteristic wave impedances:

Zwm ¼
Zw1

Zw2

Zw3

2
64

3
75;

with

Zw1 ¼ 290:842−j12:2926 Ω
Zw2 ¼ 565:454−j71:2948 Ω
Zw3 ¼ 338:263−j14:1751 Ω

8><
>: ;

and yielding the modal transformation matrix:
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T ¼ t1 t2 t3½ �

¼
−0:380134þ j0:003049 þ0:577840 þ0:707107

−0:380134þ j0:003049 þ0:577840 −0:707107
þ0:843195 þ0:576364−j0:002913 0

2
64

3
75:

The above results show, as expected, that the propagation
modes (traveling waves) are split into 2 categories: symmet-
ric and antisymmetric modes. Mode 1 is the symmetric aerial
mode, mode 2 is the symmetric ground mode (the slowest
one, with the highest attenuation), and mode 3 is the antisym-
metric aerial mode.

Now, we use the preceding numerical information to
obtain the characteristic wave impedance matrix Zw in phase
coordinates,22

Zw ¼ TZwmTT ; (32)

yielding

Zw ¼
399:932−j33:3431 61:6686−j19:1680 95:0109−j20:0083
61:6686−j19:1680 399:932−j33:3431 95:0109−j20:0083
95:0109−j20:0083 95:0109−j20:0083 394:379−j34:3216

2
64

3
75Ω

and to obtain the submatrices A in Equation 24 and B in
Equation 28 of the chain matrix, that is, A=T(coshγl)T−1 ,
B=T(sinhγl)T−1Zw, yielding

A ¼
þ0:83353þ j0:02647 −0:02543þ j0:01491 −0:02460þ j0:01314

−0:02543þ j0:01491 þ0:83353þ j0:02647 −0:02460þ j0:01314

−0:02725þ j0:01445 −0:02725þ j0:01445 þ0:83842þ j0:02591

2
64

3
75;

B ¼
36:8682þ j224:568 23:0537þ j51:4706 23:9438þ j69:3275

23:0537þ j51:4706 36:8682þ j224:568 23:9438þ j69:3275

23:9438þ j69:3275 23:9438þ j69:3275 37:7384þ j220:390

2
64

3
75 Ω:

The remaining D and C submatrices of the chain matrix
are evaluated usingD=AT,C=B−1(A2− 1), from Equation 9.

The MTL boundary conditions can be defined with the
help of the following Thévenin equations

US ¼ US0−ZSIS
UR ¼ UR0 þ ZRIR

�
; (33)

where ZS and US0 are the generator‐side Thévenin matrix
parameters (impedance and open‐end voltage); likewise, ZR

and UR0 are the load‐side Thévenin matrix parameters.
Once the particular MTL boundary conditions are

enforced, all the MTL voltages and currents can be found.
Combining Equations 1 and 33, we get
IR ¼ Bþ ZSDþ Aþ ZSCð ÞZRð Þ−1 US0− Aþ ZSCð ÞUR0ð Þ
UR ¼ UR0 þ ZRIR
IS ¼ CUR þ DIR
US ¼ US0−ZSIS

8>>>><
>>>>:

(34)

5.2 | Application and validation of the method

The procedure described in this work must be able to accu-
rately estimate the matrix line constants of the MTL, no
matter its particular boundary conditions at x = 0 and at
x = l. The only requirement is that n (n = 3) independent
measures of the MTL voltage and current phasors are avail-
able for processing.

As has been referred, the MTL intrinsic parameters do
not physically depend on the line terminations (boundary
conditions); however, they are computed from the latter.
From a numerical point of view (accuracy), some line termi-
nations may be easier than others; in this paper, where the
effectiveness of the proposed method is to be checked, we
will focus attention on a particular situation perceived as
numerically “difficult”: the case when the sending end volt-
age phasors remain the same during measurements and the
receiving end termination is close to perfect matching, that is,

Z kð Þ
S ¼ 0; U kð Þ

S ¼ US0

Z kð Þ
R ¼ 1þ δkð ÞZw; UR0 ¼ 0

(
; with

k ¼ 1; 2; 3

δk <<1

�
:

(35)

In fact, in this situation, we have

USS ¼ U 1ð Þ
S U 2ð Þ

S U 3ð Þ
S

h i
; U 1ð Þ

S ¼ U 2ð Þ
S ¼ U 3ð Þ

S ¼ US0;

where

US0 ¼
ffiffiffi
2

p 400ffiffiffi
3

p
1

e−j120º

eþj120º

2
64

3
75 kV:

Matrix USS is singular and, according to Equation 23, the
calculation of B would fail.

