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Abstract

In energy generation systems including a photovoltaic park, fluctuations are the norm: both production and demand levels can vary
on hourly basis. Hence, energy management and dispatching systems have to cope with the possibility of inadequate production
while satisfying as much as possible user demands. We put forward a management solution that models the behaviour of each
production plant and consumption device, and determines energy allocation. For this, gathered data are wavelet transformed to let
us retain only the useful characteristics of data on both large and small scales of the signal. Models are handled by several neural
networks which perform predictions in advance of 48-hour, with a granularity of half an hour. Moreover, according to realtime user
demands, the management solution determines energy flows between production plants and consumption devices. Therefore, while
in some cases it might be necessary to postpone the activation of some consumption devices, in others we can take advantage of
a production surplus. Thanks to the proposed solution proper actuators can be programmed beforehand to improve the fairness to
users, and use peaks of energy production, thus reducing green energy shortage, and extra costs.

Keywords: Integrated Generation System, Photovoltaic, Renewable energy, Cloud computing, Wavelet analysis, Neural networks,
Parallel processing.

1. Introduction

Renewable energy plants, including photovoltaic (PV), wind,
and bio-diesel generator, are widely used for energy production.
However, such energy sources cannot provide a fixed amount of
energy continuously, due to their seasonal and intermittent na-
ture [1]. A combination of energy sources can then be more
effective, if properly managed, in order to reduce energy pro-
duction fluctuations.

Intelligent power management systems are paramount when
dealing with renewable energy sources [2]. Basically, the man-
agement system of a plant has to include the monitoring of pro-
duction and demand levels and record data with granularity, e.g.
on hourly basis.

Due to the intermittent nature of the solar- and wind-derived
energy, an open issue is how to minimise the effects of fluctu-
ating green power productions, and how to satisfy the requests
of consumption devices over time [3, 4, 5]. A fundamental sup-
port allowing proper allocation is reliable load and production
forecasting.

Previously proposed management solutions can be examined
according to whether they consider the following features: (i)
energy fluctuations and adaptation, (ii) data segregation, (iii)
planning of energy allocation, and (iv) distributed generation.

Firstly, several approaches build a neural network model by
feeding it with unfiltered data gathered from PV plants and con-
sumption devices, and resulting in a model that depicts an av-
erage behaviour, while missing fine grained details, and for a

large time-frame, which results in considerable errors for more
fine intervals [6, 7, 8, 9, 10, 11, 12].

Some approaches adopt data filtering, however the error is
generally high [13, 14]. In [13], the custom network topol-
ogy used counterbalance in a negative way data filtering, hence
missing most of the dynamic of the signal. In [14] the neu-
ral network topology used (having no feedback and no delayed
lines) is not able to handle time changing finer phenomena with
enough accuracy, hence their resulting forecast suffers of a very
high error.

Moreover, many existing approaches use a model that fits sta-
tionary phenomena, as autoregressive-moving average [15], or
adopt mathematical tools, such as Fourier transform still captur-
ing the stationary phenomena only [16]. Some neural network
topologies have been used which are adeguate only for a sta-
tionary scenario [17, 18, 19]. on

Secondly, several approaches use aggregated data coming
from power plants or consumption devices, then the corre-
sponding model provides an average trend, while cannot per-
form accurate forecast for each plant, device, or place [6, 8, 20].

Thirdly, many approaches simply react to the fluctuations
of energy production and demand, without planning in ad-
vance [21, 22]. Often their main goal has been an economical
balance [21, 23], and in some cases an energy balance has been
considered [22, 24].

Fourthly, all the above approaches are unaware of distributed
generation and cannot gain advantage of the plant position with
respect to the demand. In [25, 26] distributed generation has
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been considered and for this a certain size level is set, while
beyond that level power losses increase.

