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Efficient clearance of transformed cells by Natural Killer (NK) cells is regulated by

several activating receptors, including NKG2D, NCRs, and DNAM-1. Expression of

these receptors as well as their specific “induced self” ligands is finely regulated

during malignant transformation through the integration of different mechanisms

acting on transcriptional, post-transcriptional, and post-translational levels. Among

post-translational mechanisms, the release of activating ligands in the extracellular milieu

through protease-mediated cleavage or by extracellular vesicle secretion represents

some relevant cancer immune escape processes. Moreover, covalent modifications

including ubiquitination and SUMOylation also contribute to negative regulation of

NKG2D and DNAM-1 ligand surface expression resulting either in ligand intracellular

retention and/or ligand degradation. All these mechanisms greatly impact on NK cell

mediated recognition and killing of cancer cells and may be targeted to potentiate NK

cell surveillance against tumors. Our mini review summarizes the main post-translational

mechanisms regulating the expression of activating receptors and their ligands with

particular emphasis on the contribution of ligand shedding and of ubiquitin and

ubiquitin-likemodifications in reducing target cell susceptibility to NK cell-mediated killing.

Strategies aimed at inhibiting shedding of activating ligands and their modifications in

order to preserve ligand expression on cancer cells will be also discussed.

Keywords: activating NK cell receptors, ligands for NK cell activating receptors, post-translational modifications,

shedding, ubiquitin modification

INTRODUCTION

Natural Killer (NK) cell activation is tuned by the integration of signals derived from
inhibitory receptors for Major Histocompatibility Complex (MHC) class I molecules and from
activating receptors that bind either non self-molecules associated to pathogens or self-molecules
up-regulated in stress conditions including malignant transformation (1, 2).

Among activating receptors, Natural-Killer receptor group 2, member D (NKG2D),
DNAX-associated molecule1 (DNAM-1), and the Natural Cytotoxicity Receptors
(NCRs) play a pivotal role in NK cell-mediated tumor surveillance as revealed by
an increased incidence of spontaneous malignancies or impaired tumor clearance
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in mice deficient for these receptors (3–7). In human, NCR
expression may represent a prognostic biomarker in acute
myeloid leukemia (AML) and solid tumors (8–10). Moreover,
the engagement of the low affinity receptor for IgG (CD16)
by means of natural or therapeutic monoclonal antibodies can
also contribute to tumor clearance through antibody-dependent
cellular cytotoxicity (ADCC) (11, 12).

NK Cell Activating Receptors and Their
Ligands on Tumor Cells
NKG2D is a C-type lectin receptor not exclusively expressed
on NK cells but also found on NKT, CD8+αβ T cells, γδ

T cells, and activated CD4+αβ T cells (13–15). In humans,
NKG2D binds to the adaptor DNAX activating protein 10
(DAP10), responsible for signal propagation. In murine activated
NK cells, a shorter NKG2D isoform can either associate
with DAP10 or DAP12, an alternative signal transducing
adaptor (16, 17).

Human NKG2D ligands (NKG2DLs) belong to two families
of polymorphic molecules structurally related to MHC class I:
the MHC class I related proteins (MIC)A/B which possess α1,
α2, and α3 domains similar to MHC molecules and six UL16
binding proteins (ULBP1-6) characterized by α1 and α2 domains
(15, 18, 19). MICA and MICB are generally transmembrane
proteins, while ULBP proteins can be transmembrane
(ULBP4 and 6) or GPI-linked (ULPB1-3 and 5) molecules.
Murine NKG2DLs include Rae-1α-ε, MULT1, and H60a-c
and are expressed either as transmembrane or GPI-linked
molecules (18).

DNAM-1 belongs to the immunoglobulin receptor family and
is expressed not only on NK cells but also on monocytes, T cells,
and subsets of B cells (14, 20, 21). It binds to Nectin2/CD112 and
PVR/CD155 both members of the Nectin/Nectin-like family of
adhesion molecules (22–24), and it associates with the integrin
LFA1 to transduce intracellular signals.

Natural cytotoxicity receptors comprise NKp46, NKp44, and
NKp30 immunoglobulin-like receptors that are not exclusively
expressed on NK cells but also on innate lymphoid cells (ILCs) of
group 1 (ILC1) and a subset of ILC3, γδ T cells, and a population
of cytotoxic T lymphocytes (25, 26). Only ortholog of NKp46 is
expressed in mice (26).

