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Abstract
Robustness to the presence of outliers in time series clustering is addressed. Assuming
that the clustering principle is to group realizations of series generated from simi-
lar dependence structures, three robust versions of a fuzzy C-medoids model based
on comparing sample quantile autocovariances are proposed by considering, respec-
tively, the so-called metric, noise, and trimmed approaches. Each method achieves its
robustness against outliers in different manner. The metric approach considers a suit-
able transformation of the distance aimed at smoothing the effect of the outliers, the
noise approach brings together the outliers into a separated artificial cluster, and the
trimmed approach removes a fraction of the time series. All the proposed approaches
take advantage of the high capability of the quantile autocovariances to discriminate
between independent realizations from a broad range of stationary processes, includ-
ing linear, non-linear and conditional heteroskedastic models. An extensive simulation
study involving scenarios with different generating models and contaminated with
outliers is performed. Robustness against (i) outliers generated from different gener-
ating patterns, and (ii) outliers characterized by isolated, temporary or persistent level
changes is evaluated. The influence of the input parameters required by the different
algorithms is analyzed. Regardless of the considered models, the results show that the
proposed robust procedures are able to neutralize the effect of the anomalous series
preserving the true clustering structure, and fairly outperform other robust algorithms
based on alternative metrics. Two applications to financial data sets permit to illustrate
the usefulness of the proposed models.
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1 Introduction

Time series are in nature complex data objects. They are usually formed by a huge num-
ber of records, present dynamic behavior patterns which might change over time, and
frequently one must handle realizations of different length. This kind of particularities
make it more difficult to perform cluster analysis in a standard way. For example, it is
not simple to determine a proper distance between time series exhibiting robustness to
the dependence structure, and high dimensionality is an additional obstacle to develop
efficient clustering procedures. On the other hand, time series clustering is a central
problem in a broad range of applications including economics, finance, econophysics,
marketing, environmental sciences, neuroscience, and biomedical sciences, among
others (see e.g. Liao 2005; Vilar et al. 2009; D’Urso et al. 2015). These arguments
account for the great focus of attraction that this topic has led over the past decades in
research, mainly into the fields of Statistics, Data Mining and Artificial Intelligence
(Chae et al. 2008; Vilar et al. 2009; Fu 2011; Rani and Sikka 2012; Montero and Vilar
2014; Aghabozorgi et al. 2015; Di Lascio and Giannerini 2016; Lafuente-Rego and
Vilar 2016b; Górecki et al. 2018).

Following Caiado et al. (2015), in a methodological point of view, time series
clustering methods can be classified into the following categories (for more details,
see Caiado et al. 2015; D’Urso et al. 2016):

– Observation-based clustering. Methods based on the actual observed time series
(Coppi and D’Urso 2002, 2003, 2006; Coppi et al. 2010; D’Urso 2004, 2005;
D’Urso and De Giovanni 2008; D’Urso et al. 2018).

– Feature-based clustering. Methods based on suitable features derived for the time
series, i.e., autocorrelation function (Alonso and Maharaj 2006; Caiado et al.
2006, 2009; D’Urso and Maharaj 2009), partial autocorrelation function (Caiado
et al. 2009), inverse autocorrelation function (Caiado et al. 2006), quantile auto-
covariances (Lafuente-Rego and Vilar 2016a, b; Vilar et al. 2018), periodogram
and its transformations (Caiado et al. 2009; Maharaj and D’Urso 2011), coher-
ence (Maharaj and D’Urso 2010), cepstral (Maharaj and D’Urso 2011), wavelet
decomposition (Maharaj and D’Urso 2010; D’Urso and Maharaj 2012; D’Urso
et al. 2014), and oher spectral features (Vilar and Pértega 2004; Vilar et al. 2009;
Pértega and Vilar 2010; Vilar et al. 2010).

– Model-based clustering. Assuming that a set of time series generated from the
same model have similar patterns, this category encompasses methods based on
clustering models fitted to the time series, either by means of parameter estimates
or by means of the residuals of the fitted models. In this class, different time series
clustering methods are based on ARIMA models (Piccolo 1990; Maharaj 1996,
1999, 2000; Kalpakis et al. 2001; Xiong and Yeung 2004; D’Urso et al. 2013c, b),
on GARCH models (Otranto 2008, 2010; Caiado and Crato 2010; D’Urso et al.
2013a, 2016), on functional (James and Sugar 2003; Tarpey and Kinateder 2003;
Alonso et al. 2006; Vilar et al. 2010; Slaets et al. 2012; Maharaj et al. 2015;
Tsay 2016; Floriello and Vitelli 2017), copulas (Durante et al. 2015; De Luca and
Zuccolotto 2017;Disegna et al. 2017), extremevalue analysis (D’Urso et al. 2017a)
and spline representation of the time series (García-Escudero andGordaliza 2005).
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Regardless of the considered clustering procedure, a very important issue is to
provide mechanisms to isolate outliers and neutralize their negative effects in the clus-
tering process. It is well known that the presence of anomalous data can prevent from
correctly identifying the hidden clustering structure. If, for example, the clustering
principle is to group series coming from the same generating model, then the presence
of an anomalous series within a legitimate cluster means to contaminate the cluster,
thus contributing to misidentify the dynamic pattern characterizing the cluster. Even
though outliers are identified, it is important to assess whether the clustering proce-
dure is affected by their presence. In sum, introducing robust clustering methods for
classifying time series is indeed an important matter deserving specific attention from
researchers. Three main methodological approaches to perform robust clustering of
series have been adopted in the literature, which can be classified as follows.

– Noise approach. To neutralize the negative effects of possible outliers in the clus-
tering process, outlier time series are separated and assigned to an artificial cluster,
the so-called noise cluster (see e.g. D’Urso et al. 2013b).

– Metric approach. Distance measures with robust properties are incorporated in the
objective function of the clustering method (see e.g. D’Urso et al. 2015).

– Trimmed approach. The clustering method is applied to the time series remaining
after a fixed fraction of outlier time series are removed (see e.g. D’Urso et al.
2017b; García-Escudero and Gordaliza 2005).

– Influenceweighting approach.Aweighting system is incorporated in the clustering
method for assigning objectively lowweights to outlier time series (see e.g. D’Urso
2005).

In this paper, our main concern is to develop robust clustering procedures to deal
with time series. It is assumed that the target is to group series according to the
underlying dependence structures, so that similarity between series is understood in
terms of similarity between generating processes. This is a very natural criterion,which
makes sense if for example one wishes to identify a few temporal behavior patterns
hidden behind long time series observed with a high amount of noise. According to the
clustering purpose in mind, two important points must be remarked. First, a time series
is considered as an outlier when it exhibits an atypical dynamic behavior, different
from the rest of identified prototypes. Second, a dissimilarity measure robust to the
generating mechanism is necessary in order to attain proper cluster solutions.

Concerning the first point, we assume that the atypical behavior of an outlier can
have two possible causes: (i) the outlier series has been generated from a process
different from the ones defining the clusters, or (ii) the outlier series comes from
one cluster but its behavior has been distorted during a short or long period of time.
Robustness against both types of outliers are studied. As regards the robust dissimilar-
ity measure, we propose to use the distance based on comparing sequences of sample
quantile autocovariances proposed by Lafuente-Rego and Vilar (2016a). Unlike other
extracted features, quantile autocovariances account for important dynamic features of
time series and arewell-defined for a broad class of processes, including non-linear and
heteroskedastic processes (Linton and Whang 2007; Lee and Rao 2012). The results
from numerical experiments reported in Lafuente-Rego and Vilar (2016a) showed the
high capability of this metric to discriminate between a broad range of dependence
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structures, thus illustrating its robustness to deviations from a particular generating
model.

Based on the prior arguments, we have considered the feature-based clustering
approach (the time series are represented by a set of sample quantile autocovariances)
and adopted the Partitioning Around Medoids (PAM) technique in a fuzzy framework
to introduce three new robust time series clustering models based on, respectively, the
metric, noise, and trimmed approaches.

The proposed models are robust extensions of the fuzzy C-medoid clustering
model based on quantile autocovariances (QAF-FCMdC model) introduced by Vilar
et al. (2018). Recent works have followed analogous robust approaches but using
other distances, such as the distance between autoregressive representations (D’Urso
et al. 2013c, 2015, 2017b) and model-based distances considering underlying het-
eroskedastic models (D’Urso et al. 2016). To gain insight on the behavior of the
proposed robust models, a comparison with the mentioned alternatives has been car-
ried out by means of an extensive simulation study including ARMA and GARCH
models and in the presence of outliers. Note that the alternative procedures take advan-
tage of being specifically constructed to discriminate between these kinds of processes,
and therefore our simulation results provide a realistic measure of the capability of the
procedures based on quantile autocovariances. In addition, the usefulness and effec-
tiveness of the proposed robust fuzzy models is also highlighted by considering two
study cases with real data.

The rest of the paper is organized as follows. In Sect. 2, the distance considering
sample quantile autocovariances is presented and the robust fuzzy clustering models
based on this metric are proposed. Specific advantages of the introduced clustering
methods are discussed in Sect. 3. Results from a simulation study supporting the good
performance of the proposed robust methods are reported in Sect. 4. Section 5 is
devoted to presenting two applications of the proposed models on real data involving
financial time series, and some concluding remarks are summarized in Sect. 6.

2 Fuzzy clustering based on the QAF-distance: robust approaches

In this section, the distance between time series based on quantile autocovariances
is formally defined, the fuzzy C-medoid clustering model considering this distance
is presented, and three robust versions considering the metric, noise, and trimmed
approaches are proposed.

2.1 Distance between time series based on quantile autocovariances
(QAF-distance)

Since we wish to perform clustering governed by similarity between generating
models, a dissimilarity measure aimed at capturing high-level dynamic structures
describing the global performance of the series is expected to report satisfactory results.
With this in mind, Lafuente-Rego and Vilar (2016a) propose to measure the distance
between two time series comparing their quantile autocovariance functions.
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Let {Xt ; t ∈ Z} be a strictly stationary process with marginal distribution func-
tion FX having continuous density fX . Denote by qα = F−1

X (α) = inf{q ∈ R :
FX (q) ≥ α}, for α ∈ [0, 1], the corresponding quantile function. Then, the quantile
autocovariance function of lag l for the process Xt is defined by

γl(τ, τ
′) = cov {I (Xt ≤ qτ ) , I (Xt+l ≤ qτ ′)} ,

where I (·) denotes the indicator function and (τ, τ ′) ∈ [0, 1]2 denotes an arbitrary cou-
ple of quantile levels. According to this definition, the functions γl(·, ·), l = 1, 2, . . .,
account for the serial dependence structure of the time series, reporting information on
serial features such as the existence of conditional heteroskedasticity or changes in con-
ditional shapes, which cannot be detected by other feature-based distances proposed in
the literature. The sensitivity of the quantile autocovariance functions to capture com-
plex dynamic features suggests that a dissimilarity comparing these functions should
exhibit high capability to discriminate between a broad range of generating processes.

Based on these considerations, Lafuente-Rego and Vilar (2016a) define the QAF-
distance (dQAF ) between a pair of observed times series as the squared Euclidean
distance between estimates of their quantile autocovariances over a common range
of selected lags and quantiles. Specifically, consider realizations of two time series
X(1)
t and X(2)

t of lengths T (1) and T (2), respectively. For prefixed ranges of L lags,
l1, . . . , lL , and r quantile levels, 0 < τ1 < . . . < τr < 1, each series X(u)

t , u = 1, 2,

is characterized by the vector ΓΓΓ (u) =
(
γ̂

(u)
li

(τ j , τ j ′)
)
, i = 1, . . . , L , j, j ′ = 1 . . . , r ,

whose elements γ̂ denote the sample quantile autocovariance based on the empirical
quantiles q̂τ obtained from the observed series, i.e.

γ̂
(u)
li

(τ j , τ j ′)= 1

T (u) − li

T (u)−li∑
t=1

I
(
X (u)
t ≤ q̂τ j

)
I
(
X (u)
t+li

≤ q̂τ j ′
)
−τ j τ j ′ , u = 1, 2.