Our solution overcomes all the said problems, by using gath-
ered data to plan energy dispatching in advance, hence avoiding
sudden fluctuations of energy flows. Our aim to reduce energy
fluctuations towards each consumer is novel, since other ap-
proaches simply consider an overall energy balance. Moreover,
the novel contribution of this paper comprises the following two
strategies. The proposed combination of wavelet transforms
and the several neural networks adopted, for segregated data
referring to different plants and devices, manage to accurately
estimate power production and consumption for each plant and
consumption device, in advance of 48-hour. Differently from
other approaches, wavelet transforms let us retain significant
details at several scales for the observed behaviour and gath-
ered data; whereas the adopted neural network topology can
embed new data and adapt to the changes observed over time.

Moreover, unlike other approaches, we keep data coming
from different observations separate. For this we need a con-
siderable amount of neural networks and processing capability.
We have tackled such issues by tapping into the cloud for proper
storage and processing of each data flow. We propose a compu-
tationally capable solution, based on Graphic-Processing-Units
(GPUs), to compute in advance and for timesteps of half an
hour the suitable energy dispatch between PV plants and load
buildings in such a way to satisfy demands as much as possible.
The latter is a computationally intensive task when considering
a real-world scenario with hundreds of devices.

Thanks to the proposed solution taking advantage of the sta-
tistical availability of production and demand data, we reduce
as much as possible the energy bought from a tradition provider.
The proposed solution ensures continuous availability of green
power for selected consumption devices, while turning down
requests that cannot be honoured according to previous statis-
tics. Therefore, this strategy avoids that consumption devices
witness sudden energy fluctuations. In order to satisfy energy
demand when having a limited green energy production, we
consider a possible additional energy flow from the commer-
cial energy provider, only when needed, or postponing the ac-
tivation of some consumption devices. Moreover, we compute
how to satisfy over time the demands of the commercial en-
ergy provider, with whom some agreements have been taken
beforehand, and any variation of energy sold would amount to
an economic loss. For the proposed advanced energy manage-
ment system, the needed computation is performed on cloud
computing hosts equipped with GPUs. Since the workload for
the data analysis can vary according to the characteristics of the
production plant and the constrains coming from load build-
ings, the proposed solution includes the ability to allocate and
release cloud computing resources over time.

The plant investigated in this paper, as a proof of concept,
consists of PV arrays and load buildings in the campus of the
University of Catania called ’Cittadella’.

This paper is structured as follows. Section 2 discusses the
related literature.

Section 3 introduces the distributed infrastructure catering
for the needs related to data collection, analysis, and govern-

ment decisions.
Section 4 describes the proposed solution for predicting

power production and load.
Section 5 details the fast computing support that examines

the flows between energy sources and sinks. Section 6 reports
the results on our proof of concept.

Finally, the last section draws our conclusions and sum-
marises future work.

2. Related Works

Our proposed approach deals with two main issues: (i) mod-
elling data coming from energy production and consumption,
and estimating future behaviour, (ii) planning how green energy
should be used to avoid sudden energy fluctuations. According
to the methods of data processing, the proposed models can
be roughly summarised into three categories: statistical, neural
network-based, and hybrid. Statistical models attempt to find
trends and are based on mathematical models to perform fore-
casting. Generally, forecasting errors are low when the input
variables are under normal conditions. Among all the statistical
models, the auto-regressive moving average

is a typical method that is widely and commonly applied in
time series forecasting [15].

Unlike statistical models, neural networks are data-driven
and fault-tolerant, and those robust characteristics make them
very suitable for PV energy forecasting. Neural networks
have a high ability to address complicated relationships, find
prediction patterns and perform forecasts under uncertainty
[6, 8, 18, 20]. While several previous approaches attempting
forecasting using neural networks have a high error, and merge
data coming from different plants [6, 7, 8, 9, 10, 11, 12], our
approach affords a lower error for each separated plant.

A hybrid model combines a mathematical model and a neural
network. Our approach falls into this category thanks to the use
of wavelet transforms on gathered raw data, and then neural
networks on such transformed data.

