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ABSTRACT 21 

There is growing empirical evidence that many river basins across the U.S. Midwest have been 22 

experiencing an increase in the frequency of flood events over the most recent decades. Albeit 23 

these detected changes are important to understand what happened in our recent past, they cannot 24 

be directly extrapolated to obtain information about possible future changes in the frequency of 25 

flood events. Building on recent statistically-based attribution studies, we project seasonal 26 

changes in the frequency of flood events at 286 U.S. Geological Survey gauging stations across 27 

the U.S. Midwest using projections of precipitation, antecedent wetness conditions and 28 

temperature as drivers. The projections of the covariates are obtained from two datasets obtained 29 

by downscaling global circulation models from the Fifth Coupled Model Intercomparison Project 30 

(CMIP5). We focus on the representative concentration pathway (RCP) 8.5 and on four different 31 

flood thresholds (i.e., from more common to less frequent flood events). We find that the 32 

frequency of flood events during the 21
st
 century increases during spring at most of the analyzed 33 

gauging stations, with larger changes in the Northern Great Plains and regardless of the flood 34 

threshold value. Our findings also point to a projected increasing number of flood events during 35 

the winter, especially in the stations in the southern and western part of the domain (Iowa, 36 

Missouri, Illinois, Ohio, Indiana and Michigan). A marked change in the frequency of flood 37 

events is not projected for the summer and fall. 38 
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1 Introduction 43 

The hydrologic impacts of climate change have been the topic of a growing body of 44 

research, and have attracted significant interest from decision makers and stakeholders in terms 45 

of their projected changes and related societal and economic impacts. This awareness, together 46 

with the evidence of other natural disasters attributed to climate change (e.g., Seneviratne et al., 47 

2012), has recently spread across many countries and pushed governments to react in terms of 48 

both adaptation to and management of extreme flood events (e.g., Lavell and Oppenheimer, 49 

2012). For instance, the Government of Canada developed the Federal Floodplain Mapping 50 

Framework, which is a document intended to describe the entire process to define reliable flood 51 

risk maps and the effect that climate alterations have on them (Natural Resources Canada, 2017); 52 

the Australian Disaster Resilience Handbook 7 (AIDR, 2017) describes the main practices and 53 

activities for a proper floodplain management, focusing on the land use and development and on 54 

how climate change affects flood modeling; in the United States, four federal agencies (U.S. 55 

Geological Survey (USGS), U.S. Army Corps of Engineers, Bureau of Reclamation and National 56 

Oceanic and Atmospheric Administration) prepared a report (Brekke et al., 2009) which 57 

proposes better practices and activities for water resources management by considering the 58 

effects of global warming. 59 

Although there is still low confidence about the changes of the frequency and/or 60 

magnitude of flood events at the global scale (Seneviratne et al., 2012), these recent actions and 61 

strategies for flood risk management have been encouraged by several studies that detect 62 

statistically significant trends in flooding at the regional level. For instance, focusing on the 63 

continental United States, Mallakpour and Villarini (2015) analyzed daily streamflow records at 64 

774 USGS stream gauge stations across central United States covering the period from 1962 to 65 
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2011, and detected statistically significant increases in the frequency of flood events for the 66 

majority of the stations (see also Neri et al. (2019b)). Slater and Villarini (2016) showed that the 67 

frequency of the water level exceeding the National Weather Service's four flood level categories 68 

in 2042 water basins across the United States was subject to significant changes, with different 69 

parts of the country exhibiting spatially coherent signals of increasing or decreasing trends. 70 

Archfield et al. (2016) analyzed the frequency, duration, magnitude and volume of floods at 345 71 

streamgages across the United States, showing that certain regions present significant changes in 72 

these flood properties. For a recent review of the detected changes in flooding across the 73 

continental United States, see Villarini and Slater (2017). 74 

Even though these findings represent a key step towards our improved characterization of 75 

the changes in flood events over the past several decades, they do not provide useful information 76 

about projected changes in flood-related quantities. To address this knowledge gap, different 77 

methods have been proposed and developed, which can be classified into two broad classes: 78 

hydrological and statistical models (e.g., Chang and Chen, 2018; Eldho and Kulkarni, 2017;  79 

François et al., 2019; Giuntoli et al., 2018; Villarini et al., 2015). The former aims to predict 80 

future flood conditions by using projections of the hydrologic forcings as input to physical or 81 

conceptual equations that describe the main processes regulating the transformation of 82 

precipitation into runoff, as for instance through the use of global impact models (e.g., Dankers 83 

et al., 2014). For instance, Arnell and Gosling (2016) analyzed the effects of climate change on 84 

global flood risk by combining projections of population and of climate variables of 21 global 85 

climate models (GCMs) to force the Mac-PDM.09 hydrological model (Gosling and Arnell, 86 

2011) to obtain flood frequency curves at 0.5° resolutions. Alfieri et al. (2017) assessed global 87 

projections of the frequency and magnitude of river floods using dynamical downscaled 88 
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projections of climate variables by seven GCMs as input to the LISFLOOD hydrological model 89 

(van der Knijff et al., 2010). Lehner et al. (2006) used temperature, precipitation and water use 90 

future projections as input to the WaterGAP (Water – Global Assessment and Prognosis; Alcamo 91 

et al. 2003, Döll et al. 2003) hydrological model to analyzes changes in the magnitude and 92 

frequencies of floods and droughts in Europe at 0.5° spatial resolution. The second approach 93 

focuses on establishing statistical relationships between the hydrological drivers and discharge 94 

through the analysis of historical data, and use the projections of the most relevant covariates to 95 

project changes in discharge (e.g., Neri et al., 2019a). For instance, Villarini et al. (2015) focused 96 

on one watershed in the central United States and considered historical observations of 97 

precipitation and agricultural intensity to estimate the parameters of a statistical model; they then 98 

used the projections of these predictors to obtain the projected changes in discharge magnitude. 99 

Regardless of the selected approach, the overarching methodology involves: 1) establishing 100 

relationships (either statistical in nature or based on hydrologic models) between discharge and 101 

its drivers; 2) using projected changes in the identified drivers to obtain the projected changes in 102 

the discharge-related quantities of interest (Seneviratne et al., 2012; Villarini and Slater, 2017). 103 

The projection studies based on hydrologic models (see also Li et al. 2015; Lu et al. 104 

2018; Zheng et al. 2018) are of great importance for the assessment of the impacts that climate 105 

change and land use / land cover (LULC) can have on flood characteristics and they give a 106 

global perspective of their most relevant macro-scale patterns. However, because the outputs of 107 

these hydrological models are distributed over grid cells and not necessarily related to the 108 

specific gauge station (Giuntoli et al., 2015), their applicability loses strength and reliability for 109 

the analyses at the catchment scale (Gudmundsson et al., 2012), and it represents a limitation 110 

when specific and localized flood mitigation plans are needed. Focusing on the U.S. Midwest, 111 
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there are different studies analyzing the future characteristics of floods at specific catchments, 112 

but they either consider a single catchment (Ahiablame et al., 2017; Choi et al., 2017; Jha et al., 113 

2004; Sunde et al., 2017) or they analyze flood magnitude (Byun et al., 2019; Chien et al., 2013; 114 

Kollat et al., 2012; Schlef et al., 2018; Wobus et al., 2017). A regional study about the projected 115 

frequency of flood events at the catchment scale is still lacking: this is a particularly important 116 

research topic given the increasing trends detected in the frequency of flood events across the 117 

