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ABSTRACT The use of mobile phones or smartphones has become so widespread that most people rely on
them for many services and applications like sending e-mails, checking the bank account, accessing cloud
platforms, health monitoring, buying on-line and many other applications where sharing sensitive data is
required. As a consequence, security functions are important in the use of smartphones, especially because
most of the applications require the identification and authentication of the device in mobility. This is
usually achieved through cryptographic systems but recent research studies have also investigated alternative
or complementary authentication mechanisms which can be used to strengthen cryptographic methods
with multi-factor authentication. In this paper, we investigate the identification and the authentication
of smartphones using the intrinsic physical properties of the mobile phones built-in microphones. The
possibility to identify a microphone on the basis of features extracted from audio recordings is well known
in literature but it is mostly used in forensics studies and usually relies on human voice recordings. On
the contrary this paper proposes a smartphone identification and authentication approach by stimulating
the built-in microphone with non-voice sounds at different frequencies. An extensive data set of 32 phones
was used to evaluate experimentally the proposed approach. On the basis of the proven performance of deep
learning techniques, a new Convolutional Neural Network architecture is proposed both for the identification
and the authentication purposes. Its performance, in comparison to other machine learning algorithms,
is demonstrated in presence of different types of noises (e.g., Gaussian White noise, Babble noise and
Street noise). Satisfactory results have been obtained showing that the exploitation of a fingerprint from the
microphone sensor is a good choice to assess smartphone distinctiveness.

INDEX TERMS smartphone identification, authentication, microphone, machine learning, deep learning

I. INTRODUCTION

The ability to identify smartphones or mobile phones (in the
rest of the paper the two terms are used with the same mean-
ing) through their built-in components has been demonstrated
in the literature for various types of sensors including CCDs,
accelerometers, magnetometers and also microphones. The
unambiguous identification of a mobile phone can be used
to perform multi-factor authentication where the physical
identification related to a smartphone sensor is combined
with the cryptographic authentication [1]. In such a way users
of mobile applications can benefit from an improved authen-
tication procedure in term of security and usability. This kind
of identification could be extremely important also to guaran-

tee continuous authentication for specific transactions or for
time consuming processing. Furthermore, in forensics and
security applications, identification proofs based on physical
characteristics are much more difficult to be faked and re-
produced since they are intrinsically related to the electronic
component and to the mobile phone itself. So the main goal
of this paper is to study and develop a methodology to iden-
tify mobile phones through the analysis of the signal coming
from an on-board sensor like the microphone, with the aim to
extract a smartphone fingerprint which is unambiguous and
distinctive of one specific device. This identification is based
on the assumption that the manufacturing process leaves
some imperfections on the physical structure of each sensor,
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thus the output signal suffer from a systematic distortion,
which is irrelevant for its use but can be distinguishable for
the identification task. The extraction of features concerning
the microphone sensor can contribute to the definition of the
smartphone fingerprint as well as SPN (Sensor Pattern Noise)
characterized the digital camera sensor of a mobile phone [2].
In a similar way, researchers have demonstrated the ability
to identify mobile phones with different degrees of accuracy
from various built-in MEMS sensor, such as accelerometers,
radio frequency components, magnetometers and so on [3].

In particular, the microphone is a sensor that transduces
acoustic pressure waves to an electrical signal. Basically, it
is used in combination with a loudspeaker to allow users to
communicate, digitalizing pressure waves produced by the
userś voice in electric signal sequences. The microphone
structure is composed by many modules and the defections
in the area of the movable and conductive plate (membrane)
may occur during the productive process impressing slight
deviations from the ideal response of the microphone. Even
assuming that such imperfections are not considerable during
the standard usage of the sensors, these features may be
inspected to determine the uniqueness of each microphone. In
this paper and in literature (see section II), it is demonstrated
that this kind of error is unique and systematic and can be
used as fingerprint of the device.

The smartphone identification is related to the ability to
distinguish among phones of the same model but different se-
rial numbers (intra-model identification) and between phones
of different models and brands (inter-model identification).
The first one is usually more difficult to achieve because
mobile phone manufacturers use the same materials to as-
semble the same model, while different models/brands are
usually built using different components. For this reason for
our experimental results we collect a dataset composed of
responses from a relatively large set of mobile phones with
different brands and models but with a significant number of
phones belonging to the same model to better evaluate the
intra-model identification capabilities.