In addition, when ZR is close to Zw, the absence of
reflected waves makes the receiving end voltages to be
almost proportional to those at the sending end, and there-
fore, with matrix URR near to singular (recall that in a lossless
matched MTL, the voltages UR and US would be equal except
for a rotation factor, dependent on the line length). According
to Equation 20, the quasi‐singularity of URR could originate
numerical problems in the computation of B.

Since we do not have access to real PMU data, we simu-
lated them using the equation set in Equation 34, together with



FIGURE 3 Logarithmic plot of the relative errors occurring in the
estimation of the self (s) and mutual (m) elements of the matrix line
constants of the multiconductor transmission line. The horizontal axis is
the delta parameter characterizing the load variation defined in
Equation 36. (A) Z matrix. (B) Y matrix.
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the data in Section 5.1. The 3 independent “measurements”
were obtained considering in Equation 35 that

δk ¼ k−2ð Þδ; (36)

where the delta parameter δ is small and will be chosen for
discussion.

For illustration purposes, we offer below the computed
entries of UR, IR, and IS (in polar coordinates) that simulate
the set of 3 measurements for the case of a variation of
0.1% in the load impedance, ie, δ = 10−3.

For k = 1,

U 1ð Þ
R ¼

318:439 ∠−30:715º

318:986 ∠−151:038º

319:085 ∠þ 89:860º

2
664

3
775kV;

I 1ð Þ
R ¼

0:99898 ∠−32:974º

0:98972 ∠−143:553º

1:08168 ∠þ 92:371º

2
664

3
775kA;

I 1ð Þ
S ¼

1:02165 ∠−0:023º

1:01461 ∠−112:688º

1:10795 ∠þ 122:600º

2
664

3
775kA:

For k = 2,

U 2ð Þ
R ¼

318:526 ∠−30:691º

319:075 ∠−151:014º

319:169 ∠þ 89:883º

2
664

3
775kV;

I 2ð Þ
R ¼

0:99825 ∠−32:950º

0:98900 ∠−143:529º

1:08089 ∠þ 92:395º

2
664

3
775kA;

I 2ð Þ
S ¼

1:02118 ∠−0:023º

1:01415 ∠−112:640º

1:10743 ∠þ 122:648º

2
664

3
775kA:

For k = 3,

U 3ð Þ
R ¼

318:612 ∠−30:667º

319:163 ∠−150:990º

319:253 ∠þ 89:907º

2
664

3
775kV;

I 3ð Þ
R ¼

0:99752 ∠−32:926º

0:98829 ∠−143:505º

1:08010 ∠þ 92:419º

2
664

3
775kA;

I 3ð Þ
S ¼

1:02071 ∠−0:022º

1:01370 ∠−112:592º

1:10691 ∠þ 122:696º

2
664

3
775kA:
By running MatLab, we implemented the procedure
developed in Section 4 and estimated the matrix line con-
stants of the MTL. We did that by continuously varying the
parameter delta from 10−4 to 10−1. The idea is to conclude
about how small can be the load‐side variation to permit
saying that the measurement set is independent and therefore
that the produced output is meaningful.

The estimated p.u.l. series impedance matrix Z and shunt
admittance matrix Y were compared with the targeted ones
offered in Section 5.1. The following error functions are
defined, separately, for both matrices and for their self and
mutual entries:

EZs ¼
∑
k

Z eð Þ
kk −Z

tð Þ
kk

	 

∑
k
Z tð Þ
kk

�������
������� ; EZm ¼

∑
j; k

j≠k

Z eð Þ
jk −Z

tð Þ
jk

	 


∑
j; k

j≠k

Z tð Þ
jk

�����������

�����������
; (37)

EYs ¼
∑
k

Y eð Þ
kk −Y

tð Þ
kk

	 

∑
k
Y tð Þ
kk

�������
������� ; EYm ¼

∑
j; k

j≠k

Y eð Þ
jk −Y

tð Þ
jk

	 


∑
j; k

j≠k

Y tð Þ
jk

�����������

�����������
; (38)

where superscripts (e) and (t) stand for estimated and target
results, respectively, and subscripts s and m refer to self and
mutual entries, respectively.

