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Abstract

Given F a locally compact, non-discrete, non-archimedean field of characteristic 6= 2
and R an integral domain such that a non-trivial smooth character χ : F → R× exists, we
construct the (reduced) metaplectic group attached to χ and R. We show that it is in most
cases a double cover of the symplectic group over F . Finally we define a faithful infinite
dimensional R-representation of the metaplectic group analogue to the Weil representation
in the complex case.

Introduction

The present article deals with the seminal work of André Weil on the Heisenberg representation
and the metaplectic group. In [Wei64] the author gives an interpretation of the behavior of theta
functions throughout the definition of the metaplectic group with a complex linear representation
attached to it, known as the Weil or metaplectic representation. A central tool in his construction
is the group T = {z ∈ C : |z| = 1}, in which most computations are developed.
We replace T with the multiplicative group of an integral domain R and we construct a Weil
representation in this more general context. The scope is to help fitting Weil’s theory to give
applications in the setting of modular representations (see, for example, [Min12]).

The classical results of [Wei64] are the following. Let X be a finite dimensional vector space
over a local field k, X∗ its dual and W = X ×X∗. Let A(W ) be the product W × T with the
Heisenberg group structure as defined in section 2.1 below. The author studies the projective
representation of the symplectic group Sp(W ), coming from the action of Sp(W ) over a complex
representation of A(W ). This projective representation lifts to an actual representation of a
central extension Mp(W ) of Sp(W ), called metaplectic group. The lift is called nowadays
Weil representation or metaplectic representation. The author shows also that the metaplectic
group contains properly a subgroup Mp2(W ) which is a two-folded cover of Sp(W ) on which the
Weil representation can be restricted. Moreover, if k 6= C, it is not possible to restrict the Weil
representation to Sp(W ).

Let us recall another construction for the Weil representation in the complex case (cfr. for
example [MVW87]). The starting point is the Stone-von Neumann theorem, asserting that,
given a non-trivial character χ : k → C×, there exists an infinite dimensional irreducible C-
representation of the Heisenberg group

ρ : W × k → Aut(S)
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with central character χ, and that it is unique up to isomorphism. The symplectic group acts
on the Heisenberg group by σ.(w, x) 7→ (σw, x) and this action is trivial on the center. Then,
for every σ ∈ Sp(W ), the representation ρσ : (w, x) 7→ ρ(σw, x) is irreducible and has the same
central character χ, so it is isomorphic to ρ. This means that there exists Ψσ ∈ Aut(S) such
that Ψσ ◦ ρ ◦Ψ−1

σ = ρσ. Notice that Ψσ is unique up to multiplication by an element of C×, by
Schur’s Lemma. We obtain in this way a faithful projective representation

Sp(W ) → Aut(S)/C×
σ 7→ Ψσ.

Defining
MpC(W ) := Sp(W )×Aut(S)/C× Aut(S)

the metaplectic group comes out, by definition, with a representation that lifts the projective
representation of Sp(W ): the complex Weil representation.
Notice that this construction is more abstract than the one in [Wei64] and that resides on the
irreducibility of ρ, which in general is not given when we replace C by R. We want to avoid the
use of Stone-Von Neumann theorem and to give an explicit description of the Weil representation.
This is why we choose to follow the approach of Weil rather than this construction.

Let F be a locally compact, non-discrete, non-archimedean field of characteristic 6= 2. Let
p > 0 be the characteristic and q the cardinality of its residue field. We let X be an F -vector
space of finite dimension, we noteW = X×X∗ and we replace the group T by the multiplicative
group of an integral domain R such that p ∈ R×, R contains pn-th roots of unity for every n
(to ensure the existence of a nontrivial smooth character F → R×) and a square root of q.
The object of this work is to show that the strategy of proof used by Weil can be adapted in
this setting. Weil’s techniques can be exploited in the same way whenever a result involves
just the field F , like the intrinsic theory of quadratic forms over X and the description of the
symplectic group. Nevertheless, different kinds of problems occur in the new generality. The
main issues are the lack of complex conjugation and complex absolute value. Because of this,
Fourier and integration theory in the present work are different from the complex case; mainly
we consider Haar measures with values in R and operators acting over the space of R-valued
Schwartz functions over an F -vector space instead of L2-functions, using Vignéras’ approach
(section I.2 of [Vig96]). Moreover, allowing R to be of positive characteristic makes it necessary
to change some formulas, for example in the proof of Theorem 4.1 to include the case where
q2 = 1 in R.

The central result of this paper is the existence of the reduced metaplectic group, which
is defined in the following way. The starting point is the definition of the metaplectic group
Mp(W ) and the existence of a non-split short exact sequence

1 −→ R× −→ Mp(W )−→Sp(W ) −→ 1. (?)

Theorem 5.3 and Theorem 5.4 give a description of a minimal subgroup of Mp(W ) which is a
non-trivial extension of Sp(W ). We can summarize them in a unique statement:

Theorem. Let char(R) 6= 2. There exists a subgroup Mp2(W ) of Mp(W ) such that the short
exact sequence (?) restricts to a short exact sequence

1 −→ {±1} −→ Mp2(W )−→Sp(W ) −→ 1 (??)

that does not split.

This result permits the definition of a Weil representation of Mp(W ), that we describe explicitly.
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Let us illustrate the main body of the article.

Section 1 contains a brief explanation of basic notations and definitions where essentially no
new result appears. However some features differ from the one in [Wei64]. We introduce the
integration theory in our setting that is slightly different from the complex one. Over an F -vector
space, we consider a R-valued Haar measure as in [Vig96], that exists since p ∈ R× and the
R-module of Schwartz functions, i.e. compactly supported locally constant functions, in place of
L2-functions. The main differences with the complex case are that there may exist non-empty
open subsets of the vector space with zero volume if the characteristic of R is positive, and that
integrals of Schwartz functions are actually finite sums. This theory permits also the definition
of a Fourier transform and of its inverse. In the end of the section we study element of Sp(W )
as matrices acting over W . We consider this as a left action (rather than on the right, as in
[Wei64]) but we want to show the same formulas. Then we have to change some definitions ad
hoc.
In section 2 we define the faithful Heisenberg representation U of A(W ) on the R-module
of Schwartz functions of X and we introduce the groups B0(W ) of automorphisms of A(W )
acting trivially on the center and B0(W ), the normalizer of U(A(W )) in Aut(S(X)). After that
we define Mp(W ), as a fibered product of Sp(W ) and B0(W ) over B0(W ), and the sequence
(?), proving that it is exact. This fact is a direct consequence of the Theorem 2.5, stating the
exactness of a sequence of the form

1 −→ R× −→ B0(W )
π0−→ B0(W ) −→ 1.

The proof of the analogue of Theorem 2.5 in sections 8, 9, 10 of [Wei64] uses a construction
that has been introduced by Segal in the setting of complex unitary operators for L2-functions
(cfr. chapter 2 of [Seg63]). It is indeed possible to mimic it for Schwartz functions over R, but
this does not yield surjectivity of π0 when R has not unique factorization. In fact Lemma 2 in
[Wei64] does not hold in our setting. To get around this problem we give explicit generators of
B0(W ) and we show that they are in the image of π0.
In section 3 we define the Weil factor γ(f) ∈ R×, associated to a quadratic form f over F . It
is the constant that permits to transpose some relations between maps taking values in B0(W ),
to the liftings of those maps, that take values in B0(W ). We prove some properties of the map
γ : f 7→ γ(f) and an explicit summation formula for γ(f).
In section 4 we go further into the study of properties of the Weil factor. In Theorem 4.1 we
prove that γ(n) = −1, where n is the reduced norm over the quaternion algebra over F . To
prove this theorem we can not use directly the proof in [Wei64] since the author shows that γ(n)
is a negative real number of absolute value 1 and computes integrals on subsets that may have
volume zero when R is of positive characteristic. The key tool is the summation formula proved
in section 3. We also show that γ respects the Witt group structure over the set of quadratic
forms and, combining this with known results over quadratic forms, we show that γ(f) is at
most a fourth root of unity in R×.
Finally, in section 5, we use the results from previous sections to construct the reduced metaplec-
tic group and prove the main theorem: we build up a R-character of Mp(W ), whose restriction
on R× is the map x 7→ x2, and we define Mp2(W ) as its kernel. We prove that Mp2(W ) is
a cover of Sp(W ) with kernel the group of square roots of unity in R, so that if char(R) = 2
the sequence (?) splits. Thanks to the existence of a universal central extension of Sp(W ) we
can prove that Mp2(W ) is normal in Mp(W ). We conclude by establishing the connection with
Steinberg theory (see [Ste67]) and by giving an alternative proof of the fact that the Hilbert
norm residue symbol, used in section 4 to calculate the Weil factor, satisfies the relations defining
the Steinberg symbol.
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The existence of a Weil representation over R is a result which is strongly motivated by
recent research problems. Minguez studies local theta correspondences in [Min08] and p-adic
reductive pairs in the `-modular case in [Min12]. Here he asks how does Howe correspondence
behave with respect to reduction modulo ` and he suggests that a Weil representation over F̄`
has to be constructed and the theory of the metaplectic group has to be extended. A general
construction with a strong geometric flavor is given by Shin to study the case of representations
over F̄p, which is not possible to treat following a naive approach. In [Shi12], the author defines
in great generality p-adic Heisenberg group schemes over a noetherian scheme. He proves a geo-
metric analogue of Stone-Von Neumann theorem and Schur’s lemma. Thanks to this he is able
to construct a Weil representation provided the existence of a (geometric) Heisenberg represen-
tation. Showing that the latter exists for every algebraically closed field in every characteristic,
he is able to define the new notion of mod p-Weil representation. The great advantage of his
construction is in fact the possibility to treat the case where char(R) = p (in this case every
character F → R× is trivial, so one does really need another approach). On the other hand an
elementary approach, like the one in the present article, permits to define a Weil representation
over integral domains that are not fields. The possibility of working in this generality is moti-
vated, among other things, by the recent interest in representation theory of reductive groups
over discrete valuation rings. We cite, for example, the paper [EH11] of Emerton and Helm on
Langlands correspondences “in families”. Finally we shall mention the works of Gurevich and
Hadani (see, for example, [GH07] and [GH09]) that generalize several constructions of [Wei64],
still remaining in the context of complex representations (i.e. with R = C).

Acknowledgements. We would like to heartily thank Vincent Sécherre and Ariane Mézard
for useful discussions, proofreading and suggestions. We acknowledge the anonymous referee
for useful remarks and for pointing out the connections with Steinberg theory. Finally, we are
grateful to the whole Equipe d’Algèbre et Géométrie at the Laboratoire de Mathématiques de
Versailles in whose midst the idea of this work arose.

1 Notation and definitions

Let F be a locally compact non-archimedean field of characteristic different from 2. We write OF
for the ring of integers of F , we fix a uniformizer $ of OF , we denote p the residue characteristic
and q the cardinality of the residue field of F . Let R be an integral domain such that p ∈ R×.
We assume that there exists a smooth non-trivial character χ : F −→ R×, that is a group
homomorphism from F to R× whose kernel is an open subgroup of F . These properties assure
the existence of an integer l = min{j ∈ Z |$jOF ⊂ ker(χ)} called the conductor of χ.

Quadratic forms

We denote by G any finite dimensional vector space over F .