(1)

Then, the QAF-distance is given by

dQAF

(
X(1)
t , X (2)

t

)
=
∥∥∥ΓΓΓ (1) − ΓΓΓ (2)

∥∥∥
2

2

=
L∑

i=1

r∑
j=1

r∑
j ′=1

(
γ̂

(1)
li

(τ j , τ j ′) − γ̂
(2)
li

(τ j , τ j ′)
)2

. (2)

For further details on the QAF-distance, including asymptotic considerations and
motivating examples for its use in time series clustering, readers are referred to Vilar
et al. (2018). It is worthy to notice that cross-dependency is not addressed in this
work. All the examined distances focus on comparing individual time evolution pat-
terns, omitting possible cross-sectional dependence between series. Distances based
on features such as correlation or cross-correlation might be helpful to deal with cross-
dependency, but this issue goes beyond the scope of this work.
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The rest of the section is devoted to describe four fuzzy clustering models for clas-
sifying time series based on the QAF-distance and the Partitioning Around Medoids
(PAM) procedure. The first one (QAF-FCMdC model) is timidly robust (Sect. 2.2),
while the other three proposed methods are highly robust to the presence of possible
outlier time series in the dataset subjected to clustering. As mentioned, these three
robust methods are based, respectively, on metric, noise and trimmed approaches, i.e.,
the QAF-based fuzzy C-medoids clustering with exponential distance (QAF-FCMdC-
Exp)method (Sect. 2.3), theQAF-based fuzzyC-medoids clusteringwith noise cluster
(QAF-FCMdC-NC)method (Sect. 2.4), and theQAF-based trimmed fuzzyC-medoids
clustering (QAF-TrFCMdC) method (Sect. 2.5).

Eachmethod overcomes the problems connected to the presence of outliers neutral-
izing in a different manner the effect of outliers in the clustering process. In detail, the
QAF-FCMdC-Exp method achieves its robustness with respect to outliers by inherit-
ing the robustness of the Exponential distance, the QAF-FCMdC-NCmethod achieves
its robustness with respect to outliers by introducing a particular cluster, called noise
cluster, represented by a fictitious prototype, called noise prototype, and the QAF-
TrFCMdC method achieves its robustness by trimming away a certain fraction of the
data.

Hereafter, SSS = {
XXX (1), . . . , XXX (n)

}
denotes the set of n observed time series subjected

to clustering, and ΓΓΓ = {
ΓΓΓ (1), . . . ,ΓΓΓ (n)

}
, ΓΓΓ (i) being the vector of quantile autoco-

variances estimated from the i th observed series XXX (i), for 1 ≤ i ≤ n. The specific lags
and quantile levels considered to construct ΓΓΓ (i) are established using an optimization
algorithm focused on selecting the combination of lags and pairs of quantile levels
which minimize the within-group variance and maximize the between-group variance
simultaneously (see Sect. 3 in Vilar et al. 2018). For i, j ∈ {1, . . . , n}, the distance
between XXX (i) and XXX ( j) is given by

∥∥ΓΓΓ (i) − ΓΓΓ ( j)
∥∥2
2, such as defined in (2).

2.2 QAF-based fuzzy C-medoids clustering (QAF-FCMdC) method

The QAF-based fuzzy C-medoids clustering (QAF-FCMdC) (Lafuente-Rego and

Vilar 2016a) finds the subset of size C of ΓΓΓ , Γ̃̃Γ̃Γ =
{
Γ̃̃Γ̃Γ (1), . . . , Γ̃̃Γ̃Γ (C)

}
, and the p × C

matrix of fuzzy coefficients Ω = (
ui,c

)
that lead to solve the minimization problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
Γ̃̃Γ̃Γ ,Ω

n∑
i=1

C∑
c=1

umic

∥∥∥ΓΓΓ (i) − Γ̃̃Γ̃Γ (c)
∥∥∥
2

2

subject to:
C∑
c=1

uic = 1 and uic ≥ 0,

(3)

where uic ∈ [0, 1] represents the fuzzy membership degree of the i th time series in
the cth cluster, Γ̃̃Γ̃Γ (c) is the vector of quantile autocovariances associated to the medoid
time series for the cluster c, and m > 1 is a weighting exponent that controls the
fuzziness of the partition.
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Algorithm 1 QAF-FCMdC algorithm
1: Fix C , m and max.iter
2: Set i ter = 0
3: Pick the initial medoids Γ̃ΓΓ =

{
Γ̃ΓΓ

(1)
, . . . , Γ̃ΓΓ

(C)
}

4: repeat
5: Set Γ̃ΓΓ OLD = Γ̃ΓΓ {Store the current medoids}
6: Compute uic , i = 1, . . . , n, c = 1, . . . ,C , using (4)
7: For each c ∈ {1, . . . ,C}, determine the index jc ∈ {1, . . . , n} satisfying:

jc = argmin1≤ j≤n

n∑
i=1

umic

∥∥∥ΓΓΓ (i) − ΓΓΓ ( j)
∥∥∥2

8: return Γ̃ΓΓ
(c) = ΓΓΓ ( jc), for c = 1, . . . ,C {Update the medoids}

9: i ter ← i ter + 1
10: until Γ̃ΓΓ OLD = Γ̃ΓΓ or i ter = max .i ter

The constraints on uic are standard requirements in fuzzy clustering. In particular,
that the sum of themembership degrees for each series equals 1 implies that all of them
contribute with the same weight to the clustering process. Parameterm determines the
level of fuzziness introduced in the clustering procedure. In the naive case m = 1, we
have uic = 1 if the i th series is the medoid for the cluster c and 0 otherwise so that the
crisp version of the procedure is obtained. As the value ofm increases, the boundaries
between clusters become softer and therefore the classification is fuzzier.

In a nutshell, the aim of the QAF-FCMdC model is to determine a fuzzy partition
into C clusters such that the QAF-distance between the clusters and their prototypes
is minimized. The clustering quality strongly depends on the capability of the QAF-
metric to identify different dependence structures, but the fuzzy approach means that
the non-stochastic uncertainty inherent to the assignment of series to clusters is incor-
porated to the procedure by means of the membership degrees.

An iterative algorithm that alternately optimizes the membership degrees and the
medoids is used to solve the optimization problem in (3). First, themembership degrees
are optimized for a set of fixed medoids. The iterative solutions for the membership
degrees take the form (Höppner 1999):

uic =

⎡
⎢⎢⎣

C∑
c′=1

⎛
⎜⎝

∥∥∥ΓΓΓ (i) − Γ̃ΓΓ
(c)
∥∥∥
2

∥∥∥ΓΓΓ (i) − Γ̃ΓΓ
(c′)

∥∥∥
2

⎞
⎟⎠

1
m−1

⎤
⎥⎥⎦

−1

, for i = 1, . . . , n and c = 1, . . . ,C .

(4)

Then, based on the membership degrees obtained from (4), theC series minimizing
(3) are selected as new medoids. This two-step procedure is iterated until there is no
change in the medoids or a maximum number of iterations is achieved.

The QAF-based fuzzy C-medoids clustering algorithm (QAF-FCMdC) is imple-
mented as outlined in Algorithm 1.

Notice that the PAM-based fuzzy clustering represents a robustification of the fuzzy
C-means clustering. Furthermore, robustness is here strengthened by the use of the

123



B. Lafuente-Rego et al.

QAF-distance since γ̂
(u)
li

is a robust estimate. Anyway, it is known that the PAM-
based fuzzy approach only provides a “timid robustification” (García-Escudero and
Gordaliza 1999; García-Escudero et al. 2010).

2.3 QAF-based exponential fuzzy C-medoids clustering (QAF-FCMdC-Exp)

The QAF-based exponential fuzzy C-medoids clustering model (QAF-FCMdC-Exp)
considers a new objective function given by:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
Γ̃̃Γ̃Γ ,Ω

n∑
i=1

C∑
c=1

umic

[
1 − exp

{
−β

∥∥∥ΓΓΓ (i) − Γ̃̃Γ̃Γ (c)
∥∥∥
2

2

}]

subject to:
C∑
c=1

uic = 1 and uic ≥ 0,

(5)

where β is a positive constant.
FollowingWu andYang (2002), the local optimal solution for the objective function

(5) is

uic =

⎛
⎜⎜⎝

C∑
c′=1

⎡
⎣ 1 − exp

{
−β

∥∥ΓΓΓ (i) − Γ̃̃Γ̃Γ (c)
∥∥2
2

}

1 − exp
{
−β

∥∥ΓΓΓ (i) − Γ̃̃Γ̃Γ (c′)
∥∥2
2

}
⎤
⎦

1
m−1

⎞
⎟⎟⎠

−1

. (6)

As remarked byWu andYang (2002), the fuzzy clustering based on the Exponential
distance is more robust than the fuzzy clustering based on the Euclidean distance. In
fact, Exponential distance gives different weights to each data point, according to
whether a data point is noisy or not. In particular, the Exponential distance assigns
small weights to outliers and larger weights to those data points laying close to the
bulk of the dataset (for more details see Wu and Yang 2002; D’Urso et al. 2015).

The value of β, determined as the inverse of the variability in the data (the more
variability in the data, the less the value of β), appropriately affects the membership
degrees (6) in terms of robustness to outliers. Thus, parameter β can be selected in the
following manner:

β =
(
1

n

n∑
i=1

∥∥∥ΓΓΓ (i) − Γ̃ΓΓ
(k)
∥∥∥
2

2

)−1

, (7)

where Γ̃ΓΓ
(k)

corresponds to the index k satisfying k = argmin1≤i ′≤n
∑n

i ′′=1∥∥∥ΓΓΓ (i ′′) − ΓΓΓ (i ′)
∥∥∥
2

2
. See D’Urso et al. (2015) for more details.

In essence, theQAF-FCMdC-Expmodel is aimed to smooth the effect of the anoma-
lous series by adjusting their influence with proper weights. As result, the membership
degrees of the outliers are similarly distributed across the clusters but the true clustering
structure is not seriously affected by their presence.
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Algorithm 2 QAF-based Exponential Fuzzy C-Medoids Clustering (QAF-FCMdC-
Exp)
1: Fix C , m and max.iter
2: Compute β using (7)
3: Set i ter = 0
4: Pick the initial medoids Γ̃ΓΓ =

{
Γ̃ΓΓ

(1)
, . . . , Γ̃ΓΓ

(C)
}

5: repeat
6: Set Γ̃ΓΓ OLD = Γ̃ΓΓ {Store the current medoids}
7: Compute uic , i = 1, . . . , n, c = 1, . . . ,C , using (6)
8: For each c ∈ {1, . . . ,C}, determine the index jc ∈ {1, . . . , n} satisfying:

jc = argmin1≤ j≤n

n∑
i=1

umic

[
1 − exp

{
−β

∥∥∥ΓΓΓ (i) − ΓΓΓ ( j)
∥∥∥2
}]

9: return Γ̃ΓΓ
(c) = ΓΓΓ ( jc), for c = 1, . . . ,C {Update the medoids}

10: i ter ← i ter + 1
11: until Γ̃ΓΓ OLD = Γ̃ΓΓ or i ter = max .i ter

The QAF-based exponential Fuzzy C-medoids clustering model (QAF-FCMdC-
Exp) is implemented as outlined in Algorithm 2.

2.4 QAF-based fuzzy C-medoids clustering with noise cluster (QAF-FCMdC-NC)

The QAF-based fuzzy C-medoids clustering with noise cluster (QAF-FCMdC-NC)
can be formalized as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
Γ̃̃Γ̃Γ ,Ω

n∑
i=1

C−1∑
c=1

umic

∥∥∥ΓΓΓ (i) − Γ̃̃Γ̃Γ (c)
∥∥∥
2

2
+

n∑
i=1

δ2

(
1 −

C−1∑
c=1

uic

)m

subject to:
C∑
c=1

uic = 1 and uic ≥ 0,

(8)

where δ is the noise distance, to be set in advance, that plays the role of increasing
(decreasing), for high (low) values of δ, the emphasis of the “noise component” in the
minimization of the objective function in (8).