In some previous approaches, the recorded data of solar
produced energy are decomposed into several components of
various timefrequency domains according to wavelet analy-
sis [13, 14, 27]. In our approach we manage to have a lower
forecasting error, due to a more accurate use of wavelet decom-
position, recurrent neural network topology, and data segrega-
tion of records from different plants.

The literature presents only a few approaches that deal with
intelligent decision-making to manage a power plant and the
energy distribution [21].

While economical or energy balance have been proposed by
previous approaches [24, 23], they proposed to balance energy
offer and demand for a given scenario, hence their solution re-
mains valid only till no new conditions emerge.

We use our predictions for energy produced and for con-
sumption requests to find how to match the two over time for
future intervals. Hence, adjusting energy flow without letting
the consumers know about the fluctuating green power genera-
tion.
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Figure 1: Main cloud resources and data flows among them.

Moreover, no solution has been proposed to make best use
of green energy when only partial fulfilment among loading de-
vices can be achieved.

Unlike allo other approaches, we compute every possible
combination of match between offer and demand over time
thanks to GPU resources over a cloud. Additionally, differently
from all other approaches that aggregate collected usage and
production data, we store the characterised profile of each con-
sumption device and production plant, on a cloud.

3. Distributed Computing for Smart Grid

The computational load deriving from the execution of pre-
dicting components, which consist of wavelet transforms and
neural networks (see Section 4), and for determining energy
flows over time (see Section 5), is handled by a cloud-based
infrastructure providing storage and computing resources.

Therefore, raw data gathered from power production plants
and load buildings are stored on the cloud and then used to: (i)
perform wavelet transforms, this allows a proper data character-
isation, (ii) train neural networks, (iii) perform predictions, and
(iv) compute the dispatching strategy, hence selecting which
devices can consume green energy and when.

Each power production plant or consumption building (or
loading device) is associated with a corresponding behavioural
model, consisting of a neural network dubbed WRNN, that ex-
ecutes on a cloud resource. Since the characteristics of power
production and load are different, several modelling solutions
are available, hence the needed WRNN topology and training
has to be selected, among available ones that have been previ-
ously designed, according to the qualifying parameters of the
plant (see similarity in the following).

Fig. 1 shows the proposed distributed architecture consisting
of the following main resources.

• Data storage units (SU) holding raw data collected from
the observations of signals from production plants and
from demands of consumption devices.

• Skimming nodes (SN), each building and executing a
WRNN taking as input historical time series; then,
analysing demands from loading devices and green energy
availability, to find possible energy flows.

topology
selection

WRNN
training

wavelet
decomposition

cloud
storage

parameters

historical
time series

trained WRNN weights

topology

wavelet 
coefficients

WRNN
predictor

wavelet
decomposition

cloud
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predicted signal

wavelet 
coefficients

trained WRNN
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Figure 2: Data flow used during the training of a neural network.

Virtual machines (VMs) on a cloud are requested by a re-
source queue manager (RQM), which then starts an available
VM image to perform the tasks of a SN or a SU (such roles
can be added or removed to reflect the dynamic of the real en-
vironment). RQM is responsible to check the amount of VMs
used and trigger the growth (or decrease) as necessary, hence
installing on each VM the required software packages. Once
a SN is started, it is connected to a raw data flux reflecting
the run time observed significant values for a power plant, or
a consumption device. Each SN holds a dedicated WRNN cor-
responding to the plant to be modelled, hence has to be trained
separately.

While PV plants are seldom added, hence the number of
needed SNs rarely changes, consumption devices can vary,
e.g. when adding/updating air conditioning devices, appliances,
server computers, or when significantly varying their usage, e.g.
by increasing the number of employees. When consumption
changes, the training phase has to be triggered on the new en-
semble, or a device has to be represented by a corresponding
further SN.