We recall that a quadratic form on G is a continuous map f : G→ F such that f(ux) = u2f(x)
for every x ∈ G and u ∈ F and (x, y) 7−→ f(x+ y)− f(x)− f(y) is F -bilinear. A character of
degree 2 of G is a map ϕ : G→ R× such that (x, y) 7−→ ϕ(x+ y)ϕ(x)−1ϕ(y)−1 is a bicharacter
(i.e. a smooth character on each variable) of G × G. We denote by Q(G) the F -vector space
of quadratic forms on G, by X2(G) the group of characters of degree 2 of G endowed with the
pointwise multiplication and by X1(G) the multiplicative group of smooth R-characters of G,
that is a subgroup of X2(G).

We denote by G∗ = Hom(G,F ) the dual vector space of G. We write [x, x∗] = x∗(x) ∈ F and
〈x, x∗〉 = χ ([x, x∗]) ∈ R× for every x ∈ G and x∗ ∈ G∗. We identify (G∗)∗ = G by means of
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[x∗, x] = [x, x∗]. We have a group isomorphism

G∗ −→ X1(G)
x∗ 7−→ 〈 · , x∗〉. (1)

Indeed if 〈x, x∗〉 = 1 for every x ∈ X then [x, x∗] ∈ ker(χ) for every x ∈ X and this implies
that x∗ = 0 since ker(χ) 6= F . The surjectivity follows by Theorem II.3 of [Wei74] and I.3.9 of
[Vig96].

Definition 1.1. Let B be the bilinear map from (G × G∗) × (G × G∗) to F defined by
B
(
(x1, x

∗
1), (x2, x

∗
2)
)

= [x1, x
∗
2] and let F = χ ◦B.

For a F -linear map α : G → H we denote by α∗ : H∗ → G∗ its transpose. If H = G∗ and
α = α∗ we say that α is symmetric. We associate to every quadratic form f on G the symmetric
homomorphism ρ = ρ(f) : G→ G∗ defined by ρ(x)(y) = f(x+y)−f(x)−f(y) for every x, y ∈ G.
Since char(F ) 6= 2, the map f 7→ ρ(f) is an isomorphism from Q(G) to the F -vector space of
symmetric homomorphisms from G to G∗ with inverse the map sending ρ to the quadratic form
f(x) = [x, ρ(x)

2 ]. We say that f ∈ Q(G) is non-degenerate if ρ(f) is an isomorphism and we
denote by Qnd(G) the subgroup of Q(G) of non-degenerate quadratic forms on G. We remark
that the composition with the character χ gives an injective group homomorphism from Q(G)
to X2(G).

Integration theory

Let dg be a Haar measure on G with values in R (see I.2 of [Vig96]). We denote by S(G) the
R-module of compactly supported locally constant functions on G with values in R. We can
write every Φ ∈ S(G) as Φ =

∑
h∈K1/K2

xh1h+K2 where K1 and K2 are two compact open
subgroups of G, xh ∈ R, 1h+K2 is the characteristic function of h + K2 and the sum is taken
over the finite number of right cosets of K2 in K1.

The Fourier transform of Φ ∈ S(G) is the function from G∗ to R defined by

FΦ(g∗) =

∫
G

Φ(g)〈g, g∗〉dg (2)

for every g∗ ∈ G∗.

For every compact open subgroup K of G let K∗ = {g∗ ∈ G∗ | 〈k, g∗〉 = 1 ∀ k ∈ K} define a
subgroup of G∗. Notice that the map K 7→ K∗ is inclusion-reversing.
If L is any OF -lattice of G and l is the conductor of χ, then L∗ = {g∗ ∈ G∗ | g∗(L) ⊂ $l

FOF }.
Explicitly, if L =

⊕
i$

ai
F OF (with ai ∈ Z for all i) with respect a fixed basis (e1, . . . , eN ) of G,

then L∗ =
⊕

i$
l−ai
F OF with respect to the dual basis of (e1, . . . , eN ) of G∗. These facts imply

that K∗ is a compact open subgroup of G∗ for every compact open subgroup K of G.

Given a Haar measure dg on G such that vol(K ′, dg) = 1 we call dual measure of dg the Haar
measure dg∗ on G∗ such that vol(K ′∗, dg

∗) = 1.

The inverse Fourier transform of Ψ ∈ S(G∗) is the function from G to R defined by

F−1Ψ(g) =

∫
G∗

Ψ(g∗)〈g,−g∗〉dg∗ (3)

for every g ∈ G.
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For every Ψ1,Ψ2 ∈ S(G∗), we denote by Ψ1 ∗Ψ2 ∈ S(G∗) the convolution product defined by

(Ψ1 ∗Ψ2)(x∗) =

∫
G∗

Ψ1(g∗)Ψ2(x∗ − g∗)dg∗

for every x∗ ∈ G∗.

Proposition 1.2. Formulas (2) and (3) give an isomorphism of R-algebras from S(G), endowed
with the pointwise product, to S(G∗), endowed with the convolution product.

Proof. The R-linearity of F and F−1 is clear from their definitions. Let now K be a compact
open subgroup of G and h ∈ G; we have that

F1h+K(g∗) =

∫
G
1K(g − h)〈g, g∗〉dg = 〈h, g∗〉

∫
K
〈g, g∗〉dg.

Moreover we have
∫
K〈g, g

∗〉dg = 〈k, g∗〉
∫
K〈g, g

∗〉dg for every k ∈ K and, since R is an integral
domain, we obtain that F1h+K(g∗) = vol(K, dg)〈h, g∗〉1K∗(g∗). Then FΦ ∈ S(G∗) for every
Φ ∈ S(G), since F is R-linear and Φ is a finite sum of the form

∑
h xh1h+K1 with xh ∈ R and

K1 a compact open subgroup of G.
Denoting K∗∗ = {g ∈ G | 〈g, g∗〉 ∀g∗ ∈ K∗} we have that

F−1F1h+K(g) = vol(K, dg)

∫
G∗
〈h, g∗〉1K∗(g∗)〈g,−g∗〉dg∗ = vol(K, dg)

∫
K∗

〈h− g, g∗〉dg∗

= vol(K, dg)vol(K∗, dg
∗)1h+K∗∗ .

Moreover if L =
⊕

i$
ai
F OF is an OF -lattice of G as above then L∗∗ =

⊕
i$

l−(l−ai)
F OF = L.

Let now L be an OF -lattice and K be a compact open subgroup of G such that L ⊂ K; we can
write 1K =

∑
h∈K/L Ih+L and then we obtain

F−1F1K = vol(K, dg)vol(K∗, dg
∗)1K∗∗

= vol(L, dg)vol(L∗, dg
∗)
∑

h∈K/L

1h+L∗∗ = vol(L, dg)vol(L∗, dg
∗)1K .

This implies that K = K∗∗ and vol(K, dg)vol(K∗, dg
∗) = 1 for every compact open subgroup K

of G. This proves that F is an isomorphism whose inverse is F−1.
Finally for every Ψ1,Ψ2 ∈ S(G∗) we have

F−1(Ψ1 ∗Ψ2)(g) =

∫
G∗

∫
G∗

Ψ1(g∗1)Ψ2(g∗2 − g∗1)dg∗1〈−g, g∗2〉dg∗2

=

∫
G

Ψ1(g∗1)

∫
G

Ψ2(g∗3)〈−g, g∗3 + g∗1〉dg∗3dg∗1 = F−1(Ψ1)(g) ·F−1(Ψ2)(g)

where we have used the change of variables g∗2 7−→ g∗3 = g∗2 − g∗1.

Definition 1.3. Let G and H be two finite dimensional F -vector spaces and let dx and dy be
two Haar measures on G and H. If ν : G −→ H is an isomorphism then the module of ν is the
constant |ν| = d(νx)

dy , which means that we have∫
H

Φ(y)dy = |ν|
∫
G

Φ(ν(x))dx

where Φ ∈ S(H). Notice that it is an integer power of q in R.
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If dx∗ and dy∗ are the dual measures on G∗ and H∗ of dx and dy, then |ν| = |ν∗| for every
isomorphism ν : G −→ H. Indeed if K is a compact open subgroup of G then

vol(K, dx) = |ν|−1vol(ν(K), dy) = |ν|−1vol(ν(K)∗, dy
∗)−1 = |ν|−1|ν∗|vol(ν∗(ν(K))∗, dx

∗)−1

and ν∗(ν(K))∗ = {g∗ ∈ G∗ | 〈ν(k), ν∗−1(g∗)〉 = 1 ∀ k ∈ K} = K∗. Then |ν| = |ν∗|.
Moreover if G = H and dx = dy we have that |ν| is independent of the choice of the Haar
measure dx on G.

The symplectic group

From now on, let X be a finite dimensional F -vector space and let W be the F -vector space
X × X∗. We denote by Sp(W ) the group of symplectic automorphisms of W , said to be the
symplectic group of W , that is the group of automorphisms of W such that

B
(
σ(w1), σ(w2)

)
−B

(
σ(w2), σ(w1)

)
= B(w1, w2)−B(w2, w1), (4)

or equivalently, by (1), such that
F
(
σ(w1), σ(w2)

)
F
(
σ(w2), σ(w1)

)−1
= F(w1, w2)F(w2, w1)−1.

Proposition 1.4. Every group automorphism σ : W −→W which satisfies (4) is F -linear.

Proof. Applying the change of variables w1 7→ uw1 with u ∈ F in the equality (4), we obtain
B
(
σ(uw1), σ(w2)

)
−B

(
σ(w2), σ(uw1)

)
= u

(
B(w1, w2)−B(w2, w1)

)
and then using (4) again we

obtain B
(
σ(uw1) − uσ(w1), σ(w2)

)
= B

(
σ(w2), σ(uw1) − uσ(w1)

)
for every w1, w2 ∈ W . This

implies that B
(
σ(uw1)−uσ(w1), σ(w2)

)
= 0 for every w2 ∈ σ−1(0×X∗) and B

(
σ(w2), σ(uw1)−

uσ(w1)
)

= 0 for every w2 ∈ σ−1(X × 0). Then σ(uw1) = uσ(w1) for every w1 ∈W .

We can write every σ ∈ Sp(W ) as a matrix of the form
(
α β
γ δ

)
where α : X → X, γ : X → X∗,

β : X∗ → X and δ : X∗ → X∗ are F -linear. The transpose of σ is σ∗ =

(
α∗ γ∗

β∗ δ∗

)
which is an

automorphism of W ∗ = X∗ ×X such that |σ∗| = |σ|. Furthermore if ξ : X ×X∗ −→ X∗ ×X

is the isomorphism defined by (x, x∗) 7−→ (−x∗, x) and σI = ξ−1σ∗ξ =

(
δ∗ −β∗
−γ∗ α∗

)
, then we

have |σ| = |σI |. With these definitions, an element σ ∈ Aut(W ) is symplectic if and only if
σIσ = 1 and then the module of every symplectic automorphism is equal to 1.
Moreover we can remark that if σ ∈ Sp(W ) then α∗γ = γ∗α : X −→ X∗ and β∗δ = δ∗β :
X∗ −→ X are symmetric homomorphisms and α∗δ − γ∗β = 1 and δ∗α− β∗γ = 1.

We associate to every σ ∈ Sp(W ) the quadratic form defined by

fσ(w) =
1

2

(
B(σ(w), σ(w))−B(w,w)

)
.

