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A B S T R A C T

Objectives: Biomarkers for tuberculosis (TB) diagnosis and clinical management are needed to defeat TB.
In chronic hepatitis, patients not responding to interferon/ribavirin treatment had high levels of an
antagonist form of IP-10. Recently, antagonist IP-10 has been shown to be involved also in TB
pathogenesis. Here, we investigated IP-10 agonist/antagonist forms as potential inflammatory
biomarkers to support TB diagnosis and monitoring.
Methods: Total IP-10 and its agonist/antagonist forms were measured by SIMOA digital ELISA in urine
obtained from patients with active TB at baseline and after treatment. Healthy donors (HD) and patients
with pneumonia were enrolled as controls.
Results: Patients with active TB had significantly higher levels of total and agonist IP-10 at baseline
compared to HD; conversely, no differences were observed between IP-10 levels in active TB vs
pneumonia. Moreover, in active TB a decline of total urine IP-10 was observed at therapy completion;
agonist/antagonist forms reflected this decline although their differences were not statistically
significant.
Conclusions: We showed for the first time that agonist/antagonist IP-10 forms are measurable in urine. IP-
10 levels associate with TB and pneumonia disease, suggesting their association with acute inflammation.
Further studies are needed to assess their role to monitor TB treatment efficacy.
© 2018 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
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Introduction

Tuberculosis (TB), with more than 10 million cases and 1.7
million deaths yearly (WHO, 2017), is still a global health priority.
The gold standard for TB diagnosis is the isolation in culture of
Mycobacterium tuberculosis in biological samples; however,
culture is time consuming and does not accomplish the need of
quickly and properly starting treatment, it is not always feasible in
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extra-pulmonary TB and it is difficult to carry out in resource-
limited settings. Moreover, to predict the efficacy of anti-TB
therapy, sputum conversion after 2 months of specific treatment is
widely used in culture positive TB cases, though simpler and more
rapid diagnostic assays would be useful (Petruccioli et al., 2016).
Therefore, identification of new biomarkers for TB diagnosis and
therapy monitoring will provide powerful tools to defeat TB.

In this context, Interferon Inducible Protein-10 (IP-10 or C-X-C
motif chemokine 10, CXCL10) has been proposed as a biomarker for
TB. IP-10 may be released by infected alveolar macrophages
promoting the migration of Th1 cells to the site of infection
(Kaufmann and Dorhoi, 2013; Lindestam Arlehamn et al., 2013;
Moguche et al., 2017; O’Garra et al., 2013; Saha et al., 2013) through
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binding to CXCR3 expressed on T cells. Moreover, IP-10 is increased
in plasma and urine of active TB patients (Goletti et al., 2010a;
Goletti et al., 2010b; Vanini et al., 2012) and decreases after
efficacious therapy (Azzurri et al., 2005; Chegou et al., 2013;
Cannas et al., 2010), correlates with risk of progression to disease
and TB disease severity (Azzurri et al., 2005; Petrone et al., 2018;
Riou et al., 2012) and is easily detected as an inflammatory marker
in both adults and children (Petrone et al., 2015; Petrone et al.,
2016; Santos et al., 2018). Importantly, IP-10 is a key player in
trained immunity, a protection phenomenon dependent on
epigenetic modifications of monocytes (Joosten et al., 2018).
Indeed, IP-10 production by nonclassical CD14dim monocytes
strongly correlated with Bacillus Calmette–Guérin (BCG) growth
reduction in the mycobacterial growth inhibition assay (MGIA) and
pharmacological blockade of CXCR3 reverted mycobacterial
growth control (Joosten et al., 2018). A prospective evaluation of
IP-10 levels has been performed in Human Immunodeficiency
Virus (HIV)-infected subjects with active TB where blood IP-10
levels have been demonstrated to be a useful early biomarker for
treatment response, as it declines after 2 weeks of anti-TB specific
treatment (Garcia-Basteiro et al., 2017).

