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Abstract

This study focuses on fluctuating classical systems in contact with a thermal bath, and whose

configurational energetics undergoes cyclic transformations due to interaction with external per-

turbing agents. Under the assumptions that the configurational dynamics is a stochastic Markov

process in the overdamped regime and that the non-equilibrium configurational distribution re-

mains close to the underlying equilibrium one, we derived an analytic approximation of the aver-

age dissipated energy per cycle in the asymptotic limit (i.e., after many cycles of perturbation).

The energy dissipation is then readily translated into average entropy production, per cycle, in

the environment. The accuracy of the approximation was tested by comparing the outcomes with

the exact values obtained by stochastic simulations of a model case: a ”particle on a ring” which

fluctuates in a bi-stable potential perturbed in two different ways. As pointed out in previous

studies on the stochastic resonance phenomenon, the dependence of the average dissipation on the

perturbation period may unveil the inner spectrum of system’s fluctuation rates. In this respect,

the analytical approximation presented here makes it possible to unveil the connection between

average dissipation, intrinsic rates/modes of fluctuation of the system at the unperturbed equilib-

rium, and features of the perturbation itself (namely, the period of the cycle and the projections

of the energy perturbation over the system’s modes). The possibilities of employing the analytical

results as a guide to devising and rationalizing a sort of ”spectroscopic calorimetry” experiment,

and of employing them in strategies aiming to optimize the system’s features on the basis of a

target average dissipation, are briefly discussed.
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I. INTRODUCTION AND OUTLINE OF THE WORK

This work deals with classical systems subjected to an externally driven periodic pertur-

bation of the configurational energetics while they fluctuate in contact with a thermal bath.

Namely, it focuses on the amount of energy which is dissipated per cycle of the perturbation,

and, in particular, on its limit value asymptotically attained after many cycles. Our main

objective was to elaborate an approximate expression which relates the average dissipation

to the intrinsic relaxation modes/rates of the unperturbed system at equilibrium and to the

features of the energy perturbation (i.e., functional form and period). That approximation,

Eq. 21 in the following, is accurate when the non-equilibrium configurational distribution of

the system differs slightly from the ”underlying” one corresponding to a virtual equilibration

with the external perturbation.

Based on this premise, our study fits into so-called ”stochastic thermodynamics” [1], one

of the most exciting branches of physical-chemical sciences being studied over the last two

decades. In this context, the quantities of work and heat exchanged between the system

and the environment become stochastic variables since the actual trajectory followed by

the uncontrolled degrees of freedom of the system is, in itself, stochastic. Insights on the

statistical properties of these quantities of energy have led to a number of remarkable ”fluc-

tuation theorems”; we address interested readers to reviews [2–5] and to references therein.

More specifically, energy dissipation in periodically driven systems has been explored in a

series of previous studies both experimentally and computationally (see, for example, refs.

[6, 7]). We would also like to mention the theoretical work of Harada and Sasa [8] who

derived an equality, for Langevin systems, that connects the rate of energy dissipation at

steady-state with the extent of violation of the ”fluctuation-response relation”; this equality

has been proven to hold even for periodically driven systems. [9] Morever, we mention the

close connection, as will be clarified later, between the present study and recent develop-

ments in the build-up of the (linear) non-equilibrium thermodynamics of periodically driven

systems.[10, 11]. However, to the best of our knowledge, a detailed link between the average

dissipation per cycle and the internal modes/rates of fluctuation is attempted here for the

first time.

Before going into the technicalities of the specific problem treated here, we will outline

its essential traits and provide some introductory concepts. Concerning the units of en-

ergy adopted throughout, all quantities having physical dimension of energy (i.e., work,

potential energies, free energies and derived quantities) will be implicitly given in kBT units,

where T is the absolute temperature of the thermal bath and kB the Boltzmann constant.

All these quantities will thus be dimensionless and the reader should retrieve the physical

units, if needed, by proper re-scaling.
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In all generality, let x be the minimal set of coordinates of configurational type which

are essential to specify the actual microstate of a given system. The requirement is that

the dynamics of x, both with and without the external perturbation, is a multidimensional

diffusive Markov process. [12] Accordingly, the dynamics can be modeled by means of a

Langevin-like equation in the overdamped regime of motion to generate trajectories or by

means of the corresponding Fokker-Planck equation in the Smoluchowski form to describe

the evolution of the non-equilibrium probability distribution p(x, t) from a given initial

profile p(x, 0).[12] Now consider an external agent (see remarks below) which interacts with

the system so that the energy of each configuration, V (x, t),[13] changes deterministically

in time. While the energy modulation is active, the variables x evolve in uncontrolled way

so that a stochastic trajectory x(t)tr develops (in what follows, the subscript ”tr” will label

quantities referring to a single trajectory). The infinitesimal amount of thermodynamic work

performed along the actual system’s trajectory is identified [1, 14, 15] with the variation of

the microstate energy due to the controlled external intervention, that is

δwtr(t, t+ δt) := δt × ∂V (x, t)

∂t

∣∣∣∣
x=x(t)tr

(1)

The net work done along the trajectory, wtr, is then obtained by summing all the infinites-

imal contributions. The stochasticity of the trajectory implies that wtr is also a stochastic

variable.

As in the usual macroscopic context,[16] an applied transformation (possibly) causes a

change of the system’s thermodynamic state. While the system’s configuration is specified

by x, the thermodynamic state refers to the statistical distribution of the configurations

at equilibrium. The well-known state-functions of macroscopic thermodynamics are then

defined in terms of specific ensemble averages. For fluctuating systems in contact with a

thermal bath, the key state-function is the Helmholtz free energy A. Other state-functions,

such as the entropy S and the internal energy U , can be obtained from the temperature

dependence of A by applying the proper differential interrelations. Let the system be initially

at thermal equilibrium. Throughout the paper, the subscript ”0” will denote properties

referring to this situation. Let peq,0(x) ∝ e−V0(x) be the distribution of the microstates where

V0(x) is the configurational energy of the unperturbed system. With reference to such an

equilibrium state, the free energy is related to the configurational canonical partition function

via A0 = − ln
∫
dx e−V0(x) (except for an immaterial addend which is constant at a fixed

temperature). Now suppose that the external agent starts to modulate the internal energy

of the system so that V0(x) switches to V (x, t) for t ≥ 0 (but without discontinuity, that is

V (x, 0) = V0(x)). During the transformation, the system is out-of-equilibrium. However, at

any time t, reference can be made to the ”underlying” equilibrium state which corresponds
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to the Boltzmann distribution peq,t(x) ∝ e−Vt(x) with Vt(x) ≡ V (x, t). The thermodynamic

state-functions, for example At, are defined for this underlying equilibrium state.

From this perspective, what emerged from the pionieristic works of Jarzynski [17, 18]

is that the familiar expressions of the Second Principle of thermodynamics of macroscopic

systems still hold at the molecular scale but only on average. In particular, the Clausius

inequality for systems transformed at a fixed temperature becomes w − ∆A > 0, where

∆A = At − A0 is the free energy variation between the (underlying) equilibrium state

reached at time t and the initial equilibrium state, and w is the average work done until

that time t; the average is taken over the statistical ensemble of trajectories generated

under the same conditions, i.e., i) initial microstates x(0)tr sampled from the distribution

peq,0(x) and ii) same transformation protocol. For the sake of notation, in the following the

dependence of w and ∆A on t is not indicated unless it is needed for clarity. The difference

wdiss = w−∆A, always positive, corresponds to the average energy dissipation which can be

intuitively interpreted as the amount of energy ”wasted” due to the inevitable ”lag” between

the system’s response and the perturbing agent when the transformation is performed in a

finite time (i.e., in the jargon of thermodynamics, when the transformation is ”irreversible”

in contrast with a ”reversible” or ”quasi-static” one). Such a connection has been made

explicit [19] showing that, at any time t, wdiss sets an upper limit to the deviation, measured

in terms of relative entropy [20], between the actual out-of-equilibrium distribution p(x, t)

and the underlying distribution peq,t(x).

Let us now specify the above quite general remarks in regard to cyclic perturbations.

An abstract representation of the problem is given in Figure 1a. Here we consider the case

of V (x, t) modulated with a period τ . Namely, the modulation is introduced through the

energy perturbation V1(x, t) such that

V (x, t) = V0(x) + V1(x, t) , V1(x, ncτ) = V1(x, 0) = 0 all x (2)

where nc is any integer number of cycles. In all generality, for each x the time-modulation

may feature several Fourier components with frequencies multiples of the fundamental one

ω = 2π/τ . Since the system retrieves the same (underlying) equilibrium state after the

completion of each cycle, the variation of any thermodynamic state function is null after

a generic number of cycles. In particular, ∆A = 0 implies that wdiss ≡ w after an integer

number of cycles. With reference to the amount of work wdiss,nc which is dissipated on

average during the nc-th cycle of the perturbation, we have

wdiss,nc ≡ wnc (3)

Our main focus will be on the limit value

w∞diss = lim
nc→∞

wdiss,nc (4)
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As the number of performed cycles increases, the non-equilibrium distribution on the x

variables tends to evolve coherently in a steady-state with the external perturbation[10] and

the limit in Eq. 4 is indeed asymptotically reached (as will be shown). Since wdiss > 0 after

the completion of any number of cycles, it can be deduced that the contribution to wdiss per

cycle in the asymptotic limit must be positive, i.e., w∞diss > 0.