U.S. Midwest (e.g., Mallakpour and Villarini, 2015; Slater and Villarini 2016; Neri et al. 2019b). 118 

Moreover, given the increasing availability and length of the observed time series of streamflow 119 

and climate variables, data-driven statistical attribution (see, e.g., Neri et al., 2019b; Slater and 120 

Villarini 2017) represents a more straightforward approach to analyze projected changes in the 121 

characteristics of flood events at the catchment scale compared to the physically-based 122 

hydrological models, because these models are faster to implement, less time-consuming and less 123 

affected by model parameters uncertainties (Duethmann et al., 2015). 124 

Here we adopt a statistical framework similar to the one described in Neri et al. (2019a, 125 

2019b) by using Poisson regression to attribute changes in the frequency of flood events (i.e., the 126 

predictand) to changes in precipitation, temperature and antecedent wetness conditions (i.e., the 127 

predictors) at the seasonal scale; we then use centennial precipitation and temperature projections 128 

from two different ensembles of downscaled and bias-corrected GCMs as input to these 129 

statistical models to investigate the projected changes in the frequency of flood events. The 130 

research questions we want to answer are: how is the frequency of flood events projected to 131 

change across the U.S. Midwest during the 21
st
 century? Are the changes uniform over the 132 

region and across seasons, or are there “hotspots” that exhibit a stronger signal of change? Are 133 

the changes sensitive to the threshold values used to identify the events? 134 
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 135 

2. Data 136 

We focus on 286 USGS gauging stations located across the U.S. Midwest (the area 137 

includes Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North 138 

Dakota, Ohio, South Dakota and Wisconsin) (Figure 1). The streamflow time series of each 139 

station has at least 50 consecutive complete years (we consider a year complete if it has more 140 

than 330 daily observations) of data, and is not affected by any regulation (i.e., not classified 141 

with code “5” or “6” according to the USGS notation). We create the time series of the frequency 142 

of flood events using a peak-over-threshold (POT) approach, counting the number of events with 143 

a discharge value greater than a selected threshold during each season (winter: December-144 

February; spring: March-May; summer: June-August; fall: September-November) of every year. 145 

The flood threshold value is site-specific and selected to give 1, 2, 3, or 4 events per year on 146 

average (see also Neri et al. (2019b); Mallakpour and Villarini (2015)). For instance, if at a given 147 

site we focus on two events per year on average over the 1940-2016 period (i.e., 77 years), we 148 

set a threshold so that we select the top 144 events, making sure that each event is separate by 5 149 

days plus the logarithm of the drainage area (in square miles) (Lang et al., 1999); this threshold 150 

varies from site to site, and decreases as we move from 1 to 4 events per year on average. The 151 

time series obtained using these thresholds represent the predictand for our statistical models. It 152 

is worth mentioning that the daily values are smaller than the instantaneous peak values, 153 

especially at small basins; however, given that we work with events exceeding a threshold, as 154 

long as the ratio between daily averages and instantaneous peaks is constant for a given basin, 155 

the selected flood events would be the same. 156 

 157 
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Observed precipitation and temperature records are derived from the PRISM dataset 158 

(PRISM, 2017), which provides monthly values across the entire United States at a resolution of 159 

~4km. For each gauging station, we compute the basin-averaged value of both variables for each 160 

month, and then we aggregate it at the seasonal time scale to obtain the basin-averaged seasonal 161 

precipitation and temperature time series. We focus on the period starting from 1940 to 2016. 162 

Centennial projections of precipitation and temperature are derived from two different 163 

datasets: the North America Coordinated Regional Downscaling Experiment (NA-CORDEX) 164 

(Mearns et al., 2017) and the Localized Constructed Analogs (LOCA) (Pierce et al., 2014). NA-165 

CORDEX provides outputs of regional climate models (RCMs) using boundary conditions from 166 

GCMs from the Coupled Model Intercomparison Project phase five (CMIP5) (Taylor et al., 167 

2012) archive, covering most of North America at a resolution of 0.22° and monthly. The LOCA 168 

dataset provides daily time series of climate variables across North America at a resolution of 169 

1/16
th

 of a degree obtained by means of statistically downscaling the CMIP5 GCMs. Here we 170 

focus on the historical simulations of precipitation and temperature covering the 1950-2005 171 

period, and the representative concentration pathway (RCP) 8.5 for the projections from 2006 to 172 

2100. We consider ten members of the NA-CORDEX obtained by using five GCMs providing 173 

initial and boundary conditions to five RCMs (not all the RCMs are used for each GCM). LOCA 174 

has 32 members obtained by downscaling 32 GCMs. Similar to the observations, we use the 175 

GCM outputs to compute the basin-averaged time series of seasonal precipitation and 176 

temperature. The third predictor, i.e., the antecedent wetness conditions, is defined as the 177 

accumulated precipitation during the three months prior to the analyzed season (e.g., Kam and 178 

Sheffield, 2016; Neri et al., 2019a, 2019b; L. Slater and Villarini, 2017). 179 
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We then estimate the ensemble mean for each basin-averaged driver, with each GCM 180 

member having the same weight. To correct for the biases in the ensemble mean of the LOCA 181 

and NA-CORDEX, we use the delta-change bias-correction approach (Maraun, 2016) with a 182 

modification that adjusts the variability of the historical and projected time series according to 183 

the observations. The correction of the mean is simply accomplished by shifting the time series 184 

by the difference between the average of the simulated and observed variable over 1950-2005 185 

(i.e., the historical period). The correction of the variance is performed in two steps. First we 186 

compute the difference between the shifted time series and a moving average, which allows us to 187 

estimate the variability of the time series locally; then we multiply this difference by a factor 188 

which is estimated in such a way that the standard deviation of the GCM outputs over the 189 

historical period matches the one from the observation (over the same period). Figure 2 shows an 190 

example (USGS station 07014500; Meramec River near Sullivan, Missouri) of the type of time 191 

series we create for each site and for precipitation and temperature based on observations and 192 

bias-corrected GCM outputs. 193 

 194 

3. Methodology 195 

Our methodology builds on the approach described by Neri et al. (2019b) and here we 196 

provide just a brief overview. Neri et al. (2019b) used Poisson regression to relate the occurrence 197 

of flood events to six different predictors: precipitation, antecedent wetness conditions, 198 

temperature, population density (as a proxy for urbanization) and agricultural intensity (i.e., 199 

combined harvested corn and soybean acreage). They found that precipitation (  ), wetness 200 

conditions (  ) and temperature (  ) are the most important drivers across the study region, and 201 

this is why we only consider these predictors in this study. We combine these three variables to 202 
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build four different statistical models relating the parameter of the Poisson distribution to these 203 

covariates as described in Table 1. Model   only considers precipitation (  ) as covariate; model 204 

    considers precipitation (  ) and temperature (  ); model     considers precipitation (  ) 205 

and wetness conditions (  ); model       considers all the three drivers. In this last model, 206 

which is not used for the winter season, the value of temperature changes according to the 207 

analyzed season: during spring, the temperature is the average temperature for March and April 208 

(         ), as a simple way to account for the generation of flood peaks caused by snowmelt 209 

and/or rain-on-snow processes; during summer and fall, it considers the average temperature 210 

over the summer months, as a proxy for the effects of evapotranspiration during summer and 211 

drying soils during fall. 212 

Similar to Neri et al. (2019a), we fit the four models over the observational period from 213 