IP-10 is a chemokine with multiple properties and it is involved
in many Th1-type inflammatory diseases such as neurological and
autoimmune disorders (Liu et al., 2014; Antonelli et al., 2015), as
well as Hepatitis C Virus (HCV) infection (Petrone et al., 2014),
where it is an IL–28B independent negative predictive marker of
efficacious therapy (Albert et al., 2011). In chronic hepatitis HCV, it
has been demonstrated that patients not responding to conven-
tional treatment with interferon/ribavirin, show high levels of an
antagonist form of IP-10, which results from the enzymatic activity
of dipeptidyl dipeptidase 4 (DPP4) (Casrouge et al., 2011). This
antagonist form of IP-10 binds to CXCR3 but does not induce
signalling. This is the first evidence for IP-10 antagonism in human
disease and identifies a possible factor contributing to the inability
of HCV clearance (Casrouge et al., 2011). Recently, it has been
shown that IP-10 antagonism is also a feature of TB pathogenesis
(Blauenfeldt et al., 2018). Indeed, it has been demonstrated in
patients with active TB that IP-10 may be inactivated shortly after
secretion at the site of TB disease by membrane bound DPP4, thus
reducing its chemotactic activity on T cells.

The antagonist form of IP-10 is detectable in the plasma of TB
patients. Urine is a biological sample easy to handle and with low
risk to manage. Therefore, the aim of this study was to evaluate if
IP-10 and its forms are detectable in urine, and if measurable, can
they be exploited as useful biomarkers to evaluate the immune
response in active TB at diagnosis and after therapy.

Materials and methods

Study participants

Patients with confirmed active TB were enrolled at INMI.
Active TB was defined as “microbiological” based on i) a positive
culture for Mtb from the sputum or broncholavage for pulmonary
TB; ii) a positive Mtb �specific RNA amplification and/or NAT
from biological specimens or presence of acid fast bacilli (AFB) in
a tissue sample or by positive culture for Mtb in clinical samples
for extra-pulmonary TB. Active TB was defined as “clinical” if the
diagnosis was based on clinical and radiologic criteria including
appropriate response to standard anti-TB therapy. For each
patient with a diagnosis of active TB, the radiological disease
severity was assessed by the radiologists evaluating chest X-ray at
baseline. The following scale of severity was considered: 0:
normal chest X-rays; 1: mild grade; 2: intermediate grade; 3: high
grade (Petruccioli et al., 2017). Moreover, healthy donors (HD) and
patients with pneumonia (either bacterial or viral) were enrolled
as controls. Patients with pneumonia had a final diagnosis based
on symptoms and signs of an acute lower respiratory tract
infection, and could be confirmed by microbiological tests,
clinical signs, a chest X-ray showing pulmonary lesions that is
not due to any other cause, and successful treatment with therapy
different from TB-specific drugs. Both TB and pneumonia patients
were prospectively enrolled within 7 days (median 3 days) of
starting the specific treatment and during treatment. In particu-
lar, TB patients were enrolled at baseline (T0), after two months of
anti-TB treatment (T2) and at the end of therapy completion; in
all of them anti-TB therapy was completed after 6 months (T6).
Patients with pneumonia were treated for 14-21 days. We
enrolled them at baseline and one month after the end of
therapy completion (median 1 month, IQR: 1-3). A successful
treatment completion with clinical-radiological and/or microbi-
ological resolution of the disease defined a cured TB or
pneumonia. Kidney diseases or urinary infections were excluded
for all the subjects enrolled. The study was approved by the INMI
Ethical Committee (pareri no 29/2014; 34/2010; 28/2014). All
subjects provided written informed consent. We were inspired by
the STARD criteria (Bossuyt et al., 2003) to test if our IP-10 species
could be used as immune biomarkers for active TB diagnosis and
monitoring.