Notice that the QAF-FCMdC-NC method introduces an artificial cluster, the noise
cluster, whose role is to localize the outliers and place them in a single auxiliary class.
The noise cluster is represented by a fictitious prototype time series, “noise prototype
time series”, that has a constant (noise) distance from every time series. A time series
belongs to a real cluster only if its distance from a medoid time series is lower than
the noise distance; otherwise, the time series belongs to the noise cluster. We remark
that the prototypes of the real clusters are observed time series, while the prototype of
the noise cluster is fictitious.

This way, themethod providesC clusters, but only (C−1) are “legitimate” clusters,
with the extra cluster serving as the noise cluster. The difference ui∗ = 1−∑C−1

c=1 uic
in the second term of the objective function in (8) expresses the membership degree
of the i th time series to the noise cluster, for i = 1, . . . , n. So, by definition, the
usual constraint on the membership degrees for the real clusters is here relaxed to
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∑C−1
c=1 uic < 1, which allows noise time series to have small membership values in

good clusters.
The objective function in (8) can be minimized in relation to the membership

degrees in a similar manner to the noise clustering method suggested by Dave (1991),
obtaining:

uic =
⎛
⎜⎝

C∑
c′=1

[ ∥∥ΓΓΓ (i) − Γ̃̃Γ̃Γ (c)
∥∥2
2∥∥ΓΓΓ (i) − Γ̃̃Γ̃Γ (c′)
∥∥2
2

] 1
m−1

+
[∥∥ΓΓΓ (i) − Γ̃̃Γ̃Γ (c)

∥∥2
2

δ2

] 1
m−1

⎞
⎟⎠

−1

. (9)

Overall, the success of the fuzzy clustering model with noise cluster depends on the
appropriate choice of the noise distance δ. If it is too large, the fuzzy clustering model
with noise cluster degenerates to the non-robust version of the model and outliers are
forced to belong to real clusters; vice versa, if δ is too small, a lot of objects can be
considered as noise andmisplaced into the noise cluster (Cimino et al. 2005). Although
some heuristic solutions to estimate the optimal value of δ have been suggested in the
literature, the determination of a suitable value for this parameter is still an open
problem.

Davé and Sen (2002) suggest that the value of the distance noise δ should be
calculated by considering the dataset statistics, relating its determination to the concept
of “scale” in robust statistics (Davé and Krishnapuram 1997). As remarked by Cimino
et al. (2005), “unfortunately, the proper estimation of [the] scale is not a trivial task
(Davé and Sen 1997) and requires some knowledge of the data, which cannot always
be supposed in real clustering applications”.

In the initial noise clustering algorithm (Dave 1991), the value of δ was set to:

δ2 = λ
1

I (C − 1)

I∑
i=1

C−1∑
c=1

∥∥∥ΓΓΓ (i) − Γ̃̃Γ̃Γ (c)
∥∥∥
2

2
, (10)

where λ is a scale multiplier to be selected depending on the nature of data.
To obtain the most suitable value of λ (and hence of δ), Cimino et al. (2005)

suggest to execute the fuzzy clustering with noise cluster with decreasing values of λ

and analyze the distribution of the percentage of objects assigned to the noise cluster.
The distribution has an abrupt change of slope (elbow) when the value of the noise
distance is so small that objects naturally belonging to real clusters are clustered into
the noise cluster. In correspondence to the elbow it is possible to determine the optimal
noise distance. The authors approximate the distribution of percentages with a Pareto
distribution.

The steps of the algorithmofQAF-FCMdC-NCmethod are outlined inAlgorithm3.

2.5 QAF-based trimmed fuzzy C-medoids clustering (QAF-TrFCMdC)

The QAF-based trimmed fuzzy C-medoids clustering (QAF-TrFCMdC) achieves its
robustness with respect to outliers by trimming away a certain fraction of the data

123



Robust fuzzy clustering based on quantile autocovariances

Algorithm 3 QAF-based Fuzzy C-Medoids Clustering with Noise Cluster (QAF-
FCMdC-NC)
1: Fix C − 1, m and max.iter
2: Set i ter = 0
3: Pick the initial medoids Γ̃ΓΓ =

{
Γ̃ΓΓ

(1)
, . . . , Γ̃ΓΓ

(C−1)
}

4: repeat
5: Set Γ̃ΓΓ OLD = Γ̃ΓΓ {Store the current medoids}
6: Compute δ using (10).
7: Compute uic , i = 1, . . . , n, c = 1, . . . ,C , using (9)
8: For each c ∈ {1, . . . ,C − 1}, determine the index jc ∈ {1, . . . n} satisfying:

jc = argmin1≤ j≤n

n∑
i=1

umic

∥∥∥ΓΓΓ (i) − Γ̃̃Γ̃Γ ( j)
∥∥∥2

9: return Γ̃ΓΓ
(c) = ΓΓΓ ( jc), for c = 1, . . . ,C − 1 {Update the medoids}

10: i ter ← i ter + 1
11: until Γ̃ΓΓ OLD = Γ̃ΓΓ or i ter = max .i ter

and requires the specification of the “trimming ratio”, i.e. the fraction α of the data to
be trimmed. Then, all non-trimmed time series are classified according to the QAF-
FCMdC model.

Given the trimming ratio α, the QAF-TrFCMdC method can be formalized as the
following minimization problem:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

minYYY ,Ω

H(α)∑
i=1

C∑
c=1

umic

∥∥∥ΓΓΓ (i) − Γ̃ΓΓ
(c)
∥∥∥
2

subject to:
C∑
c=1

uic = 1 and uic ≥ 0.

(11)

where YYY ranges on all the subsets of ΓΓΓ of size H(α) = [n(1 − α)]. Notice that if
α = 0, then none of the series is trimmed away from the process and the standard
QAF-FCMdC model is obtained.

Just as in the QAF-FCMdC model, the local optimal solution for the estimation
of the membership degrees uic is given by (4), with i ranging in the subset of the
non-trimmed series and c = 1, . . . ,C . By replacing the expression of the uic in the
objective function (11), we have

H(α)∑
i=1

[
C∑
c=1

(∥∥∥ΓΓΓ (i) − Γ̃̃Γ̃Γ (c)
∥∥∥
2

2

)1/(1−m)
]1−m

=
H(α)∑
i=1

hi , (12)

where

hi =
[

C∑
c=1

(∥∥∥ΓΓΓ (i) − Γ̃̃Γ̃Γ (c)
∥∥∥
2

2

)1/(1−m)
]1−m

. (13)
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Algorithm 4 QAF-based Trimmed Fuzzy C-Medoids Clustering (QAF-TrFCMdC)
1: Fix C , m, α and max.iter
2: Set i ter = 0
3: Pick the initial medoids Γ̃ΓΓ =

{
Γ̃ΓΓ

(1)
, . . . , Γ̃ΓΓ

(C)
}

4: repeat
5: Identify the subset YYY formed by the H(α) = [n(1 − α)] series closest to the

medoids, i.e. minimizing
∑H(α)

i=1 hi :n
6: Set Γ̃ΓΓ OLD = Γ̃ΓΓ {Store the current medoids}
7: Compute uic , i = 1, . . . , n, c = 1, . . . ,C , using (4)
8: For each c ∈ {1, . . . ,C}, determine the index jc ∈ {1, . . . , n} satisfying:

jc = argmin1≤ j≤n

H(α)∑
i=1

umic

∥∥∥ΓΓΓ (i) − ΓΓΓ ( j)
∥∥∥2

9: return Γ̃ΓΓ
(c) = ΓΓΓ ( jc), for c = 1, . . . ,C {Update the medoids}

10: i ter ← i ter + 1
11: until Γ̃ΓΓ OLD = Γ̃ΓΓ or i ter = max .i ter

Therefore, the objective function for the QAF-TrFCMdC model takes the form

H(α)∑
i=1

hi :n, (14)

where hi :n represents the i th item when hi , i = 1, . . . , n, are arranged in ascending
order.

Notice that, following Krishnapuram et al. (2001), the objective function is defined
by considering the Least TrimmedSquares approach. The value of H(α) < n is chosen
depending on how many series we would like to eliminate in the clustering process.
This allows the clustering procedure to ignore outlier time series while minimizing
the objective function. For instance, when H(α) < n/2, 50% of the time series are not
taken into account in the clustering process, and the objective function is minimized
when we pick C medoids in such a way that the sum of harmonic mean (squared)
Euclidean distance of 50% of the time series is as small as possible (Krishnapuram
et al. 1999, 2001). For further details, see D’Urso and DeGiovanni (2014) and D’Urso
et al. (2017b).

The QAF-based trimmed fuzzy C-medoids clustering (QAF-TrFCMdC) is imple-
mented as outlined in Algorithm 4.

2.6 Some general remarks

In this sectionwe enumerate somegeneral remarks connected to the clusteringmethods
previously described.

Remark 1 (Local optima) The different algorithms, namely Algorithms 1, 2, 3, and 4,
fall in the category of Alternating Cluster Estimation paradigm (Runkler and Bezdek
1999), and it is not guaranteed that the global minimum is reached. Thus, more than
one random start is suggested to obtain a stable optimal solution.
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Remark 2 (Selection of m) The fuzziness parameter m plays a relevant role in fuzzy
clustering. It should be chosen in advance. Although 1 < m < ∞, values too close
to 1 will result in a partition with all membership close to 0 or 1. Excessively large
values will lead to disproportionate overlap with all memberships close to 1/C (Wedel
and Kamakura 1998). Consequently, neither of these types of m is recommended
(Arabie et al. 1981). Although there have been some empirical heuristic procedures to
determine the value of m (McBratney and Moore 1985; Wedel and Kamakura 1998;
D’Urso 2015), there seems to exist no theoretically justifiable manner of selecting m.
Usually,m = 2 is themost popular choice in fuzzy clustering (Bezdek 1981; Hruschka
1986; Wedel and Kamakura 1998; Yang and Wu 2004; Hwang et al. 2007). Kamdar
and Joshi (2000) remarked that “since the medoids always have a membership of 1
in the cluster, raising its membership to the power m has no effect. Thus, when m is
high, the mobility of the medoids may be lost [...]. For this reason, a value between 1
and 1.5 for m is recommended”. Based on these arguments, the values 1.3, 1.5 and 2
have been considered for m in our simulation study and applications to real data sets.
For a discussion and detailed list of references on the choice of m see D’Urso (2015).

Remark 3 (Cluster validation) For selecting the optimal number of clusters we adopt
the cluster validity criteria described in Sect. 5, namely the criteria proposed by Xie
and Beni (1991) and Kwon (1998).

Remark 4 (Dissimilarity measure) Notice that following the literature on time series
clustering based on PAMapproach (e.g. D’Urso et al. 2015, 2016, 2017b), the squared
Euclidean distance was considered in the QAF-based fuzzy clustering methods (3),
(5), (8) and (11). More in general, in a fuzzy framework, we could consider any kind
of dissimilarity measure r

(
ΓΓΓ (i), Γ̃̃Γ̃Γ (c)

)
keeping the properties of the PAM approach

(Krishnapuram et al. 1999, 2001).

3 Advantages of the proposed robust time series clusteringmethods

The proposed clustering methods inherit all the advantages of the theoretical and
methodological approaches adopted in the clustering process, namely the fuzzy
paradigm, the PartitioningAroundMedoids (PAM) technique, theQAF-based distance
and the robust clustering. In this section, the appealing properties of these approaches
are briefly outlined in order to motivate our approach.

3.1 Advantages connected to fuzzy paradigm

By adopting the fuzzy approach, our three clustering proposals consider a conceptually
suitable framework to deal with robustness. Unlike the hard clustering, the fuzzy
approach provides valuable insight into the association level of the data objects to
each cluster, which is particularly useful when a robust classification against outliers
is intended. General advantages connected to the fuzzy approach are given below
(Hwang et al. 2007).
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1. The fuzzy clustering is attractive because it is easily compatible with distribution-
free methods.