In particular, we propose a Convolutional Neural Network
method able to discriminate among various devices of the
same or different brands and comparatively evaluated it
against baselines like K-Nearest Neighbors (KNN), Support
Vector Machine (SVM) classifiers and CNN in the presence
or absence of noises. In particular, we evaluate three kind
of noises: the Gaussian White noise, the Babble noise and
the Street noise. In this paper, it will be demonstrated that
the proposed CNN significantly outperforms related works
showing a certain robustness to such noises.

The paper is organized as follows: Section II presents
some previous works related to the smartphone and sensor
fingerprinting. In Section III the application scenario will be
described, while Section IV describes the proposed method-
ology and the materials used in the experimental phase.
In Section V extended experimental results are presented
and discussed to evaluate the performances of the proposed
technique. Finally Section VI draws conclusions.

II. RELATED WORKS
Various techniques proposed so far have been devised to
discern among different devices including digital cameras,
smartphones, printers and scanners considering different sen-
sors and properties.

The possibility to identify digital cameras exploiting
Charge Coupled Device (CCD) sensor pattern noise has been
demonstrated in well established works [4]–[6], [7]. Others
papers dealing with the distinction among different kind of
devices such as scanner, digital camera, computer generated
content are proposed in [8]–[10]. A new trend in recent years
for the device identification is related to investigate about the
social networks provenance of digital images [11], [12].

The smartphone identification using built-in sensors like
accelerometer, gyroscope, magnetometer is demonstrated
recently by various works. The first analyzed sensor was
the accelerometer in [13], then it was used in combination
with the loudspeaker and the microphone [14]. The work in
[15] takes into account the combination of two sensors as
well (i.e., accelerometer and gyroscope). The paper in [16]
presents a work on how to combine accelerometer, gyroscope
and CCD sensor. In [17] an extension of the previous work is
proposed where four built-in sensors are combined in order to
build a more reliable fingerprint (accelerometer, gyroscope,
magnetometer and microphone).

In [18] smartphone identification is used to contrast
MEMS components counterfeiting using accelerometer and
gyroscope, while in [19] only the magnetometer is consid-
ered.

In recent years, the problem of how to identify the source
of an audio recording has been addressed, with a considerable
attention to mobile phone as recording system. The advan-
tage of using microphones for authentication in comparison
to other components in the mobile phone like the CCD
camera sensor or other kind of sensors is the possibility to
control the stimulus, which is applied to the microphone
from an external device. In this way it is easier to create a
challenge/response space as described in the Section III. This
is more complex for other components like a camera, where
the recorded image can be random (based on the collected
visual context) or for the radio frequency fingerprints where
the wireless standards may impose specific constraints.
The authors in [20] proposed a pioneering work in micro-
phone identification, where a set of audio steganalysis-based
features to cluster both the microphone and the environ-
ment have been used. This work has been extended in [21],
wherein a combination of statistical features and unweighted
information fusion have been employed to improve the accu-
racy in the classification.

In most of the earliest works only the inter-model classifi-
cation on speech audio recordings has been considered. More
recently, in [22], [23] the authors addressed the intra-model
classification task through a K-Nearest Neighbor (KNN) and
Gaussian mixture model (GMM). A comparison of various
features is provided showing that the use of Mel-Frequency
Cepstrum Coefficient (MFCC) gives the best accuracy results
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in term of identification.
On the contrary, in [24] the Power Spectrum Density

(PSD) of speech-free audio recordings is used to train a
Support Vector Machine (SVM) classifier. The speech-free
audio recordings are detected using Audacity software and
the PSD is calculated using a periodogram. The authors
in [25], employed MFCC coefficients of the non-speech
segments of the voice recordings in combination with SVM
and GMM to classify the microphones. The method exhibited
promising results but it also showed substantial sensitivity to
additive noises. A sparse representation of speech recording
is used for device recognition in [26]. A recent work proposes
to recognize different microphones based on the recorded
speeches [27] using a kernel-based projection method; then
again a SVM is used for the classification.

Alternatively, the microphones can be stimulated using
non-voice recordings such as in [28] and [29]. In particular,
the authors in [28] found out that the frequency response
curve extracted from sample recordings can be a robust
fingerprint to characterize the recording device. A SVM is
proposed to perform the classification over 31 mobile phones.
In [29], the authors proposed a speaker-to-microphone au-
thentication protocol by leveraging the frequency response of
a speaker and a microphone from two IoT wireless devices as
the acoustic hardware fingerprint.