Sample collection and IP-10 determination

Spot morning urine samples (10 mL) were collected in a
vacutainer for urine (BD Bioscience, code 364915), then transferred
to protease-inhibitor tubes p800 (BD Bioscences), aliquoted in
1 mL tubes and stored at �80 �C until use. Thawed urine samples
were centrifuged at 10,000 g for 10 minutes at 4 �C, diluted 1:3 and
tested for all forms of IP-10 (total IP-10), agonist IP-10 (long IP-10,
1-77 CXCL10) and antagonist IP-10 (short IP-10, 3-77 CXCL10) using
in-house SIMOA ultrasensitive digital ELISA (Quanterix) as
previously described (Meissner et al., 2015). Creatinine was
measured to normalize IP-10 levels using a BioAssay Systems
Quantichrom photometric assay and IP-10 levels were expressed as
mg/g. Each sample was quantified in duplicate and a coefficient of
variation (CV)% was calculated. The CVs median as a measure of
test reproducibility were: 13%, 12%, 5.4% for long IP-10, short IP-10
and total IP-10 respectively; and 3.2% for creatinine. To character-
ize the dispersion of these CVs around related medians, a second
CV% was calculated. The results were 68%, 95%, 96% and 245%
respectively. SIMOA limit of detection (LOD) for each assay were as
follows: long IP-10: 0.24 pg/mL; short IP-10: 0.31 pg/mL; total IP-
10: 0.18 pg/mL. The SIMOA quantification of all IP-10 forms was
performed blinded with respect to the diagnosis of the subjects
enrolled. The results were analysed and interpreted by experienced
researchers. No adverse events from performing sampling were
registered.

Statistical analysis

Data were analysed with SPSS v.19 for Windows (SPSS Italia
SRL, Bologna, Italy). The following statistics were calculated:
medians and interquartile ranges (IQR) for continuous meas-
ures; Chi-square test for proportions; Kruskall-Wallis test for
comparisons among several groups; Mann-Whitney U test for
pairwise comparisons; Wilcoxon test for paired data; linear
regression for slope analysis. A post-hoc correction was applied
when relevant and p values <0.05 or <0.016 after the Bonferroni
correction were considered significant. A receiver-operator
characteristic (ROC) analysis was performed to describe the
diagnostic ability and identify cut-off values of IP-10 forms. No
other subgroups out of those declared in the above paragraph
were analysed.
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Results

Study population

Between November 2014 and December 2016, we enrolled 33
patients with active TB, 11 patients with pneumonia (either
bacterial or viral) and 17 HD. Three subjects (one per group) were
excluded as creatinuria was not available; therefore, the analysis
was performed on 58 subjects: 32 patients with active TB, 10
patients with pneumonia and 16 HD (Table 1). Patients with active
TB were part of a previous study (Blauenfeldt et al., 2018). As
shown in Table 1, active TB patients mainly came from Eastern
European countries whereas subjects with pneumonia and HD
were mainly Italian. As a consequence, a significant difference was
found regarding the BCG status of the subjects enrolled. Moreover,
more than eighty percent of patients with active TB had a
microbiological diagnosis and a high grade severity.

Patients with active TB have high urine levels of total IP-10 at baseline

Patients with active TB had significantly higher levels of all
forms of IP-10 (total IP-10) at baseline compared to HD (p < 0.0001)
but not compared to the levels detected in pneumonia patients
(Figure 1). The SIMOA assay allows us to differentiate between long
active IP-10 and the short antagonist form (2 amino acids cleaved
at the N terminus). Therefore, utilizing SIMOA, we found that
patients with active TB and with pneumonia had significantly
higher levels of long IP-10 compared to HD (p = 0.009 and p = 0.009
respectively).

Based on these results we performed a ROC analysis for both
long IP-10 and total IP-10 for the diagnosis of active TB. Significant
area under the curve (AUC) results were obtained for both long and
total IP-10 (AUC: 0.74, 95% confidence interval (CI): 0.59-0.88,
p = 0.008 and AUC: 0.87, 95% CI: 0.76-0.98, p < 0.0001, respective-
ly). The cut-off values of 20 � 10�5mg/g for the long IP-10 and
15 �10�5mg/g for the total IP-10 identified active TB with 69% and
78% sensitivity and 81% and 94% specificity, respectively (Figure 2a,
b). Moreover, as the long IP-10 form was significantly increased in
Table 1
Baseline information of study participants.