2. Due to the difficulty of identifying a clear boundary between clusters in real
applications, fuzzy clustering appears more attractive than the hard (non-fuzzy)
clustering methods (McBratney and Moore 1985; Wedel and Kamakura 1998).

3. The fuzzy clustering is computationally efficient (McBratney and Moore 1985;
Heiser and Groenen 1997).

4. The memberships indicate whether there is a second-best cluster almost as good as
the best cluster, a scenario which hard clustering methods cannot uncover (Everitt
et al. 2001).

In addition, we have the following specific advantages connected to the clustering of
time series (D’Urso 2005; Coppi et al. 2006):

5. Good sensitivity in capturing the dynamic characteristics of the time series. In
many cases, since the evolutive behaviors of the time series are switching, the hard
clustering methods are likely to miss this underlying structure. The switches can
be treated by means of a fuzzy approach.

6. Good adaptivity in defining the prototype time series. This property is better appre-
ciated when the observed time series do not differ too much from each other. In
this case, the fuzzy definition of the clusters allows us to single out underlying
structures, if these are likely to exist in the given set of time series.

3.2 Advantages connected to partitioning aroundmedoids (PAM) approach

Adopting thePAMapproach for clustering time series in a fuzzymanner, the prototypes
of each cluster, henceforth medoid time series, are time series actually observed and
not “virtual” time series like the “centroids” derived with a fuzzy c-means (Bezdek
1981). Overall, having non-fictitious representative series availablemakes interpreting
the obtained clusters easier, which is often very useful in applications. In fact, “inmany
clustering problems one is particularly interested in a characterization of the clusters
by means of typical or representative objects [time series]. These are objects [time
series] that represent the various structural aspects of the set of objects [time series]
being investigated. There can be many reasons for searching for representative objects
[time series]. Not only can these objects [time series] provide a characterization of the
clusters, but they can often be used for further work or research, especially when it is
more economical or convenient to use a small set of k objects [C time series in our
case] instead of the large set one started off with” (Kaufman and Rousseeuw 2009).

3.3 Advantages connected to feature-based clustering approach and to the use of
quantile autocovariances

As the real interest of clustering relies on grouping series with similar dependence
structures, the feature- and the model-based approaches are expected to produce good
results. The latter require specifying the underlyingmodels and then performing proper
fits, which may be restrictive and computationally intensive. By contrast, the feature-
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based approach is model-free since it is aimed at measuring a conventional distance
between extracted low-dimensional feature vectors. No restrictive assumptions on
the generating processes are imposed, although general regularity conditions (e.g.
stationarity) are usually required. As result of it, the feature-based approach provides
greater flexibility to treat with a range of generating processes. Also, working with
feature vectors involves a substantial dimension reduction, which reports additional
advantages such as applicability to unbalanced time series and low computational cost.
Indeed, these properties are particularly attractive when robustness against atypical
dynamic structures is required.

The quantile autocovariances were selected as extracted features due to their enor-
mous potential to discriminate between many kinds of processes. By definition,
quantile autocovariances take advantage of the robustness inherent to quantile meth-
ods, and hence they encompass a lot of appealing properties, including robustness to
the non-existence of moments, treating properly with heavy tailed marginal distribu-
tions, detecting nonlinear features and changes in conditional shapes, among others
(Lee and Rao 2012; Hagemann 2013; Li 2014; Dette et al. 2015; Kley et al. 2016).

3.4 Advantages connected to robust clustering approach

Unlike the classic fuzzy approach, the three proposed time series clustering methods
consider different criteria specifically designed to manage the presence of outlier
series. In all cases, the aim is to alleviate the negative effects of outliers in the clustering
process. Themethod based on themetric approach achieves its robustness with respect
to outliers by taking into account a robust metric; the method based on the noise
approach achieves its robustness with respect to outliers by introducing a noise cluster
represented by a noise prototype; the method based on the trimmed approach achieves
its robustness with respect to outliers by trimming away a certain fraction of time
series.

4 Simulation study

This section reports some results from a broad simulation study conducted to evaluate
the clustering performance and accuracy of the proposed methods compared with
standard procedures and other robustmodels based on differentmetrics. The numerical
experiments have been conducted to examine two kinds of robustness. In Sect. 4.1,
we focus on robustness against deviations from the generating models, i.e. outliers are
time series generated from processes different from the ones defining the clusters. In
Sect. 4.2, we pose a much more complex scenario where outliers are series generated
from one cluster but distorted during a short or long period of time. As emphasized in
Sect. 2, all the simulated scenarios involve independent time series.

4.1 Assessing robustness to the generatingmodels

To gain insight into robustness to the generating models, simulation scenarios consid-
ering different time series setups were recreated, namely scenarios involving linear,
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non-linear and conditionally heteroskedastic models. At each of these setups, we start
with a base scenario formed by two well-separated clusters C1 and C2 including four
independent time series each, and then the base scenario is successively contaminated
with the presence of one and two outlier time series (O1 andO2). The specific scenarios
and the generation schemes for each scenario are described below.

Clustering of linear models

L.1 Four time series simulated from each of the AR(1) model Xt = 0.5Xt−1 + εt
(cluster C1) and the MA(1) model Xt = εt − 0.5εt−1 (cluster C2).

L.2 The base scenario L.1 plus one outlier time seriesO1 simulated from a Gaussian
white noise process.

L.3 The scenario L.2 and an additional outlier time series O2 simulated from the
ARMA(1,1) model Xt = −0.9Xt−1 + εt + 0.3εt−1.

Clustering of non-linear models

NL.1 Four time series simulated from an exponential autoregressive model of the
form

Xt =
(
0.3 − 10 exp(−X2

t−1)
)
Xt−1 + εt (cluster C1),

and four time series simulated from the bilinear model given by

Xt = 0.6Xt−1 − 0.5εt−1Xt−1 + εt (cluster C2).

NL.2 The base scenario NL.1 plus one outlier time series O1, which consisted of
one realization from the non-linear autoregressive model given by

Xt = 0.3|Xt−1|(3 + |Xt−1|)−1 + εt .

NL.3 The scenario NL.2 plus an additional outlier time series O2 generated from
the non-linear moving average model given by

Xt = −0.1εt−1 + 0.3ε2t−1 + εt .

Clustering of conditional heteroskedastic models

CH.1 A base scenario formed by two clusters with four time series each generated
from ARCH processes Xt = σtεt , where σ 2

t = 0.1+φX2
t−1 with φ = 0.05 for

cluster C1 and φ = 0.95 for cluster C2.
CH.2 The base scenario CH.1 plus one outlier time series O1 simulated from an

exponential GARCH model where the conditional variance is modeled by

ln(σ 2
t ) = 0.1 + 0.3εt−1 + 0.7

[|εt−1| − E(|εt−1|)
]
.

CH.3 The scenario CH.2 plus a second outlier time seriesO2 simulated from a GJR-
GARCH model of the form

σ 2
t = 0.1 + [

0.1 + 0.6 I (Xt−1 < 0)
]
X2
t−1 + 0.1σ 2

t−1.

123



Robust fuzzy clustering based on quantile autocovariances

In all cases, the error process εt consisted of iid variables following a zero-mean
Gaussian distribution with unit variance. All the selected models are strictly station-
ary. In general, it is not simple to check whether a non-linear time series is strictly
stationary. The common practice is to represent the series as a vector-valued Markov
chain and to establish the geometrical ergodicity of the induced Markov chain. Then,
strict stationarity follows from the fact that an ergodic Markov chain is strictly station-
ary (Theorem 2.2 in Fan and Yao 2005). Considering mainly this approach, several
authors have established constraints on the coefficients of different non-linear models
under which a stationary solution is reached. In particular, results by Amendola and
Francq (2009) for EXPAR(1) models, Pham and Tran (1981) for bilinear models, An
and Huang (1996) for non-linear autoregressive models, Chen et al. (2011) for GJR-
GARCHmodels, and Fan and Yao (2005) for ARCH, GARCH and EGARCHmodels,
ensure stationarity for the specific models forming our simulation scenarios.

To bring insight into the shapes of the true quantile autocovariance functions
for the examined models, plots of large sample approximations to these func-
tions were obtained. Specifically, one hundred series of size 1000 were generated
from each model and the corresponding sample quantile autocovariances aver-
aged over the 100 replicates. For each τ1 ∈ {0.1, 0.5, 0.9}, plots of the points{
γ̂1 (τ1, τ2) , τ2 = 0.05 i, for i = 1, . . . , 19

}
joined by lines are shown in Fig. 1.

Plots in Fig. 1 illustrate the capability of the quantile autocovariances to discriminate
between the underlying processes. For the linear and non-linear scenarios (Fig. 1a,
b, respectively), the theoretical patterns characterizing clusters and outliers exhibit
very different curves of quantile autocovariances. As far as the heteroskedastic sce-
nario (Fig. 1c), discrimination between clusters and outliers is also evident if a joint
assessment of the plots over the three quantile levels is carried out.

Note that two different lengths of series were considered, namely T = 150 and
T = 250 for the linear and non-linear models, and T = 1500 and T = 2500 for
the case of conditionally heteroskedastic series. Larger realizations are necessary with
heteroskedastic models in order to estimate the quantile autocovariances with higher
accuracy. Indeed, this limitation also affects other metrics considered in this setup.
For instance, estimates for the ARCH/GARCH coefficients are required to measure
discrepancy between fitted models, and poor clustering results are obtained if small
sample sizes are used due to the high variability of the estimated ARCH/GARCH
parameters (Aielli and Caporin 2013).

Another graphical way to visualize both the spatial structure of the generating
models and the separability between groups is to perform a metric multidimensional
scaling (MDS) based on the pairwise QAF-dissimilarity matrix. For each scenario, 50
and 20 time series were generated from each of the models defining the clusters and
the outliers, respectively. The reason to generate 40 outliers was simply to have avail-
able a reasonable number of realizations from the underlying process, which enables
us to examine how they are spread out across the MDS plot. The two-dimensional
scaling based on these realizations was carried out and the corresponding coordinate
matrices are displayed in Fig. 2. The stress measures were also calculated to assess the
quality of the embeddings, obtaining 2.45% (linear), 3.37% (non-linear) and 13.95%
(heteroskedastic) for the small sample sizes, and 2.00% (linear), 2.65% (non-linear)
and 8.74% (heteroskedastic) for the large sample sizes. Therefore, regardless of the
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Fig. 1 Large sample approximation of the quantile autocovariances of lag one, γ̂1 (τ1, τ2), for the models
in the linear (a), non-linear (b) and heteroskedastic (c) scenarios. (Color figure online)

sample size, the results are below 5% with linear and non-linear processes, which is
considered as an excellent goodness of fit (Dugard et al. 2010, p. 275). In the het-
eroskedastic case, higher values are generated but always below 15%, the threshold
above which the MDS representation is unsatisfactory according to different authors.

The MDS coordinates in Fig. 2 show that the series forming the clusters C1 (red)
and C2 (black) are grouped into two compact and well-separated clusters, while the
outlier time series O1 (green) and O2 (blue) tend to be placed at an intermediate
location between the clusters, except for the linear scenario where the second outlier,
O2, is situated closer to cluster C2. Note that the non-linear models selected to generate
outlier realizations produce overlapping clusters, while the linear and heteroskedastic
models lead to separated groups, although also reasonably equidistant from C1 and C2
in the heteroskedastic scenarios. In short, Fig. 2 reveals that the QAF metric should
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Fig. 2 Two-dimensional scaling configurations based on the QAF distance from the simulated linear (a),
non-linear (b) and heteroskedastic (c) models. Three quantiles of levels 0.1, 0.5 and 0.9 and only the lag 1
were considered to compute the QAF distance
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provide a useful approach to discriminate between the considered clusters and to detect
the outlier time series. As expected, by increasing the length of the time series the gap
between groups is more pronounced and, therefore, it will be easier to discriminate
between them.