The application of deep learning on microphone identifica-
tion it is a quite new task and it is inspired by the superior per-
formance, respect to conventional machine learning methods
(especially when combined with frequency representations),
demonstrated for example in the radio frequency device
identification (see [30] and [31]).

In [32] and [33] the authors proposed two deep learning
methods to solve the microphone identification task using
Convolutional Neural Networks. In particular in [32] a set
of 9 devices stimulated with speech sound is employed. In
[33] the proposed CNN is compared with other machine
learning classifiers including SVM, Recurrent Neural Net-
work and Random Forest. The number of microphones used
in this case is 24 and a spectral representation Constant-Q
Transform (CQT) is used to perform the classification. The
type of sound stimuli used to generate the recordings is again
related to the speech (TMIT database). The use of non-speech
sounds in combination with CNN, as it is in this paper, is
rather novel and it is more suitable for the identification and
authentication functions that require specific sound stimuli
rather than the use of speech recordings which is more
appropriate for forensics analysis. To summarize, the idea
introduced in this paper evaluates the use of CNN, as well
as [32], [33], but a different structure of the net is proposed,
non-speech audio recordings are given as input to the net
and the results are tested on a superior number of phones
especially to test the intra-model classification. This paper
confirms the promising results shown in [32] and [33], which
has proven the superior performance of CNN in comparison
to conventional machine learning algorithms. As shown in
Section V our experiments demonstrate the optimal behavior
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FIGURE 1: The application scenario for smartphone identi-
fication using the built-in microphone sensor.

of the proposed CNN especially in presence of noises.

III. APPLICATION SCENARIO
The potential application scenario for microphones identi-
fication or authentication (and consequently of the smart-
phone) is shown in Figure 1.

In an initial first phase (identified with A in Figure 1)
the microphone of a smartphone is stimulated by a sound
generator. As will be described in the Section IV the sound
stimulus is composed by a repetition of audio tones. The
sound recording is collected and stored in a database of
fingerprints, accessible by a cloud application which is used
in the in-field identification and also in the authentication
phase (identified with B in Figure 1). In the second phase
B, the microphone is stimulated by the same sound used in
the first phase A. After that, the audio recording is sent to a
deep learning cloud service able to perform the classification.
In the case of the identification task the application identifies
the source microphone in the fingerprints database, while in
the case of the authentication task a phone with a claimed
identity Pi will be compared with the fingerprint associated
to Pi in order to be assigned to that phone.
In the first phase, the fingerprints are collected in a controlled
sound environment avoiding the risk that the bias introduced
in the recording phase become part of the fingerprint. In a
real scenario the second phase is rarely ideal and background
noise is certainly present. For this reason, in order to simulate
this behavior, different types of noises are evaluated in the
Section V-B3. In particular, three noises have been taken
into account including: the Additive white Gaussian noise
(AWGN), in order to consider different distances between the
amplifier/loudspeaker system and the microphone, and the
Babble noise and the Street noise to simulate the presence
of specific background noise. Finally, the bias introduced by
the loudspeaker is considered as well. We noticed that a com-
mon bias introduced by the audio amplifier (where spurious
replicas at higher frequencies are generated) is mitigated in
our methodology because only a segment of the frequency
response is selected thus cutting those spurious replicas.
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Furthermore in this application scenario, it is preferable to
obtain a good identification and authentication accuracy with
a limited audio recording lenght to limit the overall time
for identification and the authentication. This duration time
is composed by the recording of the audio stimulus in the
smartphone, the transmission of the recording to the cloud
application and the time for the classification itself. So the
shorter is the time of the audio recording, the smaller is the
size which decreases its transmission and classification times.
For this reason in the Section V we perform an optimization
of the size of the segment used as input to the classifier in
order to reduce its length.

IV. PROPOSED METHOD AND MATERIALS
A. OVERALL WORKFLOW
The overall workflow used to generate and collect the audio
recordings, process them and then submit as input to the
classification procedure is presented in Figure 2.

Synchronization,
Normalization

Deep CNN
Classification

Frequency 
domain

representation

Smart Phones: 
1:32

MicrophoneSound Generator

1KHz Tone
2KHz Tone

Sound 
Recording

Segmentation Imaging

Noise addition

KNN and SVM
Classification

Results

FIGURE 2: The overall methodology.