Active TB Pneumonia 

N (%) 32 (55.2) 10 (17.2) 

Age Median (IQR) 39 (32-50) 52 (32-67) 

Sex N (%)
Female 9 (28.1) 4 (40.0) 

Origin N (%) 

West Europe 9 (28.1) 8 (80.0) 

East Europe 16 (50.0) 2 (20.0) 

Asia 3 (9.3) 0 (0) 

Africa 2 (6.3) 0 (0) 

America 2 (6.3) 0 (0) 

BCG N (%) 

Vaccinated 25 (78.1) 1 (10.0) 

QFT N (%) 

Positive 21 (65.7) 1 (10.0) 

Negative 5 (15.6) 5 (50.0) 

Indeterminate 1 (3.1) 0 (0) 

Not Done 5 (15.6) 4 (40.0) 

Microbiological Active TB 27 (84.4) - 

N: number; TB: tuberculosis; IQR: Interquartile Range; BCG: Bacillus Calmette–Guérin;
Values considered as statistically significant are indicated in bold.

a Kruskall-Wallis test.
b Chi-square test.
patients with pneumonia compared to HD, we evaluated its
accuracy for pneumonia diagnosis. The ROC analysis showed a
significant AUC (AUC: 0.81, 95% CI: 0.63-1, p = 0.008) and a cut-off
�19 � 10�5mg/g identified pneumonia with 80% sensitivity and
81% specificity (Figure 2c). No significant IP-10 differences were
found between active TB and pneumonia patients, which was
reflected in an AUC of 0.61 (95% CI: 0.43-0.79), 0.57(95% CI: 0.35-
0.78), 0.70 (95% CI: 0.47-0.93), for antagonist, agonist and total IP-
10, respectively (Figure 3a,b,c). Altogether these data indicate that
IP-10 associates with an acute disease status independently of the
type of disease evaluated.

Moreover, the levels of short IP-10 and long IP-10 were moderately
correlated in the active TB and pneumonia groups (rs= 0.5 and 0.58,
p < 0.004 and 0.08, respectively); the linear regression analysis showed
no significant difference in the regression slopes of active TB patients
compared to pneumonia patients (Supplementary Figure 1).

In active TB patients urine IP-10 is decreased at the end of specific
therapy

We followed 11 patients with active TB over the course of anti-
TB specific therapy and urine samples were collected 2 months
after starting treatment (T2) and upon therapy completion (T6)
(Figure 4, Table 2).

Quantitative analysis showed a significant decrease of total IP-
10 levels at T6 compared to baseline (p = 0.009, Figure 4a) and to T2
(p = 0.03, Figure 4a); moreover, a decreased trend for both long and
short IP-10 levels in patients with active TB during therapy was also
observed, although not significant (Figure 4b-c). Urine IP-10 levels
were also evaluated in 9 patients with pneumonia at baseline and
at the end of specific chemotherapy (Figure 4, Table 3) but neither
short/long IP-10, nor total IP-10 levels showed significant changes
(Figure 4d-f).

Discussion

Biomarkers for active TB diagnosis and clinical management are
needed to reduce TB incidence and recurrence. Moreover, it is
HD Total p Value

16 (27.6) 58 (100)
40 (28-50) 40 (32-53) 0.20a

11 (68.8) 24 (41.4) 0.03b

0.003b

15 (93.8) 32 (55.2)
0 (0) 18 (31.0)
1 (6.2) 4 (7.0)
0 (0) 2 (3.4)
0(0) 2 (3.4)

<0.0001b

3 (18.8) 29 (50.0)

<0.0001b

0 (0) 22 (37.9)
13 (81.2) 23 (39.7)
0 (0) 1 (1.7)
3 (18.8) 12 (20.7)

- -

 QFT: QuantiFERON Gold IN TUBE.