1940 to 2016 (pending data availability) to each station, season and flood threshold value, and 214 

perform the model selection using the Bayesian Information Criterion (Schwarz, 1978). We 215 

estimate the  and  parameters (Table 1) for each of the best models over the 1940-2005 216 

period and we evaluate their skill in reproducing the observed time series by computing the 217 

correlation coefficient between the observed and simulated flood count time series. We then use 218 

the NA-CORDEX/LOCA outputs as inputs to these Poisson regression models to describe the 219 

projected changes in flood counts, in a similar way as Neri et al. (2019a) used decadal 220 

predictions as input to the models to investigate the future conditions of the frequency of flood 221 

events with a lead time up to ten years. 222 

To quantify the temporal changes in the frequency of flood events during the historical 223 

and projection period, we use Poisson regression with time as predictor, and focus on the sign 224 

and significance (i.e., 5% and 10% level) of the slope coefficient. We show these values only if 225 
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the time series has at least five years of non-zero flood counts. Furthermore, we compute the 226 

difference between the average number of flood events during three consecutive periods of the 227 

21
st
 century (i.e., 2005-2035, 2036-2069, 2070-2099) and the historical period (i.e., 1976-2005) 228 

to quantify the magnitude of these changes. 229 

 230 

4. Results and Discussion 231 

In this section we focus on the results based on a threshold that gives two event per year 232 

on average because the results for the other threshold values are similar (see Supplemental 233 

Material). 234 

Figure 3 shows the best models that were selected at every gauging station and the 235 

corresponding correlation coefficient between observed and predicted flood counts time series 236 

for each season and for a flood threshold value that gives two peaks per year on average. The 237 

same results for all the flood threshold values are shown in Figure S1 and Figure S2 of the 238 

supplemental material. The   and     models are selected at most of the stations, suggesting 239 

that precipitation and antecedent wetness conditions are the two most important drivers of the 240 

frequency of flood events. The       model is selected only in the northern stations during 241 

spring, where temperature and antecedent wetness conditions are crucial for snow-related flood-242 

generating processes. Lastly, the     model is the best model only in few stations, with no 243 

significant consistency in space or season. These results are consistent with previous similar 244 

analyses (Neri et al., 2019a, 2019b; Slater and Villarini, 2016, 2017), which show that the 245 

frequency of flood events during spring at stations in the Northern Great Plains is driven by a 246 

combination of temperature and antecedent wetness conditions and that precipitation is an 247 

important driver, particularly during summer. Because across much of the study area the only 248 
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drivers responsible for the frequency of flood events are precipitation and antecedent wetness 249 

conditions, it is clear that changes in this flood hazard during the 21
st
 century are mostly driven 250 

by projected changes in precipitation rather than temperature. The skill of the Poisson regression 251 

statistical models in reproducing the observed flood counts is overall good, with an average 252 

correlation coefficient among the different seasons of 0.56 (Figure 3) (consult Neri et al. (2019b) 253 

for a more detailed evaluation of the model performance). 254 

The trends of the seasonal frequency of flood events during the historical period for the 255 

flood threshold value that gives two peaks per year on average and according to the observations 256 

and to the median of the Poisson regression model when using observations, LOCA and NA-257 

CORDEX datasets are shown in Figure 4 (Figure S3 of the supplemental material shows the 258 

same results also for the other threshold values). In general, the Poisson regression models using 259 

the observed precipitation and temperature as predictors are able to well reproduce the trends in 260 

the observed number of flood events (compare the first and second columns of Figure 4). These 261 

trends in the frequency of flood events are consistent with those obtained in Mallakpour and 262 

Villarini (2015) and Neri et al. (2019b) with respect to a comparable historical period. Moreover, 263 

these findings further support what mentioned in the introduction, i.e., that it is the frequency of 264 

flood events, rather than its magnitude (Villarini et al., 2011; Mallakpour and Villarini, 2015), 265 

which presents significant trends. The statistical models forced with the NA-CORDEX well 266 

reproduce the observed positive and negative trends during all seasons except for winter, where 267 

many trends in central Indiana, northern Illinois and southern Michigan are different. The LOCA 268 

dataset also performs comparatively well, even though it presents some trends which are 269 

discordant with the observations. The two datasets behave similarly with respect to the spring 270 

season, where most of the gauging stations present positive trends in agreement with the 271 
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observations. These findings are similar also for the trends obtained using a flood threshold value 272 

that gives 3 and 4 peaks per year on average (Figure S3 of the supplemental material). The 273 

acceptable skill of the statistical models in reproducing the observed frequency of flood events, 274 

when forced with climate observations and the ensemble of the historical runs by the GCMs, 275 

enables us to use the same models to project future changes in the frequency of flood events up 276 

to the end of the 21
st
 century. 277 

Figure 5 shows the trends in the frequency of flood events over the 2006-2100 period 278 

based on the LOCA and NA-CORDEX dataset. These results suggest that flood events are 279 

projected to become more frequent during the 21
st
 century across much of the U.S. Midwest 280 

during winter and spring. The fall season presents, instead, spatially consistent negative trends. 281 

With respect to the summer season, no reliable conclusions can be drawn because the two 282 

datasets provide discordant results. To quantify the magnitude of these changes, Figure 6 shows 283 

the difference between the average flood counts during three different future periods (i.e., 2006-284 

2035, 2036-2069 and 2070-2099) compared to the last 30 years of the historical period (1976-285 

2005) according to the LOCA and NA-CORDEX ensemble. At a very general level, we project a 286 

considerable increase in the frequency of flood events during winter and spring, with larger 287 

changes as we move towards the end of the 21
st
 century. In particular, the largest increases in the 288 

frequency of flood events occur in the stations located in the northern Great Plains during spring, 289 

suggesting that projected precipitation during the wintertime and temperature play an important 290 

role in driving the future changes of the frequency of flood events in the context of snowmelt and 291 

potential changes in the seasonality of precipitation. The winter season is subject to a 292 

considerable increase in flood events, especially at stations located in the south-eastern part of 293 

the domain that experience flooding associated with atmospheric rivers and extratropical 294 
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cyclones (e.g., Lavers and Villarini, 2013; Nakamura et al., 2013; Nayak and Villarini, 2017). 295 

With regards to summer and fall, the results obtained using LOCA and NA-CORDEX (Figure 6) 296 

suggest that there is not a strong change (at least compared to spring) in terms of flood counts 297 

during the 21
st
 century. These last findings appear to be in contrast with many studies showing 298 

that precipitation is projected to slightly decrease during summer and fall in the U.S. Midwest 299 

(i.e. Byun and Hamlet, 2018; Swain and Hayhoe, 2015), which should lead to a reduction in the  300 

number of flood events. One way to reconcile these discrepancies is by considering that the 301 

projected decrease in precipitation is small during these seasons (see also Winkler et al. (2012)); 302 

therefore, at the stations where the model with precipitation as the only predictor is selected, 303 

there are minor or no changes in the frequency of flood events, leading to a muted response. 304 

Moreover, some of the positive trends can be due to the possible increase in precipitation 305 

towards the end of the 21
st
 century which leads to an increase in the frequency of these events, 306 

because those are the years that exert a significant leverage in terms of detected trends. 307 

It is worth pointing out that these results are based on the assumption that the regression 308 

coefficients of the drivers of the best models estimated on the 1940-2005 period are the same 309 

also for the 2006-2100 projection period. To gain insights with respect to the validity of this 310 

assumption, we use a splitting-sample validation approach: we calibrate the statistical models on 311 

the 1940-1977 period and then we estimate the median of the Poisson distribution on the 1978-312 