Note that the quantity w∞diss also corresponds to the average environmental entropy pro-

duction (in kB units), per cycle, in the steady-state condition. To see this one can start

from the general relation w − ∆A ≡ wdiss = ∆S + ∆Sext (see the discussion in section 7

of ref. [3] concerning the entropy production topic) where ∆S is the entropy variation of

the systems (between the final ”underlying” equilibrium state and the initial equilibrium

state) and ∆Sext is the average entropy variation of the environment as consequence of the

finite-time transformation protocol (clearly, ∆Sext also includes the final exchange of heat

between system and environment which occurs in the relaxation phase after the action of

the protocol is concluded); to interpret the relations given above, it is important to recall

that the energy quantities are expressed in kBT units and the entropy in kB units. In our

specific case, since ∆S = 0 after a generic number of cycles, it follows that w∞diss gives the

average contribution to the entropy produced in the environment (in kB units) due to the

realization of each cycle at the steady-state.

FIGURE 1

At this point, some remarks can be made about the physical nature of the perturbing

agent. Such an agent may be 1) an external device able to ”tether” itself to one or more

”exposed features” of the system and to modulate its (their) state according to a prescribed

cyclic time schedule; for each actual state(s) of this (these) parameter(s), the energetics of

the system is different, hence a time modulation of V (x, t) is induced. As an alternative, the

perturbing agent may be 2) an external field which evolves periodically; the coupling between

that type of field and some property of the system gives rise to the perturbed energy function

V (x, t). Finally, the perturbing agent may be 3) an ensemble of physico-chemical events able

to change the structural properties of the system in such a way that the parameters which

enter the functional form of V (x, t) evolve periodically; for example a network of chemical

reactions which may generate a periodic flow of chemicals through the systems, so that the

actual concentrations of the species determine the parameters of V (x, t).[21] In case 1) there

is a continuous ”tuning” of the external device during the system’s evolution, hence the

dissipated energy can be interpreted as the ”extra amount” of energy which is ”put into

play” (ceded or acquired) to guarantee that the time-schedule along the actual trajectory
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xtr(t) is realized. In cases 2) and 3) this kind of tuning is missing and nothing more can

be said beyond the fact that the dissipation is associated to the lag between the system’s

response and the external agent. Since w∞diss is positive, in case 1) we can talk about the

average ”energy cost” from the point of view of the external device, while in cases 2) and

3) it would make more sense to refer to the average ”energy wasted” given that it is energy

withdrawn from the external agent but not used to perform work.

Clearly, w∞diss (and each of the terms wdiss,nc as well) depends on the specific kind of energy

perturbation and on the dynamic response of the system. In practice, the system responds

to the perturbation by adopting its intrinsic modes/rates with a weight which depends on

the specific form of V (x, t). The way that is pursued here to specify unambiguously intrinsic

and time-invariant modes and rates is to refer to the thermal fluctuations of the unperturbed

system. Namely, we will identify the modes and the associated rates as, respectively, the

eigenfunctions and the eigenvalues of the symmetrized Smoluchowski operator which de-

scribes the evolution of the probability distribution p0(x, t) for the unperturbed system,

with p0(x, t) → peq,0(x) for any initial condition. This choice is adequate if the magnitude

of the perturbation is small enough so that these ”reference” modes/rates can still keep this

privileged status even in an out-of-equilibrium situation.

Our objective is to explore the interrelations depicted in Figure 1b. For that purpose, we

derived an approximate although explicit expression for w∞diss(ω) which links all the physical

ingredients in a transparent way. Such a relation is valid if the perturbations are week, since

it is obtained through an appropriate perturbative treatment till first order in the strength

of the energy perturbation. In particular, we will investigate the low- and high-frequency

limits of w∞diss(ω) showing that the average dissipation tends to vanish; then we inspect the

location of the maxima in terms of closeness of ω to some intrinsic fluctuation rates at

equilibrium. In this regard, it is possible to refer to ”stochastic resonance” [22] since the

match between external frequency and fluctuation rates can enhance a particular response

which, in this case, is the amount of energy dissipated per cycle[6, 7].

To test the effectiveness of the analytical approximation, we performed model calculations

on a simple uni-dimensional case model (a single degree of freedom x) constituted by a

”particle on a ring” which fluctuates in a bi-stable potential V0(x) with equivalent wells and

perturbed in two ways: in one, the energy barrier is periodically modulated and V (x, t)

keeps a symmetric profile; in the other, the whole energy profile is changed in such a way

that the initial even symmetry is broken. The outcomes from application of the analytical

approximation are compared with the exact results obtained by the numerical solution of the

non-stationary Fokker-Planck-Smoluchowski equation. A bi-stable case was chosen because

of its wide employment as a benchmark model both in studies on fluctuations at equilibrium

(see for example ref. [23] for overdamped dynamics) and energy dissipation under driven
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transformations [6, 7]. Although these studies on cyclic perturbations were performed on

different kinds of bi-stable potentials and with different boundary conditions, we anticipate

that there is a qualitative accord with some of the features that emerge here.

The paper is structured as follows. The next section outlines the theoretical framework:

the stationary and non-stationary Fokker-Planck-Smoluchowski equations adopted to model

the fluctuations in the diffusive regime, the general form of energy perturbation, and the

definition of average energy dissipation per cycle. In section III we present the analytical

approximation of w∞diss and discuss its physical implication; compact expressions of w∞diss

and related quantities are also given (derivations are provided in the Appendix A). Section

IV is devoted to model calculations: presentation of the case model, computational details

and outcomes. In Section V we draw the main conclusions and outline some speculative

arguments for future investigations. Appendix B contains a supplementary inspection on

the statistical properties of w∞diss. Some relevant remarks are provided in the notes.

II. THEORETICAL FRAMEWORK

A. Fluctuations at equilibrium and under perturbation

Let x be a suitable set of continuous variables which specify the configuration of the

system and whose dynamics is a Markov process in the overdamped regime of motion. Let

us first focus on the condition of unperturbed system at thermal equilibrium. We recall

that the subscript ”0” denotes properties referring to such a situation. At equilibrium, the

probability distribution takes the Boltzmann form

peq,0(x) = e−V0(x) /

∫
dx e−V0(x) (5)

For general functions (possibly time-dependent) of the system’s configuration, the equilib-

rium ensemble average will be indicated with the notation

〈f(x, t)〉0 ≡
∫
dx f(x, t) peq,0(x) (6)

The probability distribution p0(x, t) evolves according to the stationary Fokker-Planck equa-

tion
∂p0(x, t)

∂t
= −Γ̂0p0(x, t) , Γ̂0 = − ∂

∂x

T

D(x)e−V0(x) ∂

∂x
e+V0(x) (7)

where Γ̂0 is the Smoluchowski operator for overdamped dynamics, with ∂/∂x the gradient

operator on the x variables (”T” stands for the transposed array) and D(x) the diffusion

matrix which may generally depend on the system’s configuration. In the long-time limit,

and regardless of the initial condition p0(x, 0), the distribution p0(x, t) tends to peq,0(x).
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In order to deal with an hermitian operator, the following ”symmetrization” is applied:

Γ̃0 = peq,0(x)−1/2 Γ̂0 peq,0(x)1/2 (8)

The eigenfunctions φn(x) (generally complex-valued) of Γ̃0, each associated to an eigenvalue

λn (real-valued), form an ortho-normal basis which can be employed to expand functions of

the x variables:

Γ̃0 φn(x) = λn φn(x) ,

∫
dxφn(x)∗φn′(x) = δn,n′ (9)

In particular,

λ0 = 0 , λn≥1 > 0 , φn(x) = gn(x) peq,0(x)1/2 (10)

with the functions gn(x) such that

g0(x) = 1 , 〈gn(x)∗gn′(x)〉0 = δn,n′ (11)

where the notation in Eq. 6 has been used and δ stands for Kronecker’s Delta function.

Note that the symmetrization in Eq. 9 only changes the eigenfunctions (those of Γ̂0 are the

φn(x) multiplied by peq,0(x)1/2) but it does not alter the eigenvalues. The λn are interpreted

as intrinsic rates of fluctuations, that is, as rates of relaxation of the p0(x, t) landscape

(towards peq,0(x)) over each ”independent mode”; the explicit integration of Eq. 7 indeed

yields

p0(x, t) = peq,0(x)

{
1 +

∑
n≥1

cn gn(x) e−λnt

}
, cn =

∫
dx gn(x)∗p0(x, 0) (12)

The functions gn(x), which are eigenfunctions of the adjoint operator Γ̂†0, as can be ver-

ified directly, will play an important role in the decomposition of the energy perturbation.

We would like to point out that the usefulness of these functions as target collective coordi-

nates in the non-linear mapping known as ”diffusion maps”, a tool which is applied in the

dimensional reduction of complex fluctuating systems, has recently been recognized.[24, 25]

Under application of the perturbation V1(x, t), the probability distribution, now denoted

as p(x, t), evolves according to the non-stationary Fokker-Planck-Smoluchowski equation

∂p(x, t)

∂t
= −Γ̂(t)p(x, t) , Γ̂(t) = − ∂

∂x

T

D(x)e−V (x,t) ∂

∂x
e+V (x,t) (13)

where we have assumed that the diffusion matrix is unaltered by the perturbation, i. e., that

the perturbation does not affect the ”hydrodynamics” of the system but only its energetics.

The time-dependence of the evolution operator now prevents an ”exponentialization” as

in Eq. 12 and the solution p(x, t) must be generally achieved numerically or by applying

sensible approximations.
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B. Form of the cyclic energy perturbation

The energy perturbation V1(x, t) in Eq. 2 is decomposed in a Fourier series,

V1(x, t) =
+∞∑

N=−∞

v(N,x) eiN ωt , ω =
2π

τ
(14)

where the Fourier components are obtained by the inversion formula

v(N,x) =
1

τ

∫ τ

0

dt V1(x, t) e−iN ωt (15)

The relation v(−N,x) = v(N,x)∗ follows by the fact that V1(x, t) is a real-valued function.

Moreover,
∑+∞

N=−∞ v(N,x) = 0 since V1(x,mτ) = 0 for any integer m ≥ 0 and for any

configuration x.