Figure 1. Increased levels of IP-10 and its agonist form in urine from patients with active TB and in subjects with pneumonia compared to HD. SIMOA digital ELISA was
performed in urine; urine levels of IP-10 and its agonist/antagonist forms were normalized as ratio to creatinine and expressed as mg/g. The horizontal lines represent the
median; statistical analysis was performed using the Mann-Whitney test with Bonferroni correction and p-value was considered significant if <0.016. Footnotes. IP-10: IFN-g
inducible protein 10; TB: tuberculosis; HD: healthy donors.

Figure 2. Receiver-operator characteristic (ROC) curves of the IP-10-based tests for discriminating active TB or pneumonia from healthy donors (HD). (a-b) ROC analysis
between active TB and HD groups; significant area under curve (AUC) results were obtained for both long (a) and total (b) IP-10 (AUC: 0.74, 95% confidence interval (CI): 0.59-
0.88, p = 0.008 and AUC: 0.87, 95% CI: 0.76-0.98, p < 0.0001, respectively). (c) ROC analysis between pneumonia and HD groups; significant AUC results (AUC: 0.83, 95% CI:
0.63-1, p = 0.008) were obtained for long IP-10. SIMOA was performed in urine; urine levels of IP-10 and its agonist/antagonist forms were normalized as a ratio to creatinine
and expressed as mg/g.

Figure 3. ROC analysis of the IP-10-based tests for discriminating active TB from pneumonia. (a) antagonist IP-10; (b) agonist IP-10; (c) total IP-10. AUC results of 0.61 (95% CI:
0.43-0.79), 0.57(95% CI: 0.35-0.78), 0.70 (95% CI: 0.47-0.93) were obtained. SIMOA was performed in urine; urine levels of IP-10 and its agonist/antagonist forms were
normalized as a ratio to creatinine and expressed as mg/g.
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important to design simple tools, useful for both adults and
children and easily to be transferred to the patient bed as point-of-
care tests. The IP-10 chemokine is well-suited to fulfil all these
demands, and the recent characterization of post translationally
modified IP-10 forms in TB (Blauenfeldt et al., 2018) have opened
new opportunities to further evaluate its use as biomarker.
In this study we showed for the first time that IP-10 agonist and
antagonist forms may be detected in urine. In line with our and
other publications (Cannas et al., 2010; Petrone et al., 2015; Petrone
et al., 2016), we confirmed that IP-10 is increased in the urine of
patients with active TB but also in diseases different from TB such
as pneumonia. Moreover, we demonstrated that levels of agonist



Figure 4. Decrease of urine IP-10 in patients with active TB during anti-TB specific therapy. (a) total IP-10; (b) agonist IP-10; (c) antagonist IP-10 levels in patients with active
TB during anti-TB specific therapy; (d) total IP-10; (e) agonist IP-10; (f) antagonist IP-10 levels in patients with pneumonia during therapy. SIMOA was performed in urine;
urine levels of IP-10 and its agonist/antagonist forms were normalized as a ratio to creatinine and expressed as mg/g. Statistical analysis was performed using the Wilcoxon
test for paired data and p-value was considered significant if <0.05. Footnotes. IP-10: IFN-g inducible protein 10; T0: baseline; T2: 2 months therapy; T6: end therapy.

Table 2
IP-10 levels in active TB patients during anti-TB specific treatment.

Anti-TB therapy follow-up (months)

T0 T2 T6

Short IP–10 mg/g
Median (IQR)

24 �10�5

(87 � 10�6 -39 � 10�5)
75 �10�6

(56 � 10�6-28 � 10�6)
47 � 10�6

(14 �10�6-88 � 10�6)
Long IP–10 mg/g
Median (IQR)

28 � 10�5

(15 �10�5-41 �10�5)
19 � 10�5

(41 �10�6-37 � 10�5)
12 � 10�5

(37 � 10�6-18 � 10�5)
Total IP–10 mg/g
Median (IQR)

59 � 10�5

(18 � 10�5-91 �10�5)
44 �10�5

(23 �10�5-71 �10�5)
13 �10�5

(42 � 10�6-31 �10�5)

TB: tuberculosis; T0: baseline; T2: 2 months therapy; T6: end-therapy; IP-10: Interferon Inducible Protein-10; IQR: Interquartile Range.