2016 period (i.e., the validation period). Figure S7 of the supplemental material shows the 313 

correlation coefficient between the observed and modeled flood counts over the validation 314 

period. The models present good skill in reproducing the interannual variability of flood counts, 315 

suggesting that the parameters of the best drivers obtained during the calibration period are also 316 

representative of the rainfall-runoff processes of the following period. Even though this test 317 
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provides encouraging results regarding the reliability and performance of our statistical models 318 

over the observational period, it does not ensure the same robustness with respect to the 319 

projection period, because we do not know how the future hydrological system is going to 320 

behave. The uncertainties associated with the above-mentioned assumption represent therefore a 321 

limitation of our approach, which is however “an attribute of information and therefore does not 322 

mean lack of knowledge” (Blöschl and Montanari, 2010). We took these uncertainties into 323 

consideration in our results given that we developed probabilistic models rather than 324 

deterministic outputs. 325 

 326 

5. Conclusions 327 

In this study we used a statistical approach to investigate the projected changes in the 328 

seasonal frequency of flood events during the 21
st
 century at 286 USGS station across the U.S. 329 

Midwest. The results are based on downscaled and bias corrected GCM outputs and the RCP 8.5. 330 

The selection of the flood events is carried out through a peak-over-threshold approach and 331 

considering four different flood threshold values. Compared to previous studies, here we provide 332 

a regional perspective of the projected changes in the frequency of flood events. The main 333 

findings of this study can be summarized as follows: 334 

 The trends over the historical period (1950-2005) based on the NA-CORDEX reproduce 335 

reasonably well those from the observations, especially during spring. The LOCA dataset 336 

also performs well, with the exception of the summer season where most of the trends 337 

have opposite signs with respect to the observations. 338 

 Our findings suggest that the spring season is projected to experience a substantial 339 

increase in the frequency of flood events during the 21
st
 century across much of the study 340 
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region, and in particular across the Northern Great Plains. The average number of flood 341 

events is also projected to increase in the winter, especially in the south-eastern part of 342 

the domain which is within the storm track of the extratropical cyclones. Despite summer 343 

and fall present statistically significant trends, the change of the average number of flood 344 

counts is negligible for most of the gauging stations. 345 

 It is worth reminding that these results are based on the extrapolation of the modeling 346 

results for the historical period to the future; this means that we assumed that the 347 

relationship between the response variable and the predictor(s) is expected to remain 348 

constant. Moreover, we also assumed that the performance of the GCMs for the historical 349 

period is a reflection of their performance in the future.  350 

 This framework provides a simple and rapid methodology to assess projected changes in 351 

flood events, which can be further updated and improved with new and higher resolution 352 

GCMs (e.g., Haarsma et al., 2016). 353 
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Table 1 – List of the four statistical models used to relate the seasonal occurrence of flood events 363 

to the three drivers: precipitation (  ), wetness conditions (  ) and temperature (  ). 364 

Model Name Dependence 

                

                       

                       

      
                               

                              

 365 

  366 
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 367 

Figure 1 - Location of the 286 USGS gauging stations (white circles) and the relative upstream 368 

drainage area (light gray polygons). 369 

  370 
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 371 

 372 

Figure 2 – Observed, historical and projected basin-averaged bias-corrected precipitation (left 373 

panels) and temperature (right panels) seasonal time series for USGS station 07014500 374 

(Meramec River near Sullivan, Missouri). The black line represents the observed values, while 375 

the red and blue solid (dotted) lines the values based on bias corrected (raw) LOCA and NA-376 

CORDEX, respectively.  377 

  378 
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 379 

Figure 3 – Map showing the selected best models (four panels on the left) and their skill (four 380 

panels on the right) for each season (rows) and for a flood threshold value that gives two peaks 381 

per year on average. The blue, brown, orange and yellow circles on the left refer to the  ,    , 382 

   , and       models, respectively. In some stations, no model is selected largely because the 383 

observed time series does not have at least five years with a flood count value different from 384 

zero. Note that not every best model provides a predicted time series with at least five years with 385 

a flood count value different from zero, therefore no correlation coefficient can be computed. 386 

  387 
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 388 

 389 

Figure 4 – Map showing the trends of the frequency of flood events during the historical period 390 

(i.e., 1950-2005) for the observations and for the median of the Poisson regression models using 391 

observations, LOCA and NA-CORDEX. The results refer to the threshold values that gives two 392 

peaks per year on average among the observational period 1940-2016 (see Figure S3 of the 393 

supplemental material for the other flood threshold values). The four columns represent the four 394 

considered datasets, and the rows the four seasons. In each panel, the dark red and dark blue (red 395 

and blue) circles indicate the positive and negative trends significant at the 5% (10%) 396 

significance level, respectively. The trend in some stations is not estimated because the predicted 397 

time series does not have at least five years with a flood count value different from zero.  398 
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  399 

Figure 5 – Map showing the projected trends (2006-2100) in the frequency of flood events based 400 

on the LOCA (left column) and NA-CORDEX (right column) for the four seasons and for a 401 

flood threshold value that gives two peaks per year on average. The symbol notation is the same 402 

as in Figure 4. The trend in some stations is not estimated because the predicted time series does 403 

not have at least five years with a flood count value different from zero. The same results relative 404 

to the other flood thresholds are presented in Figure S4 of the supplemental material. 405 

 406 

  407 



23 

 

 408 

 409 

Figure 6 – Map showing the difference between the average value of flood counts during three 410 

spans (i.e., 2006:2035, 2036:2069, 2070:2099) of the projection period and the average value of 411 

flood counts during the last 30 years of the historical period (i.e., 1976:2005) using the LOCA 412 

(left set of panels) and NA-CORDEX (right set of panels) dataset. The results refer to the 413 

threshold values that give, two peaks per year on average among the observational period 1940-414 

2016. For each set of panels, the three columns represent the three considered spans, and the 415 

rows the four seasons. For the other flood threshold values see Figure S5 and Figure S6 of the 416 

supplemental material for the LOCA  and NA-CORDEX datasets, respectively.  417 
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ABSTRACT 21 

There is growing empirical evidence that many river basins across the U.S. Midwest have been 22 

experiencing an increase in the frequency of flood events over the most recent decades. Albeit 23 

these detected changes are important to understand what happened in our recent past, they cannot 24 

be directly extrapolated to obtain information about possible future changes in the frequency of 25 

flood events. Building on recent statistically-based attribution studies, we project seasonal 26 

changes in the frequency of flood events at 286 U.S. Geological Survey gauging stations across 27 

the U.S. Midwest using projections of precipitation, antecedent wetness conditions and 28 

temperature as drivers. The projections of the covariates are obtained from two datasets obtained 29 

by downscaling global circulation models from the Fifth Coupled Model Intercomparison Project 30 

(CMIP5). We focus on the representative concentration pathway (RCP) 8.5 and on four different 31 

flood thresholds (i.e., from more common to less frequent flood events). We find that the 32 

frequency of flood events during the 21
st
 century increases during spring at most of the analyzed 33 

gauging stations, with larger changes in the Northern Great Plains and regardless of the flood 34 

threshold value. Our findings also point to a projected increasing number of flood events during 35 

the winter, especially in the stations in the southern and western part of the domain (Iowa, 36 

Missouri, Illinois, Ohio, Indiana and Michigan). A marked change in the frequency of flood 37 

events is not projected for the summer and fall. 38 

 39 

Keywords: frequency of flood events; projections; statistical modeling; CORDEX; LOCA; 40 