For loading devices, several scenarios and settings can be
handled by our proposed solution, according to the installation
of power meters, and then the availability of consumption data.
I.e., a building could be considered as a whole, when only a
power meter has been installed for it, or the granularity could
be the floor or a room, if power meters have been installed with
high granularity. Without loss of generality, the following con-
siders that power meters have been scattered on a building to
gauge different loading subsystems in their own. Analogously,
the appropriate number of power outlets have been modified to
be controlled by a centralised decision maker for the loading
devices to be activated/deactivated.

Fig. 2 shows the main steps and data flow needed for training
a modelling WRNN, i.e. a newly available SN is given a replica
of the most similar stored WRNN, which has been previously
used, and starts training the WRNN by feeding it with the his-
torical time series for the plant. In order to choose a previously
stored WRNN, similarity is computed according to several pa-
rameters, including e.g.: (i) the objective (power production or
consumption), (ii) the size of the plant or building, (iii) the loca-
tion, (iv) the type of device. For the sake of performing WRNN
replicas, after training the internal characteristics (topology and
weights) of a WRNN are stored, hence such data are transferred

3
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Figure 3: Data flow to WRNN predictors during the real time phase.

to a SU and appropriately tagged with the said parameters.
Fig. 3 shows the data flow and the steps executed to perform

predictions using the trained WRNN, i.e. once the WRNN has
been validated, then it is possible for it to receive requests of
predictions, as well as to continue embedding newly gathered
data.

Besides the said WRNN data modeling and prediction, a SN
can be used to perform the analysis of different energy dispatch
configurations. Such a task is organised as a massively parallel
process on a GPU that compares dispatch configurations (see
Section 5). Once a SN has computed the viable configuration,
resulting data will be sent to a SU and to the actuators (pro-
grammable devices or power outlets), hence realising the given
dispatching strategy.

Once deployed, the said distributed software architecture
continuously receives and analyses data and determines oper-
ating conditions for the connected consumption devices, with-
out needing any human intervention, hence it suits for electrical
dispatch networks.

4. Predicting renewable energy and power load

Several topologies for a WRNN model can predict the gener-
ated power of a PV plant, or the power load offered by a build-
ing, when properly trained [27, 28]. Therefore, our solution is
based on a WRNN model. We will now give the essential con-
cepts underpinning the WRNN model, while referring to [28]
for further details; whereas the way predictors are used for the
problem at hand is in Section 4.2.

4.1. Models as WRNNs

The main advantage of the WRNN model is the ability to
predict the future trends of a data time series while also per-
forming a wavelet inverse transform from wavelet coefficients.
This feature enables us to feed the WRNN with data consisting
of wavelet coefficients and take as output data in the time do-
main. Of course, such a procedure requires us to first transform
a time series into the wavelet domain.

Wavelet decomposition is employed for physical and dy-
namic phenomena to reduce data redundancies, therefore giv-
ing as a result a compact representation expressing the intrinsic
structure of a phenomenon.

When deriving wavelet coefficients from raw data, the main
advantage gained is the ability to pack the energy signature and
express it in a few relevant non-zero coefficients [29, 30].

The wavelet-based representation has a much lower noise in-
cidence and therefore has the ability to properly model a time
series perturbed by several factors, e.g. the weather variabil-
ity that affects power generation, or the human behaviour that
modifies a building power load.

The used WRNNs take as input the wavelet transform of
gathered data, and give as output predictions of signals in
the time domain. Therefore, WRNNs embed a wavelet in-
verse transform as in a recursive lifting procedure [28, 29].
This WRNN behaviour is attained by using a composition
of Radial Basis Functions (RBFs) as a transfer function that
closely approximates a mother wavelet, in fact a RBF is a good
enough transfer function while it partially approximates half of
a mother wavelet. It is indeed possible to properly scale and
shift a couple of RBFs to obtain a mother wavelet. There-
fore, the proposed WRNNs embed two hidden layers with RBF
transfer functions. The adopted transfer function composition
approximates a mother wavelet, whereas it is inappropriate to
use a mother wavelet as a transfer function since it lacks needed
elementary properties, e.g. the absence of local minima and a
sufficient graded and scaled response. Therefore, the WRNN
uses RBFs as an approximation for the mother wavelet without
harming the response expected by the network [31].