It is easy to check that fσ1◦σ2 = fσ1 ◦ σ2 + fσ2 for every σ1, σ2 ∈ Sp(W ) and that

fσ(w1 + w2)− fσ(w1)− fσ(w2) = B(σ(w1), σ(w2))−B(w1, w2) (5)

for every σ ∈ Sp(W ) and w1, w2 ∈W .
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Symplectic realizations of forms

We introduce some applications, similar to those in 33 of [Wei64], with values in Sp(W ) and we
give some relations between them. When comparing our calculations with those of sections 6
and 7 of [Wei64] it shall be remarked that we change most of the definitions because we consider
matrices acting on the left rather than on the right, to uniform notation to the contemporary
standard. This affects also the formulas that explicit the relations between these applications.

Definition 1.5. We define the following maps.

• An injective group homomorphism from Aut(X) to Sp(W ):

d : Aut(X) −→ Sp(W )

α 7−→
(
α 0
0 α∗−1

)
.

• An injective map from Iso(X∗, X) to Sp(W ) where Iso(X∗, X) is the set of isomorphisms
from X∗ to X:

d′ : Iso(X∗, X) −→ Sp(W )

β 7−→
(

0 β
−β∗−1 0

)
.

We remark that d′(β)−1 = d′(−β∗) for every β ∈ Iso(X∗, X).

• An injective group homomorphism from Q(X) to Sp(W ):

t : Q(X) −→ Sp(W )

f 7−→
(

1 0
−ρ 1

)
where ρ = ρ(f) is the symmetric homomorphism associated to f .

• An injective group homomorphism from Q(X∗) to Sp(W ):

t′ : Q(X∗) −→ Sp(W )

f ′ 7−→
(

1 −ρ′
0 1

)
where ρ′ = ρ(f ′) is the symmetric homomorphism associated to f ′.

Let G be either X or X∗. If f ∈ Q(G) and α ∈ Aut(G) we write fα for f ◦ α.

Proposition 1.6.

(i) Let f ∈ Q(X), f ′ ∈ Q(X∗) and α ∈ Aut(X). Then d(α)−1t(f)d(α) = t(fα) and
d(α)t′(f ′)d(α)−1 = t′(f ′α

∗
).

(ii) Let α ∈ Aut(X), β ∈ Iso(X∗, X). Then d′(αβ) = d(α)d′(β) and d′(βα∗−1) = d′(β)d(α).

Proof.

(i) We have d(α)−1t(f)d(α) =

(
α−1 0

0 α∗

)(
1 0
−ρ 1

)(
α 0
0 α∗−1

)
=

(
1 0

−α∗ρα 1

)
. It is easy

to check that the symmetric homomorphism associated to fα is −α∗ρα. With similar
explicit calculations the second equality can be proven as well.
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(ii) We have d(α)d′(β) =

(
α 0
0 α∗−1

)(
0 β

−β∗−1 0

)
=

(
0 αβ

−α∗−1β∗−1 0

)
= d′(αβ), and

d′(β)d(α) =

(
0 β

−β∗−1 0

)(
α 0
0 α∗−1

)
=

(
0 βα∗−1

−(βα∗−1)∗−1 0

)
= d′(βα∗−1).

We have d(α)d′(β)d(α)−1 = d′(α ◦ β ◦ α∗) so that the group d(Aut(X)) acts on the set
d′(Iso(X∗, X)) by conjugacy in Sp(W ).

A set of generators for the symplectic group

Let us provide a description of Sp(W ) by generators and relations. We denote by Ω(W ) the

subset of Sp(W ) of elements σ =

(
α β
γ δ

)
such that β is an isomorphism. The set Ω(W ) is a

set of generators for Sp(W ) (cf. 42 of [Wei64]). The precise statement is as follows.

Proposition 1.7. The group Sp(W ) is generated by the elements of Ω(W ) with relations σσ′ =
σ′′ for every σ, σ′, σ′′ ∈ Ω(W ) such that the equality σσ′ = σ′′ holds in Sp(W ).

Weil states also the following fact about the set Ω(W ) (cf. formula (33) of [Wei64]).

Proposition 1.8. Every element σ ∈ Ω(W ) can be written as σ = t(f1)d′(β′)t(f2) for unique
f1, f2 ∈ Q(X) and β′ ∈ Iso(X∗, X).

Remark 1.9. Let σ =

(
α β
γ δ

)
∈ Ω(W ). Then σ = t(f1)d′(β)t(f2) where f1 and f2 are the

quadratic forms associated to the symmetric homomorphisms −δβ−1 and −β−1α. In particular
we have the formula (

α β
γ δ

)
=

(
1 0

δβ−1 1

)(
0 β

−β∗−1 0

)(
1 0

β−1α 1

)
.

2 The metaplectic group

Following Weil’s strategy we define the metaplectic group, attached to R and χ, as a central
extension of the symplectic group by R×. To do so, we shall construct the groups B0(W ) and
B0(W ). In particular, in Theorem 2.5 we characterize B0(W ) as central extension of B0(W ) by
R×. This characterization permits to define the metaplectic group as fiber product over B0(W )
of the symplectic group and B0(W ) and to show that the metaplectic group is a central extension
of the symplectic group by R×.
The main issue related to this group, rather than its formal definition, is to study the maps
µ : Sp(W )→ B0(W ) and π0 : B0(W )→ B0(W ), that depend both on R.

2.1 The group B0(W )

Let A(W ) be the group whose underlying set is W ×R× with the multiplication law

(w1, t1)(w2, t2) = (w1 + w2, t1t2F(w1, w2))

where F is as in Definition 1.1. Its center is Z = Z(A(W )) = {(0, t), t ∈ R×} ∼= R×.

We denote by B0(W ) the subgroup of Aut(A(W )) of group automorphisms of A(W ) acting
trivially on Z, i.e. B0(W ) = {s ∈ Aut(A(W )) | s|Z = idZ}.
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Proposition 2.1. Let s ∈ B0(W ). Then there exists a unique pair (σ, ϕ) ∈ Sp(W ) × X2(W )
satisfying the property

ϕ(w1 + w2)ϕ(w1)−1ϕ(w2)−1 = F
(
σ(w1), σ(w2)

)
F(w1, w2)−1 (6)

such that s(w, t) = (σ(w), ϕ(w)t) for every w ∈ W and t ∈ R×. Conversely if the pair (σ, ϕ) ∈
Sp(W )×X2(W ) satisfies (6), then (w, t) 7→ (σ(w), ϕ(w)t) defines an element of B0(W ).

Proof. Let η : A(W ) −→ W and θ : A(W ) −→ R× such that s(w, t) = (η(w, t), θ(w, t)). For
every w1, w2 ∈W and t1, t2 ∈ R× we have

s((w1, t1)(w2, t2)) =
(
η(w1 + w2, t1t2F(w1, w2)), θ(w1 + w2, t1t2F(w1, w2))

)
s(w1, t1)s(w2, t2) =

(
η(w1, t1) + η(w2, t2), θ(w1, t1)θ(w2, t2)F(η(w1, t1), η(w2, t2))

)
.

Since s is a homomorphism then η is so and since s|Z = idZ then η(0, t) = 0 for every t ∈ R×.
These two facts imply that η(w, t) = η(w, 1) for every t ∈ R× so that σ, defined by σ(w) =
η(w, 1), is a group endomorphism of W . We have also

θ(w1 + w2, t1t2F(w1, w2)) = θ(w1, t1)θ(w2, t2)F(σ(w1), σ(w2)). (7)

Setting w2 = 0 and t1 = 1 and using the fact that θ(0, t) = t for every t ∈ R× (since s|Z = idZ)
we obtain that θ(w1, t2) = θ(w1, 1)t2 for every w1 ∈W and t2 ∈ R×. So, if we set ϕ(w) = θ(w, 1),
we obtain that s(w, t) = (σ(w), ϕ(w)t) and (7) becomes

ϕ(w1 + w2)t1t2F(w1, w2) = ϕ(w1)t1ϕ(w2)t2F(σ(w1), σ(w2))

that is exactly the condition (6). Furthermore, if we take σ′ ∈ End(W ) and ϕ′ : W −→ R×

such that s−1(w, t) = (σ′(w), ϕ′(w)t), then (w, t) = s(s−1(w, t)) = (σ(σ′(w)), ϕ(σ′(w))ϕ′(w)t)
that implies that σ is a group automorphism of W with σ−1 = σ′. Now, the left-hand side
of (6) is symmetric on w1 and w2, so σ verify the symplectic property and by Proposition 1.4,
σ ∈ Sp(W ). Furthermore the right-hand side of (6) is a bicharacter and so ϕ is a character of
degree 2 of W .
For the vice-versa, it is easy to check that (w, t) 7→ (σ(w), ϕ(w)t) is an endomorphism of A(W )
thanks to the property (6), and that it is invertible with inverse (w, t) 7→ (σ−1(w), (ϕ(σ−1w))−1t).
Notice that it acts trivially on Z, so it is an element of B0(W ).

From now on, we identify an element s ∈ B0(W ) with the corresponding pair (σ, ϕ) such that
s(w, t) = (σ(w), ϕ(w)t). If s1, s2 ∈ B0(W ) and (σ1, ϕ1) and (σ2, ϕ2) are their corresponding
pairs, then the composition law of B0(W ) becomes s1 ◦s2 = (σ1, ϕ1)(σ2, ϕ2) = (σ1 ◦σ2, ϕ) where
ϕ is defined by ϕ(w) = ϕ2(w)ϕ1(σ2(w)). We observe that the identity element is (id, 1) and the
inverse of (σ, ϕ) is (σ−1, (ϕ ◦ σ−1)−1).

The projection π′ : B0(W ) −→ Sp(W ) defined by π′(σ, ϕ) = σ is a group homomorphism
whose kernel is {(id, τ), τ ∈ X1(W )}. Furthermore, by (5) and (6), we have an injective group
homomorphism

µ : Sp(W ) −→ B0(W )
σ 7−→ (σ, χ ◦ fσ)

(8)

such that π′ ◦ µ is the identity of Sp(W ). This means that B0(W ) is the semidirect product
of {(id, τ), τ ∈ X1(W )} and µ(Sp(W )) and in particular, by Propositions 1.7 and 1.8, it is
generated by µ(t(Q(X))), µ(d′(Iso(X∗, X))) and {(id, τ), τ ∈ X1(W )}.

Let us define some applications with values in B0(W ), similar to those in 6 of [Wei64], composing
those with values in Sp(W ) with µ. We call them d0 = µ◦d, d′0 = µ◦d′, t0 = µ◦ t and t′0 = µ◦ t′.

10



2.2 The group B0(W )

We define A(W ) as the image of a faithful infinite dimensional representation of A(W ) over
R and B0(W ) as its normalizer in Aut(S(X)). Then we show that in fact B0(W ) is a central
extension of B0(W ) by R×.