In the initial recording collection phase, each smartphone
was stimulated with two separate sounds pulses at 1 KHz and
2 KHz which are repeated for 800 times (see the section be-
low IV-C for a description on how the sounds are generated).
Then, the audio recordings for each smartphone are stored in
in Pulse Code Modulation (PCM) format at 44100 Hz. The
audio records are then power normalized and synchronized
to avoid the presence of bias related to test bed configuration
(e.g., the distance from the loudspeaker or the time shift
among sound recordings). Various types of noises are subse-
quently artificially added to the sound recordings to simulate
the presence of background noise or attenuation in practical
environments (see Sections V-B1 and V-B3 for details on
the noise generation and related classification results). Then,
the Fast Fourier Transform (FFT) is applied to the digital
representation of the sound recordings to obtain a frequency
representation (the Frequency Domain Representation block
in Figure 2). Note that a complex time series is derived from
the application of the FFT to the original sound recordings,

(a)

(b)

FIGURE 3: Frequency responses on the 32 mobile phones
for the 1 KHz (a) and 2 KHz (b) stimulus with details on the
band 0-600Hz.

which is expressed in real values. Even in the frequency
domain, the size of the data to be classified is quite large
(i.e., complex values in a frequency range from 0 to 44100
Hz) and it is necessary to perform a dimensionality reduction.
After that a segmentation is performed. It was empirically
found that not all the segments contribute in an equal measure
to the classification. In fact, it was noticed that the best
classification results was obtained by using the magnitude
components of the frequency and only a specific segment was
mainly responsible for the classification. This is due to the
fact that most of the fingerprints are located in a frequency
band between DC (direct current) and the stimulus frequency
(1 KHz or 2 KHz). The empirical demonstration of this
statement will be given in the Section V. This can also be seen
from the amplitude of the frequency response to the stimulus
at 1KHz and 2KHz, in Figures 3a) and 3b) respectively. A
detail on the frequency band between 0 and 600 Hz is also
shown.

Finally, the classification is performed using a Convo-
lutional Neural Network. Two baselines classifiers (SVM
and KNN) are also evaluated. A detailed description of the
classification phase is provided in Section IV-B below. It
is interesting to evaluate the performance of the classifier
both for the inter-model identification (i.e., phones of differ-
ent models and brands) and intra-model identification (i.e.,
phones of the same model and brand). For this reason we
provide in the results Section V an analysis on the entire set
of available phones to evaluate the inter-model classification
performance and on a smaller set of phones of the same
model to evaluate the intra-model classification.
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B. THE CLASSIFICATION PHASE

The classification phase is constituted by the introduction of
a Convolutional Neural Network. In the following the details
related to the proposed CNN are given. In particular the
scheme of the proposed architecture is shown in Figure 4 with
the related optimized values. The frequency vector of the
digitized microphone recording is reshaped to a matrix with
different sizes according to the stimuli at 1 KHz and 2 KHz
(see input layer in Figure 4). The network is then composed
by three convolutional layers, the first two followed by max
pooling to reduce the size. The classification performance
with the use of an increasing number of convolutional layers
have been evaluated too but no significant gain in classifica-
tion accuracy was obtained. All the convolutional layers use
the rectified linear unit (ReLU) as activation function. After
that a softmax layer with as many units as the number of mi-
crophones to be identified (32 in our experiments) is attached.
The softmax layer is aimed at producing the probability of
each sample being classified into each class. The training
phase is stopped when the loss function on the validation set
reaches its minimum, at which point the model associated
with a certain epoch is selected. The number of epochs for the
learning rate drops is set to 10. The L2 regularization factor
is set to 0.0001. To mitigate overfitting, a 4-fold approach
was used for classification, where 25% of the dataset was
used for test, and 75% was used for training and validation
(9/10 of which used for training and 1/10 for validation, so
the validation set is 7.5% of the entire dataset). The overall
classification process was then repeated 20 times, each time
with different training and test sets and the final results are
averaged.

As introduced before, a SVM and a KNN classifiers are
used in the experiments for comparison so some details
regarding those baselines are provided in the following. As
for CNN, to mitigate the problem of overfitting, a 4-fold
approach for classification (which was repeated 20 times)
was adopted.

FIGURE 4: The proposed CNN architecture.

In particular, the SVM was based on a Radial Basis Func-
tion (RBF) kernel and it was optimized for the values of the
scaling γ and penalty C factors using a grid search approach,

TABLE 1: List of the 32 mobile phones used in the experi-
ments with relative IDs.