4.2. Proposed WRNN predictors
In our proposed solution, each power plant is associated to

its own WRNN, since the observed phenomena are affected by
specific factors such as size of the plant, local weather in the
area, orientation of panels. Moreover, since each consumption
device, or set of devices, e.g. air conditioning, has its own pro-
file of energy consumption, it has an associated WRNN. Then,
a WRNN set forecasts the green-generated power and another
set of WRNNs estimates the power load.

The proposed WRNN is a recurrent neural network (RNN)
taking as input wavelet transformed data. Now, for a RNN,
the transient response is a critical issue when realtime sig-
nal processing is desired. Conventional RNN training algo-
rithms, such as backpropagation through time and realtime re-
current learning (RTRL) exhibit low convergence speed. In this
work, we have achieved both speed and stability, thanks to an
improved version of RTRL, dubbed robust adaptive gradient-
descent training algorithm [32]. Therefore, the training pattern
consists of both realtime online backpropagation and RTRL,
according to the derived convergence and stability conditions.
The measured generated power coming from a power plant, or
the power load measured for each consumption device are gen-
eralised as time series u(τ), where τ is the discrete time step
of the sampled data, which in our experiments has been set to
half an hour. A biorthogonal wavelet decomposition of the time
series is then computed to obtain the correct input set for the
WRNN, as required by the devised architecture.

This decomposition is obtained by applying the wavelet
transform: in such a way that the i-esime recursion Ŵi pro-
duces, for any time step of the series, a set of coefficients di and

4
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Figure 4: The devised architecture for WRNN predictors.

residuals ai, and so that

Ŵi[ai−1(τ)] = [di(τ), ai(τ)] ∀ i ∈ [1,M] ∩ N (1)

where we intend a0(τ) = u(τ). The input set can then be repre-
sented as an N × (M + 1) matrix of N time steps of a M level
wavelet decomposition where the τ-esime row represents the
τ-esime time step as the decomposition

u(τ) = [d1(τ), d2(τ), . . . , dM(τ), aM(τ)] (2)

Each row of this dataset is given as input value to the M input
neurons of a WRNN. Fig. 4 shows the architecture of the pro-
posed WRNN consisting of the several layers: the input layer
having 6 neurons, two hidden layers having 16 neurons each,
delay stages, and an output layer having 1 neuron. For each
time step τn then the WRNN predictor gives the estimated fu-
ture value at a time step τn+r. The WRNN can be considered a
functional where r is the number of time steps in the future.

N̂[u(τn)] = x(τn+r) (3)

Fig. 5 shows the decomposition that we have adopted in our
proof of concept, which is identified by the numbers 3.9.

5. Energy Dispatch Management

As stated in the previous sections, our cloud-based analy-
ses estimate the power production and consumption at several
plants and buildings. The proposed intelligent management so-
lution aims at avoiding fluctuating power flows towards con-
sumption devices. A relevant result of such a management is
that the green generated power can be sold to the traditional
power provider, e.g. when the request is low from consumption
devices, or when it is more convenient economically. How-
ever, a major concern in dealing with commercial providers is
to maintain a stable energy production for a long period of time
or, at least, to provide a precise prediction of the energy sold.
Our system copes with both the problems of power fluctuations
and predictions, by selecting an appropriate destination for the
dispatching of the green energy, and by using forecasting tech-
niques.

0 5 10 15 20
−1

−0.5

0

0.5

1
Biorthogonal 3.9 low−pass filter

0 5 10 15 20
−1

−0.5

0

0.5

1
Biorthogonal 3.9 high−pass filter

Figure 5: Adopted decomposition using biorthogonal 3.9 wavelet filters, left
low-pass and right high-pass filter.