2.2.1 A(W ) and B0(W )

For every w = (v, v∗) ∈ X × X∗ = W and every t ∈ R×, we denote by U(w, t) the R-linear
operator on S(X) defined by

U(w, t)Φ : x 7→ tΦ(x+ v)〈x, v∗〉

for every function Φ ∈ S(X). It can be directly verified that U(w, t) lies in Aut(S(X)) for every
w ∈W and t ∈ R×. With a slight abuse of notation we write U(w) = U(w, 1) for every w ∈W .
Let A(W ) = {U(w, t) ∈ Aut(S(X)) | t ∈ R×, w ∈W}. It is not hard to see that it is a subgroup
of Aut(S(X)) and that its multiplication law is given by

U(w1, t1)U(w2, t2) = U(w1 + w2, t1t2F(w1, w2)). (9)

Lemma 2.2. The map
U : A(W ) −→ A(W )

(w, t) 7−→ U(w, t).

is a group isomorphism.

Proof. By (9) the map U preserves operations and it is cleraly surjective. For injectivity we
have to prove that if tΦ(x + v)〈x, v∗〉 = Φ(x) for every Φ ∈ S(X) and every x ∈ X then t = 1
and (v, v∗) = (0, 0). If we take x = 0 and Φ the characteristic function 1K of any compact open
subgroup K of X, we obtain that t1K(v) = 1 for every K and so t = 1 and v = 0. Therefore
we have that 〈x, v∗〉 = 1 for every x ∈ X and so v∗ = 0 by (1).

Remark 2.3. The homomorphism U is a representation of A(W ) on the R-module S(X).

The group B0(W ) acts on A(W ) and so on A(W ) via the isomorphism in Lemma 2.2. This
action is given by

B0(W )× A(W ) −→ A(W )
((σ, ϕ), U(w, t)) 7−→ U(σ(w), tϕ(w)).

Moreover, we can identify B0(W ) with the group of automorphisms of A(W ) acting trivially on
the center Z(A(W )) = {t · idS(X) ∈ Aut(S(X)) | t ∈ R×} ∼= R×.

We denote by B0(W ) the normalizer of A(W ) in Aut(S(X)), that is

B0(W ) =
{
s ∈ Aut(S(X)) | sA(W )s−1 = A(W )

}
.

So, if s is an element of B0(W ), conjugation by s, denoted by conj(s), is an automorphism of
A(W ).

Lemma 2.4. The map
π0 : B0(W ) −→ B0(W )

s 7−→ conj(s)

is a group homomorphism
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Proof. Clearly conj(s) is trivial on Z(A(W )) = {t · idS(X) ∈ Aut(S(X)) | t ∈ R×} and so it lies
in B0(W ). Moreover conj(s1s2) = conj(s1)conj(s2) so that π0 preserves the group operation.

Theorem 2.5. The following sequence is exact:

1 −→ R× −→ B0(W )
π0−→ B0(W ) −→ 1

where R× injects in B0(W ) by t 7→ t · idS(X).

We prove this theorem in paragraph 2.2.3. Before that, we need to construct, as proposed in 13
of [Wei64], some “liftings” to B0(W ) of the applications d0, d′0 and t0.

2.2.2 Realization of forms on B0(W )

We fix a Haar measure dx on the finite dimensional F -vector space X with values in R. We
denote by dx∗ the dual measure of dx on X∗ and dw = dxdx∗ the product Haar measure on W .

From now on, we suppose that there exists a fixed square root q
1
2 of q in R. If ν is an isomorphism

of F -vector spaces and |ν| = qa is its module, we denote |ν|
1
2 = (q

1
2 )a ∈ R.

Definition 2.6. We define the following maps.

• A group homomorphism d0 : Aut(X) −→ Aut(S(X)) defined by d0(α)Φ = |α|−
1
2 (Φ◦α−1)

for every α ∈ Aut(X) and every Φ ∈ S(X).

• A map d′0 : Iso(X∗, X) −→ Aut(S(X)) defined by d′0(β)Φ = |β|−
1
2 (FΦ ◦ β−1) for every

β ∈ Iso(X∗, X) and every Φ ∈ S(X), where FΦ is the Fourier transform of Φ as in (2).
We remark that d′0(β)−1 = d′0(−β∗) = |β|

1
2 F−1(Φ ◦ β).

• A group homomorphism t0 : Q(X) −→ Aut(S(X)) defined by t0(f)Φ = (χ ◦ f) · Φ for
every f ∈ Q(X) and every Φ ∈ S(X).

We shall now to prove that they are actually onto B0(W ) and that they lift in B0(W ) the
applications d0, d′0 and t0.

Proposition 2.7. The images of d0, d′0 and t0 are in B0(W ) and they satisfy

π0 ◦ d0 = d0 π0 ◦ d′0 = d′0 and π0 ◦ t0 = t0.

Proof. For every α ∈ Aut(X), Φ ∈ S(X), w = (v, v∗) ∈W and x ∈ X we have

d0(α)U(w)d0(α)−1Φ(x) = d0(α)U(w)|α|
1
2 (Φ ◦ α)(x) = Φ(α(α−1(x) + u))〈α−1(x), v∗〉

= Φ(x+ α(u))〈x, α∗−1(v∗)〉 = d0(α)U(w)Φ(x).

For every β ∈ Iso(X∗, X), Φ ∈ S(X), w = (v, v∗) ∈W and x ∈ X we have

d′0(β)U(w)d′0(β)−1Φ(x) = d′0(β)U(w)|β|
1
2 F−1(Φ ◦ β)(x)

=

∫
X

(∫
X∗

Φ(β(x∗))〈x1 + v,−x∗〉dx∗
)
〈x1, v

∗〉〈x1, β
−1(x)〉dx1

=

∫
X

(∫
X∗

Φ(β(x∗))〈−v, x∗〉〈x1,−x∗〉dx∗
)
〈x1, v

∗ + β−1(x)〉dx1

= Φ(β(v∗ + β−1(x)))〈−v, v∗ + β−1(x)〉
= Φ(x+ β(v∗))〈x,−β∗−1(v)〉〈v,−v∗〉 = d′0(β)U(w)Φ(x).
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For every f ∈ Q(X), Φ ∈ S(X), w = (v, v∗) ∈W and x ∈ X we have

t0(f)U(w)t0(f)−1Φ(x) = χ(f(x))χ(f(x+ v))−1Φ(x+ v)〈x, v∗〉
= χ(f(v))−1〈x, ρ(v)〉−1Φ(x+ v)〈x, v∗〉 = t0(f)U(w)Φ(x).

These equalities prove at the same time that the images of d0, d′0 and t0 are in B0(W ) and that
they lift in B0(W ) respectively the applications d0, d′0 and t0.

Proposition 2.7 and the injectivity of d0 and t0 entail injectivity for d0 and t0. Moreover
Propositions 1.6 and 2.7 say that for every f ∈ Q(X), α ∈ Aut(X) and β ∈ Iso(X∗, X), the
three elements d0(α)−1t0(f)d0(α), d′0(α◦β) and d′0(β ◦α∗−1) of B0(W ) differ, respectively from
t0(fα), d0(α)d′0(β) and d′0(β)d0(α) just by elements of R×. A direct calculation gives

d0(α)−1t0(f)d0(α) = t0(fα) d′0(α ◦ β) = d0(α)d′0(β) d′0(β ◦ α∗−1) = d′0(β)d0(α) (10)

so that in fact these elements are the identity.

2.2.3 Proof of Theorem 2.5

In this paragraph we give a proof of Theorem 2.5 that is fundamental for the definition of the
metaplectic group.

Firstly we prove that π0 is surjective: we know that B0(W ) is generated by µ(t(Q(X))),
µ(d′(Iso(X∗, X))) and {(id, τ), τ ∈ X1(W )} so that it is sufficient to prove that every element in
these sets is in the image of π0. By Proposition 2.7, this is proved for the sets µ(t(Q(X))) and
µ(d′(Iso(X∗, X))). Moreover by (1) we have that every character τ ofW is of the form τ(v, v∗) =
〈a, v∗〉〈v, a∗〉 for suitable a ∈ X and a∗ ∈ X∗. For every w = (v, v∗) ∈ W and t ∈ R× we have
(1, τ)U(w, t) = U(w, t · τ(w)) = U(w, t〈a, v∗〉〈v, a∗〉) = U(a,−a∗)U(w, t)U(−a, a∗, 〈a,−a∗〉) and
so (id, τ) = π0(U(a,−a∗)).

Let us now calculate the kernel of π0. For φ ∈ S(X ×X∗) we denote by U(φ) the operator on
S(X) defined by

U(φ) =

∫
W
U(w, φ(w))dw =

∫
W
φ(w)U(w)dw.

This means that for every Φ ∈ S(X) and every x ∈ X we have

U(φ)Φ(x) =

∫
W
φ(w)(U(w)Φ)(x)dw =

∫
W
φ(v, v∗)Φ(x+ v)〈x, v∗〉dvdv∗

where w = (v, v∗). Given P,Q ∈ S(X) we denote by φP,Q ∈ S(X ×X∗) the function defined by

φP,Q(v, v∗) =

∫
X
P (v′)Q(v′ + v)〈−v′, v∗〉dv′

for every v ∈ X, v∗ ∈ X∗. With this definition we obtain

U(φP,Q)Φ(x) =

∫
X

Φ(x+ v)

∫
X∗

∫
X
P (v′)Q(v′ + v)〈x− v′, v∗〉dv′dv∗dv

and using Proposition 1.2 we have

U(φP,Q)Φ(x) =

∫
X

Φ(x+ v)P (x)Q(x+ v)dv =

∫
X

Φ(v)Q(v)dvP (x).

If we denoted by [P,Q] =
∫
X P (x)Q(x)dx for every P,Q ∈ S(X) we have U(φP,Q)Φ = [Φ, Q]P .
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Now, s is in the kernel of π0 if and only if it lies in the centralizer of A(W ) in Aut(S(X)).
If this is the case, then s commutes with U(φ) in End(S(X)) for every φ ∈ S(X × X∗), i.e.
s(U(φ)Φ) = U(φ)(s(Φ)). In particular s commutes with operators of the form U(φP,Q) for every
P,Q ∈ S(X), that is [sΦ, Q]P = [Φ, Q]sP for every Φ, P,Q ∈ S(X). If we choose Φ = Q = 1K

where K is a compact open subgroup of X with vol(K, dx) ∈ R×, we can write

sP =
[sΦ, Q]

[Φ, Q]
P.

In other words s is of the form Φ 7→ tΦ for a suitable t ∈ R and t has to be invertible since s
is an automorphism. Hence ker(π0) ⊆ {t · idS(X) ∈ Aut(S(X)) | t ∈ R×}. The converse is true
because the center of a group is always contained in its centralizer.

Remark 2.8. In proving Theorem 2.5 the techniques used in [Wei64] could be adapted to show
that ker(π0) ∼= R×, but not to prove surjectivity of π0.

2.3 The metaplectic group

We have just defined in (8) and Lemma 2.4 the group homomorphisms

µ : Sp(W ) −→ B0(W ) and π0 : B0(W ) −→ B0(W )
σ 7−→ (σ, χ ◦ fσ) s 7−→ conj(s).

The first one is injective, while the second one is surjective with kernel isomorphic to R×. We
remark that the definition of B0(W ) and these two homomorphisms depend on the choice of the
integral domain R and the smooth non-trivial character χ.

Definition 2.9. Themetaplectic group ofW , attached to R and χ, is the subgroup MpR,χ(W ) =
Sp(W )×B0(W ) B0(W ) of Sp(W )× B0(W ) of the pairs (σ, s) such that µ(σ) = π0(s).