NKp30 and NKp46 associate with the signal transducing
adaptors CD3ζ and FcεRIγ while NKp44 mainly signals through
the DAP12 adapter. Splicing variants of NKp44 and NKp30
endowed with inhibitory signal capability have been described
and are associated with worst prognosis in cancer patients (9, 27).

NCRs interact with several ligands that are either pathogen-
encoded or self-molecules and include cell surface and
intracellular proteins that reach the surface in infected or
transformed cells (28). However, the ligands expressed on tumor
cells have not been fully identified yet.

Each NCR has the ability to recognize a specific configuration
of heparan sulfate proteoglycans expressed in the context
of tumor microenvironment, and this binding can modulate
receptor function (28).

Ligands for NKp30 include B7-H6 belonging to the B7 family
and only expressed on tumor cells, the intracellular protein HLA-
B associated transcript 3 (BAT3), also known as BAG6, and
galectin-3 (29–31). The first two ligands bind to and activate
NKp30 while the released form of galectin-3 inhibits anti-tumor
NKp30 function.

NKp44 interacts with the Proliferating Cell Nuclear Antigen
(PCNA), which is aberrantly expressed on the surface of tumor
cells. This binding preferentially engages an inhibitory isoform
of NKp44 and negatively regulates NK cell functions (32).
Interaction between NKp44 and a subset of HLA-DP molecules
has been recently reported (33) demonstrating that HLA class II
molecules may impact on NK cell activity. Of note, NKp44 can be
triggered by specific tumor-derived soluble growth factors (34)
and by Nidogen-1, an extracellular matrix protein (35). NKp46
recognize viral ligands including hemagglutinins as well as tumor
ligands of still unknown identity.

Most of the above mentioned NK cell activating ligands,
including NKG2DLs and B7-H6, are absent in normal cells but
their expression is induced upon neoplastic transformation, thus
rendering tumor cells more susceptible to NK cell-mediated
killing (29, 36–41).

On the other hand, PVR and Nectin2 are expressed
on healthy cells (21) but their amount is up-regulated on
epithelial and hematological tumor cells promoting NK cell
cytotoxicity (7, 42–44).

POST-TRANSLATIONAL MECHANISMS
MODULATING MEMBRANE EXPRESSION
OF NK CELL ACTIVATING LIGANDS ON
TUMOR CELLS

During malignant transformation different stressful stimuli are
responsible for the induction of NK cell activating ligands at
transcriptional and post-transcriptional levels and the molecular
mechanisms implicated have been partially identified (18,
45). Moreover, increasing evidence demonstrate that post-
translational mechanisms including the release of ligands for
NK cell activating receptors as soluble forms as well as ligand
modification by the Ubiquitin (Ub) or Ub-like pathways are used
by tumor cells to dampen activating ligand surface expression in
order to evade NK cell recognition (Figure 1A).

Mechanisms Implicated in the Release of
Ligands for NK Cell Activating Receptors
Most of the information regarding soluble ligands in cancer
patients comes from studies performed on NKG2DLs. These
molecules are present in the sera of patients affected by
hematological or solid malignancies, and their level correlate
with tumor stage and poor prognosis (46–53). More recently,
B7-H6, BAG6, and PVR soluble forms have been found in the
sera of patients affected by different type of tumors suggesting
a relationship between soluble ligand expression and cancer
progression (54–58).

Generation of soluble ligands relies on different mechanisms
including alternative splicing, exosome secretion and proteolytic
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FIGURE 1 | Post-translational mechanisms controlling NK cell-mediated recognition of tumor cells. (A) Model depicting how NCR (B7-H6), NKG2D, and DNAM1

ligand expression is prevented by post-translational mechanisms on target cell surface (right). Release of B7-H6 and NKG2D ligands on exosomes is also depicted. In

addition to regulate ligand expression on tumor cell, ubiquitin modification also provides a signal for internalization and trafficking of NKG2D and CD16 on NK cells

(left). CD16 is also downmodulated by metalloproteinase-mediated shedding. Mechanisms regulating DNAM-1 and NCR (NKp30) downmodulation are currently

unknown. (B) Therapeutic strategies aimed to prevent post-translational mechanisms affecting activating ligand and receptor expression.

cleavage. Soluble PVR isoforms are generated by alternative
splicing (59) and have an inhibitory effect on DNAM-1 mediated
tumor immunity (54). In addition, alternative splicing gives rise
to ULBP-4/5 secreted ligands that can impair NK cell target
recognition in vitro (60, 61).