5.1. Computing dispatching solutions
The proposed solution aims at avoiding sudden changes in

the energy dispatched, and even sold to the traditional power
provider, by maintaining a stable power value with smooth vari-
ations during time. For this we consider a certain number of
consumption devices and a generation plant. Consumption is
the use of energy by any load device or set of devices, e.g. an
entire building, the air conditioning subsystem, or other subsys-
tems. Let consumption devices be enumerated with an index
k ∈ [1,N] ∩ N, and then add a special consumer (k = 0) repre-
senting an energy provider to whom we want to sell a portion
of the generated power.

Each consumer k will be characterised by a power load Pk
L(τ)

for the discrete time step τ. Therefore, the power balance must
be kept as

Pk
L(τ) = Pk

D(τ) + Pk
E(τ) (4)

where Pk
D(τ) represents the power dispatched to the consumer

by the generation plant, and Pk
E(τ) the power coming from the

grid of the energy provider. It is possible to negotiate with each
consumer a tolerance δk(τ) for each time step so that

Pk
L(τ) − δk(τ) ≤ Pk

D(τ) ≤ Pk
L(τ) (5)

and granted that

PG(τ) =

N∑
k=0

Pk
D(τ) (6)

where PG(τ) is the total generated power. On a real scenario,
we have to take into account a constraint regarding the fair-
ness of the energy distribution among consumers, therefore if
a certain total energy distribution share ratio ρk is granted by
contract, then we must impose that∫

∆t

Pk
D(t)dt = ρk

∫
∆t

PG(t)dt ∀ k ∈ [0,N] ∩ N0 (7)

where ∆t is an amount of time specified by a contract and con-
sidering time t as a continuous variable in order to give a math-
ematical meaning to the integrals.

5
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Figure 6: An overview the PV plant at the campus.

Within the given definitions and constraints, it is possible to
imagine a large number of different distribution options, and
corresponding to one of the dispatching setup

S (τ) =
{
Pk

D(τ) / k ∈ [0,N] ∩ N0

}
(8)

which determines the quantity of power distributed to the dif-
ferent consumers. In this work we have chosen to focus on
granting smooth variations of the power sold to the provider
that is represented in the mathematical formalism as the con-
sumer number 0. I.e., the managed plant sells a portion of the
generated power PG by dispatching it to the external energy
provider as P0

D; moreover due to the characteristics of the en-
ergy contracts we give the maximum priority to the stability of
P0

D, therefore, at each time step τ, we search for an optimal
setup S ∗(τ) so that∣∣∣Ṗ0

D(τ)
∣∣∣
S ∗

= min
{S }

{∣∣∣Ṗ0
D(τ)

∣∣∣
S

}
(9)

where |Ṗ0
D(τ)|S represents the module of the first time derivate

of the distributed power to the energy provider grid at a time
step τ for a setup S .

5.2. GPU-based dispatch selection

In order to solve the optimal configuration as in (9) under the
constraints given by (5), (6), (7), the possible scenarios of (8)
have to be simulated, and for this we use a GPU device.

The input data for the developed GPU parallel solver con-
sist of the predicted time series for the generated power PG(τ).
A solution satisfying all constraints is required for each time
step, hence the GPU threads are organised into blocks and spe-
cialised for each time step. Therefore, each thread in each block
proposes a different solution consisting of a setup for the con-
sumption devices. Of course, if a possible setup does not satisfy
the given constraints then such a setup is removed. At the end
of this computing step the optimal setup S ∗ will be selected, as
it satisfies the constraints in (9). By collecting all the results,
we obtain a time series of predicted optimum setups S ∗(τ).

The GPU-based algorithmic solution is intended to perform
very fast computations of different dispatch scenarios, since the

Figure 7: Renewable power generation prediction and measured values.

computed setup would determine the timely activation or deac-
tivation of some devices. E.g. a computed setup would let us
deactivate a device for the following timestep, in order to be
activated later on.