From now on, we write Mp(W ) instead of MpR,χ(W ). We have a group homomorphism

π : Mp(W ) −→ Sp(W )
(σ, s) 7−→ σ.

The morphism π0 is surjective and surjectivity in the category of groups is preserved under
base-change, therefore π is surjective. Moreover an element (σ, s) is in the kernel of π if and
only if s is in the kernel of π0, that is isomorphic to R×. Thus we obtain:

Theorem 2.10. The following sequence is exact:

1 −→ R× −→ Mp(W )
π−→ Sp(W ) −→ 1 (11)

where R× injects in Mp(W ) by t 7→ (id, t · idS(X)).

Since B0(W ) = B0(W )/R× and B0(W ) ⊂ Aut(S(X)), we may regard µ as a projective repre-
sentation of the symplectic group. Then, the metaplectic group is defined in such a way that
the map

Mp(W ) −→ B0(W )
(σ, s) 7−→ s

(12)

is a faithful representation on the R-module S(X) that lifts µ.
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3 The Weil factor

The sequence (11) constitutes the object of our study and the rest of the article is devoted to
study its properties. Following the idea of Weil, we define in this section a map γ that associates
to every non-degenerate quadratic form f on X an invertible element γ(f) ∈ R× (cfr. 14 of
[Wei64]). This object, that we call Weil factor, shows up at the moment of understanding the
map π by lifting a description of Sp(W ) by generators and relations. The study of its properties
is at the heart of the results in [Wei64]. We prove that similar properties hold for γ(f) ∈ R×.
The general idea is: we find the relation (14) in B0(W ) and we lift it into B0(W ) finding an
element of R× thanks to Theorem 2.5. Then we proceed in two directions: on one hand we
prove results that are useful to calculate γ(f) while on the other we use the Weil factor to lift
to Mp(W ) the relations of Proposition 1.7.

3.1 The Weil factor

Let f ∈ Qnd(X) be a non-degenerate quadratic form on X and let ρ ∈ Iso(X,X∗) be its
associated symmetric isomorphism. Explicit calculations in Sp(W ) give the equality

d′(ρ−1)t(f)d′(−ρ−1)t(f) = t(−f)d′(ρ−1). (13)

Moreover, applying Proposition 1.6, (13) is equivalent to
(
t(f)d′(ρ−1)

)3
=
(
d′(ρ−1)t(f)

)3
= 1.

It follows from equation (13) that

d′0(ρ−1)t0(f)d′0(−ρ−1)t0(f) = t0(−f)d′0(ρ−1). (14)

We denote s = s(f) = d′0(ρ−1)t0(f)d′0(−ρ−1)t0(f) and s′ = s′(f) = t0(−f)d′0(ρ−1). We have
by Proposition 2.7 and equation (14), π0(s) = π0(s′). Hence s and s′ differ by an element of R×

Definition 3.1. Let γ(f) ∈ R× be such that s = γ(f)s′. We call γ(f) the Weil factor associated
to f ∈ Qnd(X).

By formulas (10) we have γ(f) =
(
t0(f)d′0(ρ−1)

)3
=
(
d′0(ρ−1)t0(f)

)3.
We are now ready to investigate some properties of γ, starting from seeing what changes under
the action of Aut(X).

Proposition 3.2. Let f ∈ Qnd(X).

(i) We have γ(−f) = γ(f)−1.

(ii) For every α ∈ Aut(X) we have γ(fα) = γ(f).

Proof. Let f ∈ Qnd(X) be associated to the symmetric isomorphism ρ.

(i) We have γ(−f) =
(
t0(−f)d′0(−ρ−1)

)3
=
(
d′0(ρ−1)t0(f)

)−3
= γ(f)−1.

(ii) The symmetric isomorphism associated to fα is α∗ρα. Then we have

γ(fα) =
(
t0(fα)d′0(α−1ρ−1α∗−1)

)3
=
(
d0(α)−1t0(f)d0(α)d0(α)−1d′0(ρ−1)d0(α)

)3
= d0(α)−1

(
t0(f)d′0(ρ−1)

)3
d0(α) = γ(f).
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Proposition 3.2 gives actually a strong result in a particular case: if −1 ∈ (F×)2 and a2 = −1
with a ∈ F× then x 7→ ax is an automorphism of X. By Proposition 3.2 we have γ(f) =
γ(−f) = γ(f)−1, in other words γ(f)2 = 1. This does not hold in general for a local field F
without square roots of −1.

Let f ∈ Qnd(X) be associated to ρ and define ϕ = χ ◦ f . Notice that ϕ(−x) = ϕ(x). For every
Φ ∈ S(X), we denote by Φ ∗ ϕ the convolution product defined by

(Φ ∗ ϕ)(x) =

∫
X

Φ(x′)ϕ(x− x′)dx′

for every x ∈ X. We have that Φ ∗ ϕ ∈ S(X), indeed

(Φ ∗ ϕ)(x) =

∫
X

Φ(x′)ϕ(x− x′)dx′ = ϕ(x)

∫
X

Φ(x′)ϕ(−x′)〈x, ρ(−x′)〉dx′

= ϕ(x)

∫
X

Φ(x′)ϕ(x′)〈x′,−ρ(x)〉dx′ = |ρ|−
1
2 t0(f)d0(−ρ−1)t0(f)Φ(x)

where we have used that ϕ(x+ y) = ϕ(x)ϕ(y)〈x, ρ(y)〉 for every x, y ∈ X.

Now we state a proposition that gives a summation formula for γ(f) and that allows us to
calculate in Theorem 4.1 the value of γ for a specific quadratic form over F .

Proposition 3.3. Let f ∈ Qnd(X) be associated to the symmetric isomorphism ρ ∈ Iso(X,X∗)
and let s, s′ ∈ B0(W ) as in Definition 3.1. We set ϕ = χ ◦ f .

1. For every Φ ∈ S(X) and for every x ∈ X we have

sΦ(x) = |ρ|F (Φ ∗ ϕ)(ρ(x)) and s′Φ(x) = |ρ|
1
2 FΦ(ρ(x))ϕ(x)−1.

2. For every Φ ∈ S(X) and for every x∗ ∈ X∗ we have

F (Φ ∗ ϕ)(x∗) = γ(f)|ρ|−
1
2 FΦ(x∗)ϕ(ρ−1x∗)−1. (15)

3. There exists a sufficiently large compact open subgroup K0 of X such that for every compact
open subgroup K of X containing K0 and for every x∗ ∈ X∗, the integral

∫
K ϕ(x)〈x, x∗〉dx

does not depend on K. Moreover we have∫
K
ϕ(x)〈x, x∗〉dx = γ(f)|ρ|−

1
2ϕ(ρ−1x∗)−1 (16)

and we denote Fϕ =
∫
K ϕ(x)〈x, x∗〉dx.

4. If K is a sufficiently large compact open subgroup of X, we have

γ(f) = |ρ|
1
2

∫
K
χ(f(x))dx. (17)

Proof.

1. For every Φ ∈ S(X) and every x ∈ X we have

sΦ(x) = d′0(ρ−1)t0(f)d′0(−ρ−1)t0(f)Φ(x)

= |ρ|
∫
X

∫
X

Φ(x1)ϕ(x1)〈x1,−ρ(x2)〉ϕ(x2)〈x2, ρ(x)〉dx1dx2

= |ρ|
∫
X

∫
X

Φ(x1)ϕ(−x1)〈x1,−ρ(x2)〉ϕ(x2)〈x2, ρ(x)〉dx1dx2

= |ρ|
∫
X

∫
X

Φ(x1)ϕ(x2 − x1)〈x2, ρ(x)〉dx1dx2 = |ρ|F (Φ ∗ ϕ)(ρ(x))

and s′Φ(x) = t0(−f)d′0(ρ−1)Φ(x) = t0(−f)|ρ|
1
2 F (Φ ◦ ρ)(x) = ϕ(x)−1|ρ|

1
2 F (Φ ◦ ρ)(x).
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2. By the equality s = γ(f)s′ we have |ρ|F (Φ ∗ ϕ)(ρ(x)) = γ(f)|ρ|
1
2 FΦ(ρ(x))ϕ(x)−1 and

replacing ρ(x) by x∗ we obtain the equality (15).

3. Taking Φ = 1H for a compact open subgroup H of X in formula (15), we obtain∫
X

(1H ∗ ϕ)(x1)〈x1, x
∗〉dx1 = γ(f)|ρ|−

1
2 F1H(x∗)ϕ(ρ−1x∗)−1.

We want to calculate the integral in the left hand side. We can take a compact open
subgroup K0 of X large enough to contain both H and the support of 1H ∗ ϕ obtaining∫

X
(1H ∗ ϕ)(x1)〈x1, x

∗〉dx1 =

∫
K0

∫
H
ϕ|K0

(x1 − x2)dx2〈x1, x
∗〉dx1.

Now, we can prove that ϕ|K0
is locally constant and that we can change the order of the

two integrals, i.e.∫
X

(1H ∗ ϕ)(x1)〈x1, x
∗〉dx1 =

∫
H

∫
K0

ϕ|K0
(x1 − x2)〈x1, x

∗〉dx1dx2

=

∫
H

∫
K0

ϕ|K0
(x′1)〈x′1 + x2, x

∗〉dx′1dx2

= F1H(x∗)

∫
K0

ϕ|K0
(x′1)〈x′1, x∗〉dx′1.

Since F1H = vol(H)1H∗ and vol(H) 6= 0, we obtain the equality (16) for every x∗ ∈ H∗
and every H compact open subgroup of X. Now H∗ cover X∗, varying H, and so the
equality holds for every x∗ ∈ X∗ . It is clear that the equality holds also for every compact
open subgroup K of X containing K0.

4. Setting x∗ = 0 in (16) we obtain γ(f) = |ρ|
1
2

∫
K ϕ(x)dx = |ρ|

1
2

∫
K χ(f(x))dx.

Remark 3.4. The second result in Proposition 3.2 is true more generally for every α′ ∈ Iso(X ′, X)
where X ′ is a finite dimensional F -vector space. In fact if K ′ is a compact open subgroup of X ′

large enough, f ∈ Qnd(X) and α ∈ Iso(X ′, X) by (17) we have

γ(f ◦ α) = |α∗ρα|
1
2

∫
K′
χ(f(α(x′)))dx′ = |ρ|

1
2 |α|

∫
X′
1α(K′)(α(x′))χ(f(α(x′)))dx′

= |ρ|
1
2

∫
X
1α(K′)(x)χ(f(x))dx′ = γ(f).

3.1.1 Symplectic generators in B0(W )

Definition 3.5. Let σ ∈ Ω(W ). By Proposition 1.8 we can write σ = t(f1)d′(β)t(f2) for unique
f1, f2 ∈ Q(X) and β ∈ Iso(X∗, X). We define a map r0 : Ω(W )→ B0(W ) by

r0(σ) = t0(f1)d′0(β)t0(f2)

for every σ ∈ Ω(W ).

Now we state a theorem that says how an equality σ′′ = σσ′ in Ω(W ) lifts to B0(W ). After a
comparison with section 15 of [Wei64] the differences turn out to be the use of Fourier transform
for Schwartz functions and previous changes in notations. Finally we have clarified some points
and made them explicit.
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Theorem 3.6. Let σ =

(
α β
γ δ

)
, σ′ =

(
α′ β′

γ′ δ′

)
and σ′′ =

(
α′′ β′′

γ′′ δ′′

)
be elements of Ω(W )

such that σ′′ = σσ′. Then
r0(σ)r0(σ′) = γ(f0)r0(σ′′)

where f0 is the non-degenerate quadratic form on X associated to the symmetric isomorphism
−β−1β′′β′−1 : X → X∗.