Exosomes represents nanovesicles derived from the
endosomal compartment (62) and have been involved in
the secretion of NKG2D and NKp30 ligands but not of DNAM-1
ligands (63). Differently from the proteolytic-mediated release,
expression of activating ligands on the exosome surface should
retain their biological activity by keeping the integral-molecule.
A number of studies have shown that NKG2DLs from both MIC
and ULBP families are expressed on the surface of exosome-like
vesicles released from ovarian cancer (63), melanoma (64), and
prostate cancer cells (65). Remarkably, NKG2DLs such as ULBP3
and ULBP1 (66) or the allelic variant MICA∗008 (67, 68) that
are glycosylphosphatidylinositol (GPI)-anchored proteins, are
preferentially released via exosomes.

In regard to NKp30Ls, the nuclear protein BAG6 is secreted
on exosomes and stimulates NK cell activity (69), whereas the

cell surface ligand B7-H6 can be released in its soluble form
associated to exosomes or through protease-mediated cleavage
(57, 70, 71). Although several stress conditions can increase
exosome secretion from cancer cells (72–75), it is still uncertain
whether the release of NKG2DLs or B7-H6 through exosome-like
vesicles could result in the diminution of their expression on the
cell surface.

Concerning the shedding process, MICA, MICB, and ULBP2
are cut by metalloproteinases belonging to two distinct families,
the matrix metalloproteinases (MMPs) and a disintegrin
and metalloproteinases (ADAMs) (76–81), whereas the B7-
H6 proteolytic cleavage occurs through a mechanism mainly
dependent on ADAM enzymes (57). A recent study has shown
that some ULBP4 isoforms are sensitive to the protease cleavage
(82). Both MMPs and ADAMs proteases undergo modulation
of their activity and expression in the course of neoplastic
transformation (83, 84) and in response to cancer therapy (85–
88). Disparate sensitivity to the proteases has been described
for distinct NKG2DLs and/or allelic variants and isoforms. For
instance, the generation of soluble MICA can be affected by
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polymorphisms as shown for theMICA∗008 allele that is resistant
to the protease-mediated cleavage. Moreover, the MICA-129
dimorphism, producing a valine to methionine swap at position
129, influenced the MICA cleavage process but the mechanism
behind has to be defined (89, 90). In addition, proteolytic cleavage
can be affected by fatty acylation and palmytolation that mediate
MICA/B recruitment to membrane microdomains (78, 91).

Differently from the exosome-mediated release, the
proteolytic cleavage of NKG2DLs and B7H6 has been associated
to a reduction of cell surface ligands, thus its inhibition could be
accomplished as a promising approach to keep the ligands on
cancer cell surface and to promote anti-cancer immune response.

Activating Ligand Modification by Ub and
Ub-Like Pathways
Recent evidences reveal a role for ubiquitination and
SUMOylation in the regulation of NK cell ligand expression on
tumor cells.

Ubiquitination and SUMOylation are reversible modifications
whereby Ub and small Ub-like modifier (SUMO), respectively,
are covalently bound to a target protein through the action
of enzymes frequently up-regulated during malignant
transformation (92–95).

Once modified, proteins undergo different fate depending on
the type of modification.

Proteins modified by poli-Ub chains are generally targeted
to proteasomal degradation (95) whereas the addition of
single Ub molecules to one or more lysine residues promote
non-degradative fates including regulation of membrane
protein endocytosis (96). SUMOylated substrates undergo
conformational changes that in turn modify their interaction
with other proteins or their enzymatic activity without inducing
a degradative fate (94).

Little is currently known about the role of these modifications
in the regulation of NK cell ligand expression during
malignant transformation.

Ubiquitination of MICA/B has been demonstrated in Kaposi’s
sarcoma-associated herpesvirus infected cells: the viral E3
Ub ligase K5 induces modification of both NKG2DLs and
their intracellular retention (97). Moreover, in healthy cells
the murine ULBP-1 ortholog MULT-1 undergoes constitutive
ubiquitination and lysosomal degradation (98, 99). Interestingly,
stress conditions including UV radiation and heat shock prevent
MULT-1 ubiquitination and increase its surface expression (98).
Thus, these results support a negative role for the Ub pathway in
the regulation of NKG2DL expression.