To assess the effectiveness of the proposed approaches in presence of outliers,
each simulated dataset was subjected to clustering using the QAF-based fuzzy C-
medoids clusteringmodel (QAF-FCMdC) and the robust versions QAF-FCMdC-Exp,
QAF-FCMdC-NC and QAF-TrFCMdC. The performance of the QAF metric was
also examined by comparison with fuzzy C-medoids algorithms using other distances
between fitted models. For the scenarios including ARMA models, we consider the
AR distance introduced by Piccolo (1990), which computes the Euclidean distance
between estimated coefficients of truncated AR(∞) representations. This way, the
fuzzy C-medoids clusteringmodel based on theARmetric, AR-FCMdC (D’Urso et al.
2013c), and the corresponding robust versions AR-FCMdC-Exp (D’Urso et al. 2015),
AR-FCMdC-NC (D’Urso et al. 2013b) and AR-TrFCMdC (D’Urso et al. 2017b)
were carried out in Scenarios L.1, L.2 and L.3. Analogously, a metric based on the
autoregressive representations of GARCH(p,q) processes was employed with the het-
eroskedastic models. More precisely, a GARCH(p,q) process satisfies Xt = σtεt ,
where the innovations εt are iid variables and the squared conditional variance σ 2

t
follows an ARMA(p,q) model with parameters

(
δ, α1, . . . , αp, β1, . . . , βq

)
. It can be

shown that

X2
t = δ +

p∑
i=1

(αi + βi ) X
2
t−i +

q∑
j=1

β jηt− j + ηt , (15)

with p = max(p, q), αi = 0 for i > p, βi = 0 for i > q, and ηt = X2
t − σ 2

t a
zero-mean error uncorrelated with the past. Equation (15) establishes anARMA(p,q)
representation for X2

t , which can be approximated by anAR(∞) structure with autore-
gressive coefficients πG

u given by

πG
u = (αu + βu) +

min(q,u)∑
j=1

β jπ
G
u− j (16)

where πG
0 = −1, αu = 0 for u > p, and βu = 0 for u > q. At this point, the

GARCH distance is defined by the Euclidean distance between estimators of these
new autoregressive coefficients. Based on the GARCH distance, the counterpart fuzzy
algorithms GARCH-FCMdC (D’Urso et al. 2013c), GARCH-FCMdC-Exp, GARCH-
FCMdC-NC and GARCH-TrFCMdC were carried out in the Scenarios CH.1, CH.2
and CH.3. In sum, we examined the performance of competitors using tailor-made
distances for the lineal and heteroskedastic scenarios. Unlike the QAF-based models,
it is expected that these model-based approaches get worse in case of model misspec-
ification. However, their use in proper scenarios provide us valuable insight into the
robustness of the QAF distance against the generating processes.
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According to our clustering aim, the performance and accuracy of each algorithm
is evaluated in terms of the percentage of times in which the series generated from the
same process are grouped together in the same cluster, with membership degrees close
to one for that cluster. Robustness in presence of outliers is examined by analysing
the effect of the anomalous series on the membership degrees in the final partition,
and also by reporting the percentage of times that the outliers are identified when the
noise cluster and the trimmed models are used.

The number of clusters was set correctly at C = 2. For each of the nine scenarios,
10 sets of 100 simulations were carried out and subjected to fuzzy clustering with
the described algorithms. For each of these 100 trials, the percentage of times that all
the series were correctly classified was computed, and then the average percentage of
correct classification over the 10 sets was taken as measure of clustering accuracy of
the algorithm.

Due to the fact that we are dealing with fuzzy models, it was necessary to specify
cut-off values to decide when a specific realization was assigned to a particular cluster.
In the baseline scenarios, with no anomalous series, the i th time series is assigned to
the cth cluster if its fuzzy membership degree is uic > 0.6. In the scenarios with data
contaminated with outliers, the anomalous series were identified following different
criteria according to the employedmodel. By using the noise cluster models, an outlier
is correctly classified when it is assigned to the noise cluster. Here the model actually
manages three clusters so that we decided to place an outlier within the noise cluster
if uicNC > 0.5, with cNC denoting the index of the noise cluster. Our results revealed
that a smaller threshold would even provide better results. By performing the standard
fuzzy algorithms and the robust versions based on the exponential metric, we assume
that the algorithm correctly handles the outliers when their membership degrees are
reasonably similar for the two clusters, specifically both of them belonging to the
(0.3, 0.7) interval. Lastly, in the case of the trimmed fuzzy, we checked whether the
true outliers are trimmed units in the process. It is worthy remarking that these criteria
and the selected cut-off values are compatible with the recommendations suggested
in the literature (see e.g. D’Urso et al. 2013b, 2015).

In our experiments, three quantiles of levels 0.1, 0.5 and 0.9 and only one lag
(L = 1, with l1 = 1) were considered to compute the fuzzy algorithms based on the
QAF dissimilarity. Certainly, increasing the number of quantiles does not mean an
important cost in terms of computing time due to the computational efficiency of the
QAFmetric. Nevertheless, it was observed that three quantiles were enough to provide
satisfactory results. To compute the AR and the GARCH distances, the order of the
truncated AR(∞) approximations was determined by the AIC.

In all scenarios, we perform the fuzzy clustering models for several values of the
fuzziness parameter m, which has a great influence in the clustering results. While
small values of m, close to one, result in partitions with a low level of fuzziness that
is with membership degrees close to 1 and 0, large values of m increase the amount
of overlapping and the membership degrees are more homogeneously spread across
the clusters. Using m = 1.5 or m = 2 are two popular choices in the literature but, to
our knowledge, a theoretically justifiable optimality criterion to select m has not been
provided yet. In our experience, high values of m, let us say m ≥ 2, result in a poor
clustering behavior when dealing with the noise cluster based algorithms (this point
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is discussed later). Based on the previous considerations and also the arguments in
Remark 2, we decided to use the values m = 1.3, 1.5 and 2.

As already mentioned, suitable choices of the parameters λ and β are also essential
to reach satisfactory results. In fact, it was observed that the optimal selection of these
parameters clearly depends on the value considered for m. Therefore, we proceeded
to execute our simulations over a range of equally spaced values of λ and β, and the
parameters retained were the ones maximizing the percentage of correct classification
for each m. All the results reported hereafter correspond to this optimal selection of
inputs for the algorithms. This way, we intend to perform fair comparisons, free of the
effect of an inappropriate selection of the parameters.

The average percentages of correct classification obtained with the different models
in the linear scenarios are shown in Table 1.

As expected, the standard algorithms show a very good behavior in Scenario L.1
without outliers. The two clusters are well-separated and both AR and QAF metrics
are able to correctly classify all the series. Also the robust versions FCMdC-Exp
and FCMdC-NC work fine in this setup. Adding outlier times series fairly has a
disruptive effect on the results, which is clearly more pronounced with two outliers. In
particular, AR-FCMdC and QAF-FCMdC present unsatisfactory success percentages
for the three values ofm, specially in Scenario L.3where they always failed at correctly
identifying both outliers. Actually the non-anomalous series are always well-classified
and the failures are caused by the outliers, which are seldom identified. For this reason
the best results are reached for the highest value of m, since high values for m imply
softer boundaries between clusters, and hence thememberships assigned to the outliers
are closer to 0.5. To illustrate these assertions, we have randomly selected one set of
100 trials from the Scenario L.3 and calculated the means and standard deviations
of the membership degrees for m = 2 and T = 250 (the most favorable scenario).
The results are displayed in Table 2. It is observed that the eight non-atypical series
are always well-grouped.O1 present average memberships (highlighted in bold) very
close to the cut-off values (0.3 and 0.7) and standard deviations large enough to account
for a non-negligible number of failures. As far asO2, it is always assigned to cluster C2,
which is consistent with the plot in the right panel of Fig. 2a, where O2 realizations
are located closer to cluster C2. Thus, the standard versions erroneously assign the
outlierO2 into the cluster C2. Smaller values of m led to average memberships higher
(lower) than 0.7 (0.3), thus generating worse results.

Regardless of the considered distance, the robust versions based on the exponential
metric and the trimmed approach substantially outperform the standard models. With
one outlier (L.2) and realizations of length T = 250, both models produced excellent
success rates, between 96.9 and 99.9%.The resultswere somewhatworsewith twoout-
liers (Scenario L.3) but also satisfactory, particularly using the QAF distance (scores
always above 93.2% and 96.4%with QAF-FCMdC-Exp and QAF-TrFCMdC, respec-
tively). The averages and standard deviations of the membership degrees highlighted
in italic in Table 2 corroborate the high capability of QAF-FCMdC-Exp to identify
the outlier time series. It is also remarkable that the robust QAF-based models per-
formed somewhat better than the AR-based ones despite handling ARMA models.
For instance, Fig. 3 shows the evolution of the percentages of correct classification
for AR-FCMdC-Exp and QAF-FCMdC-Exp as function of β in Scenario L.3 with
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Table 2 Mean and standard deviation (in brackets) of membership degrees computed from one randomly
selected set of 100 trials in Scenario L.3, with T = 250 and m = 2

QAF-FCMdC QAF-FCMdC-Exp QAF-FCMdC-NC

C1 C2 C1 C2 C1 C2 NC

X1 (∈ C1) 0.982 0.018 0.882 0.118 0.813 0.012 0.175

(.015) (.015) (.089) (.089) (.147) (.009) (.138)

X2 (∈ C1) 0.981 0.019 0.877 0.123 0.796 0.013 0.190

(.021) (.021) (.148) (.148) (.154) (.012) (.142)

X3 (∈ C1) 0.982 0.018 0.866 0.134 0.819 0.012 0.169

(.018) (.018) (.147) (.147) (.142) (.010) (.133)

X4 (∈ C1) 0.981 0.019 0.866 0.134 0.784 0.014 0.202

(.018) (.018) (.142) (.142) (.158) (.012) (.147)

X5 (∈ C2) 0.024 0.976 0.127 0.873 0.014 0.802 0.185

(.025) (.025) (.159) (.159) (.012) (.153) (.142)

X6 (∈ C2) 0.024 0.976 0.125 0.875 0.013 0.812 0.175

(.022) (.022) (.130) (.130) (.010) (.133) (.123)

X7 (∈ C2) 0.020 0.980 0.127 0.873 0.011 0.837 0.152

(.022) (.022) (.133) (.133) (.009) (.131) (.122)

X8 (∈ C2) 0.023 0.977 0.125 0.875 0.013 0.805 0.182

(.021) (.021) (.137) (.137) (.010) (.141) (.131)

X9 (≡ O1) 0.446 0.554 0.456 0.544 0.139 0.231 0.630

(.166) (.166) (.062) (.062) (.052) (.087) (.051)

X10 (≡ O2) 0.095 0.905 0.454 0.546 0.024 0.238 0.738

(.031) (.031) (.050) (.050) (.002) (.114) (.112)
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Fig. 3 Average percentage of correct classification as a function of β by using AR-FCMdC-Exp (left panel)
and QAF-FCMdC-Exp (right panel) models in Scenario L.3 with T = 250. (Color figure online)

T = 250. Besides getting insight into the optimal values for β, Fig. 3 allows us to
conclude that QAF-FCMdC-Exp is preferable to AR-FCMdC-Exp for the three values
of m if a suitable choice of β, e.g. according to (7), is considered.
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Table 3 Percentage of trials where the outliers were correctly trimmed by using AR-TrFCMdC and QAF-
TrFCMdC in the linear scenarios L.2 and L.3

Model Scenario L.2 Scenario L.3

1 outlier 1 outlier 2 outliers

T = 150

m = 1.3 AR-TrFCMdC 68.5 18.8 62.1

QAF-TrFCMdC 88.7 8.6 76.5

m = 1.5 AR-TrFCMdC 66.0 20.0 59.3

QAF-TrFCMdC 89.0 7.4 77.7

m = 2.0 AR-TrFCMdC 54.5 23.7 50.3

QAF-TrFCMdC 86.6 7.8 74.0

T = 250

m = 1.3 AR-TrFCMdC 99.3 5.3 89.3

QAF-TrFCMdC 99.2 1.8 92.4

m = 1.5 AR-TrFCMdC 99.3 5.3 88.2

QAF-TrFCMdC 99.5 1.7 92.5

m = 2.0 AR-TrFCMdC 99.8 11.9 80.9

QAF-TrFCMdC 99.6 2.1 95.1

As far as the trimmed approach is concerned, Table 3 shows that the QAF distance
wasmore efficient than theAR one in removing the true outlier time series in Scenarios
L.2 and L.3.