6. Observations and Results

6.1. Overview of the Plant

The observed PV plant has been installed on the roofs of
some buildings of the Campus called ‘Cittadella’ of the Uni-
versity of Catania as in Fig. 6. The PV system has a nominal
peak power of 244.4 kWp and is composed of fields connected
in parallel. The fields are: (i) a field having 223 modules ar-
ranged in 12 arrays, (ii) a field having 336 modules arranged
in 18 arrays, (iii) a field having 223 modules arranged in 12
arrays. The modules are made up of polycrystalline silicon,
which guarantees a conversion efficiency of about 13%, and the
overall surface is about 1888 m2.

Each array si connected to an inverter that has an open circuit
output voltage of 213 VDC and a short circuit output current
of 4.4 A. The inverters are connected to the 400 V tree-phase
circuit in parallel with the grid of the national energy provider,
therefore the PV energy output can be used by any building in
the campus. The output is monitored at the PV inverter to gather
raw data.

6.2. Performed Simulations and Discussion of Results

In the depicted simulation example, a component implement-
ing a WRNN and executing in a SN was used to receive the
data characterising a PV field, in order to gain knowledge for
predicting, later on, the power production of such a field. Anal-
ogously, the other PV fields and load buildings were associated
each with a WRNN, receiving the corresponding data. Then,
a WRNN was employed to predict the energy consumption of
one of the three buildings (the number of plants and buildings
is not influent on the functionalities of the component).

We have adopted the above WRNN predictors (see Section 4)
for data measuring the power produced by each PV generator

6
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Figure 8: Power load over time adjusted by the proposed management system.

installed in the University of Catania campus. Fig. 7 shows
the curves of the predicted power and the measured generated
power. The generated power was effectively predicted in ad-
vance with a relative root mean square error (RMSE) less than
2.5%.

Fig. 9 shows a simulation consisting of eight consumption
devices that request energy, and are served according to their
demand. On the top panel, the requested power load is rep-
resented as the cells pi, j of a matrix, where pi, j = log Pi

l(t j) if
Pi

l(t j, t j +∆t) is the power load of the ith device during a discrete
time interval [t j, t j + ∆t] (the color shows the required power,
as a logarithm of the actual value, where black shows a lower
amount of load, over time on the x-axis). In our simulation the
time step ∆t is 15 minutes. The lower panel shows the overall
power load Pl(t), represented as a solid line, and the generated
power PG(t) represented as a dashed line.

Fig. 8 shows the energy dispatch according to the results
of the developed solution, which determines the energy flow
(graphic notation is the same as Fig. 9). In the resulting dis-
patching, device requests have been processed, and while some
have been honoured, others, when possible, have been resched-
uled (for the processing of requests and how the power load and
energy consumption forecasts were compared see Section 5).
As a result, some loading requests are postponed to the time-
intervals when solar panels can produce energy more generated
power PG is available. The alternating vertical light gray stripes
in Fig. 8 show high values of energy consumption and indi-
cate that many loading devices requests were honoured in the
time-frame corresponding to the width of the light gray stripe.
Conversely, mostly-black vertical stripes indicate low energy
consumption, hence requests that were postponed. By com-
paring Fig. 8 and Fig. 9 we can see that power distribution is
achieved by ordering requests. Only in the latter diagram there
is a correspondence between high volumes of green production
(see peaks in the lower panel) and high volumes of consumption
(see gray stripes in the higher panel).

Finally, Fig. 10 shows a detail of the proposed dispatching.
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Figure 9: Required power for each loading device over time, total power load
(solid line), and generated power (dashed line).

We can observe that the load of several devices has been re-
arranged over time, by reallocating some requests, and closely
follows the production levels. The introduced optimisation bet-
ter suits energy availability and reduces the cost due to the en-
ergy bought from the national provider.

6.3. Performance Measures

In order to evaluate the execution time of the software com-
ponents that determine energy dispatch solutions, we greatly
increased the amount of data to be analysed, simulating more
power production plants and consumption devices. When in-
creasing the number of consumption devices, dispatch configu-
rations increase dramatically.