Mobile phones ID Quantity
Samsung ACE 1-23 23
HTC One X 24-26 3
Samsung Galaxy S5 27-29 3
Sony Experia 30-32 3
Total 32

while the KNN uses the euclidean distance and it is optimized
on the basis of the K parameter.

C. MATERIALS

A set of 32 phones have been used to collect the audio
recordings. This dataset is larger than other datasets used in
the literature, and is comparable in size to the dataset recently
used in [28]. The collection of smartphones used in this paper
includes a larger number of phones of the same model respect
to [28] to properly address the problem of the intra-model
classification.

The audio signals are generated by a dedicated computer,
amplified by a high quality amplifier and transmitted in the
air medium with a high quality loudspeaker (to reduce the
bias potentially introduced in the sound generation phase).
We note that the potential impact of a lower quality of the
amplifier is mitigated, in the adopted methodology, by using
specific frequency bands for the audio stimuli (1KHz and
2KHz), by normalizing the audio recording and by introduc-
ing different type of noises. The microphone sensitivity and
the level of the amplifier was adjusted to avoid the saturation
phenomenon in the audio recordings.

The position of the phones relative to the loudspeaker is
always the same in order to work in a controlled environment.
Different distances of the microphone from the loudspeaker
to replicate a real scenario are simulated by adding the
AWGN as described in the Section V-B. On the contrary the
different angle of the audio source is not considered since was
demonstrated in [34] that this variation usually does not have
impact in the classification performance. The smartphone
was placed on a plastic absorber to minimize the effect of
vibrations on the supporting surface. The audio signals are
tones at 1000 Hz and 2000 Hz (1 KHz and 2 KHz) with
a duration of 1 second. The audio recording was stored in
the smartphone in PCM raw format at 44.1 KHz. The audio
recordings were collected in different days in our laboratory
in a timeframe of several weeks. The list of the mobile phones
in the dataset is reported in Table 1. The total number is 32
smartphones with three different brands (Samsung, Sony and
HTC) and two different model of the same brand (Samsung
ACE and Samsung Galaxy S5). The quantity of smartphones
for each model is reported in Table 1.

V. RESULTS
This section presents the experimental results: a) the opti-
mization of the proposed CNN in subsection V-A and b)
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FIGURE 5: Choice of the best solver function in term of
accuracy in classification. a) SNR from .-15 dB to 60 dB b)
the detail for SNR=5 dB and 10 dB.

the performance evaluation under different scenarios and
environmental conditions in V-B.

A. OPTIMIZATION
As anticipated in Section IV-B, this section will be devoted
to the optimization of some of the machine learning hyper-
parameters useful for the rest of the experimental analysis. In
particular, the most suitable CNN optimizer and the optimal
stride value related to the first convolutional layer have been
considered. Different optimization algorithms have been
evaluated such as the Root Mean Square Propagation (RM-
SProp), the Stochastic Gradient Descent with Momentum
(SGDM) and Adam in term of classification accuracy varying
the SNRs. In the Figure 5 a slightly improvement in the
accuracy is evidenced with the RMSProp algorithm (with a
decay rate of 0.999). The same behavior it is demonstrated
also in Figure 5(b) where a detail for the SNR=5 and the 10
dB case is reported. Hence for this reason the RMSProp is
chosen as optimization algorithm in the proposed CNN.

In Figure 6 is reported the choice of the stride values for the
first convolutional layer of the CNN. Different stride values
S have been evaluated S = [8 : 28] with step of 4. The stride
S is set to S=24 in fact from Figure in 5 (where a detail for 5
and 10 dB is reported) a small difference is appreciable. In a
similar way the size of the max pooling layer was optimized
to 2x2 with a stride of 2.

For the baseline algorithm we fixed the following optimal
values: the SVM grid search optimization provided values of
C = 212 and γ = 26 while the optimal value of K for the
KNN was set to K = 1.
After the parameters of the net have been selected an anal-
ysis on the best FFT segment of the microphone recordings
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FIGURE 6: Choice of the best stride value in term of accu-
racy in classification for the first convolutional layer. a) SNR
from .-15 dB to 60 dB b) the detail for SNR=5 dB and 10 dB.

according to the accuracy provided in classification has been
performed. In particular a two steps approach is used. In the
first step, the entire frequency range of the input (1-44100
Hz) was divided in 7 segments and evaluated separately in
term of accuracy. Each segment starts from the end of the
previous one (e.g., 4901 Hz to 9800 Hz is the second).