The Fourier components are then decomposed on the set of functions gn(x) defined in

Eq. 10:

v(N,x) =
∑
n

vn(N) gn(x) (16)

Such a decomposition is justified in consideration of the fact that v(N,x)peq,0(x)1/2 can

be first expanded onto the ortho-normal basis of the φn(x) functions: v(N,x)peq,0(x)1/2 =∑
n vn(N)φn(x). Then, by multiplying both members by peq,0(x)−1/2, and recalling that

φn(x) = gn(x)peq,0(x)1/2, Eq. 16 follows. The coefficients vn(N) are given by vn(N) =∫
dxφn(x)∗v(N,x)peq,0(x)1/2 ≡ 〈gn(x)∗ v(N,x)〉0. By inserting Eq. 15 in this integral, it

follows

vn(N) =
1

τ

∫ τ

0

dt 〈gn(x)∗ V1(x, t)〉0 e−i ωN t (17)

Note that although the period τ enters Eq. 17, the coefficients vn(N) do not depend on it.

[26]

C. Average energy dissipation per cycle and its asymptotic limit

Let us consider a stochastic trajectory x(t)tr under the action of the perturbation. By

integrating the infinitesimal work amount given in Eq. 1, the net work done between two

instants t1 and t2 is

wtr(t1, t2) =

∫ t2

t1

dt
∂V (x, t)

∂t

∣∣∣∣
x=x(t)tr

(18)

By taking the average over an infinite number of trajectories, each starting from a configura-

tion ”picked” from the same initial distribution (recall that p(x, 0) = peq,0(x) in the present
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case), we attain the average work w(t1, t2). This operation can be replaced by the equivalent

average over the time-dependent probability distribution, that is

w(t1, t2) =

∫ t2

t1

dt

∫
dx

∂V (x, t)

∂t
p(x, t) (19)

With these positions, the average work done during the nc-th cycle wnc , is given by Eq. 19

with t1 = tnc−1 and t2 = tnc .

By recalling that wnc coincides with the average dissipated energy per cycle, wdiss,nc (see

Eq. 3), it follows

wdiss,nc =

∫ tnc

tnc−1

dt

∫
dx

∂V (x, t)

∂t
p(x, t) (20)

The asymptotic value w∞diss is then obtained as the limit of the succession of the wdiss,nc

values (see Eq. 4).

The integral in Eq. 20 can be evaluated as an average over a sufficiently large sam-

ple of simulated trajectories or by solving numerically the non-stationary Fokker-Planck-

Smoluchowski equation to attain p(x, t). In the following we will employ both strategies for

calculations on simple model systems. The latter route, however, will be the preferred one

to obtain the reference profiles of w∞diss vs. ω to be used to assess the quality of the analytical

approximation presented in Section III.

III. ANALYTICAL RESULTS

A. Main outcomes

An analytical approximation of w∞diss is obtained here under the assumption that the

magnitude of the perturbation is small enough that the system is only slightly out of thermal

equilibrium. In Section III B we will provide the algebraic elaboration based on such an

assumption. It is demonstrated (see Eqs. 39 - 41) that the sequence of wdiss,nc does indeed

converge to an asymptotic value. Such a trend is assured by the positivity of the eigenvalues

λn≥1 of the reference Smoluchowski operator Γ̂0. Specifically, the following explicit formula

is attained

w∞diss(ω) ' 4π
∑
n≥1

∑
N≥1

Q(n,N)

λn/ωN + ωN/λn
, ωN = N ω , Q(n,N) = N |vn(N)|2 (21)

where the factors vn(N) are given in Eq. 17. In practice, w∞diss(ω) is found to be a super-

position of functions Dλn(ωN) := (λn/ωN + ωN/λn)−1 [27] which take the same maximum

value 1/2 at the ”resonance” frequency ωN = λn. Each of these functions is weighted by

a ω-independent factor Q(n,N) whose magnitude depends on the projection of the N -th
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Fourier component of the energy perturbation (see Eq. 14) on the n-th mode of fluctuation

(according to Eq. 16). The multiplication of w∞diss(ω) by τ−1 = ω/2π then yields the average

dissipation rate. The symbol ”'”, here and throughout the text, means that the expression

on the right side is an approximation which is acceptable, within a required tolerance, if

specific conditions are fulfilled. In this case, it is essential to keep in mind that Eq. 21

is derived by means of a first-order perturbative treatment in the strength of the energy

perturbation. All deductions and further elaborated results rely, implicitly, on the appli-

cability of this linear approximation. Unfortunately, as is common in linear-response-like

methodologies, the error committed remains undetermined.

The low- and high-frequency limits of w∞diss(ω) are readily derived from Eq. 21:

low ω : w∞diss ' c1 ω , c1 = 4π
∑
n≥1

(λn)−1
∑
N≥1

|N vn(N)|2

high ω : w∞diss ' c2/ω , c2 = 4π
∑
n≥1

λn
∑
N≥1

|vn(N)|2 (22)

Clearly, equations 22 are meaningful only if the summatories that express the coefficients

c1 and c2 converge to finite values. From a mathematical viewpoint, the low-frequency

approximation holds if ω � λn/N for each pair (n,N). If the eigenvalues are listed in

ascending order, the condition becomes ω � λ1/N
∗ where N∗ = arg maxN{maxnQ(n,N)}.

Similarly, the high-frequency approximation holds if ω � λn/N for each pair (n,N); this

requires ω � λn∗ where n∗ = arg maxn{maxN Q(n,N)}. Thus, the validity of Eqs. 22 relies

on the possibility of identifying the integers n∗ and N∗ for the specific kind of perturbation.

However, the validity of Eqs. 22 is expected in practice, at least because they agree with the

intuitive picture that the average dissipation per cycle tends to vanish if the perturbation

switches so quickly that the system is essentially ”transparent” to it, or if the perturbation

evolves so slowly that the system is transformed in a quasi-static way. By turning to the

rate (time-averaged over one period) of average energy dissipation, that is the quantity

ω w∞diss(ω)/2π, Eqs. 22 predict that the rate grows quadratically with ω in the low-frequency

range, while it tends to a finite value as ω → ∞ (τ → 0). Interestingly, the limit of finite

average dissipation rate when τ → 0 was recently found [28] also for overdamped fluctuations

in a uni-dimensional harmonic potential subjected to forward/backward stochastic switch of

its center between two values; in that study, the switches are modeled as a Poisson process

and τ is related to the inverse of the switching rate.

In a double-logarithmic scale, the relations in Eqs. 22 give straight lines with slopes

+1 and -1. The crossing of these lines occurs at the frequency
√
c2/c1. By means of a

majorization of Eq. 21 it is easy to see that the graph of w∞diss(ω) entirely lies underneath

these lines. In particular, the following upper bound can be given for the maximum average

11



dissipation:

max
ω
{w∞diss(ω)} <

√
c1c2 (23)

We stress again that this inequality relies on the approximation Eq. 21, hence it is valid

only for small enough energy perturbations.

Now let us consider the eigenvalues λn listed in ascending order, and suppose to be in

the situation in which they can be divided into sets well separated one from the other.

Namely, let s be an index which labels these sets, with λmax,s = maxn∈set s{λn} and λmin,s =

minn∈set s{λn} the upper and lower values in the s-th set; a criterion for the separation of

the s-th set by the (s − 1)-th and (s + 1)-th ones might be that λmin,s+1/λmax,s ≥ rgap and

λmin,s/λmax,s−1 ≥ rgap with rgap � 1 a chosen threshold ratio used to detect the existence of

gaps. Then we can write w∞diss(ω) =
∑

sw
∞
diss,s(ω), where the partial contributions w∞diss,s(ω)

are given by Eq. 21 only with n ∈ set s. Here below the frequency profile of w∞diss,s(ω) will

be called ”s-th band”. If we focus on the frequency range λmax,s � ω � λmin,s+1, it might

be the case that the following conditions are met: i) the high-frequency and low-frequency

approximations are applicable, respectively, to the s and (s+1) bands; ii) at each frequency

in that range, the bands s′ < s and s′ > s+1 give a negligible global contribution to w∞diss(ω);

iii) the bands s and (s + 1) are resolved one from the other, at least partially. Similarly,

the symmetrical behavior might be observed in the frequency range λmax,s−1 � ω � λmin,s.

If these conditions are met, the contribution to the average dissipation due to the s-th set

of modes/eigenvalues is separated, in terms of the appearance of a resolved band, from the

contribution of the rest of the modes. This feature can indeed be observed depending on

the kind of external perturbation which affects the weight factors in Eq. 21. In other words,

if the external perturbation is suitably tuned, possible gaps in the spectrum of the internal

fluctuation rates are revealed by resolved bands in the w∞diss(ω) profile. The calculations

presented in Section IV will illustrate this feature in a simple case.