CMIP5 41 
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1 Introduction 43 

The hydrologic impacts of climate change have been the topic of a growing body of 44 

research, and have attracted significant interest from decision makers and stakeholders in terms 45 

of their projected changes and related societal and economic impacts. This awareness, together 46 

with the evidence of other natural disasters attributed to climate change (e.g., Seneviratne et al., 47 

2012), has recently spread across many countries and pushed governments to react in terms of 48 

both adaptation to and management of extreme flood events (e.g., Lavell and Oppenheimer, 49 

2012). For instance, the Government of Canada developed the Federal Floodplain Mapping 50 

Framework, which is a document intended to describe the entire process to define reliable flood 51 

risk maps and the effect that climate alterations have on them (Natural Resources Canada, 2017); 52 

the Australian Disaster Resilience Handbook 7 (AIDR, 2017) describes the main practices and 53 

activities for a proper floodplain management, focusing on the land use and development and on 54 

how climate change affects flood modeling; in the United States, four federal agencies (U.S. 55 

Geological Survey (USGS), U.S. Army Corps of Engineers, Bureau of Reclamation and National 56 

Oceanic and Atmospheric Administration) prepared a report (Brekke et al., 2009) which 57 

proposes better practices and activities for water resources management by considering the 58 

effects of global warming. 59 

Although there is still low confidence about the changes of the frequency and/or 60 

magnitude of flood events at the global scale (Seneviratne et al., 2012), these recent actions and 61 

strategies for flood risk management have been encouraged by several studies that detect 62 

statistically significant trends in flooding at the regional level. For instance, focusing on the 63 

continental United States, Mallakpour and Villarini (2015) analyzed daily streamflow records at 64 

774 USGS stream gauge stations across central United States covering the period from 1962 to 65 
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2011, and detected statistically significant increases in the frequency of flood events for the 66 

majority of the stations (see also Neri et al. (2019b)). Slater and Villarini (2016) showed that the 67 

frequency of the water level exceeding the National Weather Service's four flood level categories 68 

in 2042 water basins across the United States was subject to significant changes, with different 69 

parts of the country exhibiting spatially coherent signals of increasing or decreasing trends. 70 

Archfield et al. (2016) analyzed the frequency, duration, magnitude and volume of floods at 345 71 

streamgages across the United States, showing that certain regions present significant changes in 72 

these flood properties. For a recent review of the detected changes in flooding across the 73 

continental United States, see Villarini and Slater (2017). 74 

Even though these findings represent a key step towards our improved characterization of 75 

the changes in flood events over the past several decades, they do not provide useful information 76 

about projected changes in flood-related quantities. To address this knowledge gap, different 77 

methods have been proposed and developed, which can be classified into two broad classes: 78 

hydrological and statistical models (e.g., Chang and Chen, 2018; Eldho and Kulkarni, 2017;  79 

François et al., 2019; Giuntoli et al., 2018; Villarini et al., 2015). The former aims to predict 80 

future flood conditions by using projections of the hydrologic forcings as input to physical or 81 

conceptual equations that describe the main processes regulating the transformation of 82 

precipitation into runoff, as for instance through the use of global impact models (e.g., Dankers 83 

et al., 2014). For instance, Arnell and Gosling (2016) analyzed the effects of climate change on 84 

global flood risk by combining projections of population and of climate variables of 21 global 85 

climate models (GCMs) to force the Mac-PDM.09 hydrological model (Gosling and Arnell, 86 

2011) to obtain flood frequency curves at 0.5° resolutions. Alfieri et al. (2017) assessed global 87 

projections of the frequency and magnitude of river floods using dynamical downscaled 88 
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projections of climate variables by seven GCMs as input to the LISFLOOD hydrological model 89 

(van der Knijff et al., 2010). Lehner et al. (2006) used temperature, precipitation and water use 90 

future projections as input to the WaterGAP (Water – Global Assessment and Prognosis; Alcamo 91 

et al. 2003, Döll et al. 2003) hydrological model to analyzes changes in the magnitude and 92 

frequencies of floods and droughts in Europe at 0.5° spatial resolution. The second approach 93 

focuses on establishing statistical relationships between the hydrological drivers and discharge 94 

through the analysis of historical data, and use the projections of the most relevant covariates to 95 

project changes in discharge (e.g., Neri et al., 2019a). For instance, Villarini et al. (2015) focused 96 

on one watershed in the central United States and considered historical observations of 97 

precipitation and agricultural intensity to estimate the parameters of a statistical model; they then 98 

used the projections of these predictors to obtain the projected changes in discharge magnitude. 99 

Regardless of the selected approach, the overarching methodology involves: 1) establishing 100 

relationships (either statistical in nature or based on hydrologic models) between discharge and 101 

its drivers; 2) using projected changes in the identified drivers to obtain the projected changes in 102 

the discharge-related quantities of interest (Seneviratne et al., 2012; Villarini and Slater, 2017). 103 

The projection studies based on hydrologic models (see also Li et al. 2015; Lu et al. 104 

2018; Zheng et al. 2018) are of great importance for the assessment of the impacts that climate 105 

change and land use / land cover (LULC) can have on flood characteristics and they give a 106 

global perspective of their most relevant macro-scale patterns. However, being because the 107 

outputs of these hydrological models are distributed over grid cells and not necessarily related to 108 

the specific gauge station (Giuntoli et al., 2015), their applicability loses strength and reliability 109 

for the analyses at the catchment scale (Gudmundsson et al., 2012), and it represents a limitation 110 

when specific and localized flood mitigation plans are needed. Focusing on the U.S. Midwest, 111 
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there are different studies analyzing the future characteristics of floods at specific catchments, 112 

but they either consider a single catchment (Ahiablame et al., 2017; Choi et al., 2017; Jha et al., 113 

2004; Schlef et al., 2018; Sunde et al., 2017) or they analyze flood magnitude (Byun et al., 2019; 114 

Chien et al., 2013; Kollat et al., 2012; Schlef et al., 2018;  Wobus et al., 2017). A regional study 115 

about the projected frequency of flood events at the catchment scale is still lacking: this is a 116 

particularly important research topic given the increasing trends detected in the frequency of 117 

flood events across the U.S. Midwest (e.g., Mallakpour and Villarini, 2015; Slater and Villarini 118 

2016; Neri et al. 2019b). Moreover, given the increasing availability and length of the observed 119 

time series of streamflow and climate variables, data-driven statistical attribution (see, e.g., Neri 120 

et al., 2019b; Slater and Villarini 2017) represents a more straightforward approach to analyze 121 

projected changes in the characteristics of flood events at the catchment scale compared to the 122 

physically-based hydrological models, because these models are faster to implement, less time-123 

consuming and less affected by model parameters uncertainties (Duethmann et al., 2015). 124 

Here we adopt a statistical framework similar to the one described in Neri et al. (2019a, 125 

2019b) by using Poisson regression to attribute changes in the frequency of flood events (i.e., the 126 

predictand) to changes in precipitation, temperature and antecedent wetness conditions (i.e., the 127 

predictors) at the seasonal scale; we then use centennial precipitation and temperature projections 128 

from two different ensembles of downscaled and bias-corrected GCMs as input to these 129 

statistical models to investigate the projected changes in the frequency of flood events. The 130 

research questions we want to answer are: how is the frequency of flood events projected to 131 

change across the U.S. Midwest during the 21
st
 century? Are the changes uniform over the 132 

region and across seasons, or are there “hotspots” that exhibit a stronger signal of change? Are 133 

the changes sensitive to the threshold values used to identify the events? 134 
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 135 