The classification result related to sound recordings at 2
KHz is shown in Figure 7. It is possible to point out that the
first segment in the range of frequencies 1 - 4900 Hz provides
the optimal accuracy. The segment optimization is performed
at SNR = 20 dB.The same behavior is noticed also for other
SNR values; such analysis has not been reported for the sake
of conciseness.
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FIGURE 7: Choice of the segment in the frequency domain
(2 KHz stimulus). The accuracy in classification vs the fre-
quency segments is reported.

In the second step, the segment in the range of frequencies
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1 - 4900 Hz is refined to find a smaller segment that con-
tribute more than the others to the classification accuracy. We
impose the constraint that the segment must be above 2 KHz
as it is assumed that the frequency response of the stimulus
at 2 KHz includes significant features of the microphone and
can not be excluded. In this second step, the segments are of
increasing size from a range of 1 - 2600 Hz to 1 - 5000 Hz in
steps of 300 Hz. The results are reported in Figure 8, where
we found out that the optimal segment is in the range 1-2900
Hz. The same procedure has also been applied to the stimuli
at 1KHz, in this case the optimal frequency range is between
1-2600 Hz. So these frequency ranges have been applied in
all the results provided in the following Section V-B.
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FIGURE 8: Accuracy vs frequency domain segment (2 KHz
stimulus) in the range 1 - 2600 Hz to 1 - 5000 Hz.

B. PERFORMANCE EVALUATION
A comprehensive set of experiments are presented in this
subsection with the aim to show the proposed method per-
formance in relation to different operational setup, frequency
stimulus and noises contamination. In particular the AWGN,
the Babble and the Street noise are evaluated. The motivation
behind their use is briefly given in the following: the AWGN
has a constant power spectral density and it can strongly
masks microphone fingerprints present in a wide range of
frequencies. The Babble noise represents an unintelligible
mixture of multiple speakers, which occurs frequently in our
daily life and it can model a real scenario in an indoor envi-
ronment. Street noise was chosen because it is a particularly
noisy model and it can be used to represent an outdoor envi-
ronment. The three different noises have been added digitally
since is preferable that the parameters under which the data
is collected is controllable to make a plausible performance
assessment for an extensive range of noise magnitudes.

1) Identification in presence of AWGN
In this section, the influence of AWGN is analyzed in term
of accuracy in classification. First of all we evaluate the
proposed CNN method in comparison with different meth-
ods: the two baselines such as SVM and KNN and the
CNN technique proposed in [33]. The optimized parameters
described in section V-A are used both for the sinusoidal
stimuli at 1 KHz and 2 KHz. Table 2 shows a comparison, in
terms of accuracy, among the above-mentioned methods. It

is evidenced that the proposed CNN method outperforms all
the other methods considering both the stimulation at 1 KHz
and 2 KHz also for a low SNR value (10 dB). The reported
results are the median values obtained among 20 repetitions
on each evaluated algorithms.

As it can be seen from Table 2, CNN performs better
than other machine learning algorithms like KNN and SVM
especially in presence of noise. The reason why CNN may
be so effective, is because the distortions introduced by the
microphone create a specific structure in the frequency do-
main representation of the audio signal. This structure is due
to the material composition of the microphone components
and to the manufacturing process, but it mostly impacts
the frequency response of the microphone. This structure
is not known a priori but the CNN is able extract such
hidden structure and to highlight it even in presence of noise.
Conventional machine learning algorithms, which operate
on the basis of different principles (i.e., identification of an
hyperplane as in SVM) do not produce the same classifi-
cation performance since the classification model is heavily
impacted by the noise.
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FIGURE 9: Impact of AWGN on the identification accuracy
with the proposed method (the entire dataset is evaluated).

TABLE 2: Accuracy (expressed in percentage) of the pro-
posed CNN in comparison with different methods.

Method 1 KHz 2 KHz SNR(dB)
SVM 93.18 94.12 20
KNN 14.54 13.84 20
CNN [33] 95.01 95.30 20
CNN (proposed) 96.00 96.80 20
SVM 38.10 40.23 10
KNN 11.40 11.90 10
CNN [33] 64.75 80.90 10
CNN (proposed) 67.27 82.75 10

In the rest of the subsection the performance results of
our proposed method have been analyzed considering a more
extended range of Signal Noise Ratio (SNR)s from -15 to
60 dB. In particular, the classification accuracy results with
the presence of AWGN for the stimuli at 1 KHz, 2 KHz
and 5KHz is shown in Figure 9. It can be seen that the
classification based on the stimulus at 2 KHz is more robust
than the classification based on the stimulus at 1 KHz. Figure
9 also shows the performance accuracy for a stimulus at
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5KHz, such behavior will be discussed later in this section. In
Figure 10 the Precision and Recall metrics for the 1 Khz and
2 KHz are reported for completeness. From Figures 9 and 10
it can be also noticed that the accuracy, precision and recall
degrade with lower values of SNRs, as expected, in alignment
with the findings in literature [25], [28] and [29].