We have called dispatch setups the possible configurations
that let consumption devices absorb energy (including the en-
ergy provider, which buys energy from the PV plant).

When considering n consumption devices, finding which k
device requests, with k < n, have to be satisfied at a given time
step, requires checking a large number of setups where not all
n can be given energy.

The combinations of k devices to satisfy over the n available
devices grows very quickly: there are more than 10000 combi-
nations when taking 8 devices out of 16 whose constraints have
to be satisfied. We refer to combinations number as the size of
such dispatch setups to be checked.

We evaluated the performance of the developed cloud-GPU
system by measuring the execution time when seeking dispatch
solutions for a varying number of requesting devices, and using
several VMs equipped with GPUs. The low measures of execu-
tion times let our solution satisfy a big number of consumption
devices, and react in real-time to requests, given that 4 GPUs
can handle up to 10000 combinations in less than 0.55s. Fig. 11
shows the performance of the parallel GPU version when using
multiple GPU-equipped VMs.
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Figure 10: Overall requested power load (red line) and optimised power load
(black line).
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Figure 11: Running time measured for parallel GPU computation while in-
creasing the number of VMs.

7. Concluding Remarks

We have presented an advanced management system han-
dling the energy dispatch in a smart grid in order to reduce sud-
den loss of power from green generation plants, hence fluctua-
tions of energy flows. We have combined several essential com-
ponents, i.e. a cloud-based software architecture, power moni-
toring, wavelet transforms, neural networks, and outlet actua-
tors for advancing autonomous and intelligent handling and op-
timisation of resources. Cloud computing provides us resources
on demand, and gives means to properly configure and run the
proposed WRNN components. Each of these is associated to
an actual device and processes its characteristic consumption
data, gathered from actual real time observations. Unlike all
other approaches we have seen in the literature (see Section 2)
we kept data segregated to improve precision and sensitivity in
forecasting the demand levels of each device or the delivered
energy of each plant. To achieve proper storage and processing

resources we resorted to a cloud-based infrastructure. Wavelet
transforms let us process the measured signal in order to retain
only the essential characteristics, at both small and large scale.
Other previous approaches using wavelet transform and neural
networks for forecasting have a much higher error, and cannot
adapt to changing conditions of the monitored plant. Neural
networks have been used to make a reliable, robust and adapt-
able estimation of energy production and consumption. Other
approaches in the literature using neural network cannot prop-
erly tackle not stationary data and have a much higher error, due
to the different neural network topology used, or the unfiltered
input data.

When compared ours with traditional prediction approaches,
the other approaches (i) need much more data, (ii) are less prone
to adapt to temporary phenomena, (iii) are less suitable to cap-
ture small and large scale characteristics of the signal, due to
their lack of filtering on raw data. We tackle filtering with
wavelet transforms, and adaptation with neural networks.

Moreover, by means of GPUs and estimated data it was pos-
sible to simulate all the possible energy dispatch configurations
for loading devices and select the configuration minimising dis-
ruption and cost. We believe that this is the first computation-
ally viable solution for a conspicuous number of loading de-
vices, when only partial fulfilment using green energy produc-
tion is to take into account.

Our solution is the first to tackle the said dispatching problem
given the highly complex depicted scenario in such a way that
real time processing can be employed. We have tested the solu-
tion in a real scenario and it was possible to automatically select
the best configuration in order to minimise the unmet load en-
ergy demand and then increase the reliability for the smart grid
and reduce the amount of energy bought.
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Highlights: 

 

1) We want to reschedule user devices' energy conspution to overcome the 

insufficient IGS production 

3) We use WRNNs to predict future energy production in order to forecast 

energy availability 

4) We use GPU processing to simulate different energy consuption 

scenarios 

5) Simulations show which activation of consumption devices can be 

postponed 

6) Therefore the proposed overall solution regulates energy flows between 

production plants and consumption buildings 

 

 

*Highlights (for review)
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