Table 3
IP-10 levels in patients with pneumonia during specific treatment.

Therapy follow-up

T0 End therapy

Short IP-10 mg/g
Median (IQR)

15 �10�5

(59 � 10�6-45 �10�5)
93 � 10�6

(35 �10�6-24 �10�5)
Long IP-10 mg/g
Median (IQR)

25 �10�5

(19 � 10�5-69 � 10�5)
48 � 10�5

(70 � 10�6-61 �10�5)
Total IP-10 mg/g
Median (IQR)

13 � 10�5

(35 �10�6-13 � 10-5)
15 �10�5

(36 � 10�6-53 �10�5)

T0: baseline; IP-10: Interferon Inducible Protein-10; IQR: Interquartile Range.
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IP-10 in urine were increased in patients with active TB or
pneumonia compared to healthy subjects, reflecting ongoing and
active secretion. The ROC analysis showed that both the agonist IP-
10 and the total IP-10 detected are associated with a status of acute
disease, independently of TB or pneumonia status, as previously
shown by us and others for the total IP-10, in blood and urine
samples (Santos et al., 2018).

The assessment of treatment response in active TB patients is
currently based on sputum reversion and improvement of clinical
symptoms and often of the radiology lesions after 2 months of
therapy. However, cultures seem inadequate as the gold standard,
as several studies showed recurrent TB in treated patients despite
sputum reversion at the end of the anti-TB therapy as well as active
TB lesions post-treatment (Goletti et al., 2018; Malherbe et al.,
2016). Several biomarkers for treatment response based on either
pathogen or host features have been taken into consideration,
however, none have been validated yet. Therefore, additional tests
and new biomarkers for predicting treatment efficacy are needed.
Blood IP-10 has been demonstrated as an early predictor of
treatment response as its levels rapidly decrease in the first week
of treatment, mainly in microbiologically confirmed active TB with
or without HIV infection (Garcia-Basteiro et al., 2017; den Hertog
et al., 2015; Chung et al., 2016). In this study we found declining
levels of total and agonist/antagonist IP-10 forms in urine of
patients with active TB during specific therapy but not in patients
with pneumonia, suggesting that modifications of IP-10 forms
during therapy may be associated to TB disease. However the
decline of the agonist/antagonist IP-10 forms was not significant,
likely due to the small number of subjects evaluated. This supports
the hypothesis that IP-10 is expressed at the site of TB infection,
diffuses to the blood and is excreted in the urine (Blauenfeldt et al.,
2018), however the low levels found in urine compared to blood
remains a challenge. In this study, the absolute levels of urine IP-10
were below the LOD in 14% and 8.8% of samples from active TB or
pneumonia patients respectively. The values below the LOD were
found mainly for agonist/antagonist forms underpinning the
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difficulty determining them in this sample. Therefore, the use of a
more concentrated sample, such as urine collected over 24-hours,
may improve IP-10 detection and help in clarifying its kinetics
during therapy.

Further studies should include the evaluation of agonist and
antagonist IP-10 in both microbiological and clinical TB as well as
shorter follow up times to fully understand their modulation and
the potential accuracy as biomarkers to predict treatment
response. Furthermore, the identification of new additional
post-translational modifications of IP-10 and their role in TB
pathogenesis may also be explored. Importantly, the “end therapy”
time point differs between active TB and pneumonia patients (6
months vs 1 month), however, different drug regimens are
expected for these diseases; shorter time courses during therapy,
as previously described (Garcia-Basteiro et al., 2017), will better
highlight the differences of IP-10 and its agonist/antagonist levels
in urine.

In conclusion, we showed for the first time that agonist/
antagonist IP-10 forms are measurable in urine. Increased IP-10
levels associate with both TB and pneumonia disease, suggesting
that it is associated with acute inflammation. Further studies are
needed to assess their role as tools to monitor TB treatment
efficacy.
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