This behavior is related to the distribution of the mi-
crophone fingerprints at different frequencies and their ro-
bustness to the noise. This empirical result is useful for a
practical deployment of an authentication system as it would
be preferable to use stimulation at higher frequencies than at
lower frequencies. On the other side, it is conceivable that
the vocoding filter in the microphone introduces a fingerprint
at certain frequency that is usually around 3400 Hz. Then,
stimuli at higher frequencies could be more related to the
presence of vocoding filter than to the fingerprint of the
microphone. While the microphone fingerprint accuracy and
the robustness against noise could be even higher than the
stimuli at lower frequencies as evidenced in Figure 9 (5
KHz stimulus), it may not be appropriate to use them in the
identification and authentication application. In fact, a change
in the vocoding filter could unpair the classification process.
Then, we found out that it is recommended to use stimulation
at frequencies below 3400 Hz where the filter response of the
phone is usually similar across mobile phones. This claim has
been also demonstrated in V-A, where optimal ranges 1-2600
Hz and 1-2900 Hz are selected for the 1 KHz and the 2 KHz
stimuli respectively.

Other representations of the audio recording respect to
FFT has been also evaluated in the following. In fact in
addition to FFT, the use of Fast Wavelet Transform (FWT)
is taken into account. The results are shown in Figure 11
where the Daubechies wavelet at two different scales: 1 and
10 (DB1 and DB10 in the Figure 11) are evidenced in com-
parison to the FFT for the 2 KHz stimulus. It is interesting to
point out that the wavelet transform is more robust than FFT
for lower values of SNR (less than 5 dB) but for higher values
of SNR, the identification accuracy is higher using the FFT
transform. While there could be some applications where an
higher accuracy at very low SNR values could be beneficial,
in most practical identification and authentication applica-
tions a very high accuracy is requested. As a consequence the
FFT transform is used in all the subsequent results. Similar
result are obtained with the stimulus at 1 KHz and they are
not presented here for brevity.

For completeness, the box plots displaying the distribution
of classification accuracy are presented in Figures 12 respec-
tively for the stimulus at 1 KHz and 2 KHz. The results are
based again on a repetition of 20 times using the proposed
CNN. The two diagrams show a small range of variation in
the data demonstrating the robustness in classification.

2) The intra-model identification analysis
In this section the classification performance of the proposed
method considering a subpart of the dataset is evaluated.
In particular 23 Samsung ACE smartphones have been se-
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FIGURE 10: Impact of AWGN on the Precision (a) and
Recall (b) using the proposed CNN.
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FIGURE 11: Comparison in terms of accuracy of different
features (wavelets DB1, DB10 and FFT) with the proposed
CNN (2 KHz stimulus).

lected to assess the intra-model identification. The result is
presented in Figure 13. It can be seen that the identification
accuracy is quite high, but it is slightly lower than the inter-
modal identification case shown in Figure 9. Such result is
expected since intra-model classification is more challenging
than inter-model identification as microphones produced by
the same manufacturer will share the same components like
filters and amplifiers. The same behavior can be appreciated
for the 2 KHz stimulus demonstrating again its superior
robustness to different scenarios.
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FIGURE 12: Box plot of the accuracy classification with
different SNR (dB) for the 1 and 2 KHz stimulus.
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FIGURE 13: Intra-model identification versus different SNR
values using the 23 Samsung ACE mobile phones.

3) Identification in presence of Babble and Street noise

Different types of noise respect to AWGN have also been
applied to the microphone recordings as already said in
Section III. In particular the Babble noise and the Street
noise, chosen from the NOIZEUS noisy speech corpus [35],
are evaluated simulating the most frequent types of noises in
the everyday life. In particular, the Babble noise represents
an unintelligible mixture of multiple speakers and the Street
noise was chosen since it is a particularly noisy model and
it can be used to represent an outdoor environment. The
complete dataset of 32 mobile phones are taken in account
for this experiment. The results are shown in Figures 14, for
increasing noise values. The x axis is in logarithmic scale
(base 10) to be aligned to the white gaussian noise, which
is also in logarithmic scale. As expected the presence of
background noises does decrease the accuracy for both cases
but without the same significant impact respect to AWGN
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FIGURE 14: Impact of Babble noise (a) and Street noise (b)
on the identification accuracy with the proposed CNN on the
dataset (32 phones).

similarly as in [33]. Again the classification performance
based on the stimulus at 2 KHz is more robust than the
stimulus at 1 KHz confirming the results obtained with the
AWGN.