The impedance relative errors in Equation 37 are plotted
against the delta parameter in Figure 3A. The admittance
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relative errors in Equation 38 are plotted against the delta
parameter in Figure 3B.

Obtained results show that

• admittance errors are larger than those in the impedance;
• errors in the mutual elements are larger than those in the

self, diagonal elements;
• for δ larger than 10−2, the relative errors are negligibly

small, of the order of 1 part per million. In addition, the
errors are fairly constant and stable;

• when δ decreases from 10−2 to 10−4, the relative errors
increase steadily. For δ = 10−4, the impedance error is
about 10−3 whereas the admittance error exceeds 10−2.
In addition, the errors are rather unstable.

The reason why admittance errors are larger than those in
the impedance may be due to the estimated values of Y reveal
the undesired presence of a contribution with real part, which
should not exist, since the reference MTL does not have
transverse losses.

The reason why the errors in the mutual elements exceed
those in the self‐elements may be due to the definition of the
relative error in Equations 37 and 38 where, for the mutual
elements, the denominator has a smaller absolute value, since
the mutual elements are smaller than the diagonal elements.

The apparent instability of the computed errors, for
δ < 10−2, is especially remarkable in the logarithmic repre-
sentation that we used; it would not be visible in a linear
scale. It is a mere reflex of the numerical noise occurring in
the computation process.

In conclusion, even in the case of very small variations
(0.01%) of the load condition, the proposed procedure can
efficiently determine the matrix line constants of the MTL,
with a relative error of 0.1% in the p.u.l. series impedance
matrix and 1% in the shunt admittance matrix.

Finally, we need to refer to a recent work by Lowe,19

where the estimation of the line constants of an untransposed
3‐phase line was presented. A rigorous comparison of results
is unfortunately not possible. In this paper, we defined
unambiguously the line load impedance for the set of three
measurements, however, Lowe did not; he only says that
“the impedance of the load is varied”, with no specification.
In any case, assuming that the measurements made by
him and by us involve 3 clearly different loads, the
agreement is obvious, Lowe reported 0% error while we
report 1 part per million.
6 | CONCLUSION

A novel matrix procedure aimed at the estimation of the line
constants and wave parameters of uniform MTLs based on
PMU information was developed in this paper.
Contrary to other methods, the proposed procedure is
rigorous, general, compact, and effective. Rigorous because
it does not involve any simplifying approximations; it uses a
distributed parameter approach and real traveling wave modes
obtained via modal analysis techniques. General because it
applies to uniform multiconductor lines with any number of
conductors, any geometry (single and coupled double circuits)
and any length. Compact because a single‐matrix equation is
used to estimate all the relevant entries of the chain matrix of
the MTL fromwhere the line constants are obtained. Effective
because, for a MTL with n + 1 conductors, a minimum of n
independent measurements is strictly required for the
estimation of the line parameters with an error around 1 part
per million (provided that the MTL boundary conditions
change more than 1% between measurements).

As a continuation of this work, we suggest 2 paths,
eventually linked. One is a sensitivity analysis considering
the presence of noise in PMU data. Another is the
consideration of oversampling and least squares methods for
improved accuracy.
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APPENDIX

MNLA Software

MNLA is an acronym for Modos Naturais em Linhas Aéreas
(Natural Modes in Overhead Lines).24,25 It is a software
coded in Fortran IV that was developed in the late 1970s,
in the framework of an R&D project sponsored by the
Portuguese Electric Utility, well before the commercializa-
tion of EMTP.

MNLA receives as input data the geometrical parameters
of the line cables and of the overhead line structures, as well
as the conductors and soil electromagnetic parameters. Using
Bessel functions and Carson's theory, the skin effect and
ground return impedances are evaluated for frequencies in
the range 10 Hz to 1 MHz, yielding, as output, the p.u.l. line
constants Z and Y. Next, for each frequency, the product
matrix ZY is formed, and its eigenvalues and eigenvectors
are computed, using robust matrix techniques, yielding, as
output, the modal propagation constants (attenuation and
phase velocity), the modal characteristic impedances, and
the modal transformation matrices.
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