Proof. Since r0(σ)r0(σ′) and r0(σ′′) have the same image by π0, we can set r0(σ)r0(σ′) = λr0(σ′′)
where λ ∈ R× depends on σ, σ′. By Definition 3.5 we have

t0(f1)d′0(β)t0(f2)t0(f ′1)d′0(β′)t0(f ′2) = λt0(f ′′1 )d′0(β′′)t0(f ′′2 )

for suitable f1, f2, f
′
1, f
′
2, f
′′
1 , f

′′
2 ∈ Q(X). Setting f0 = f2 + f ′1, f3 = −f1 + f ′′1 and f4 = f ′′2 − f ′2

we obtain

d′0(β)t0(f0)d′0(β′) = d′0(β)t0(f0)d′0(−β′∗)−1 = λt0(f3)d′0(β′′)t0(f4)

where we have used that d′0(β′)−1 = d′0(−β′∗). By Remark 1.9 the symmetric homomorphisms
associated to f2 and f ′1 are ρ2 = −β−1α and ρ′1 = −δ′β′−1, hence the symmetric homomorphism
associated to f0 is ρ0 = ρ2 + ρ′1 = −β−1(αβ′ + βδ′)β′−1 = −β−1β′′β′−1 = −β′∗−1β′′∗β∗−1 that
is also an isomorphism.
We set ϕi = χ ◦ fi for i = 0, 3, 4. For every Φ ∈ S(X) and x ∈ X we have

d′0(β)t0(f0)d′0(−β′∗)−1Φ(x) = |β|−
1
2 |β′|

1
2 F (F−1(Φ ◦ (−β′∗)) · ϕ0)(β−1x).

By Proposition 1.2 the Fourier transform of a pointwise product is the convolution product of
the Fourier transforms and then d′0(β)t0(f0)d′0(β′)Φ(x) = |β|−

1
2 |β′|

1
2

(
(Φ ◦ β′∗) ∗Fϕ0

)
(β−1x).

Using formula (16) we obtain

d′0(β)t0(f0)d′0(β′)Φ(x) = γ(f0)|ρ0|−
1
2 |β|−

1
2 |β′|

1
2
(
(Φ ◦ β′∗) ∗ (ϕ0 ◦ ρ−1

0 )−1
)
(β−1x)

= γ(f0)|β′′|−
1
2 |β′|

(
(Φ ◦ β′∗) ∗ (ϕ0 ◦ ρ−1

0 )−1
)
(β−1x)

= γ(f0)|β′′|−
1
2 |β′|

∫
X∗

Φ(β′∗(x∗))ϕ0(β∗β′′∗−1β′∗(x∗)− β′β′′−1(x))−1dx∗

= γ(f0)|β′′|−
1
2

∫
X

Φ(x1)ϕ0(−β′β′′−1(x) + β∗β′′∗−1(x1))−1dx1

where in the last step we have used the change of variables β′∗(x∗) 7→ x1. Furthermore we have

t0(f3)d′0(β′′)t0(f4)Φ(x) = |β′′|−
1
2

∫
X

Φ(x1)ϕ4(x1)ϕ3(x)〈x1, β
′′−1x〉dx1

and then

γ(f0)

∫
X

Φ(x1)ϕ0(−β′β′′−1(x) + β∗β′′∗−1(x1))−1dx1 = λ

∫
X

Φ(x1)ϕ4(x1)ϕ3(x)〈x1, β
′′−1x〉dx1.

We observe that the two sides are of the form ci
∫
X Φ(x1)ϑi(x1, x)dx1 for i = 1, 2, where ci ∈ R×

and ϑi are characters of degree 2 of X × X. Since the equality holds for every Φ ∈ S(X) and
every x ∈ X, we obtain that c1 = c2 and ϑ1 = ϑ2 and so γ(f0) = λ.
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3.2 Metaplectic realizations of forms

Definitions 1.5 and 2.6 allow us to define some applications from Aut(X), Iso(X∗, X) and Q(X)
to Mp(W ), similar to those in 34 of [Wei64], that satisfy relations analogous to those of d0, d′0
and t0.

Definition 3.7. Let Mp(W ) be as in Definition 2.9. We define the following applications.

• The injective group homomorphism d : Aut(X) −→ Mp(W ) given by d(α) = (d(α),d0(α))
for every α ∈ Aut(X).

• The injective map d′ : Iso(X∗, X) −→ Mp(W ) given by d′(β) = (d′(β),d′0(β)) for every
β ∈ Iso(X∗, X).

• The injective group homomorphism t : Q(X) −→ Mp(W ) given by t(f) = (t(f), t0(f))
for every f ∈ Q(X).

By Proposition 1.6 and by (10) we have

d(α)−1t(f)d(α) = t(fα) (18)

for every f ∈ Q(X) and α ∈ Aut(X). We have also d′(α ◦ β) = d(α)d′(β) and d′(β ◦ α∗−1) =
d′(β)d(α) for every α ∈ Aut(X) and β ∈ Iso(X∗, X).

As in Definition 3.5, we can define a map from Ω(W ) to Mp(W ). By Proposition 1.8 every
element σ ∈ Ω(W ) can be written uniquely as σ = t(f1)d′(β)t(f2): we define

r(σ) = t(f1)d′(β)t(f2) (19)

that is equivalent to write r(σ) = (σ, r0(σ)).

Let σ =

(
α β
γ δ

)
, σ′ =

(
α′ β′

γ′ δ′

)
and σ′′ =

(
α′′ β′′

γ′′ δ′′

)
be in Ω(W ) such that σσ′ = σ′′. By

Theorem 3.6 we have
r(σ)r(σ′) = γ(f0)r(σ′′) (20)

where f0 is the non-degenerate quadratic form on X associated to the symmetric isomorphism
−β−1β′′β′−1.

4 Fundamental properties of the Weil factor

In this section we find the possible values of γ(f) for every non-degenerate quadratic form f over
F . Proposition 3.3 gives a summation formula for γ(f) and we use it to prove that γ(n) = −1
where n is the reduced norm of the quaternion division algebra over F . In Theorem 4.7 we see
that γ is a R-character of the Witt group of F . Moreover we already know by Proposition 3.2
that γ(f)2 = 1 if F contains a square root of −1 and at the end of this section this is generalized
by saying that, for any F , γ(f) is a fourth root of unity in R.
For every positive integer m, we denote by qm the non-degenerate quadratic form qm(x) =∑m

i=1 x
2
i defined on the m-dimensional vector space Fm.
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4.1 The quaternion division algebra over F

In this paragraph we use some results on quaternion algebras over F ([Vig80]) to prove that if
char(R) 6= 2 the map γ : Qnd(X) −→ R× is non-trivial by means of a concrete example.

By Theorem II.1.1 of [Vig80] we know that there exists a unique quaternion division algebra
over F (up to isomorphism) that we denote by A. The reduced norm n : A −→ F is a non-
degenerate quadratic form on the F -vector space underlying A and it induces a surjective group
homomorphism n|A× : A× −→ F×. Moreover by Lemma II.1.4 of [Vig80], if v is a discrete
valuation of F such that v($) = 1 then v ◦n is a discrete valuation of A; so we can consider the
ring of integers OA = {z ∈ A |n(z) ∈ OF } ofA and fix a uniformizer$A of OA such that$2

A = $.
The unique prime ideal of OA is $AOA and the cardinality of the residue field of A is q2 where q
is the cardinality of the residue field of F . According to Definition 1.3, we define the module of
x ∈ F (resp. z ∈ A), denoted by |x| (resp. |z|A), as the module of the multiplication (resp. right
multiplication) by x (resp. z). We can easily prove that |x| = q−v(x) and |z|A = |n(z)|2. We
denote by dx and dz the Haar measures on F and A such that vol(OF , dx) = vol(OA, dz) = 1.

Theorem 4.1. Let A be the quaternion division algebra over F and let n : A −→ F be the
reduced norm of A. Then γ(n) = −1.

In order to prove this theorem, we start by calculating |ρn|, where ρn ∈ Iso(A,A∗) is the
symmetric isomorphism associated to the quadratic form n, and then we prove that γ(n) does
not depend on the choice of the non-trivial character χ.

Lemma 4.2. If l is the conductor of χ, then |ρn| = q4l−2.

Proof. By Definition 1.3 with Φ = 1(OA)∗ , we have |ρn| = vol(ρ−1((OA)∗), dz)
−1. Moreover

ρn(z1)(z2) = tr(z1z̄2) for every z1, z2 ∈ A, where z 7→ z̄ is the conjugation of A (cf. page 1 of
[Vig80]). Then we have the following equivalences:

z ∈ ρ−1((OA)∗)⇐⇒ 〈z, ρ(OA)〉 = 1⇐⇒ tr(zOA) ⊂ ker(χ).

We know that {z ∈ A | tr(zOA) ⊂ OF } is a fractional ideal (its inverse is called codifferent
ideal), and by Corollary II.1.7 of [Vig80] it is exactly $−1

A OA. Then z ∈ ρ−1((OA)∗) if and only
if z ∈ $l$−1

A OA = $2l−1
A OA. Hence |ρn| = q4l−2.

Lemma 4.3. Let A and n as in Theorem 4.1. Then γ(n) does not depend on the choice of the
non-trivial smooth R-character χ of F .

Proof. We know that every non-trivial smooth R-character of F is of the form χa : x 7→ χ(ax)
with a ∈ F×; in particular the conductor of χa is l−v(a) where l is the conductor of χ. Moreover,
by (17) and Lemma 4.2, we have

γ(n) = |ρn|
1
2

∫
$−λA OA

χ(n(z))dz = q2l−1

∫
$−λA OA

χ(n(z))dz

for λ large enough. Now we fix a ∈ F× and we denote by γa(n) the value of γ(n) obtained
replacing χ by χa. Since n is surjective there exists za ∈ $v(a)OA such that n(za) = a. If we
take λ′ = λ+ v(a) we obtain

γa(n) = q2(l−v(a))−1

∫
$−λ

′
A OA

χa(n(z))dz = q2(l−v(a))−1

∫
$−λ

′
A OA

χ(n(zaz))dz

= q2(l−v(a))−1|za|−1

∫
$
−λ′+v(a)
A OA

χ(n(z))dz = q2l−1

∫
$−λA OA

χ(n(z))dz = γ(n)

which concludes the proof.
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Proof of Theorem 4.1. For every k ≥ 0, we fix a set of representatives ΞA,k of the classes of OA
modulo $k

AOA. We denote by Ξ×A,k ⊂ ΞA,k the set of representatives of
(
OA/$

k
AOA

)× and by

Ξ×F,k ⊂ ΞF,k ⊂ n(ΞA,k) two sets of representatives of
(
OF /$

kOF
)× and OF /$

kOF .