B. Derivation of Eq. 21

Let us start by inserting V (x, t) = V0(x) + V1(x, t) into the Smoluchowski operator Γ̂(t)

in Eq. 13. A few steps lead to the following partition

Γ̂(t) = Γ̂0 + Ŝ(t) (24)

with

Γ̂0 = − ∂

∂x

T

D(x)e−V0(x) ∂

∂x
e+V0(x) , Ŝ(t) = − ∂

∂x

T

D(x)
∂V1(x, t)

∂x
(25)

The formal integration of the Fokker-Planck-Smoluchowski equation yields

p(x, t) = peq,0(x)−
∫ t

0

dt′ e−(t−t′)Γ̂0 Ŝ(t′) p(x, t′) (26)

12



where it has been used p(x, 0) = peq,0(x) since the system is initially, by assumption, at

thermal equilibrium. By using recursively Eq. 26 in the integrand, the following form for

the non-equilibrium distribution is attained:

p(x, t) = peq,0(x) +
∞∑
k=1

(−1)k
∫ t

0

dt(1)

∫ t(1)

0

dt(2) · · ·

· · ·
∫ t(k−1)

0

dt(k) Ô(t, t(1))Ô(t(1), t(2)) · · · Ô(t(k−1), t(k)) peq,0(x) (27)

where, for the sake of notation, we have introduced the following operator:

Ô(t, t′) := e−(t−t′)Γ̂0Ŝ(t′) (28)

Each operator Ô brings a contribution proportional to V1, hence Eq. 27 can be seen

as an expansion into power series of the magnitude of the energy perturbation. For small

perturbations, the truncation up to the first relevant term (k = 1) yields

p(x, t) ' peq,0(x)−
∫ t

0

dt′ e−(t−t′)Γ̂0 Ŝ(t′) peq,0(x) (29)

Let us now consider the identity

Ŝ(t) peq,0(x) ≡ Γ̂0 peq,0(x)V1(x, t) (30)

Application of such a relation into the integrand in Eq. 29 yields e−(t−t′)Γ̂0 Ŝ(t′) peq,0(x) =

e−(t−t′)Γ̂0 Γ̂0 peq,0(x)V1(x, t′) ≡ ∂e−(t−t′)Γ̂0/∂t′ peq,0(x)V1(x, t′). Integration by parts with the

use of the condition V1(x, 0) = 0 leads to

p(x, t) ' peq,0(x)− peq,0(x)V1(x, t) +

∫ t

0

dt′ e−(t−t′)Γ̂0 peq,0(x)
∂V1(x, t′)

∂t′
(31)

Such an approximation is now used to compute the average work done until time t

according to Eq. 19:

w(0, t) =

∫ t

0

dt′
∫
dx

∂V (x, t′)

∂t′
p(x, t′) ≡

∫ t

0

dt′
∫
dx

∂V1(x, t′)

∂t′
p(x, t′) (32)

By inserting Eq. 31 in Eq. 32, and turning to the symmetrized Smoluchowski operator

defined in Eq. 8, we obtain

w(0, t) ' 〈V1(t)〉0 −
1

2
〈V1(t)2〉0

+

∫ t

0

dt′
∫ t′

0

dt′′
∫
dx
∂V1(x, t′)

∂t′
peq,0(x)1/2 e−(t′−t′′)Γ̃0 peq,0(x)1/2 ∂V1(x, t′′)

∂t′′
(33)

13



where the notation in Eq. 6 has been adopted to indicate the equilibrium aver-

ages, and where it has been considered that
∫ t

0
dt′〈∂V1(x, t′)/∂t′〉0 = 〈V1(x, t)〉0 and∫ t

0
dt′〈V1(x, t′) ∂V1(x, t′)/∂t′〉0 =

∫ t
0
dt′〈∂V1(x, t′)2/∂t′〉0/2 = 〈V1(x, t)2〉0/2 since V1(x, 0) = 0.

From the Fourier decomposition in Eq. 14 it follows

∂V1(x, t)

∂t
peq,0(x)1/2 = i ω

∑
N

[v(N,x) peq,0(x)1/2]N eiN ωt (34)

The factors in the square brackets on the right-hand side are now decomposed on the basis

of the eigenfunction φn(x) of the operator Γ̃0:

v(N,x) peq,0(x)1/2 =
∑
n

vn(N)φn(x) (35)

where the coefficients vn(N) are expressed in Eq. 16. The use of Eqs. 34-35 in Eq. 33 leads

to attain, after some algebraic steps omitted here, the following compact expression for the

average work:

w(0, t) ' 〈V1(t)〉0 −
1

2
〈V1(t)2〉0 +

∑
n

∑
N,N ′

αn(t, N,N ′) (36)

with

αn(t, N,N ′) = −ω2NN
′vn(N)vn(N ′)

λn + iωN ′

[
eiω(N+N ′)t − 1

iω(N +N ′)
+
e−(λn−iωN)t − 1

λn − iωN

]
(37)

where the λn are the eigenvalues of the Smoluchowski operator.

In the calculation of the average work dissipated during the generic nc-th cycle (see Eq.

20), the contribution of the first two addends in Eq. 36 is null due to the periodicity of these

terms. Thus,

wdiss,nc = w(0, tnc)− w(0, tnc−1) =
∑
n

∑
N,N ′

[αn(tnc , N,N
′)− αn(tnc−1, N,N

′)] (38)

By using Eq. 37, a few more steps yield

wdiss,nc = −ω2
∑
n

∑
N,N ′

NN ′vn(N)vn(N ′)

λn + i ωN ′

{
τ δN ′,−N +

e−(λn−i ωN) tnc−1

λn − i ωN
(
e−(λn−i ωN) τ − 1

)}
(39)

where δ stands for Kronecker’s Delta function and τ = 2π/ω is the perturbation period.

The expression in the asymptotic limit, i.e. for nc →∞ so that tnc−1 →∞, can be obtained

by considering that the second addend within the curly brackets behaves as follows (recall

that the λn are positive-valued for n ≥ 1):

e−(λn−i ωN) tnc−1

λn − i ωN
(
e−(λn−i ωN) τ − 1

)
=


0 for n = 0 , N 6= 0

−τ for n = 0 , N = 0

→ 0 , for n ≥ 1 , as nc →∞
(40)
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Thus, in Eq. 39 such a term is immaterial since it brings a null contribution for n = 0 (and

any N) or it vanishes in the asymptotic limit for n ≥ 1. It follows that

lim
nc→∞

wdiss,nc = w∞diss

(i)
= 2πω

∑
n

∑
N

N2 |vn(N)|2

λn − i ωN
(ii)
= 2πω

∑
n

+∞∑
N=−∞

N2 λn |vn(N)|2

λ2
n +N2ω2

(41)

where vn(−N) = vn(N)∗ has been recalled in step (i); step (ii) has been carried out by

writing explicitly the real and the imaginary parts of the summation and recognizing that

the imaginary part vanishes. The expression Eq. 21 readily follows by considering that the

contribution for n = 0 is null (since λ0 = 0), then that the term N = 0 is null while the

symmetric terms for ±N are equal, and by employing the definitions of the frequencies ωN

and of the factors Q(n,N).

C. Compact form of w∞diss and of its approximations at low and high frequencies

Notably, one can re-compact Eqs. 21-23 in terms of operations that involve time-

correlation functions, at the unperturbed equilibrium, of the energy perturbation and of

its rate of evolution. The results are summarized here below while the derivation is given in

Appendix A.

Let us denote with δV1(x, t) the deviation of the energy perturbation at time t from its

average value at the unperturbed equilibrium:

δV1(x, t) = V1(x, t)− 〈V1(x, t)〉0 (42)

Then we introduce the rate of evolution of the energy perturbation,

V (1)(x, t) =
∂V1(x, t)

∂t
(43)

and, as above, its deviation from the equilibrium average:

δV (1)(x, t) = V (1)(x, t)− 〈V (1)(x, t)〉0 (44)

Finally, let GδV1(t′),δV1(t′′)(t) be the time-correlation function between δV1(x, t′) (t′ as fixed

parameter) and δV1(x, t′′) (t′′ as fixed parameter) at the unperturbed equilibrium.[29] Sim-

ilarly, GδV (1)(t′),δV (1)(t′′)(t) is the time-correlation function between δV (1)(x, t′) (t′ as fixed

parameter) and δV (1)(x, t′′) (t′′ as fixed parameter) at the unperturbed equilibrium. In

Appendix A we show that Eq. 21 can be converted in the following form:

w∞diss(ω) '
∫ τ

0

dt′
∫ t′

0

dt′′GδV (1)(t′),δV (1)(t′′)(t
′ − t′′)

+
∑
m≥1

∫ τ

0

dt′
∫ τ

0

dt′′GδV (1)(t′),δV (1)(t′′)(mτ − (t′ − t′′)) (45)
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We also demonstrate that the coefficients c1 and c2 in Eqs. 22 can be expressed as

c1 =
1

2π

∫ ∞
0

dtΦ1(t) , c2 = 2π
dΦ2(t)

dt

∣∣∣∣
t=0

(46)

where Φ1(t) and Φ2(t) are the following functions:

Φ1(t) = τ

∫ τ

0

dt′GδV (1)(t′),δV (1)(t′)(t)

Φ2(t) =
1

τ

∫ τ

0

dt′
{
−GδV1(t′),δV1(t′)(t) +

1

τ

∫ τ

0

dt′′GδV1(t′),δV1(t′′)(t)

}
(47)

Note that, although τ enters the expressions of Φ1(t) and Φ2(t), both functions are frequency-

independent. Finally, the upper bound in Eq. 23 takes the form

max
ω
{w∞diss(ω)} <

√
dΦ2(t)/dt|t=0

∫ ∞
0

dtΦ1(t) (48)

Although the expressions given above may seem appealing per se, only their ”disclosed”

forms in Eqs. 21-23 are useful in uncovering the features of the system’s response to the

perturbation. Moreover, examining the derivation in Appendix A, the reader may realize

that there are several alternatives to re-compact Eqs. 21-23 in terms of operations on suitable

time-correlation functions. Also, by means of integrations by parts and substitutions one

could further elaborate the expressions presented above and achieve different, but equivalent,

relations (to some extent, it is a matter of taste where to stop the algebraic elaboration). On

the other hand, an advantage of these compact forms is that the time-correlation functions

involved could be directly computed, depending on the complexity of the system, from

the generation of a sufficiently long trajectory at equilibrium (for example, for nanoscopic

systems one could perform molecular dynamics or Langevin simulations).[29]

We would like to stress that Eq. 45 or alternative but equivalent forms could establish

the connection with the framework of the non-equilibrium thermodynamics of periodically

driven systems recently presented in ref. [10]. In the linear-response regime between ”fluxes”

and ”affinities” suitably identified,[30] the authors derive the Onsager-like kinetic coefficients

which enter the rate of average entropy production. By focusing on the case of fixed tem-

perature (the theory in ref. [10] comprises also the possibility of temperature variations),

the ”affinity” associated to the work-flux is related to the magnitude of the energy pertur-

bation. Although a detailed comparison has not been carried out here, both the average

energy dissipation obtainable from integration of the average entropy production rate in

ref. [10] (which is quadratic with respect to the affinity) and our Eq. 45 (where time-

correlation functions of the energy perturbation are involved), clearly pertain to the same

order of approximation.[31] However, some discrepancies might be detected since the two ap-

proaches are different, and the linear approximation with respect to the energy perturbation

is applied at different stages.
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IV. MODEL CALCULATIONS

For a simple uni-dimensional system where the set x reduces to a single stochastic variable

x, we compare the exact value of w∞diss obtained by the numerical solution of the non-

stationary Fokker-Planck-Smoluchowski equation, with the analytic approximation in Eq.