In tumor cells a direct implication of the Ub pathway
has not been formally reported but several data demonstrate
that surface expression of human NKG2DLs is regulated by
a rapid protein turnover. In melanoma cells, an immature
form of MICA accumulates in the endoplasmic reticulum and
is targeted to degradation (100). MICB is internalized and
retained intracellularly in several tumor cell lines (101), while in
Multiple Myeloma (MM) cells the constitutive internalization of
MICB is followed by its lysosomal degradation (102). Similarly,
the GPI-linked ligand ULBP1 is continuously removed from

plasma membrane and targeted to proteasomal degradation
(103). Regarding DNAM-1 ligands, in hepatocellular carcinoma
the activation of Unfolded Protein Response (UPR) inhibits PVR
surface expression and promotes protein degradation (104). In
line with this result, ubiquitination and SUMOylation negatively
regulates surface expression of Nectin2 and PVR on tumor cells
(105, 106). Ubiquitinated Nectin2 is retained in intracellular
compartments but also targeted to proteasomal degradation
(106) whereas SUMOylation of PVR promotes its intracellular
retention without inducing protein degradation (105). Inhibition
of Ub and SUMO pathways increases Nectin2 and PVR surface
expression and renders tumor cells more sensitive to NK cell-
mediated killing.

Although these findings are currently limited to NKG2D
and DNAM-1 ligands, they provide novel insights into
the mechanisms underlying activating ligand expression
in diseased cells and reveal novel potential targets for
therapeutic intervention.

LIGAND INDUCED DOWN-MODULATION
OF NK CELL ACTIVATING RECEPTOR
EXPRESSION

Tumor progression also implies the inability of NK cells to kill
tumor cells as consequence of ligand mediated down-regulation
of activating receptors (Figure 1A).

However, receptor down-regulation may be affected by the
presence of soluble or membrane-bound ligands as well as by
their affinity and/or avidity (19).

A decreased in NCR expression levels was observed in NK
cells derived from patients affected by myeloid leukemia and
other tumors upon the interaction with their respective ligands
(8, 107).

Reduced NKp30 surface expression has been also detected on
NK cells derived from ovarian carcinoma and neuroblastoma
patients as a result of chronic stimulation either with B7-H6-
expressing tumor cells or soluble B7-H6 (55, 56, 108). Moreover,
the presence of soluble BAG6 has been associated with a low
transcriptional levels of different NKp30 isoforms (58, 109).

DNAM-1 engagement, by membrane-bound ligands but not
their soluble counterpart, is also followed by receptor down-
modulation and impairment of NK cell functions in patients
affected by different tumors including MM, ovarian carcinoma
and AML (44, 110, 111). However, the mechanisms underlying
these effects are still undefined.

For other activating receptors including NKG2D and
CD16, mechanisms of ligand-induced down-modulation have
been elucidated.

NKG2D stimulation by ligands expressed on tumor cells as
well as by soluble ligands promotes receptor endocytosis and the
decrease of NKG2D-dependent functions (46, 76, 112–115). In
regard to released ligands, those associated to exosomes show
a higher avidity and a more efficient ability to induce receptor
down-regulation compared to shed ligands (66, 67).

In humans, internalization of ligand-engaged NKG2D
receptors requires DAP10 ubiquitination and is followed by
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lysosomal degradation (116). However, MICA is more efficient
than ULBP2 in promoting receptor ubiquitination (114).

Ub modification has been also implicated in the down-
modulation of CD16 in response to antibody-coated tumor
cells (117–119). Indeed, CD16 clearance from NK cell
surface is mainly induced by Ub-dependent endocytosis
of aggregated receptors followed by degradation of CD16ζ
subunit and the associated kinases (114, 117, 120). However,
CD16 down-regulation can also occur as a consequence
of metalloproteinase-induced receptor shedding (121–124).
Regardless, NK cell-mediated ADCC, natural cytotoxicity,
and the efficacy of antibody-based therapies resulted
impaired (118, 119, 125).

Altogether these results demonstrate that activating receptor
expression is modulated in tumor microenvironment by the
interaction with ligand-expressing cells, thus impairing NK cell
ability to counteract tumor development.