By Lemma 4.3 we can suppose that the conductor of χ is 1, so that χ is trivial on $AOA but
not on OA. Then, for λ large enough, we have

γ(n) = q

∫
$−λA OA

χ(n(z))dz = q1+2λ

∫
OA

χ
(
$−λn(z)

)
dz

= q1+2λ
∑

z′∈ΞA,λ+1

∫
$λ+1
A OA

χ
(
$−λn(z′ + z)

)
dz

= q1+2λvol($λ+1
A OA, dz)

∑
z′∈ΞA,λ+1

χ
(
$−λn(z′)

)
= q−1

∑
z′∈ΞA,λ+1

χ
(
$−λn(z′)

)
.

Since n :
(
OA/$

k+1
A OA

)×
−→

(
OF /$

k+1OF
)× is surjective and its kernel has cardinality

qk(q + 1), we have

∑
z∈Ξ×A,k+1

χ($−kn(z)) = qk(q + 1)
∑

x∈Ξ×F,k+1

χ($−kx) = −qk(q + 1)
∑

x∈ΞF,k

χ($−k+1x)

that is 0 if k > 0 and −(q + 1) if k = 0. Notice that in the last equality we used that the sum
of the values of a non-trivial character over all elements of a finite group is 0.
Then we have that

∑
z′∈ΞA,k+1

χ
(
$−kn(z′)

)
=
∑

z′∈ΞA,k
χ
(
$−k+1n(z′)

)
for every k > 0 and we

obtain

γ(n) = q−1
∑

z′∈ΞA,1

χ(n(z′)) = q−1
(

1 +
∑

z′∈Ξ×A,1

χ(n(z′))
)

= q−1(1− (q + 1)) = −1.

Remark 4.4. The Theorem 4.1 corresponds to Proposition 4 of [Wei64]. Weil proves it showing
that γ(n) is a negative real number of absolute value 1 and hence his proof does not suit in our
presentation. Our proof works for every integral domain R verifying our hypotheses but requires
F to be non-Archimedean.

4.2 The Witt group

In this paragraph we introduce the definition of Witt group of F and we prove that γ defines a
R-character of this group.

Let G1, G2 be two finite dimensional vector spaces over F and f1, f2 be two non-degenerate
quadratic forms on G1 and G2. We define f1 ⊕ f2 ∈ Qnd(G1 × G2) by (f1 ⊕ f2)(x1 ⊕ x2) =
f1(x1) + f2(x2) for every x1 ∈ G1 and x2 ∈ G2.
Remark 4.5. If ρ1 : G1 → G∗1 and ρ2 : G2 → G∗2 are the symmetric isomorphisms associated to
f1 and f2, then ρ1⊕ ρ2 : G1×G2 → (G1×G2)∗, defined by (ρ1⊕ ρ2)(y1⊕ y2) = ρ1(y1)⊕ ρ2(y2)
is the symmetric isomorphism associated to f1 ⊕ f2. Indeed, calling this latter ρ1,2 , we have

[x1 ⊕ x2, (ρ1 ⊕ ρ2)(y1 ⊕ y2)] = f1(x1 + y1)− f1(x1)− f1(y1) + f2(x2 + y2)− f2(x2)− f2(y2) =

= (f1⊕ f2)(x1⊕ x2 + y1⊕ y2)− (f1⊕ f2)(x1⊕ x2)− (f1⊕ f2)(y1⊕ y2) = [x1⊕ x2, ρ1,2(y1⊕ y2)].
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Definition 4.6. We say that f1 ∈ Qnd(G1) and f2 ∈ Qnd(G2) are equivalent (and we write
f1 ∼ f2) if one can be obtained from the other by adding an hyperbolic quadratic form of
dimension max{dim(G1),dim(G2)}−min{dim(G1),dim(G2)} (see [MH73]). We call Witt group
of F the set of equivalence classes of non-degenerate quadratic forms over F endowed with the
operation induced by (f1, f2) 7−→ f1 ⊕ f2.

Theorem 4.7. The map f 7→ γ(f) is a R-character of the Witt group of F.

Proof. Let G1 and G2 be two finitely dimensional vector spaces over F , f1 ∈ Qnd(G1) and
f2 ∈ Qnd(G2). Proposition 3.3 gives

γ(f1 ⊕ f2) = |ρ1 ⊕ ρ2|
1
2

∫
K1×K2

χ((f1 ⊕ f2)(x1 ⊕ x2))dx1dx2

for compact open subgroups K1 and K2 of G1 and G2, both large enough. Now, if we consider
1K1,∗ ∈ S(G∗1), 1K2,∗ ∈ S(G∗2) and 1K1,∗×K2,∗ ∈ S(G∗1 ×G∗2), Definition 1.3 gives

|ρ1||ρ2|
∫
G1

1K1,∗(ρ1(x1))dx1

∫
G2

1K2,∗(ρ2(x2))dx2 =

∫
G∗1

1K1,∗(x
∗
1)dx∗1

∫
G∗2

(x∗2)1K2,∗dx
∗
2 =

=

∫
G∗1×G∗2

1K1,∗×K2,∗(x
∗
1 ⊕ x∗2)dx∗1dx

∗
2 = |ρ1 ⊕ ρ2|

∫
G1×G2

1K1,∗×K2,∗(ρ1(x1)⊕ ρ2(x2))dx1dx2

and then |ρ1||ρ2| = |ρ1 ⊕ ρ2|. Hence we obtain

γ(f1 ⊕ f2) = |ρ1|
1
2 |ρ2|

1
2

∫
K1

χ(f1(x1))dx1

∫
K2

χ(f2(x2))dx2 = γ(f1)γ(f2).

We shall now to check that γ is equivariant on the equivalence classes of bilinear forms.
To see that, recall that f1 ∼ f2 if and only if there exist n ∈ N and an hyperbolic quadratic
form h(x) =

∑
xixi+n of rank 2n such that f1 = f2 ⊕ h. After what proven in the first part

γ(f1) = γ(f2) if and only if γ(h) = 1 and since every hyperbolic form is a sum of the rank 2 form
h2 : (x1, x2) 7→ x1x2 it’s sufficient to show that γ(h2) = 1. Now, if we apply the base change
x1 7→ x1 + x2 and x2 7→ x1 − x2 we obtain h2(x1 + x2, x1 − x2) = (x1 + x2)(x1 − x2) = x2

1 − x2
2

and Proposition 3.2 gives that γ(h2) = γ(q1 ⊕ (−q1)) = γ(q1)γ(q1)−1 = 1.

4.3 The image of the Weil factor

We exploit some classical results on quadratic forms over F to prove that γ takes values in the
group of fourth roots of unity in R.

Definition 4.8. Let G1, G2 be two finite dimensional vector spaces over F and f1, f2 be two
non-degenerate quadratic forms on G1 and G2. We say that f1 and f2 are isometric if there
exists an isomorphism ϑ : G1 −→ G2 such that f1(x) = f2(ϑ(x)) for every x ∈ G1.

Notice that, by Remark 3.4, if f1 and f2 are isometric then γ(f1) = γ(f2). We know also that
there are only two isometry classes of non-degenerate quadratic forms on a 4-dimensional vector
space over F whose discriminant is a square in F×. One class is represented by the norm n over
the quaternion division algebra and the other by q2 ⊕−q2. Moreover, if a, b ∈ F× and (a, b) is
the Hilbert symbol with values in R×, the quadratic form x2

1 − ax2
2 − bx2

3 + abx2
4 lies in the first

class if (a, b) = −1 and in the second one if (a, b) = 1. Furthermore by Theorems 4.7 and 4.1 we
have that

γ(x2
1 − ax2

2 − bx2
3 + abx2

4) = (a, b) . (21)
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In particular, for b = −1 we apply Theorem 4.7 to this formula to get the equalities

γ(q1)2γ(−aq1)2 = (a,−1) and γ(aq1)2 = (a,−1) γ(q1)2

by Proposition 3.2. Since every non-degenerate quadratic form is isometric to
∑m

i=1 aix
2
i for

suitable m ∈ N and ai ∈ F×, we have

γ(f)2 =
m∏
i=1

(ai,−1) γ(q1)2 = (D(f),−1) γ(q1)2m (22)

where D(f) is the discriminant of f . Notice that, since F is non-archimedean, then −1 is either
a square or a norm in F (

√
−1). Therefore γ(q4) = (−1,−1) = 1 and it follows that γ(f)4 = 1

for every non-degenerate quadratic form f over F as announced.
This is in fact the best possible result whenever −1 is not a square in F . Indeed, in this case,
there exists at least an element a ∈ F× such that (a,−1) = −1. For such an a, formula (21)
gives γ(q1 ⊕−aq1)2 = −1 and then a square root of −1 shall be in the image of γ.
Remark 4.9. This result shows also that, whenever −1 is not a square in F and char(R) 6= 2 (in
which case X4 − 1 is a separable polynomial) then R contains a primitive fourth root of unity.
This fact has an elementary explaination: denote ζp an element of order p in R× and consider
the Gauss sum τ =

∑p−1
i=1

(
i
p

)
ζip ∈ R, where

(
i
p

)
is the Legendre symbol. The formula

τ2 =

(
−1

p

)
p

holds thanks to a classical argument that can be found, for example, in 3.3 of [Lem00]. The
fact that −1 is not a square in F implies that

(
−1
p

)
= −1 and that q = pf with f odd. Since

R contains a square root of q, then there exists an element x ∈ R× such that x2 = p and
(τ · 1

x)2 = −1: there is a primitive fourth root of unity in R.

5 The reduced metaplectic group

The metaplectic group, associated with R and χ, is an extension of Sp(W ) by R× through the
short exact sequence (11). We want to understand when this sequence does (or does not) split,
looking for positive numbers n ∈ N yielding the existence of subgroups Mpn(W ) of Mp(W ) such
that π|Mpn(W ) is a finite cyclic cover of Sp(W ) with kernel µn(R).

We show that, for F locally compact non-discrete non-archimedean field, it is possible to
construct Mp2(W ). Then we prove that, when char(R) 6= 2, n = 1 does not satisfy the condition
above, namely that the sequence (11) does not split. Finally we show what happens in the simpler
case when char(R) = 2.
For a closer perspective we suppose that, for some n ∈ N, Mpn(W ) exists and we look at the
following commutative diagram with exact rows and columns

1

��

1

��
1 // µn(R) //

��

Mpn(W ) //

��

Sp(W ) //

id
��

1

1 // R× //

·n
��

Mp(W )
π //

ψn
��

Sp(W ) // 1

R×
id // R×
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where µn(R) is the group of n-th roots of unity in R. The existence of a homomorphism
ψn : Mp(W ) −→ R× such that its restriction on R× is the n-th power map implies the existence
of the first line in the diagram. Indeed, if such ψn exists, let Mpn(W ) be its kernel; then π induces
a surjective homomorphism from Mpn(W ) to Sp(W ) whose kernel is Mpn(W ) ∩R× = µn(R).
Then, as in 43 of [Wei64], the question to address is whether or not there exists ψn : Mp(W )→
R× such that ψn|R× (x) = xn for every x ∈ R×.

Lemma 5.1. A R-character ψn : Mp(W ) −→ R× whose restriction on R× is the n-th power
map is completely determined by ψ̃n = ψn ◦ r : Ω(W ) −→ R× where r is as in (19).