21. For completeness, some statistical properties of the energy dissipated per cycle in the

asymptotic limit are discussed in Appendix B.

In what follows, all quantities are dimensionless, that is, they are meant to be expressed

in some units of measure which are immaterial in this study. We recall that all energy

quantities are expressed in kBT units.

A. Model system and applied perturbations

The model system considered here is a generalized ”particle on a ring” whose unperturbed

energy function is

V0(x) = α1 cos(x) + α2 cos(2x) (49)

where α1 = 1 and α2 = 3 in the calculations. For simplicity’s sake, we take a constant

diffusion coefficient D(x) = D; in the calculations D = 1.

Two kinds of energy perturbation are considered, both built by employing the single

periodically evolving parameter

ε(t) = ∆ sin(ωextt) (50)

where ∆ = 4 in the calculations. The two cases are

Case 1 : V1(x, t) = ε(t) cos(x)

Case 2 : V1(x, t) = ε(t) cos(x+ φ ε(t)/∆) (51)

where φ = 0.7 in the calculations. With these kinds of perturbations we have that ω ≡ ωext

in both cases (see the note ref. [21]). In Case 1, a single Fourier component N = 1 is

present. In Case 2, the non-linear dependence on ε(t) implies that an infinite number of

higher harmonics ωN = N ω is present.

In Case 1 the perturbation modulates the height of the central energy barrier but the

symmetry of the potential around x = π is preserved (although the locations of the minima

change); in Case 2 the perturbation produces an asymmetry of the potential profile. Figure

2 displays the profile of V0(x) and the time evolution of V (x, t) = V0(x) + V1(x, t), over one

cycle, for both Cases.

FIGURE 2
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Equilibrium fluctuations in a bi-stable potential is an extensively studied process in sev-

eral regimes of motion; see for example ref. [23] for dynamics in the overdamped regime.

The physical intuition leads us to imagine two kinds of processes: the slow thermally acti-

vated jump from one potential well to the other via crossing of the energy barrier and faster

fluctuations inside the wells. These processes are related to the intrinsic ”relaxation modes”

introduced in Section II A through Eq. 12. Namely, it is well known that the smallest

non-null eigenvalue of the Smoluchowski operator, λ1, is separated by the higher ones. As

the energy barrier increases, the separation increases (λ1 � λn≥2) and λ1 can be related to

the kinetic rate of well-to-well transition, kcross ' λ1/2, while the eigenfunction φ1(x) corre-

sponds to the relaxation mode associated to such a jump process.[23] The higher eigenvalues

and the corresponding eigenfunctions are then associated to rates and modes of intra-well

fluctuations. In the specific case, λ1 = 0.0243 and λ2 = 7.640.

B. Simulation of stochastic trajectories

The simulation of stochastic trajectories is performed here by implementing the Langevin

equation in the overdamped regime of motion and by employing a white noise of Gaussian

type.[32] Namely, a single propagation step is x(t + ∆t) = x(t) + Df(x, t) ∆t +
√

2D∆t ηt

with f(x, t) = −∂V (x, t)/∂x and where ηt is a random number drawn from the Gaussian

distribution with zero mean and unit variance. In all cases, the time-step ∆t was set equal

to 10−4 (see remarks in the next section).

Some stochastic trajectories for the system at equilibrium and under perturbation are

shown in Figure 3. All the trajectories displayed start from x(0) = acos(−α1/4α2) = 1.654

corresponding to the minimum of the left potential well of V0(x). The periodic boundary

conditions at x = 0 and x = 2π are removed here to better show the excursions. In panel (a)

the trajectories develop on the unperturbed potential landscape for a duration of ttot = 50.

In panels (b) and (c) the trajectories develop, respectively, under the perturbations of Case

1 and Case 2 for ten cycles with τ = 5 (the total duration is still ttot = 50). As expected, the

trajectories feature a small-steps motion mainly localized inside the potential wells, while

well-to-well jumps occur on the longer timescale. Qualitatively it appears that, for both

kinds of perturbation with that chosen period, the frequency of jumps is higher than that

observed for the unperturbed system.

FIGURE 3
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C. Numerical computation of the average dissipation per cycle

The exact value of wdiss,nc is computed by solving numerically the Fokker-Planck-

Smoluchowski equation with initial condition p(x, 0) = peq,0(x). Periodic boundary con-

ditions on the probability-density flux are applied at x = 0 and x = 2π in order to account

for the circularity of the system. The solution is obtained by converting Eq. 13 into a

discretized matricial format by employing a finite-differences scheme with uniform partition

of the domain in intervals of width ∆x. The resulting format is

ṗ = −M(t)p (52)

where p(t) is a column array of dimension equal to the number of mesh points Np and

whose components are pn(t) = p(xn, t), and where M(t) is the Np × Np time-dependent

evolution matrix given in the note ref. [33] For the unperturbed system, the evolution

matrix reduces to the constant M0 which corresponds to the operator Γ̂0.[33] The real-

symmetric matrix M̃0 with elements [M̃0]nn′ = [M0]nn′e
−[V0(xn′ )−V0(xn)]/2 corresponds to

Γ̃0. The diagonalization of such a matrix yields the eigenvalues λn(M̃0), and the related

eigenvectors, which approximate eigenvalues/eigenfunctions of Γ̃0.

The basic forward Euler propagator is applied to let evolve the array p(t) under pertur-

bation. Namely, the advance of time ∆t is attained as p(t+ ∆t) = [I−∆tM(t)]p(t) where

I is the Np × Np identity matrix; a constant ∆t is adopted. At each step, the integration

required in Eq. 20 is performed by employing the rectangles rule. Globally,

wdiss,nc ' ∆x∆t
Nt∑
i=1

p(ti)
TV(1)(ti) (53)

where V(1)(ti) is the column array with elements

[V(1)(ti)]n =
∂V (xn, t)

∂t

∣∣∣∣
t=ti

(54)

and Nt is the number of time-steps per cycle. Concerning the time-step of propagation, let

∆t0 be a target value; in order to account accurately for the fastest modes, it should be

∆t0 ≤ 0.1/maxn{λn(M̃0)}. Then we set Nt = INT(τ/∆t0), from which the actual time-

step is obtained as ∆t = τ/Nt. The calculations have been performed with Np = 100 and

∆t ' ∆t0 = 10−4 (such a value meets the condition given above), making sure that a further

increase of Np and decrease of ∆t do not significantly change the value wdiss,nc for which the

asymptotic limit is considered reached. The explored range of τ values is such that ω varies

from 10−3 to 103 for both Case 1 and Case 2.

The asymptotic limit is considered achieved when the relative variation |wdiss,nc −
wdiss,nc−1|/wdiss,nc−1 falls below 0.001. In nearly all cases (except for a very large τ), the
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variation is much smaller than the first relative change from wdiss,1 to wdiss,2. Few cycles

(generally less than 10) are required to reach convergence for both Case 1 and Case 2. We

have also checked that, going further with the number of cycles, the possible change in the

outcome is irrelevant. A further check of self-consistency and accuracy is provided by the full

agreement between these outcomes and the values of w∞diss computed as the average over a

statistical ensemble of w∞diss values produced by the simulation of long stochastic trajectories

(see the Appendix B).

With regard to the analytic approximation in Eq. 21, the computation of the vn(N)

factors from Eq. 17 was performed via numerical integration.[34] It emerges that only the

vn(1) components are not null for Case 1. For Case 2, all vn(N) with N ≥ 1 do contribute

although, in practice, the truncation at N = 10 suffices to achieve numerical convergence.

D. Average dissipation: analytical approximation vs. numerical solution

In Figure 4 we show the trends of wdiss,nc versus nc for the two kinds of perturbation. The

calculations refer to τ = 5. For Case 1, the asymptotic limit is essentially reached after only

one cycle (note the small change from wdiss,1 to wdiss,2, in the order of 5%). Moreover, the

values show an increasing trend. For Case 2 the trend is instead decreasing, with a much

lower rate of convergence and wider range of variation.

FIGURE 4

The main results are displayed in Figure 5 which shows, for Case 1 and Case 2, the

dependence of w∞diss on the frequency ω. The circles correspond to the exact values from

the numerical solution, while the solid line is the analytic approximation. The bars on

the top axes display the first 30 eigenvalues of the matrix M0 in ascending order; these

values approximate well the eigenvalues of the Smoluchowski operator (the largest eigenvalue,

which is the most sensitive one to the matrix truncation, changes less than 5% passing from

Np = 100 to Np = 200).

FIGURE 5

The exact and approximate solutions are indistinghishable for Case 1. For Case 2, the

qualitative features (two maxima) of the profile are obtained, but the agreement is good

only at high frequencies while the accuracy of the approximation degrades as ω decreases.
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Notably, the linear trends with slopes +1 and -1, which appear for both Case 1 and Case 2

at low and high frequencies in the double logarithmic scale, agree with the limit behaviors

in Eqs. 22. A characteristic pattern then emerges in the intermediate frequency range.