4) ROC analysis for authentication
This section will be devoted to test the authentication of
a microphone. In particular, the objective is to verify that
the claimed identity of a phone is confirmed or not. A
potential scenario is the following: a phone B would claim
the identity of a phone A. Then it is fundamental to be able
to distinguish between phone A respect to any other phones
which could be used to emulate it. So for the class of the
phone A, a ROC (Receiver Operating Characteristic) curve is
created by plotting the True Positive Ratio (TPR) against the
False Positive Ratio (FPR) at various threshold settings. In
particular, for the class A, the TPR is the occurrences whose
the actual and the predicted values are represented by the
class A, divided by the number of outputs whose predicted
class is A. The FPR is the number of outputs whose actual
class is not the class A, but the predicted class is the class A,
divided by the number of outputs whose predicted class is not
A. As in the previous experiments, the results were obtained
by repeating the classification process 20 times choosing at
random the training and testing sets and then averaging the
results for TPR and FPR.

In particular we evaluate two cases: in the first one we
chose as phone A the Samsung ACE from the intra-model
dataset (with ID=3 see Table 1), in the second case, a phone
from the set of Sony Experia (ID=31). In the first case (ID=3),
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FIGURE 15: ROC curves: phone ID=3 (Samsung ACE) at
different values of SNR(dB); 1 and 2 KHz stimulus.

the result is provided in Figure 15 for the stimulus at 1 and 2
KHz. In the second case (ID=31) the results are shown in
Figures 16. In all cases, the results for different values of
SNRs at -5, 5 and 15 dB are given.

The results obtained for the authentication confirm the
outcome of the identification: the use of the stimulus at 2
KHz provides a more robust classification performance than
the stimulus at 1 KHz as the ROC curves tend to be closer to
the upper left corner.

For completeness, the confusion matrixes for the different
stimuli and at two different values of SNR (SNR=0,10 dB)
are presented hereafter. In particular, Figure 17 provides the
confusion matrix at SNR=0 dB for the 1 KHz stimulus. The
confusion matrix, where the number of classification errors is
significant, confirms the results presented in Figure 9 where
a low identification accuracy is obtained for this SNR value.
Significant improvements are obtained for SNR=10 dB and
1 KHz; the related confusion matrix is shown in Figure 18.
However the proposed method shows some difficulties in
classifying the mobile phones with ID= 24-26 of the HTC
One X and the ones from Sony Experia with ID=30-32 (i.e.,
in the heatmap the color of the related boxes is light blue).

Again the classification performance is higher for the
2KHz stimulus in comparison to the 1KHz stimulus. This is
proven by the confusion matrixes provided in Figures 19 and
Figure 20 where even for for SNR=0 dB some classes can be
more easily distinguished respect to 1 KHz stimulus.
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FIGURE 16: ROC curves: phone ID=31 (Sony Experia) at
different values of SNR(dB); 1 and 2 KHz stimulus.
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FIGURE 17: Confusion matrix on 32 smartphones; SNR=0
dB, 1KHz stimulus.

VI. CONCLUSION
In this paper, we proposed a smartphones identification and
authentication method based on built-in microphones sensor
for secure authentication. In our scheme, the sound registered
through a microphone can be exploited in such a way that a
CNN is able to learn the distinction among different smart-
phones. The proposed approach has demonstrated its validity
using non-speech audio recordings. The experimental analy-
sis demonstrated that the introduced CNN achieves desirable
accuracy regarding both identification and authentication in
various operational scenarios with different frequency stimu-
lus and in presence of different types of noises. A comparison
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FIGURE 18: Confusion matrix on 32 smartphones; SNR=10
dB, 1KHz stimulus.

FIGURE 19: Confusion matrix on 32 smartphones; SNR=0
dB, 2KHz stimulus.

with baselines methods it is also given. Future developments
will investigate the robustness of CNN against a larger set of
disturbances, like reverberation effects.
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