Proof. Let (σ, s) ∈ Mp(W ). By Proposition 1.7 we can write σ as a product σ =
∏
i σi with

σi ∈ Ω(W ). We set (σ, s′) =
∏
i r(σi) where r is as in (19). Then, since ker(π) = R×, we

have that (σ, s) = c(σ, s′) for a suitable c ∈ R×. This implies that the values of ψn at (σ, s) is
ψn(c(σ, s′)) = cn

∏
i ψ̃n(σi).

By (20), the morphism ψ̃n of Lemma 5.1 shall verify the condition

ψ̃n(σ)ψ̃n(σ′) = γ(f0)nψ̃n(σ′′) (23)

for every σ =

(
α β
γ δ

)
, σ′ =

(
α′ β′

γ′ δ′

)
and σ′′ =

(
α′′ β′′

γ′′ δ′′

)
in Ω(W ) satisfying σ′′ = σσ′,

where f0 is a non-degenerate quadratic form on X associated to the symmetric isomorphism
−β−1β′′β′−1.
Conversely we have:

Lemma 5.2. If ψ̃n : Ω(W ) −→ R× satisfies (23), then there exists a unique R-character ψn of
Mp(W ) such that its restriction to R× is the n-th power map and ψn ◦ r = ψ̃n.

Proof. Let (σ, s) ∈ Mp(W ). By Proposition 1.7 we can write σ as a product σ =
∏
i σi with

σi ∈ Ω(W ) and (σ, s) = c
∏

r(σi) for a suitable c ∈ R×. We define ψn(σ, s) = cn
∏
i ψ̃n(σi). We

have to prove that it is well defined. Let σ =
∏
j σj be another presentation of σ that differs

from
∏
i σi by a single relation σσ′ = σ′′; by (20) we obtain

(σ, s) = c
∏
i

r(σi) = γ(f0)c
∏
j

r(σj)

for a suitable f0 ∈ Qnd(X) and by (23) we have

ψn(σ, s) = cn
∏
i

ψ̃n(σi) = cnγ(f0)n
∏
j

ψ̃n(σj) = (c γ(f0))n
∏
j

ψ̃n(σj).

Now, since every presentation σ =
∏
k σk with σk ∈ Ω(W ) differs from

∏
i σi by a finite number

of relations σσ′ = σ′′, the definition ψn(σ, s) = cn
∏
i ψ̃n(σi) makes sense.

After these results the existence of a character ψn, and then of a subgroup Mpn(W ) of Mp(W )

as above, is equivalent to the existence of ψ̃n : Ω(W ) −→ R× that satisfies (23).

First of all we suppose that −1 is a square in F . By Proposition 3.2 we have γ(f)2 = 1 for every
f ∈ Qnd(X) and so ψ̃2 = 1 satisfies (23) with n = 2.
We suppose now that −1 is not a square in F . We fix a basis over the F -vector space X
and its dual basis over X∗. By definition of Ω(W ) we have that the determinant det(β) of β
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with respect to these basis is not zero for every σ =

(
α β
γ δ

)
∈ Ω(W ). Moreover, since f0 is

associated to the symmetric isomorphism −β−1β′′β′−1 we have that the discriminant of f0 is
D(f0) = det(−β)−1 · det(−β′′) · det(−β′)−1. Hence taking ψ̃2(σ) = (det(−β),−1) γ(q1)2m for

every σ =

(
α β
γ δ

)
∈ Ω(W ) and using formula (22) we obtain the equality (23) with n = 2.

We have then proved the

Theorem 5.3. There exists a subgroup Mp2(W ) of Mp(W ) that is a cover of Sp(W ) with kernel
µ2(R). In particular, when char(R) 6= 2, Mp2(W ) is a 2-cover of Sp(W ).

Now we want to see if this reduction is optimal in the sense that there does not exist any Mp1(W )
fitting into the diagram. If this is the case, then the group Mp2(W ) is the minimal subgroup of
Mp(W ) which is a central extension of Sp(W ) and therefore is called reduced metaplectic group.

Theorem 5.4. Let char(R) 6= 2. Then there does not exist a character ψ : Mp(W )→ R× such
that ψ|R× = id.

Proof. Let suppose the existence of such ψ. Then there exists a character ψ′ : Mp(F×F ∗)→ R×

such that ψ′|R× = id. In fact the extension by triviality

ι : Ω(F × F ∗) → Ω(W )(
a b
c d

)
7→


a 0 b 0
0 1n−1 0 1n−1

c 0 d 0
0 1n−1 0 1n−1


is such that σ′′ = σσ′ yields ι(σ′′) = ι(σ)ι(σ′). Then ψ̃′ := ψ̃ ◦ ι satisfies the relation

ψ̃′(σ′′) = γ(f0)−1ψ̃′(σ)ψ̃′(σ′)

and Lemma 5.2 implies the existence of ψ′. Clearly ψ′ takes values 1 on the group of commutators
of Mp(F × F ∗). By (18) we have

t

(
c

1− a2
x2

)
d
(
a−1
)
t

(
− c

1− a2
x2

)
d (a) = t

(
c

1− a2
x2

)
t

(
− ca2

1− a2
x2

)
= t

(
cx2
)

for every a /∈ {0, 1,−1} in F and every c ∈ F . Then for every quadratic form f on F , t(f) is a
commutator of Mp(F × F ∗) and so ψ′(t(f)) = 1. By Definition 3.1 we obtain the equality

d′(ρ−1)t(f)d′(−ρ−1)t(f) = γ(f)t(−f)d′(ρ−1)

in Mp(F × F ∗) for every f ∈ Qnd(F ) associated to ρ and applying ψ′ we obtain γ(f) =
ψ′(d′(ρ−1)). So, if we denote by ρa the symmetric isomorphism associated to aq1 : x −→ ax2

we obtain
γ (aq1) = ψ′(d′(ρ−1

a )) = ψ′(d(2a))ψ′(d′(ρ−1
1 )).

Now, since every quadratic form f over F is of the form f(x) =
∑m

i=1 aix
2
i , we can conclude

that γ(f) =
∏m
i=1 ψ

′(d(2ai))ψ
′(d′(ρ−1

1 ))m depends only on m and on the discriminant. But this
implies that γ takes the same value on every non-degenerate quadratic form on a 4-dimensional
vector space over F with discriminant equal to 1. But this contradicts Theorem 4.1.

We shall remark that, if R has characteristic 2, then necessarily γ(f) = 1 for every quadratic
form f . Then Theorem 5.4 is clearly false and the sequence (11) splits yielding the existence of
Mp1(W ) ∼= Sp(W ).
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Relationship with Steinberg theory

The theory of universal central extensions, as exposed for example in [Ste67], permits us to show
additional features of the reduced metaplectic group. Since Sp(W ) is a perfect group, it has an
universal central extension ϑ : U → Sp(W ) and since the reduced metaplectic group Mp2(W )
is a central extension of it, there exists a unique map ϕ : U → Mp2(W ) such that π ◦ ϕ = ϑ.
Moreover, by universal property of U, the image of ϕ is a central extension of Sp(W ) contained
in Mp2(W ) and in fact ϕ is surjective by Theorem 5.4. Then Mp2(W ) is contained in every
subgroup of Mp(W ) which is a central extension of Sp(W ) and in particular it is contained
in all its conjugates: Mp2(W ) is a normal subgroup of Mp(W ). Moreover the unique map
ϕ′ : U→ Mp(W ) given by the universal property factorizes necessarily through ϕ.
In [Ste67], Steinberg describes the structure of the universal central extension of any Chevalley
group by means of generators and relations and he also introduces the so-called Steinberg symbol,
which characterizes the kernel of this extension. It has already been noticed (see chapter II of
[Moo69]) that the Hilbert symbol enjoys the same properties as the Steinberg symbol. We can
actually describe this relationship in our case by studying the behavior of ϕ on generators of U.
As an example, let us fix an identification of F with F ∗ and make this correspondence explicit in
the case of SL(2, F ). Let Λ be the free group generated by the set {x(u), y(u) : u ∈ F}. Define
w(u) = x(u)y(−u−1)x(u) and h(u) = w(u)w(−1). Then we have the following (cfr. section 6 of
[Ste67]):

Theorem 5.5. Consider the following relations on Λ:

A. x(u1 + u2) = x(u1)x(u2) and y(u1 + u2) = y(u1)y(u2);

B. w(u)x(v)w(−u) = y(−u−2v);

C. h(u1u2) = h(u1)h(u2).

Then A et B are a complete set of relations for the universal central extension U → SL(2, F )
and adding C, we obtain a complete set of relations for SL(2, F ).
Moreover if π′ : Λ/(A,B) → Λ/(A,B,C) is the canonical projection, then every element of the
form h(u1)h(u2)h(u1u2)−1 ∈ kerπ′ coincides with the Steinberg symbol associated to u1 and u2.

We remark that condition B implies x(u) = w(1)−1y(−u)w(1) and we can check that the map
φ : Λ/(A,B,C) → SL(2, F ) given by y(u) 7→ t(uq1) and w(1) 7→ d′(−1

2) is an isomorphism
such that φ(x(u)) = d′(1

2)t(−uq1)d′(−1
2), φ(w(u)) = d′(−u

2 ) and φ(h(u)) = d(u). Theorem 5.5
assures the existence of a unique map ϕ : Λ/(A,B) → Mp(2, F ) making the following diagram
commute

1 // kerπ′ //

��

Λ/(A,B)
π′ //

ϕ

��

Λ/(A,B,C) //

φ

��

1

1 // R× //Mp(2, F )
π // SL(2, F ) // 1.

Let us prove that the image of the Steinberg symbol by ϕ in R× is the Hilbert symbol.
We know that t and d′ are liftings of t and d′ to Mp(2, F ). Then ϕ(y(u)) = c1(u)t(uq1)
and ϕ(w(1)) = c2d

′(−1
2) for c1(u) and c2 suitable elements in R×. This gives ϕ(x(u)) =

c1(−u)d′(1
2)t(−uq1)d′(−1

2). Now, by relation A and B of Theorem 5.5 we have that c1(u1 +
u2) = c1(u1)c1(u2) and c1(u1u

2
2) = c1(u1) for every u1, u2 ∈ F and then c1(u) = 1 for every

u ∈ F . Using relations in section 3.2 and the definition of the Weil factor we obtain ϕ(w(u)) =
γ(−uq1)d′(−u

2 ) and then ϕ(h(u)) = γ(q1 ⊕ −uq1)d(u). So we can calculate the image of the
Steinberg symbol: ϕ(h(u1)h(u2)h(u1u2)−1) = γ(q1 ⊕ −u1q1 ⊕ −u2q1 ⊕ u1u2q1) = (u1, u2) by
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formula (21). This gives another proof of the fact that the Hilbert symbol satisfies all the
relations of the Steinberg symbol.
Notice that we have shown in this way that the images of d,d′ and t lie in Mp2(2, F ).

Further directions

We conclude by saying that we can restrict the representation of the metaplectic group given
by (12) to a representation of the reduced metaplectic group. This is the Weil representation
defined over R. As pointed out in the introduction, the relevance of having an explicit form for
this representation lies in the fact that its understanding has important applications. Considering
R in whole generality may help understand more deeply the essential features underlying results
like Howe and Shimura correspondences. Let us mention also a more concrete question. Given
a morphism of rings R1 → R2 and fixed two smooth non-trivial characters χ1 : F → R1 and
χ2 : F → R2, it would be interesting to study the relationships between metaplectic groups and
the Weil representation respectively over R1 and R2.
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