TARGETING POST-TRANSLATIONAL
MECHANISMS REGULATING NK
CELL-MEDIATED RECOGNITION AND
KILLING OF CANCER CELLS

All these post-translational mechanisms represent potential
targets for therapeutic intervention (Figure 1B). Ligand shedding
blocking can be achieved by the usage of inhibitors of MMPs
and ADAMs enzymes (57, 77, 126). Since ADAM10 and
ADAM17 sheddases play a prominent role in B7-H6 (57) and
NKG2DL cleavage (77, 78, 80, 127), the selective targeting
of such enzymes might be promising for anticancer therapy.
Recently, by performing an in vitro drug screen using an
FDA-approved drug library, lomofungin was found to strongly
decrease ADAM17 activity in hepatocellular carcinoma leading
to the impairment of MICA shedding and has been proposed
as new drug candidate for immunotherapy in liver cancer
(128). Most of the compounds able to inhibit ADAM catalytic
activity are hydroxamate-based and are either selective for
ADAM17 or inhibitors of both ADAM10 and ADAM17 (129).
Of interest, the synthesis of new selective ADAM10 inhibitors
able to impair NKG2DL shedding in Hodgkin’s lymphoma cell
models has been reported (130). ADAM10 and ADAM17 are
expressed at high levels on the surface of glioblastoma-initiating
cells thus contributing to an immunosuppressive phenotype
through the ULBP2 cleavage. Specific inhibition of these enzymes
preserved cell surface ULBP2 leading to increased glioblastoma
cell recognition and killing by NK cells (131). Remarkably,
in vivo experiments using athymic nu-/nu- mice implanted
with subcutaneous HeLa tumors demonstrated that systemic
MMPi treatment resulted in the reduction of MICA serum
levels and a concomitant augmentation of MICA expression
on cancer cells reinforcing the immune cell therapy mediated
by cytokine-induced killer cells (132). Of interest, adoptively
transferred NK cells displaying high levels of surface NKG2D
determined the clearance of soluble MICA in neuroblastoma
patients by preserving NK cell cytotoxicity via non-occupied
NKG2D (133).

Another appealing strategy to specifically inhibit MICA/B
proteolytic cleavage concerns the generation of antibodies
targeting the MIC protein domain involved in the proteolytic
cleavage (134). Interestingly the usage of these antibodies
limited MICA/B shedding in human cancer cells and repressed
cancer cell growth in in vivo models (134). More recently,
the glycosylation-engineered epitope mapping (GEM) method
allowed to the identification of a number of epitopes relevant for
MICA/B shedding inhibition (135).

In general, such antibodies as well as metalloproteinase
inhibitors could be used in combination with other therapies
aimed at the enhancement of ligand expression on the surface
of cancer cells including DNA damaging agents (127), radiations
(87), and chemotherapeutic drugs (132). Our group has shown
that the combined use of metalloproteinase inhibitors and
genotoxic drugs enhanced NK cell-mediated killing of multiple
myeloma cells by preserving MIC molecules on the cell surface
(127). To date, ADAMs inhibitors have been largely unsuccessful
in clinical trials, but they remain a viable and desirable
therapeutic target based on preclinical studies.

Strategies aimed at inhibiting ADAM17-mediated CD16
cleavage from the surface of NK cells could be also promising.
Beyond the usage of inhibitors, recent advances in generating
function-blocking antibodies of ADAM17 are emerging.
The monoclonal antibody MEDI3622 has been shown to
block CD16A cleavage from activated human NK cells
allowing to an increased IFNγ production in the course
of ADCC (136).

Proteasome inhibitors can change the fate of ubiquitinated
ligands. Bortezomib (Velcade) and Carfilzomib (Kyprolis) have
been already used as chemotherapeutic drugs for relapsed
MM patients (137–139) and for the treatment of mantle cell
lymphoma (140).

In line with our findings (106), previous reports demonstrated
that low doses of bortezomib increase NK cell activating ligand,
including Nectin2 (141–143). Whether those drugs can directly
affect ligand expression stabilizing ubiquitinated Nectin2 and/or
SUMOylated PVR is currently unknown.

Regarding the SUMO pathway, the FDA-approved drug
Topotecan has been shown to affect SUMOylation in
glioblastoma multiforme (144). Moreover, natural compounds
including ginkgolic acid and tannic acid (145, 146) have been
found to possess anti-cancer activities by targeting the SUMO
pathway (147).

All of these compounds hold great promise to be developed
into novel and efficient anti-cancer drugs.

CONCLUSION AND THERAPEUTIC
PERSPECTIVES

On tumor cells, several activating ligands are subjected
to protease-mediated cleavage with a consequent dramatic
reduction of their surface expression. A similar effect is also
achieved upon ubiquitination or SUMOylation of NKG2D
and DNAM-1 ligands, which are retained intracellularly
and/or degraded.
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On NK cells, the Ub pathway may also contribute to down-
regulate the surface expression of activating receptors.

In conclusion, all these post-translational mechanisms
act to reduce NK cell-mediated surveillance
against tumors and represent potential targets for
therapeutic intervention.

Several inhibitors have been developed and their use in
combination with conventional therapies represent a useful
tool to potentiate NK-cell mediated recognition and killing of
tumor cells.
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