The fuzzy models based on the noise cluster, AR-FCMdC-NC and QAF-FCMdC-
NC, reported good results but worse than the ones obtained with the other robust
algorithms. In particular, the percentage of success substantially decayed with m = 2
and in presence of two outliers. The reason is again that a more balanced distribution
of the membership degrees occurs asm increases, thus making more difficult to assign
the outliers to the noise cluster. For illustrative purpose only, let us briefly come back
to Table 2. As required, the highest average memberships of the outliers with QAF-
FCMdC-NC (highlighted in bolditalic) correspond to the noise cluster. Nevertheless
they are not significantly greater than the cut-off value, 0.5, and therefore an important
number of trials draw out erroneous classification. Likewise Fig. 3, we have depicted
the evolution of the percentages of correct classification by using AR-FCMdC-NC and
QAF-FCMdC-NC as function of λ in Fig. 4. The poor rates of correct classification
with m = 2 are evident for all λ, thus concluding that the only way to improve the
results is using a less stringent cut-off value. Comparison of the two panels in Fig. 4
also highlights the superiority of the QAF distance to develop the noise cluster fuzzy
model.

Lastly, it is worthy to mention that simulations with 25 series per cluster were
executed to explore the effect of a larger number of series. In general, the average
success percentages were only somewhat lower for the QAF-based models, while
they worsened substantially with the AR-distance.
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Fig. 4 Average percentage of correct classification as a function of λ by using AR-FCMdC-NC (left panel)
and QAF-FCMdC-NC (right panel) models in Scenario L.3 with T = 250. (Color figure online)

As far as the scenarios NL.1, NL.2 and NL.3, including non-linear models, the
most noticeable fact was the excellent performance showed by theQAF-basedmodels.
Although the models based on the AR distance were considered in our experiments,
modelmisspecification heavily affected the results and they have been omitted. Table 4
reports the simulation results for the three non-linear scenarios using the QAF distance
and Table 5 presents means and standard deviations of memberships for an arbitrary
set of 100 trials in Scenario NL.3. In these new setups, the percentages of correct
classification are higher than in the linear scenarios for all models and values of m,
particularly by working with the shortest series (T = 150). The average percentage
of times in which QAF-TrFCMdC trimmed the true outlier in Scenario NL.2 was
always above 98.5% for T = 150 and 99.8% for T = 250, while in Scenario NL.3
the two true outliers were detected above 98.6 and 100% for T = 150 and T = 250,
respectively. It is also noticeable the improvement of the results for the robust model
based on the noise cluster. The average membership degrees reported in Table 5 for
the outliers time series and graphs in Fig. 5 help us to understand this improvement.

Simulation results from the heteroskedastic scenarios CH.1, CH.2 and CH.3 based
on theGARCHandQAF distances are shown in Tables 6, 7, and 8 and Figs. 6 and 7. As
already mentioned, conditional heteroskedasticity induces a more complex scenario
because of the simulated realizations from GARCH processes are characterized by
high dispersion for small sample sizes (Aielli and Caporin 2013). Table 6 corroborates
this feature since success rates comparable to the ones obtained in the linear and non-
linear scenarios are only attained with T = 2500. It is worthy mentioning that these
sample sizes are frequently considered in the literature byworkingwith heteroskedastic
processes. Notice also that the membership degrees for the non-anomalous series in
Table 7 aremoderately further from0and1 than in previous analyses, thus emphasizing
the major difficulty of clustering under heteroskedasticity. In fact, non-anomalous
series were sometimes missclassified using the GARCH distance. This assertion is
easily understood by comparing the outputs in Tables 6 and 8. It is observed in Table 8
that GARCH-TrFCMdC and QAF-TrFCMdC present similar percentages of success
by trimming the true outliers, but in contrast QAF-TrFCMdC exhibits higher average
percentages of correct classification in Table 6.

Again the main conclusion is that the QAF-based models fairly outperform the
GARCH-based ones. While the latter are affected by the inaccurate estimation of
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Table 5 Mean and standard deviation (in brackets) of membership degrees computed from one randomly
selected set of 100 trials in Scenario NL.3, with T = 250 and m = 2

QAF-FCMdC QAF-FCMdC-Exp QAF-FCMdC-NC

C1 C2 C1 C2 C1 C2 NC

X1 (∈ C1) 0.985 0.015 0.937 0.063 0.860 0.010 0.130

(.014) (.014) (.057) (.057) (.129) (.010) (.119)

X2 (∈ C1) 0.985 0.015 0.928 0.072 0.844 0.011 0.145

(.014) (.014) (.059) (.059) (.128) (.010) (.118)

X3 (∈ C1) 0.987 0.013 0.940 0.060 0.867 0.009 0.124

(.013) (.013) (.052) (.052) (.120) (.008) (.112)

X4 (∈ C1) 0.985 0.015 0.936 0.064 0.852 0.010 0.138

(.013) (.013) (.059) (.059) (.110) (.007) (.103)

X5 (∈ C2) 0.008 0.992 0.037 0.963 0.006 0.908 0.086

(.008) (.008) (.038) (.038) (.006) (.079) (.073)

X6 (∈ C2) 0.008 0.992 0.037 0.963 0.006 0.920 0.074

(.008) (.008) (.033) (.033) (.005) (.066) (.062)

X7 (∈ C2) 0.008 0.992 0.034 0.966 0.005 0.921 0.074

(.008) (.008) (.030) (.030) (.005) (.070) (.065)

X8 (∈ C2) 0.007 0.993 0.028 0.972 0.005 0.931 0.064

(.007) (.007) (.030) (.030) (.005) (.077) (.072)

X9 (≡ O1) 0.333 0.667 0.436 0.564 0.105 0.225 0.670

(.099) (.099) (.039) (.039) (.026) (.047) (.029)

X10 (≡ O2) 0.296 0.704 0.437 0.563 0.084 0.214 0.701

(.079) (.079) (.026) (.026) (.017) (.038) (.028)
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Fig. 5 Average percentage of correct classification in Scenario NL.3 with T = 250 for QAF-FCMdC-NC
(left panel) and QAF-FCMdC-Exp (right panel) models as function of β and λ, respectively. (Color figure
online)

the GARCH parameters, the former take advantage of the capability of the QAF
distance to detect changes in conditional shapes and to deal with heavy-tailedmarginal
distributions. As in the above scenarios, the robust models, particularly QAF-FCMdC-
Exp and QAF-TrFCMdC, led to the best results in presence of outliers regardless of
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Table 7 Mean and standard deviation (in brackets) of membership degrees computed from one randomly
selected set of 100 trials in Scenario CH.3, with T = 2500 and m = 2

QAF-FCMdC QAF-FCMdC-Exp QAF-FCMdC-NC

C1 C2 C1 C2 C1 C2 NC

X1 (∈ C1) 0.888 0.112 0.813 0.187 0.781 0.088 0.130

(.020) (.020) (.020) (.020) (.020) (.016 ) (.008)

X2 (∈ C1) 0.886 0.114 0.808 0.192 0.780 0.087 0.133

(.023) (.023) (.015) (.015) (.015) (.013) (.006)

X3 (∈ C1) 0.884 0.116 0.808 0.192 0.773 0.087 0.139

(.026) (.026) (.014) (.014) (.022) (.019) (.008)

X4 (∈ C1) 0.892 0.108 0.808 0.192 0.777 0.092 0.131

(.021) (.021) (.016) (.016) (.028) (.023) (.011)

X5 (∈ C2) 0.125 0.875 0.218 0.782 0.097 0.750 0.153

(.022) (.022) (.011) (.011) (.015) (.022) (.011)

X6 (∈ C2) 0.126 0.874 0.223 0.777 0.093 0.746 0.162

(.022) (.022) (.016) (.016) (.016) (.022) (.012)

X7 (∈ C2) 0.127 0.873 0.221 0.779 0.098 0.735 0.167

(.018) (.018) (.010) (.010) (.020) (.022) (.008)

X8 (∈ C2) 0.122 0.878 0.211 0.789 0.087 0.763 0.149

(.024) (.024) (.017) (.017) (.015) (.022) (.009)

X9 ≡ O1 0.573 0.427 0.516 0.484 0.302 0.222 0.476

(.011) (.011) (.002) (.002) (.009) (.005) (.006)

X10 ≡ O2 0.565 0.435 0.517 0.483 0.313 0.233 0.454

(.005) (.005) (.003) (.003) (.004) (.003) (.004)

the fuzziness parameter. In this case, the model based on the noise cluster showed
worse results, specially in Scenario CH.3 with two outlier time series (see Table 7 and
Fig. 7).

4.2 Assessing robustness against distorted individual time series

In this section we assess a different kind of robustness. Specifically, outliers are gen-
erated using the pattern of one cluster but they are distorted by structural changes
during a more or less long-term period. Following this principle, four outlier types
are commonly considered in the time series literature, namely Additive Outliers (AO),
Transitory Change (TC) outliers, Level Shift (LS) outliers and Innovative Outliers (IO)
(see Tsay 1986; Peña 2011, among others). An AO occurs when the series receives a
sharp impact due to an unexpected event at a particular time point, which is reflected by
an isolated spike in its temporal dynamic. For a TC outlier, the effect of the mentioned
impact does not disappear immediately but it dies out gradually with time. Unlike
AO and TC outliers, which exhibit transitory level changes, LS outliers present a
permanent level change starting from the time point where the initial shock occurs
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Table 8 Percentage of trials where the outliers were correctly trimmed by using GARCH-TrFCMdC and
QAF-TrFCMdC in the heterokedastic scenarios CH.2 and CH.3

Model Scenario CH.2 Scenario CH.3

1 outlier 1 outlier 2 outliers

T = 1500

m = 1.3 GARCH-TrFCMdC 86.6 9.6 70.4

QAF-TrFCMdC 87.6 9.6 76.4

m = 1.5 GARCH-TrFCMdC 85.9 9.8 70.0

QAF-TrFCMdC 86.0 10.2 73.7

m = 2.0 GARCH-TrFCMdC 85.4 9.2 70.3

QAF-TrFCMdC 81.9 12.3 67.6

T = 2500

m = 1.3 GARCH-TrFCMdC 93.8 5.7 81.8

QAF-TrFCMdC 98.8 1.5 95.4

m = 1.5 GARCH-TrFCMdC 93.6 5.6 81.8

QAF-TrFCMdC 98.2 1.7 95.0

m = 2.0 GARCH-TrFCMdC 93.1 5.3 82.2

QAF-TrFCMdC 97.2 2.5 92.0

0 500 1000 1500 2000
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80
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m=2

0 1000 2000 3000 4000
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Fig. 6 Average percentage of correct classification as a function of β by using GARCH-FCMdC-Exp (left
panel) and QAF-FCMdC-Exp (right panel) models in Scenario CH.3 with T = 2500. (Color figure online)

and continuing until the end of the observation period. Lastly, the model for an IO is
based on contaminating the distribution of the noise of the underlying process. More
precisely, the outliers are constructed as follows.