In Case 1, where the perturbation mainly modulates the magnitude of the energy barrier

but preserves the symmetry of V0(x), it appears that the average dissipation has a single

maximum at a frequency in the range of the lower eigenvalues associated to fluctuations

within the potential wells. In Case 2, for which the whole energy profile is distorted by

the perturbation, the profile displays two maxima: again a maximum at a frequency of the

order of the lower eigenvalues of the intra-well fluctuations, plus a further maximum at a

frequency slightly smaller than λ1, i.e., comparable with the well-to-well crossing rate.

These different profiles can be rationalized by following the qualitative arguments of

Section III about the possibility of identifying a gap in the fluctuation rates if the external

perturbation is ”suitably tuned”. A gap does indeed exist between the eigenvalue λ1 and the

much higher eigenvalues λn≥2. For Case 1, the expansion of V1(x, t) given in Eq. 14 with Eq.

16 involves only functions gn(x) of even symmetry with respect to the central point. The

corresponding eigenfunctions φn(x) of Γ̃0, which are related to (some of the) fast modes of

fluctuation within the potential wells, belong to the set n ≥ 2. In this case, w∞diss features a

single ”band” to which only eigenvalues λn≥2 contribute. In Case 2, also the function g1(x)

with odd symmetry[23] contributes to the expansion of V1(x, t). In this situation, one of the

two resolved bands corresponds to λ1 and the other to the set of eigenvalues λn≥2.

Even if the overall behavior of the average dissipation is captured in both cases, the

marked overestimation of w∞diss which is found in the low-frequency range for Case 2 (up to

a factor ∼ 5) warns us about the possible quantitative failure of Eq. 21 when the system

features activated process and the frequency of the perturbation is of the order of, or lower

than, the corresponding kinetic rates.

V. CONCLUDING REMARKS AND PERSPECTIVES

This work has addressed the problem of finding an analytic approximation of the amount

of energy that is dissipated per cycle when a system fluctuates (in the overdamped regime

of motion) while it undergoes a cyclic transformation driven by an external perturbation

which modulates the configurational energy. The main result is constituted by Eq. 21 which

quantifies the interrelations depicted in Figure 1b; namely, it shows how the average dis-

sipation per cycle, attained after many cycles, w∞diss(ω), is related to the relaxation rates

of fluctuation at equilibrium, to the frequency ω of the modulation, and to the features

of the energy perturbation. The equation is an approximation which is accurate for small

enough energy perturbations, since it relies on the applicability of a first-order perturba-
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tive treatment with respect to the strength of the perturbation. A compact expression of

w∞diss(ω), which involves characteristic time-correlation functions at equilibrium of the en-

ergy perturbation and of its rate of evolution, has also been obtained. We have pointed out

that such a relation, or further elaborated forms, may establish a link with the expression

of the average entropy production rate recently presented in ref. [10]. Moreover, we have

provided an upper bound to the average dissipation per cycle. Although this result relies

on the accuracy of the analytic approximation, to our knowledge the discovery of an upper

bound is in itself an interesting fact since generally, with regard to dissipation, only a lower

bound is obtained.

The numerical simulations performed on a toy model constituted by a ”particle on a ring”

which fluctuates in a bi-stable energy profile perturbed in two ways, have shown that the

analytic approximation is accurate or, in any case, it is able to capture the essential traits

of the true profile of w∞diss(ω). We stress again that Eq. 21 has been derived by applying

the lowest order approximation to the non-equilibrium distribution p(x, t). Moving to the

next order of approximation (re-starting from Eq. 26 in Section III B), some heavier algebra

would lead to a more accurate expression for w∞diss(ω), but the simplicity of Eq. 21 would

be lost. As a supplementary analysis of the model cases, we inspected how some general

features of the distribution function p(w∞diss) depend on the frequency of the perturbation

(results presented in Appendix B).

We are convinced that the current study may point to several practical and speculative

pathways, mainly regarding the employment of the approximation Eq. 21; two of them are

indicated here below.

From a practical point of view one could explore the possibility of devising a sort of

”spectroscopic calorimetry” in which the average amount of dissipated energy is evaluated

by measuring the heat exchanged between the thermal bath and a macroscopic ensemble

of independent systems (i.e., non-interacting identical replicas) simultaneously subjected to

the perturbation. This clearly excludes direct single-molecule mechanical manipulations.

Rather, one could think, hypothetically, about situations in which the energetics of each

replica can be modulated via interaction with some controlled parameter/property of a

physical support to which the replicas are tethered; for example, it might be the case of

nanosystems deposited on metallic surfaces whose electrostatic potential is externally varied

in a periodic way. Another situation could be that of an ensemble of mesoscopic systems

exposed to external periodic fields (an example is discussed below). In these cases, there

is only a scale factor between the measurable exchanged heat per cycle and w∞diss(ω). The

frequency profile of w∞diss(ω) could feature characteristic bands to be associated with compact

sets of fluctuation rates, as discussed in Section III. With this kind of experiment one could

probe the internal energetics/dynamics of the unperturbed system, and, specifically, achieve
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basic information about the presence of timescale separations.

It must be stressed here that the entire elaboration refers to general ”systems” with no

specification given about their nature, except for the fact that they are classical and that

thermal fluctuations play a role. Indeed they can range from molecular/supra-molecular

aggregates to mesoscopic objects. An example of the latter category is that of phospholipidic

vesicles suspended in viscous solvents. Thermal fluctuations appear in terms of stochastic

rearrangements of the shape (see for example the basic theory of Milner and Safran for

quasi-spherical fluctuations [35]). Moreover, the conformational energy of the whole vesicle

depends, in addition to the intrinsic elastic parameters [36], also on exposure to electric

[37, 38] and magnetic [39] fields; this brings a contribution to the free energy per unit area

of the vesicle. For example, alternated electric fields are known to affect the morphology and

the dynamic behavior of giant vesicles and cells (see, for example, the review ref. [40] and

references therein). A spectroscopic-like experiment in which the average energy dissipation

is determined at different field frequencies, could shed light on the intrinsic modes/rates of

fluctuation of the unperturbed vesicle.[41]

A further and more speculative line of research could be that of employing the explicit

form of w∞diss(ω) to build an objective function for the ”optimization” of the unperturbed

system in the space of its parameters which determine energetics (configurational energy

V0(x)) and friction (diffusion matrix D(x)). In fact, these are the only physical ingredients

which affect the eigenfunctions and eigenvalues of the Smoluchowski operator for the unper-

turbed system. The question is: given an external agent able to interact with some property

of the system in a periodic way, can we think about a strategy to optimize the system such

as to produce a dissipation profile w∞diss(ω) with desired features? The perspective can also

be turned around: given the system, can we tune the kind of perturbation in such a way

that the dissipation profile shows the desired properties? Clearly, this kind of study can be

undertaken only once physically-based criteria are provided giving a meaning to the words

”optimization” and ”tuning” used above. For example, Schmiedl and Seifert[42] opened the

door to the idea of designing ”optimal protocols”, of given duration, targeted to minimize

the average energy dissipation in driven non-equilibrium transformations;[43] if the objective

were to minimize w∞diss(ω), a suitably ”tuned” cyclic energy perturbation would correspond

to an optimal protocol whose features might be, in all generality, ω-dependent.
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Appendix A. Derivation of Eqs. 45 and 46

In the derivations we will make use of the following forms of the time-correlation functions

GδV1(t′),δV1(t′′)(t) and GδV (1)(t′),δV (1)(t′′)(t) in which the symmetrized Smoluchowski operator is

involved:[29]

GδV1(t′),δV1(t′′)(t) =

∫
dx δV1(x, t′)peq,0(x)1/2e−tΓ̃0peq,0(x)1/2δV1(x, t′′) (A1)

and

GδV (1)(t′),δV (1)(t′′)(t) =

∫
dx δV (1)(x, t′)peq,0(x)1/2e−tΓ̃0peq,0(x)1/2δV (1)(x, t′′) (A2)

In these expressions, the times t′ and t′′ are fixed parameters.

Derivation of Eq. 45. Let us start by considering that Eq. 21 can be converted

in the following compact form (see the proof in note [44]):

w∞diss = 2πω
1

τ 2

∫ τ

0

dt′
∫ τ

0

dt′′
∫ ∞

0

dtGδV1(t′),δV1(t′′)(t) σ(t′, t′′, t) (A3)

where GδV1(t′),δV1(t′′)(t) is the time-correlation function given in Eq. A1, and where

σ(t′, t′′, t) =
+∞∑

N=−∞

N2 e−iωN(t′−t′′+t) (A4)

Let us now express the function σ(t′, t′′, t) in the following equivalent form:

σ(t′, t′′, t) ≡ 1

ω2

∂2

∂t′∂t′′

{
+∞∑

N=−∞

e−iωN(t′−t′′+t)

}
(A5)

The summation into curly brackets corresponds to a train of Dirac’s Delta Functions (which

are denoted hereafter by δD):

+∞∑
N=−∞

e−iωNtx ≡ 2π

ω

+∞∑
m=−∞

δD(tx −mτ) (A6)
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with tx = t′ − t′′ + t in the present case. By inserting Eq. A5 with Eq. A6 into Eq. A3, the

multiplicative factors cancel and

w∞diss =
+∞∑

m=−∞

∫ ∞
0

dt

∫ τ

0

dt′
∫ τ

0

dt′′GδV1(t′),δV1(t′′)(t)
∂2δD(t′ − t′′ + t−mτ)

∂t′∂t′′
(A7)

The integral over t′′ is now solved by parts:∫ τ

0

dt′′GδV1(t′),δV1(t′′)(t)
∂2δD(t′ − t′′ + t−mτ)

∂t′∂t′′
=

= GδV1(t′),δV1(t′′)(t)
∂δD(t′ − t′′ + t−mτ)