2. Data 136 

We focus on 286 USGS gauging stations located across the U.S. Midwest (the area 137 

includes Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North 138 

Dakota, Ohio, South Dakota and Wisconsin) (Figure 1). The streamflow time series of each 139 

station has at least 50 consecutive complete years (we consider a year complete if it has more 140 

than 330 daily observations) of data, and is not affected by any regulation (i.e., not classified 141 

with code “5” or “6” according to the USGS notation). We create the time series of the frequency 142 

of flood events using a peak-over-threshold (POT) approach, counting the number of events with 143 

a discharge value greater than a selected threshold during each season (winter: December-144 

February; spring: March-May; summer: June-August; fall: September-November) of every year. 145 

The flood threshold value is site-specific and selected to give 1, 2, 3, or 4 events per year on 146 

average (see also Neri et al. (2019b); Mallakpour and Villarini (2015)). For instance, if at a given 147 

site we focus on two events per year on average over the 1940-2016 period (i.e., 77 years), we 148 

set a threshold so that we select the top 144 events, making sure that each event is separate by 5 149 

days plus the logarithm of the drainage area (in square miles) (Lang et al., 1999); this threshold 150 

varies from site to site, and decreases as we move from 1 to 4 events per year on average. The 151 

time series obtained using these thresholds represent the predictand for our statistical models. It 152 

is worth mentioning that the daily values are smaller than the instantaneous peak values, 153 

especially at small basins; however, given that we work with events exceeding a threshold, as 154 

long as the ratio between daily averages and instantaneous peaks is constant for a given basin, 155 

the selected flood events would be the same. 156 

 157 
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Observed precipitation and temperature records are derived from the PRISM dataset 158 

(PRISM, 2017), which provides monthly values across the entire United States at a resolution of 159 

~4km. For each gauging station, we compute the basin-averaged value of both variables for each 160 

month, and then we aggregate it at the seasonal time scale to obtain the basin-averaged seasonal 161 

precipitation and temperature time series. We focus on the period starting from 1940 to 2016. 162 

Centennial projections of precipitation and temperature are derived from two different 163 

datasets: the North America Coordinated Regional Downscaling Experiment (NA-CORDEX) 164 

(Mearns et al., 2017) and the Localized Constructed Analogs (LOCA) (Pierce et al., 2014). NA-165 

CORDEX provides outputs of regional climate models (RCMs) using boundary conditions from 166 

GCMs from the Coupled Model Intercomparison Project phase five (CMIP5) (Taylor et al., 167 

2012) archive, covering most of North America at a resolution of 0.22° and monthly. The LOCA 168 

dataset provides daily time series of climate variables across North America at a resolution of 169 

1/16
th

 of a degree obtained by means of statistically downscaling the CMIP5 GCMs. Here we 170 

focus on the historical simulations of precipitation and temperature covering the 1950-2005 171 

period, and the representative concentration pathway (RCP) 8.5 for the projections from 2006 to 172 

2100. We consider ten members of the NA-CORDEX obtained by using five GCMs providing 173 

initial and boundary conditions to five RCMs (not all the RCMs are used for each GCM). LOCA 174 

has 32 members obtained by downscaling 32 GCMs. Similar to the observations, we use the 175 

GCM outputs to compute the basin-averaged time series of seasonal precipitation and 176 

temperature. The third predictor, i.e., the antecedent wetness conditions, is defined as the 177 

accumulated precipitation during the three months prior to the analyzed season (e.g., Kam and 178 

Sheffield, 2016; Neri et al., 2019a, 2019b; L. Slater and Villarini, 2017). 179 
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 We then estimate the ensemble mean for each basin-averaged driver, with each GCM 180 

member having the same weight. To correct for the biases in the ensemble mean of the LOCA 181 

and NA-CORDEX, we use the delta-change bias-correction approach (Maraun, 2016) with a 182 

modification that adjusts the variability of the historical and projected time series according to 183 

the observations. The correction of the mean is simply accomplished by shifting the time series 184 

by the difference between the average of the simulated and observed variable over 1950-2005 185 

(i.e., the historical period). The correction of the variance is performed in two steps. First we 186 

compute the difference between the shifted time series and a moving average, which allows us to 187 

estimate the variability of the time series locally; then we multiply this difference by a factor 188 

which is estimated in such a way that the standard deviation of the GCM outputs over the 189 

historical period matches the one from the observation (over the same period). Figure 2 shows an 190 

example (USGS station 07014500; Meramec River near Sullivan, Missouri) of the type of time 191 

series we create for each site and for precipitation and temperature based on observations and 192 

bias-corrected GCM outputs. 193 

 194 

3. Methodology 195 

Our methodology builds on the approach described by Neri et al. (2019a, 2019b) and here 196 

we provide just a brief overview. Neri et al. (2019a, 2019b) used Poisson regression to relate the 197 

occurrence of flood events to six different predictors: precipitation, antecedent wetness 198 

conditions, temperature, population density (as a proxy for urbanization) and agricultural 199 

intensity (i.e., combined harvested corn and soybean acreage). They found that precipitation 200 

(  ), wetness conditions (  ) and temperature (  ) are the most important drivers across the 201 

study region, and this is why we only consider these predictors in this study. We combine these 202 



10 

 

three variables to build four different statistical models relating the parameter of the Poisson 203 

distribution to these covariates as described in Table 1. Model   only considers precipitation 204 

(  ) as covariate; model     considers precipitation (  ) and temperature (  ); model     205 

considers precipitation (  ) and wetness conditions (  ); model       considers all the three 206 

drivers. In this last model, which is not used for the winter season, the value of temperature 207 

changes according to the analyzed season: during spring, the temperature is the average 208 

temperature for March and April (         ), as a simple way to account for the generation of 209 

flood peaks caused by snowmelt and/or rain-on-snow processes; during summer and fall, it 210 

considers the average temperature over the summer months, as a proxy for the effects of 211 

evapotranspiration during summer and drying soils during fall. 212 

Similar to Neri et al. (2019a), we fit the four models over the observational period from 213 

1940 to 2016 (pending data availability) to each station, season and flood threshold value, and 214 

perform the model selection using the Bayesian Information Criterion (Schwarz, 1978). We 215 

estimate the  and  parameters (Table 1) for each of the best models over the 1940-2005 216 

period and we evaluate their skill in reproducing the observed time series by computing the 217 

correlation coefficient between the observed and simulated flood count time series. We then use 218 

the NA-CORDEX/LOCA outputs as inputs to these Poisson regression models to describe the 219 

projected changes in flood counts, in a similar way as Neri et al. (2019a) used decadal 220 

predictions as input to the models to investigate the future conditions of the frequency of flood 221 

events with a lead time up to ten years. 222 

To quantify the temporal changes in the frequency of flood events during the historical 223 

and projection period, we use Poisson regression with time as predictor, and focus on the sign 224 

and significance (i.e., 5% and 10% level) of the slope coefficient. We show these values only if 225 
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the time series has at least five years of non-zero flood counts. Furthermore, we compute the 226 

difference between the average number of flood events during three consecutive periods of the 227 

21
st
 century (i.e., 2005-2035, 2036-2069, 2070-2099) and the historical period (i.e., 1976-2005) 228 

to quantify the magnitude of these changes. 229 

 230 

4. Results and Discussion 231 

In this section we focus on the results based on a threshold that gives two event per year 232 

on average because the results for the other threshold values are similar (see Supplemental 233 