AO X
t = Xt + ω if t = t0 and X

t = Xt otherwise

TC X
t = Xt if t < t0 and X

t0+k = Xt0 + δkω, for k = 0, 1, . . . , T − t0
LS X

t = Xt + ω, if t ≥ t0 and X
t = Xt , if t < t0

IO X
t is generated as Xt but with innovations εt following a non-Gaussian

distribution F0
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Fig. 7 Average percentage of correct classification as a function of λ by using GARCH-FCMdC-NC (left
panel) and QAF-FCMdC-NC (right panel) models in Scenario CH.3 with T = 2500. (Color figure online)

where X
t denotes the contaminated series, Xt is an arbitrary realization coming from

cluster C1, t0 is the particular time point where the shock occurs, ω > 0 quantifies the
effect of the initial impact and 0 < δ < 1 regulates the propagation of this effect in
subsequent observations. Note that AO and LS are limit scenarios of TC as δ tends to
0 and 1, respectively.

To examine robustness against these types of outliers, the simulation scheme in
the above section has been performed with scenarios including one outlier from each
type (AO, TC, LS and IO). Thus, for example, clustering of linear models is carried
out in four different scenarios consisting of the base scenario L.1 plus one outlier of
type AO (Scenario L.4), TC (L.5), LS (L.6) and IO (L.7). In the four scenarios, the
outlier time series X

t is constructed by contaminating a realization Xt generated from
the underlying process in cluster C1. This same scheme was considered for the setups
involving non-linear and conditionally heteroskedastic models, thus recreating scenar-
ios with outliers NL.4-NL.7 and CH.4-CH.7, respectively. The parameters required
for defining the outliers were always t0 = T /2, ω = 5, δ = 0.9 and F0 the exponen-
tial distribution for innovations in the case of IO. The remaining simulation features
(clustering models, cut-off values for fuzzy membership degrees, sample sizes, input
parameters,…) are the ones used in Sect. 4.1. In particular, we usem = 1.3, 1.5 and 2,
but for simplicity and clarity of presentation, we only show the results form = 1.3 and
2. The average percentages of correct classification for the different models in the new
scenarios are given in Tables 9, 10 and 11, for the linear, non-linear and conditionally
heteroskedastic setups, respectively.

To summarize themain conclusions from the new experiments, we first focus on the
success percentages with outliers generated by changes in the level (AO, TC, and LS).
Overall, the success percentages are very high when the effect of the change is held
until the end of the observation period (LS outliers).With temporary effects, i.e. forAO
and TC outliers, the success percentages are low, which is expected because this is a
very hard problem. In fact, regardless of the metric, the non-robust versions have never
been able to detectAOandTCoutliers in linear and non-linear setups (Tables 9 and 10).
Only the high capability of the QAF-metric to discriminate between heteroskedastic
models allowed to attain reasonable success rates with the standard fuzzy algorithm
(Table 11). It is also observed that the percentages of correct classification tend to get
worse by increasing the length of the series. This is also expected since the estimation
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Fig. 8 Boxplots based on the estimated autoregressive coefficients for the AR(1) representation of the
squared series in the conditional heteroskedastic scenarios CH.5 and CH.6 scenarios, involving TC and LS
outliers, respectively

of the features used to discriminate is less affected by the one-shot impact when the
length of the series grows.

Working with linear models (Table 9), the robust versions of the QAF-based algo-
rithms fairly outperform their AR-based counterparts. The differences are particularly
significant in the Scenario L6 considering LS outliers. The longer the impact effect
the higher the success percentage, thus accounting for the poorest results with AO, the
slight improvement with TC outliers and the excellent outcomes close to one hundred
percent with LS outliers. Again the versions based on the noise cluster draw out the
lowest success rates, but this can be corrected by using a less stringent cut-off value, as
was already argued in Sect. 4.1. Similar results are observed by clustering non-linear
series in Table 10. Compared to the linear scenario, the percentages of correct classi-
fication based on the QAF metric are somewhat lower with AO and LS outliers, but
in contrast, they are fairly higher with TC outliers (Scenario NL.5).

In the scenario involving conditional heteroskedastic models (Table 11), the QAF-
based algorithms perform as in the non-linear scenario, achieving similar success
percentages. It is interesting to observe that the trimmed approach produces here better
results than the other robust versions when LS outliers are present. Nevertheless, the
most noticeable point is that the robust algorithms based on the GARCHmetric exhibit
better behavior to identify the AO and TC outliers than the QAF-based counterparts.
Surprisingly, the success rates get worse in the most simple scenario involving LS
outliers, where again the QAF metric reports better results. A careful analysis of the
results allows to understand this unexpected behavior. The permanent level change
generated by the shift produces an estimated autoregressive coefficient π̂G

1 [see (16)]
for the ARMA representation of the squared series very close to the one defining
the underlying pattern in cluster C2. Hence, the LS outlier usually receives a high
membership degree for C2, thus being classified in C2 and causing a failed trial. For
illustrative purpose, boxplots in Fig. 8 show the distributions of the estimates of πG

1 in
our simulations for the series forming Scenarios CH.5 andCH.6.While the TC outliers
in CH.5 produce estimates π̂G

1 reasonably equidistant from the ones for clusters C1
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and C2, the π̂G
1 corresponding to LS outliers in CH.6 are much closer to cluster C2.

This behavior corroborates that, unlike the QAF-based models, the approaches based
on the GARCH distance are extremely sensitive to model misspecification.

As far as the IO series based on contaminating the noise, the QAF-based procedures
again report the best results. The average percentages of correct classification are
close to 100% for the three robust versions and the two sample sizes in the non-linear
scenario. With conditional heteroskedastic series, the success percentages are also
almost the one hundred percent with the trimmed version, and they decay to around
60% with the QAF-FCMdC-Exp model and 44% with the QAF-FCMdC-NC model,
but in all cases far above the poor results obtained by the GARCH-based models
(always below 21%). The effect of IO is more intricate with the linear processes. In
fact, bothARandQAFdistances lead to poor results, thus exhibiting a lowdiscriminant
power in this scenario. In any case, the robust QAF-based versions are clearly the best
ones.

5 Applications

There are many fields where time series clustering is a valuable analysis tool, some-
times playing a central role. Finance is a very good example because often the interest
focuses on identifying assets with similar behavior over time for investment and risk
analysis (Peng et al. 2011; Kou et al. 2014; Bastos and Caiado 2014; Durante et al.
2014). In this section, two specific applications involving realizations of financial
time series are carried out. In both cases, our analysis is not aimed at deriving eco-
nomic implications, but at illustrating the usefulness of the proposed fuzzy clustering
approaches to identify: (i) homogeneous groups with similar stochastic dependence
patterns, and (ii) isolated time series exhibiting atypical dependence structures.

5.1 Robust clustering of daily returns of Euro exchange rates

The first database consists of a set of series of the daily closing values of Euro exchange
rates against twenty-eight international currencies, collected from 1st January 2010 to
28th February 2014 (T = 1520). All the data have been sourced from the website of
the Bank of Italy1 and graphs of the single series are depicted in Fig. 9.

Note that all series are non-stationary in mean. Nevertheless, the analysis of this
kind of series is often focused on identifying similar volatility patterns. The volatility
measures the degree of variation of a trading price series over time, and therefore
high volatility means that the trading price is spread out over a large range of values.
Thus, in the present application, volatility refers to the fluctuations of the Euro price
with regard to other international currencies. Following the usual approach to model
volatility, the series of nominal exchange rates are transformed to obtain series of
daily log returns, i.e. series formed by the first differences of the natural logarithm
of the nominal exchange rates. These new series are depicted in Fig. 10. Overall, the
profiles of the transformed series show a high amount of heteroskedasticity, combining

1 https://www.bancaditalia.it/compiti/operazioni-cambi/archivio-cambi/index.html.
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Fig. 9 Daily closing values of Euro exchange against 28 currencies

periods of fast and pronounced fluctuations with periods of lower volatility. This
phenomenon of volatility clustering is a regular feature by observing exchange rate
returns, and it is frequently approached by modeling the underlying process with
an ARCH or GARCH-type model. In this scenario of change in variance over time,
we intend to take advantage from the capability of the quantile autocovariances to
discriminate between conditionally heteroskedastic models. We expect that the robust
fuzzy clustering algorithms based on dQAF allow us to determine groups of currencies
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Fig. 10 Daily returns of Euro exchange against 28 currencies

following a similar behavior pattern and identify the ones presenting anomalous or
atypical performances.

Just as in simulations, the metric dQAF was constructed using three quantiles of
levels 0.1, 0.5 and 0.9, and only one lag (L = 1, with l1 = 1). Also, in line with the
range of values considered for the fuzziness parameterm in simulations, we select the
values m = 1.3 and m = 1.7. Both values produced very similar results, in particular
drawing the same number of outlier time series for all the considered fuzzy models.
For it, only the results for m = 1.7 are here included.
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Fig. 11 Two-dimensional scaling configurations based on the QAF-distance for the daily returns of Euro
exchange against 28 currencies

A two-dimensional metric scaling (MDS) based on the pairwise QAF-dissimilarity
matrix was carried out to have available a projection of the Euro exchange rates on a
two-dimensional map preserving the distances as well as possible. The stress measure
was 6.421% and the placement of the series in the two-dimensional scaling map is
shown in Fig. 11.

Figure 11 shows the existence of a reasonably compact cluster formed by eighteen
series including the Euro exchange rates against the major international currencies
and those linked to the US dollar, such as the Canadian dollar (CAD) and the Great
Britain pound (GBP), among others. The remaining ten objects aremore spread out. At
least the Uruguayan peso (UYU) and the Thailand baht (THB) appear to be isolated,
well-separated from the remaining currencies, and they could be identified as atypical
time series. South African rand (ZAR), Argentine peso (ARS), Brazilian real (BLR),
Serbian dinar (RSD), and Chilean peso (CLP) are placed close to each other, and they
could constitute another cluster. The three remaining currencies, namely Hong Kong
dollar (HKD), Russian ruble (RUB) and South Korean won (KRW) are somewhat
separated from the latter group and they could be joined to this group or form a third
cluster. For comparison purpose, a two-dimensional scaling based on the AR metric
was also performed. The resulting plot exhibits a configuration with much greater
dispersion and without identifying well-separated groups, which is quite unrealistic in
the analyzed problem. These worse results are indeed expected because the ARmetric
relies on autoregressive fits, which are fairly inappropriate to model the conditionally
heteroskedastic series in study.

Two different criteria to determine the optimal number of clusters C were consid-
ered, namely those values of C minimizing the Xie and Beni (1991) and Kwon (1998)
indexes. To simplify the definition of both indexes, let us denote by Hic the squared
Euclidean distance between the sequence of estimated quantile autocovariances for
the i th series and the average sequence for the cth cluster, that is
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Fig. 12 Xie–Beni and Kwon indexes for different sizes of partition using QAF-FCMdC

Hic =
L∑

k=1

r∑
j=1

r∑
j ′=1

(
γ̂

(i)
lk

(τ j , τ j ′) − γ̂
(c)
lk (τ j , τ j ′)

)2
. (17)

The Xie–Beni index for a partition into C clusters is defined as the ratio between
the total variance and the minimum separation between clusters, i.e.

XB(C) =

n∑
i=1

C∑
c=1

umicHic

n min
c 
=c′ Hcc′

. (18)

Note thatminimizing the numerator of XB(·) in (18) is the goal of theQAF-FCMdC
algorithm. On the other hand, the denominator of XB(·) measures how separated are
the clusters, thus the Xie–Beni index decreases with the separation between clusters.

The Kwon index provides a correction of the Xie–Beni index by penalizing the
decreasing tendency when the number of clusters becomes very large and close to the
number of time series. Specifically, the Kwon index is defined as follows.

K (C) =

n∑
i=1

C∑
c=1

umicHic + 1

C

C∑
c=1

C∑
c′=1

Hcc′

n min
c 
=c′ Hcc′

. (19)

The values obtained for both indexes using QAF-FCMdC are depicted in Fig. 12. In
both cases the lowest value is attained for C = 2 clusters, with a substantial increase
when three or more clusters are considered. Similar results were obtained by using the
robust versions of the model, and therefore both criteria lead to conclude the existence
of two major groups.