∂t′

∣∣∣∣t′′=τ
t′′=0

−
∫ τ

0

dt′′
∂GδV1(t′),δV1(t′′)(t)

∂t′′
∂δD(t′ − t′′ + t−mτ)

∂t′
(A8)

The first addend on the right-hand side is null since V1(x, t′′) is zero at t′′ = 0 and t′′ = τ ,

hence also the correlation function GδV1(t′),δV1(t′′)(t) is null at these times. Thus,

w∞diss = −
+∞∑

m=−∞

∫ ∞
0

dt

∫ τ

0

dt′
∫ τ

0

dt′′
∂GδV1(t′),δV1(t′′)(t)

∂t′′
∂δD(t′ − t′′ + t−mτ)

∂t′
(A9)

The integrations over t′ and t′′ are exchangeable, so that the integral over t′ can be carried

out first and solved by parts:∫ τ

0

dt′
∂GδV1(t′),δV1(t′′)(t)

∂t′′
∂δD(t′ − t′′ + t−mτ)

∂t′
=

=
∂GδV1(t′),δV1(t′′)(t)

∂t′′
δD(t′ − t′′ + t−mτ)

∣∣∣∣t′=τ
t′=0

−
∫ τ

0

dt′
∂2GδV1(t′),δV1(t′′)(t)

∂t′∂t′′
δD(t′ − t′′ + t−mτ) (A10)

As above, the first addend is null since V1(x, t′) is zero at t′ = 0 and t′ = τ , hence also the

correlation function GδV1(t′),δV1(t′′)(t), and its derivative with respect to t′′ as well, are null at

these times. Thus,

w∞diss =
+∞∑

m=−∞

∫ ∞
0

dt

∫ τ

0

dt′
∫ τ

0

dt′′
∂2GδV1(t′),δV1(t′′)(t)

∂t′∂t′′
δD(t′ − t′′ + t−mτ) (A11)

The integral over t in Eq. A11 is solved by exploiting the property of the Delta function.

Namely, such an integral reduces to a sum of terms, each of them given by the integrand

evaluated at times t = mτ − (t′ − t′′). The t ≥ 0 requirement, and the consideration that

−τ ≤ t′ − t′′ ≤ +τ , put limitations on the admissible values of the integers m. Namely,

values m ≤ −2 are not admitted; the value m = −1 gives a null contribution (since only
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the situation t′ = 0, t′′ = τ , t = 0 would be selected and the integral is zero in this case);

m = 0 requires that t′ ≤ t′′; values m ≥ 1 do no require any constraint. The contribution

for m = 0 is

m = 0↔ (i)

∫ τ

0

dt′′
∫ t′′

0

dt′
∂2GδV1(t′),δV1(t′′)(t)

∂t′∂t′′

∣∣∣∣
t=−(t′−t′′)

(ii)
≡
∫ τ

0

dt′
∫ t′

0

dt′′
∂2GδV1(t′′),δV1(t′)(t)

∂t′∂t′′

∣∣∣∣
t=t′−t′′

(iii)
≡
∫ τ

0

dt′
∫ t′

0

dt′′
∂2GδV1(t′),δV1(t′′)(t)

∂t′∂t′′

∣∣∣∣
t=t′−t′′

(A12)

where in the form (i) the integrations over t′ and t′′ have been exchanged and the constraint

t′ ≤ t′′ has been applied; in the form (ii) the labels t′ and t′′ have been exchanged; in the form

(iii) we have exploited the fact a the time-correlation is invariant with respect to the switch

of the order of the correlated functions if they are real-valued and the dynamics is a diffusive

process (these conditions are met here). As a whole, the following result is obtained:

w∞diss =

∫ τ

0

dt′
∫ t′

0

dt′′
∂2GδV1(t′),δV1(t′′)(t)

∂t′∂t′′

∣∣∣∣
t=t′−t′′

+
∑
m≥1

∫ τ

0

dt′
∫ τ

0

dt′′
∂2GδV1(t′),δV1(t′′)(t)

∂t′∂t′′

∣∣∣∣
t=mτ−(t′−t′′)

(A13)

The final step consists in exploiting the following identity:

∂2GδV1(x,t′),δV1(x,t′′)(t)

∂t′∂t′′
≡ G∂δV1(x,t′)/∂t′, ∂δV1(x,t′′)/∂t′′(t) ≡ GV (1)(t′),V (1)(t′′)(t) (A14)

where Eqs. 42 and 44 have been recalled. Thus, Eq. 45 follows.

Derivation of the factors c1 and c2 in Eq. 46. Let us consider the following

expansion (see the note [44]):

δV1(x, t) =
+∞∑

N=−∞

∑
n≥1

vn(N)gn(x) eiNωt (A15)

where the functions gn(x) have been introduced in Section II A. The time derivative yields

δV (1)(x, t) = iω
∑+∞

N=−∞
∑

n≥1N vn(N)gn(x) eiNωt. In what follows we shall deal with the

time-correlation function GδV1(t′),δV1(t′′)(t) expanded as (see the note [44])

GδV1(t′),δV1(t′′)(t) =
+∞∑

N1,N2=−∞

∑
n≥1

vn(N1)∗vn(N2) eiω(−N1t′+N2t′′) e−λnt (A16)
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and with its expression for t′′ = t′,

GδV1(t′),δV1(t′)(t) =
+∞∑

N1,N2=−∞

∑
n≥1

vn(N1)∗vn(N2) eiω(−N1+N2)t′ e−λnt (A17)

Moreover, we shall also deal with the time-correlation function GδV (1)(t′),δV (1)(t′)(t) which is

expanded (using Eq. A15) as

GδV (1)(t′),δV (1)(t′)(t) = ω2

+∞∑
N1,N2=−∞

∑
n,n′≥1

N1N2 vn(N1)∗vn′(N2) ei(−N1+N2)ωt′ Ggn,gn′
(t) (A18)

where Ggn,gn′
(t) is the time-correlation function between gn(x) and gn′(x) at the unperturbed

equilibrium. Since Ggn,gn′
(t) = δn,n′e

−λnt (see the remark in note[44]), it follows

GδV (1)(t′),δV (1)(t′)(t) = ω2

+∞∑
N1,N2=−∞

∑
n≥1

N1N2 vn(N1)∗vn(N2) ei(−N1+N2)ωt′ e−λnt (A19)

Let us now recall the function Φ1(t) given in Eqs. 47. By inserting Eq. A19 into that

definition of Φ1(t), when integrating over t′, the complex factor eiω(−N1+N2)t′ gives τδN1,N2 .

Thus,

Φ1(t) = ω2 τ 2

+∞∑
N=−∞

∑
n≥1

|N vn(N)|2 e−λnt ≡ 2 (2π)2

+∞∑
N=1

∑
n≥1

|N vn(N)|2 e−λnt (A20)

The integration of Φ1(t) over t from 0 to ∞ then yields∫ ∞
0

dtΦ1(t) = 8π2

+∞∑
N=1

∑
n≥1

λ−1
n |N vn(N)|2 (A21)

The comparison of Eq. A21 with c1 given in Eqs. 22 leads us to state that c1 =

(2π)−1 ∫∞
0
dtΦ1(t), which the expression in Eq. 46.

Let us now define the following functions:

χa(t) :=
1

τ

∫ τ

0

dt′GδV1(t′),δV1(t′)(t) , χb(t) :=
1

τ 2

∫ τ

0

dt′
∫ τ

0

dt′′GδV1(t′),δV1(t′′)(t) (A22)

By inserting Eq. A17 into χa(t), when integrating over t′, the complex factor eiω(−N1+N2)t′

gives τδN1,N2 . Thus,

χa(t) =
1

τ
×τ

+∞∑
N=−∞

∑
n≥1

|vn(N)|2 e−λnt ≡
∑
n≥1

|vn(0)|2 e−λnt+2
+∞∑
N=1

∑
n≥1

|vn(N)|2 e−λnt (A23)

Let us now take the time derivative of χa(t) and evaluate it at t = 0:

dχa(t)

dt

∣∣∣∣
t=0

= −
∑
n≥1

λn|vn(0)|2 − 2
+∞∑
N=1

∑
n≥1

λn|vn(N)|2 (A24)
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By recalling the expression of c2 given in Eqs. 22, it follows that

c2 = −2π

[
dχa(t)

dt

∣∣∣∣
t=0

+
∑
n≥1

λn|vn(0)|2
]

(A25)

Now it can be shown [45] that ∑
n≥1

λn|vn(0)|2 ≡ − dχb(t)

dt

∣∣∣∣
t=0

(A26)

The combination of Eqs. A25 and A26 yields

c2 = 2π

[
dχb(t)

dt

∣∣∣∣
t=0

− dχa(t)

dt

∣∣∣∣
t=0

]
(A27)

By introducing Φ2(t) = χb(t)− χa(t), which corresponds to the definition of Φ2(t) given in

Eqs. 47, it follows the final result c2 = 2π dΦ2(t)
dt

∣∣∣
t=0

.

Appendix B. Work distribution functions: simulations results and expectations in

the low average dissipation limit

Let p(w∞diss) be the distribution function of the work dissipated per cycle after a very large

number of cycles has been performed and a ”periodic steady state” has been reached (i.e., the

non-equilibrium distribution on the x variables evolves coherently with the perturbation).

In principle, work distribution functions in driven transformations starting from equilibrium

can be obtained by applying the strategy devised by Imparato et al. in ref. [46]; similarly,

one could achieve the distribution p(w∞diss) of interest here. However, except for simple cases,

such a route is challenging since it makes it necessary to solve partial differential equations

for joint probability distributions on both work and x variables. This goes beyond the

scope of this work [47]. In what follows, we report only some empirical evidence from the

simulations on the model cases treated here.

In Figures 6 and 7 we show, for Case 1 and Case 2 respectively, the profiles of p(w∞diss)

for four values of the frequency ω in the range of 0.1 to 100. The circles correspond to the

distributions obtained as follows. An initial value x(0) was randomly drawn from peq,0(x).