Material). 234 

Figure 3 shows the best models that were selected at every gauging station and the 235 

corresponding correlation coefficient between observed and predicted flood counts time series 236 

for each season and for a flood threshold value that gives two peaks per year on average. The 237 

same results for all the flood threshold values are shown in Figure S1 and Figure S2 of the 238 

supplemental material. The   and     models are selected at most of the stations, suggesting 239 

that precipitation and antecedent wetness conditions are the two most important drivers of the 240 

frequency of flood events. The       model is selected only in the northern stations during 241 

spring, where temperature and antecedent wetness conditions are crucial for snow-related flood-242 

generating processes. Lastly, the     model is the best model only in few stations, with no 243 

significant consistency in space or season. These results are consistent with previous similar 244 

analyses (Neri et al., 2019a, 2019b; Slater and Villarini, 2016, 2017), which show that the 245 

frequency of flood events during spring at stations in the Northern Great Plains is driven by a 246 

combination of temperature and antecedent wetness conditions and that precipitation is an 247 

important driver, particularly during summer. Because across much of the study area the only 248 
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drivers responsible for the frequency of flood events are precipitation and antecedent wetness 249 

conditions, it is clear that changes in this flood hazard during the 21
st
 century are mostly driven 250 

by projected changes in precipitation rather than temperature. The skill of the Poisson regression 251 

statistical models in reproducing the observed flood counts is overall good, with an average 252 

correlation coefficient among the different seasons of 0.56 (Figure 3) (consult Neri et al. (2019b) 253 

for a more detailed evaluation of the model performance). 254 

The trends of the seasonal frequency of flood events during the historical period for the 255 

flood threshold value that gives two peaks per year on average and according to the observations 256 

and to the median of the Poisson regression model when using observations, LOCA and NA-257 

CORDEX datasets are shown in Figure 4 (Figure S3 of the supplemental material shows the 258 

same results also for the other threshold values). In general, the Poisson regression models using 259 

the observed precipitation and temperature as predictors are able to well reproduce the trends in 260 

the observed number of flood events (compare the first and second columns of Figure 4). These 261 

trends in the frequency of flood events are consistent with those obtained in Mallakpour and 262 

Villarini (2015) and Neri et al. (2019b) with respect to a comparable historical period. Moreover, 263 

these findings further support what mentioned in the introduction, i.e., that it is the frequency of 264 

flood events, rather than its magnitude (Villarini et al., 2011; Mallakpour and Villarini, 2015), 265 

which presents significant trends. The statistical models forced with the NA-CORDEX well 266 

reproduce the observed positive and negative trends during all seasons except for winter, where 267 

many trends in central Indiana, northern Illinois and southern Michigan are different. The LOCA 268 

dataset also performs comparatively well, even though it presents some trends which are 269 

discordant with the observations. The two datasets behave similarly with respect to the spring 270 

season, where most of the gauging stations present positive trends in agreement with the 271 
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observations. These findings are similar also for the trends obtained using a flood threshold value 272 

that gives 3 and 4 peaks per year on average (Figure S3 of the supplemental material). The 273 

acceptable skill of the statistical models in reproducing the observed frequency of flood events, 274 

when forced with climate observations and the ensemble of the historical runs by the GCMs, 275 

enables us to use the same models to project future changes in the frequency of flood events up 276 

to the end of the 21
st
 century. 277 

Figure 5 shows the trends in the frequency of flood events over the 2006-2100 period 278 

based on the LOCA and NA-CORDEX dataset. These results suggest that flood events are 279 

projected to become more frequent during the 21
st
 century across much of the U.S. Midwest 280 

during winter and spring. The fall season presents, instead, spatially consistent negative trends. 281 

With respect to the summer season, no reliable conclusions can be drawn because the two 282 

datasets provide discordant results. To quantify the magnitude of these changes, Figure 6 shows 283 

the difference between the average flood counts during three different future periods (i.e., 2006-284 

2035, 2036-2069 and 2070-2099) compared to the last 30 years of the historical period (1976-285 

2005) according to the LOCA and NA-CORDEX ensemble. At a very general level, we project a 286 

considerable increase in the frequency of flood events during winter and spring, with larger 287 

changes as we move towards the end of the 21
st
 century. In particular, the largest increases in the 288 

frequency of flood events occur in the stations located in the northern Great Plains during spring, 289 

suggesting that projected precipitation during the wintertime and temperature play an important 290 

role in driving the future changes of the frequency of flood events in the context of snowmelt and 291 

potential changes in the seasonality of precipitation. The winter season is subject to a 292 

considerable increase in flood events, especially at stations located in the south-eastern part of 293 

the domain that experience flooding associated with atmospheric rivers and extratropical 294 
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cyclones (e.g., Lavers and Villarini, 2013; Nakamura et al., 2013; Nayak and Villarini, 2017). 295 

With regards to summer and fall, the results obtained using LOCA and NA-CORDEX (Figure 6) 296 

suggest that there is not a strong change (at least compared to spring) in terms of flood counts 297 

during the 21
st
 century. These last findings appear to be in contrast with many studies showing 298 

that precipitation is projected to slightly decrease during summer and fall in the U.S. Midwest 299 

(i.e. Byun and Hamlet, 2018; Swain and Hayhoe, 2015), which should lead to a reduction in the  300 

number of flood events. One way to reconcile these discrepancies is by considering that the 301 

projected decrease in precipitation is small during these seasons (see also Winkler et al. (2012)); 302 

therefore, at the stations where the model with precipitation as the only predictor is selected, 303 

there are minor or no changes in the frequency of flood events, leading to a muted response. 304 

Moreover, some of the positive trends can be due to the possible increase in precipitation 305 

towards the end of the 21
st
 century which leads to an increase in the frequency of these events, 306 

because those are the years that exert a significant leverage in terms of detected trends.; with that 307 

said, we still expect years with more events alternating to more quiet ones. 308 

It is worth pointing out that these results are based on the assumption that the regression 309 

coefficients of the drivers of the best models estimated on the 1940-2005 period are the same 310 

also for the 2006-2100 projection period. To gain insights with respect to the validity of this 311 

assumption, we use a splitting-sample validation approach: we calibrate the statistical models on 312 

the 1940-1977 period and then we estimate the median of the Poisson distribution on the 1978-313 

2016 period (i.e., the validation period). Figure S7 of the supplemental material shows the 314 

correlation coefficient between the observed and modeled flood counts over the validation 315 

period. The models present good skill in reproducing the interannual variability of flood counts, 316 

suggesting that the parameters of the best drivers obtained during the calibration period are also 317 
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representative of the rainfall-runoff processes of the following period. Even though this test 318 

provides encouraging results regarding the reliability and performance of our statistical models 319 

over the observational period, it does not ensure the same robustness with respect to the 320 

projection period, because we do not know how the future hydrological system is going to 321 

behave. The uncertainties associated with the above-mentioned assumption represent therefore a 322 

limitation of our approach, which is however “an attribute of information and therefore does not 323 

mean lack of knowledge” (Blöschl and Montanari, 2010). We took these uncertainties into 324 

consideration in our results given that we developed probabilistic models rather than 325 

deterministic outputs. 326 

 327 

5. Conclusions 328 

In this study we used a statistical approach to investigate the projected changes in the 329 

seasonal frequency of flood events during the 21
st
 century at 286 USGS station across the U.S. 330 

Midwest. The results are based on downscaled and bias corrected GCM outputs and the RCP 8.5. 331 