The value for the parameter β required by the QAF-FCMdC-Exp model was deter-
mined using (7) in Sect. 2.3, resulting β = 1095.649. To set δ in the QAF-FCMdC-NC
model, we follow the approach suggested by Cimino et al. (2005), which consists of
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successively executing the fuzzy QAF-FCMdC-NC algorithm for decreasing values
of δ, recording the percentage of series assigned to the noise cluster, and selecting the
value of δ producing an abrupt change of slope (elbow) in this percentage. The idea is
gradually reducing δ until a proper threshold is found out because of excessively small
values of δ lead to assign non-anomalous objects into the cluster noise. According to
this criterion, δ = 0.4 was selected. As far as the QAF-TrFCMdCmodel, the trimming
ratio α minimizing the Xie–Beni and the Kwon indexes over a grid of possible values
for α was considered as the optimal choice, resulting α = 0.1621, i.e. five time series
were trimmed.

Table 12 shows the membership degrees obtained by using the standard and robust
fuzzy methods. For each single series, the bolditalicized entries enhance the highest
membership degrees obtained with each procedure, i.e. the cluster assignments from
a crisp perspective. The memberships showed in bold font for a particular robust
procedure indicate time series identified as outlier. The currencies’ names in bold font
refer to series identified as outliers by the three robust methods. When only one or two
robust procedures achieved that conclusion, the currency is written in italic font.

Overall, the obtained partition with the standard fuzzy model QAF-FCMdC is
consistent with the plot displayed in Fig. 11. The medoid time series are the Emiratri
dirham (AED), for the most compact cluster (C2) grouping eighteen currencies, and
the Brazilian real (BRL) for the cluster C1 exhibiting higher spread. It is noticeable
that most of the currencies are assigned to one cluster with high membership degrees
(uic ≥ 0.7), the only exception being the Thailand baht (THB), which was located in
C1 with membership 0.639. Nevertheless, Fig. 11 suggests that THB is too far from
the time series forming C2 and hence the Thailand baht should be considered as an
outlier. In short, QAF-FCMdC seems to work reasonably fine, but it does not allow us
to identify currencies showing an atypical behavior.

The partition obtainedwithQAF-FCMdC-Exp determines the existence of four out-
lier time series by splitting their membership degrees uniformly across the clusters,
namely the Uruguayan peso (UYU), the Thailand baht (THB), the South Korean won
(KRW) and the Russian ruble (RUB). These four currencies are also allocated together
into the noise clusterwithmemberships uinC > 0.6when theQAF-FCMdC-NCmodel
is considered. The South African rand (ZAR) and the Hong Kong dollar (HKD) are
also added to the noise cluster on the basis of much weaker memberships, particularly
the former with memberships for C1 and the noise cluster hardly discernible, 0.458
and 0.463, respectively. Note that consideration of these isolated objects modifies the
C2 medoid, now resulting the Norwegian krone (NOK) which seems to be a more rep-
resentative prototype than AED in Fig. 11. The fuzzy QAF-TrFCMdCmodel draw out
very similar results. Considering a trimmed ratio of α = 0.1621, five Euro exchange
currencies are trimmed away, namely the same four outliers identified by the other two
robust methods plus HKD. Actually, a small reduction of the trimmed ratio allows to
cancel this additional outlier so that in essence the three robust methods allow us to
obtain similar conclusions.
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5.2 Robust clustering of daily stocks returns in IBEX-35 index

The second application considers daily returns of stocks included in the IBEX-35,
which groups the thirty-five companies with the highest liquidity and trading volume
in the Spanish stock market. Specifically, we select the daily returns of twenty-four
stocks located in the TOP-30 ranking according to the finance section of the Yahoo
website.2 The period of observation of the series spans from 1st January 2008 to 19th
December 2016, thus resulting realizations of length T = 2337 which are depicted in
Fig. 13. Note that different levels of heteroskedasticity are again observed, which are
more pronounced for some of the stocks.

This database was previously subjected to fuzzy clustering in Vilar et al. (2018)
considering the QAF-FCMdC, the AR-FCMdC and the GARCH-FCMdC models.
According to the Xie–Beni index, the optimal value for the number of clusters is
C = 3. This conclusion was also corroborated with the criterion of selecting the
number of clusters maximizing the so-called Fuzzy Silhouette Width (Campello and
Hruschka 2006). In fact, the highest fuzzy silhouette index corresponded to C = 3
and m = 2 so that the clustering algorithms were executed in Vilar et al. (2018) using
these values. The results showed that only the QAF-FCMdC model produces a fuzzy
partition congruent with the estimated volatility patterns.

Specifically, the 3-cluster solution generated by the QAF-FCMdC model consisted
of a large cluster, C1, gathering together most of the stocks, a cluster C3 grouping the
company Arcelormittal-MTE together with the smaller banks Banco Popular-POP,
Banco Sabadell-SAB and Bankinter-BKT, and a cluster C2 formed by two important
companies of the consumer goods industry (Viscofan-VIS and Inditex-ITX), the only
insurance company (Mapfre-MAP), and a technological company related to the travel
sector (Amadeus-AMS). However, beyond interpretations in financial terms (e.g. com-
pany size or business sector), we observed that the resulting groups are characterized
by presenting similar fluctuation patterns, with some bumps of different size in simi-
lar periods of time. This can be seen in Fig. 14, where the estimated volatility curves
grouped by the identified clusters are shown.

Here, we go one step further by checking for the presence of stocks with atypical
temporal behavior. First, as in the above study case, we carry out a two-dimensional
scaling based on the pairwise QAF-dissimilarity matrix. The resulting MDS plot in
Fig. 15, with an associated stress value of 4.275%, allows us to visually inspect the
proximity between the time series in terms of the QAF-distance. Note that the labels
have been colored according to the cluster solution obtained with the QAF-FCMdC
model.

Figure 15 shows that Banco Sabadell-SAB fairly constitutes an isolated point
located very far from the bulk of the data points. Therefore, theMDS plot suggests that
SAB is an outlier and it should not be included in the cluster C3 together with MTS
and POP (the two nearest series). This conjecture is supported by Fig. 14c, where a
flat volatility profile is depicted for SAB. Also the Viscofan-VIS stock, placed into
C2, can be seen as a potential outlier. It is the second furthest data point in the MDS
plot, and its volatility profile does not show the peaks of the rest of members in C2.
2 https://finance.yahoo.com/.
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Fig. 13 Daily returns of 24 stocks included in the IBEX-35. Sample period: 1st January 2008 to 19th
December 2016
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Fig. 14 Nonparametric estimators of the volatility for the daily returns of the 24 analyzed stocks grouped
according to the cluster solution provided by the QAF-FCMdC model: C1 (a), C2 (b) and C3 (c). (Color
figure online)
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According to these considerations, it is interesting to examine the clustering results
produced by the robust versions of the QAF-FCMdC model. Table 13 provides the
membership degrees obtainedwith theQAF-FCMdCmodel and its robust versions. As
in Table 12, the highest membership degrees with each procedure are enhanced using
bolditalicized entries. Since we manage a 3-cluster solution, the highest membership
can be spread out across two clusters, thus indicating a fuzzy allocation between them.
For this reason, we use a bolditalicized entries as long as uic > 0.35.

The results from Table 13 reveal that the standard fuzzy model QAF-FCMdC does
not identify atypical time series since no stock presentsmembership degrees uniformly
distributed over the three clusters. Only Grifols-GRF, Bankinter-BTK and Iberdrola-
IBE present a fuzzy allocation between C1 and C3, while the remaining stocks are
assigned to one cluster with high membership degrees.

The robust QAF-FCMdC-NC algorithm produces a very similar result but it is
capable to detect outliers. Sabadell-SAB is fairly identified as outlier since it is included
in the noise cluster with a high membership 0.816. On the other hand, Viscofan-VIS
has a fuzzy allocation between the cluster C2 and the noise cluster with membership
degrees 0.505 and 0.405, respectively. Therefore, VIS can be also seen as a potential
outlier. As for the remaining stocks, minor differences are observed. Overall, the
membership degrees slightly decrease in favor of the noise cluster, but the clusters C1
and C3 are formed by the same elements as in the case of QAF-FCMdC, including
the same centroids. Therefore, QAF-FCMdC-NC leads to an intuitive classification,
reasonably congruent with the estimated volatility curves, and robust enough to detect
the atypical series without perverting the clustering process.

The models QAF-FCMdC-Exp and QAF-TrFCMdC lead to different results. QAF-
FCMdC-Exp identifies SAB as outlier and retains the same composition for the cluster
C2. However, clusters C1 and C3 are now hardly discernible since most of the stocks
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are equidistant from both clusters. This way, a coherent classification is also obtained
although an interpretation in terms of two clusters would be more feasible (in fact,
C = 2 is optimal when the Xie–Beni index is examined using QAF-FCMdC-Exp).
Lastly, QAF-TrFCMdC performs quite similar as QAF-FCMdC-Exp. Based on the
Xie–Beni index, the optimal trimmed ratio is α = 0.104, i.e. two time series are
trimmed away. Not surprisingly QAF-TrFCMdC determines that SAB and VIS are
atypical series, the cluster C2 (now without VIS) is correctly identified, and clusters
C1 and C3 again exhibit a high amount of overlapping.

6 Concluding remarks

We have proposed three robust versions of the Fuzzy C-Medoid Clustering model for
time series based on sample quantile autocovariances (QAF-FCMdC). Themain objec-
tive has been to develop structure-based clustering algorithms capable to neutralize the
disruptive effect of the outliers, i.e. of isolated time series generated from dependence
models different from the ones determining the true fuzzy clustering structure. Three
generalizations of robust techniques considered in the clustering literature to manage
the presence of anomalous data have been introduced, namely the metric approach
considering a more robust metric (QAF-FCMdC-Exp), the noise approach introduc-
ing an artificial noise cluster (QAF-FCMdC-NC), and the trimmed approach based
on trimming away a small fraction of series (QAF-TrFCMdC). In essence, our pro-
posal intends to take advantage of the nice properties of the involved methodological
tools, including the versatility of the fuzzy logic by permitting overlapping clusters,
the interest in selecting a subset of observed series like prototypes in accord with
the PAM technique, and in particular, the high capability of the QAF-metric to dis-
criminate between complex dependence structures such as non-linear or conditionally
heteroskedastic models.

The proposed approaches have been evaluated by means of a broad simulation
study involving scenarios with different generating models and contaminated with
outliers. Regardless of the considered models, our experiments have shown that the
fuzzy robust procedures reported satisfactory results. Unlike the standard algorithms,
all the robust versions worked fine in presence of outliers when an optimal selection
of the input parameters was carried out. Furthermore, the robust methods were able to
neutralize the effect of the anomalous series preserving the true clustering structure. It
is worthy to remark that our approach outperformed other robust clustering algorithms
based on alternative metrics and specifically designed to classify the models subjected
to clustering. No significant differences have been observed between the behaviors of
the robust versions, but it is important to emphasize that all the robust procedures are
particularly sensitive to the choice of the input parameters. For illustrative purpose,
the proposed clustering techniques have been applied to two specific real data sets
consisting of realizations of financial time series. Our analysis showed as the proposed
robust clustering approaches were able to identify series exhibiting atypical dynamic
behaviors.

In conclusion, the experiments with simulated and real data sets have shown
robustness against extreme observations of the proposed clustering procedures, thus
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providing valuable tools to perform time series clustering. Anyway, we think that
there are still interesting points to be considered in further research. For instance,
although the QAF-distance reports interesting properties and has shown robustness
against the underlying models, introducing suitable approaches to encompass non-
stationary models has great interest in applications. Also, an exhaustive study about
the optimal selection of the input parameters required for the robust algorithms is also
desirable due to the great sensitivity of the procedures to these parameters. Extensions
considering versions of the quantile autocovariance metric in the frequency domain
are also of interest. In particular, ametric such as the L2-distance between copula ranks
periodograms or between smoothed versions of them (Dette et al. 2015) would take
advantage of automatically considering all the lags. An additional point to address in
future work is the cross-dependency issue. Traditional measures comparing features
as coherence or cross-correlation or also quantile-based procedures (Baruník and Kley
2015) could be taken into consideration.
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