Then, a long Langevin trajectory under perturbation at the given ω was generated up to

perform 11000 cycles. The first 103 cycles served to assure the achievement of the asymptotic

limit, while the amounts of work performed in the subsequent 104 cycles were used to build
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p(w∞diss) by histograms.[48] For consistency, we checked that the values of w∞diss computed

by averaging over the 104 outcomes perfectly fit within the trend of the data displayed in

Figure 4, which were obtained from the time-propagation route described in section IV C.

FIGURE 6

FIGURE 7

For Case 1, from low to high frequency all work distributions appear uni-modal, while

for Case 2 the distributions are bi-modal. We mention that this kind of bi-modal profile,

that is a low-work narrow peak and a broader band at higher work values, was also found in

ref. [7] where the authors experimentally investigated the case of a colloidal particle trapped

in a double-well potential and subjected to a periodic external force which breaks the even

symmetry, as takes place in our Case 2. The similarity of findings suggests us that the main

features of p(w∞diss) are due to the bi-stability and to its symmetry loss, regardless of the

subtle details of V0(x) and of the perturbation.

The solid curves displayed in some of the panels of Figures 6 and 7 represent the Gaussian

distributions p(w∞diss) ' (σ∞
√

2π)−1 exp{−(w∞diss − w∞diss)
2/2σ2

∞} with variance σ2
∞ = 2w∞diss

and w∞diss computed with the analytic approximation Eq. 21. Gaussian distributions with

such a parametrization are expected in the low-dissipation limit in which the ”lag” between

p(x, t) and the ”underlying” peq,t(x) is small. This condition is intuitively met as τ increases,

i.e., as the energy modulation becomes slower.[49] On the other hand, our simulations show

that there are also cases where p(w∞diss) is close to the Gaussian profile even in the opposite

small-τ range. This is evident for Case 2 where the largest deviation is observed at the

frequency ω = 0.1 close to λ1, while the Gaussian approximation becomes acceptable as ω

increases (profiles of p(w∞diss) in the opposite range ω � λ1 have not been inspected). In

all cases, and regardless of the period of the perturbation, w∞diss in kBT units proves to be

a global indicator of applicability of the Gaussian approximation. In the present case of a

bi-stable system with a single degree of freedom, it appears that the Gaussian approximation

can be accurate when w∞diss is below half kBT .

Finally, we checked the fulfillment of the relation p(w∞diss)/p(−w∞diss) ' ew
∞
diss . This relation

is a form of the so-called ”steady state fluctuation theorem” (SSFT), which constitutes an

adaptation of the analogous expression known as ”transient fluctuation theorem” (TFT)

(see for example ref. [4] and references therein). In the TFT, the amount of work is referred

to transformations starting from the system at equilibrium, while in the SSFT one focuses

29



on a system which has reached a steady state (under perturbation) and is monitored over a

finite time τ . While the TFT holds exactly, the SSFT is expected to be generally fulfilled

only approximately and with an accuracy which depends on the duration τ .[50] The results

are shown in Figures 8 and 9 where ln[p(w∞diss)/p(−w∞diss)] is plotted versus w∞diss in order to

check if a linear correlation with unitary slope is present. What emerges is that the relation

is well fulfilled for w∞diss small enough in absolute value (roughly, less than 2 in kBT units);

for larger values, no certain affirmations can be made since the limited statistics that is

available leads to badly reproduce the ”wings” of the distributions making the data appear

scattered.

FIGURE 8

FIGURE 9
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∫
dx0

∫
dx1

∫
dw0

∫
dw1 Ψ(x0, w0, t0) Ψ2(x1, w1, t1 | x0, w0, t0) δ(w1, w0 + w).
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sequence.
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dx Ψ(x, w, t). From the rule of probability composition, it follows (i) p(w, tnc) =∫
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dx Ψ(x, w − wnc , tnc−1) ρnc(wnc |x, w − wnc , tnc−1), where ρnc(wnc |x, w − wnc , tnc−1)

is the conditioned probability to perform a quantity of work wnc during the nc-th cy-

cle if the work done up to time tnc−1 is equal to w − wnc and the system’s configura-

tion is x at that instant. The key-assumption is that the dependence on the state at time

tnc−1 becomes weaker and weaker as the number of performed cycles increases, that is, (ii)

ρnc(wnc |x, w − wnc , tnc−1)→ p∞(wnc) for nc →∞ where p∞(wnc) stands for the limit distri-

bution. By recalling that the work per cycle is entirely dissipated, such a limit distribution

corresponds to p(w∞diss). As consequence, the integration over x in Eq. (i) implies that (iii)

p(w, tnc) '
∫
dw∞diss p(w − w∞diss, tnc−1) p(w∞diss) for nc →∞. By multiplying both members by

e−w and integrating over w, the application of Jarzynski’s equality (JE) [17] under considera-

tion that the system’s free energy difference is null at completion of any number of cycles, yields∫
dw p(w, tnc)e

−w JE
= 1 '

∫
dw
∫
dw∞diss p(w−w∞diss, tnc−1)e−w p(w∞diss). The switch of the order
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]
e−w

∞
dissp(w∞diss) ' 1. By

making the change of integration variable w → w′ = w−w∞diss, the JE leads to recognize that

the integral within square brackets is equal to 1 (integration boundaries are kept at ±∞).
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Thus, it follows the integral constraint (iv)
∫
dw∞diss e

−w∞diss p(w∞diss) ' 1. [In passing, note that

this constraint is compatible with the approximate fulfillment of the SSFT relation (Appendix

B) once it is written as p(−w∞diss) ' e−w
∞
dissp(w∞diss) and the integration on w∞diss is performed

at both members.] The decoupling condition Eq. (ii), intuitively, should hold if the period τ is

much longer than the intrinsic fluctuation times of the system at the underlying equilibrium;

for small perturbations, these times can be taken to be the inverse of the characteristic fluc-

tuation frequencies at the unperturbed equilibrium (see Section II A). For such a slow energy

modulation, the configuration-dependent lag between p(x, t) and peq,t(x) remains small from

time-zero on, and asymptotically tends to attain a limit as the number of cycles increases. In

these conditions it is reasonable to assume that p(w, tnc) and p(w, tnc−1) are well approximate

by Gaussian functions whose shift and broadening, cycle by cycle, are regulated by w∞diss.

Hence, the convolution-like operation in Eq. (iii) suggests that also p(w∞diss) may be close to

a Gaussian distribution. The integral constraint in Eq. (iv) then implies σ2
∞ = 2w∞diss about

the variance. As a whole, the Gaussian profile is expected in the long-τ limit.

[50] A survey of the literature gives us the idea that the soundness of the SSFT accuracy is still

under debate, and that the fulfillment of such a relation seems to depend in a rather intricate

way by the interplay between the relaxation properties of the unperturbed system and the

nature of the perturbation. For overdamped dynamics such as those considered in our study,

the soundness of the SSFT over only one cycle in the asymptotic limit has been proven both

experimentally and numerically in a number of case models [4, 7], although it has been argued

that it should be satisfied only for ”linear systems” [see B. Saha and S. Mukherji, J. Stat. Mech.

p. P08014 (2014)] which, in our terminology, correspond to landscapes of V0(x) featuring a

single multidimensional parabolic well. Deviations are recognized for non-linear systems in the

underdamped regime of motion [see M. I. Dykman, Phys. Rev. E 77, 021123 (2008); P. Zhou,

X. Dong, C. Stambaugh and H. B. Chan, Phys. Rev. E 91, 052110 (2015)].
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CAPTIONS

Figure 1

(a) A pictorial representation of the fluctuating system initially at equilibrium and then

cyclically perturbed by an external agent. (b) The interrelations investigated in the present

study.

Figure 2

Energetics for the uni-dimensional case model. (a) Energy profile of the unperturbed

system; (b) contour plots showing the time-modulation of the energy profile under pertur-

bation in Case 1 and Case 2.

Figure 3

Examples of Langevin trajectories for the unperturbed system (a) and for the perturbed

system in Case 1 (b) and Case 2 (c) with period τ = 5.

Figure 4

Dependence of the average dissipated energy per cycle, wdiss,nc , versus the number of

performed cycles for the uni-dimensional system in Case 1 and Case 2. The profiles refer to

the period τ = 5.

Figure 5

Dependence of the asymptotic average dissipated energy per cycle, w∞diss, versus the

frequency ω for the uni-dimensional system in Case 1 and Case 2. Solid lines refer to

the approximate solution Eq. 21, while the circles refer to the exact values from the

numerical solution of the non-stationary Fokker-Planck-Smoluchowski equation. The bars

on the top axes correspond to the first 30 eigenvalues of the Smoluchowski operator for the

unperturbed system. For Case 2, the dashed line in the low-frequency range indicates the

linear growth on ω.

Figure 6
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Distribution functions of the dissipated energy (work) per cycle, in the asymptotic limit, for

the uni-dimensional system in Case 1 and Case 2. The panels refer to different frequencies

ω, as indicated. The circles display the distributions constructed by histograms from a long

Langevin simulation. The solid lines are the Gaussian distributions parametrized by w∞diss

obtained from approximate expression in Eq. 21 (see the text for details).

Figure 7

Same as for Figure 6, but here for Case 2.

Figure 8

Plot of ln p(w∞diss)/p(−w∞diss) vs. w∞diss for the uni-dimensional system in Case 1. The circles

correspond to points obtained from the distributions constructed by histograms (see Figure

6). The dashed straight lines have a unitary slope.

Figure 8

Plot of ln p(w∞diss)/p(−w∞diss) vs. w∞diss for the uni-dimensional system in Case 2. The circles

correspond to points obtained from the distributions constructed by histograms (see Figure

7). The dashed straight lines have a unitary slope.
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