The selection of the flood events is carried out through a peak-over-threshold approach and 332 

considering four different flood threshold values. Compared to previous studies, here we provide 333 

a regional perspective of the projected changes in the frequency of flood events. The main 334 

findings of this study can be summarized as follows: 335 

 The trends over the historical period (1950-2005) based on the NA-CORDEX reproduce 336 

reasonably well those from the observations, especially during spring. The LOCA dataset 337 

also performs well, with the exception of the summer season where most of the trends 338 

have opposite signs with respect to the observations. 339 
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 Our findings suggest that the spring season is projected to experience a substantial 340 

increase in the frequency of flood events during the 21
st
 century across much of the study 341 

region, and in particular across the Northern Great Plains. The average number of flood 342 

events is also projected to increase in the winter, especially in the south-eastern part of 343 

the domain which is within the storm track of the extratropical cyclones. Despite summer 344 

and fall present statistically significant trends, the change of the average number of flood 345 

counts is negligible for most of the gauging stations. 346 

 It is worth reminding that these results are based on the extrapolation of the modeling 347 

results for the historical period to the future; this means that we assumed that the 348 

relationship between the response variable and the predictor(s) is expected to remain 349 

constant. Moreover, we also assumed that the performance of the GCMs for the historical 350 

period is a reflection of their performance in the future.  351 

 This framework provides a simple and rapid methodology to assess projected changes in 352 

flood events, which can be further updated and improved with new and higher resolution 353 

GCMs (e.g., Haarsma et al., 2016). 354 
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Table 1 – List of the four statistical models used to relate the seasonal occurrence of flood events 364 

to the three drivers: precipitation (  ), wetness conditions (  ) and temperature (  ). 365 

Model Name Dependence 

                

                       

                       

      
                               

                              

 366 

  367 
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 368 

Figure 1 - Location of the 286 USGS gauging stations (white circles) and the relative upstream 369 

drainage area (light gray polygons). 370 

  371 
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 372 

 373 

Figure 2 – Observed, historical and projected basin-averaged bias-corrected precipitation (left 374 

panels) and temperature (right panels) seasonal time series for USGS station 07014500 375 

(Meramec River near Sullivan, Missouri). The black line represents the observed values, while 376 

the red and blue solid (dotted) lines the values based on bias corrected (raw) LOCA and NA-377 

CORDEX, respectively.  378 

  379 
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 380 

Figure 3 – Map showing the selected best models (four panels on the left) and their skill (four 381 

panels on the right) for each season (rows) and for a flood threshold value that gives two peaks 382 

per year on average. The blue, brown, orange and yellow circles on the left refer to the  ,    , 383 

   , and       models, respectively. In some stations, no model is selected largely because the 384 

observed time series does not have at least five years with a flood count value different from 385 

zero. Note that not every best model provides a predicted time series with at least five years with 386 

a flood count value different from zero, therefore no correlation coefficient can be computed. 387 

  388 
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 391 

Figure 4 – Map showing the trends of the frequency of flood events during the historical period 392 

(i.e., 1950-2005) for the observations and for the median of the Poisson regression models using 393 

observations, LOCA and NA-CORDEX. The results refer to the threshold values that gives two 394 

peaks per year on average among the observational period 1940-2016 (see Figure S3 of the 395 

supplemental material for the other flood threshold values). The four columns represent the four 396 

considered datasets, and the rows the four seasons. In each panel, the dark red and dark blue (red 397 

and blue) circles indicate the positive and negative trends significant at the 5% (10%) 398 

significance level, respectively. The trend in some stations is not estimated because the predicted 399 

time series does not have at least five years with a flood count value different from zero.  400 
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  401 

Figure 5 – Map showing the projected trends (2006-2100) in the frequency of flood events based 402 

on the LOCA (left column) and NA-CORDEX (right column) for the four seasons and for a 403 

flood threshold value that gives two peaks per year on average. The symbol notation is the same 404 

as in Figure 4. The trend in some stations is not estimated because the predicted time series does 405 

not have at least five years with a flood count value different from zero. The same results relative 406 

to the other flood thresholds are presented in Figure S4 of the supplemental material. 407 

 408 

  409 
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 410 

 411 

Figure 6 – Map showing the difference between the average value of flood counts during three 412 

spans (i.e., 2006:2035, 2036:2069, 2070:2099) of the projection period and the average value of 413 

flood counts during the last 30 years of the historical period (i.e., 1976:2005) using the LOCA 414 

(left set of panels) and NA-CORDEX (right set of panels) dataset. The results refer to the 415 

threshold values that give, two peaks per year on average among the observational period 1940-416 

2016. For each set of panels, the three columns represent the three considered spans, and the 417 

rows the four seasons. For the other flood threshold values see Figure S5 and Figure S6 of the 418 

supplemental material for the LOCA  and NA-CORDEX datasets, respectively.  419 
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Response to the Editor’s comments on:  

Statistically-based projected changes in the frequency of flood events across 

the U.S. Midwest 

by 

ANDREA NERI, GABRIELE VILLARINI, AND FRANCESCO NAPOLITANO 

 
(Note: In the text below we have copied the Editor’s comments verbatim.) 

 
 

General Comments: 

 

Dear authors, 

The two reviewers of the original version of your article have now sent their reports for 

the revised version of the manuscript. As you may see below, both reviewers agree that 

your article improved in several ways. They both have, however, some minor to moderate 

comments and suggestions before acceptance of your article for publication in JoH. I 

would especially attract your attention on the comment from reviewer #1 that somehow 

claims that you have only partly, or poorly, address several of his/her comments and 

suggestions. I thus suggest the authors to carefully address all reviewers comments and 

suggestions, which I believe will eventually lead to improve an already very good 

manuscript. 

B.    

Response: 

We thank the Editor for handling our manuscript. We have addressed the Reviewers’ 

comments point-by-point below. Moreover, because of a error in selecting the source 

file of Figure 4, we replaced it with its correct version; this change does not 

significantly affect the results of the paper. We do believe that the review process has 

led to an improved manuscript, and we hope that it is now ready for publication.  

 

Response to the reviewers' comments
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Response to Reviewer 1’s comments on: 

Statistically-based projected changes in the frequency of flood events across 

the U.S. Midwest 

by 

ANDREA NERI, GABRIELE VILLARINI, AND FRANCESCO NAPOLITANO 

 
(Note: In the text below we have copied the Reviewer’s comments verbatim.) 

 
 

General Comments: 

I appreciate the authors' revision of the manuscript. While I think some of my original 

comments have been satisfactorily addressed, I do not think that is the case for all of 

them. My remaining comments are as follows. 

 

Response: 

We thank the Reviewer for his/her feedback and comments, which we addressed 

below point by point. 

 

 

Comment 1) 

Regarding the issue of bias correcting the GCMs; most of what is described sounds fine 

to me, but in lines 182-197 of the tracked changes manuscript, it is unclear to me whether 

the bias correction was applied to each GCM individually and then averaged? Or to the 

average across the 32 GCMs? If the former, then it seems there would still be the issue of 

smoothing out the extremes. Please clarify in the document. 

 

Response: 

Thank you for pointing this out. The bias correction was applied to the ensemble 

mean of the GCMs. In other words, we first calculated the average across the CGMs, 

and then we applied the bias-correction approach, so that we could still catch the 

variability of the climate variables. In revising the manuscript, we added some 

wording at lines 180-181 of the revised manuscript to clarify this issue. 

 

 

Comment 2) 

Regarding the phrase "with that said, we still expect years with more events alternating to 

more quiet ones". I appreciate that you explained it to me, but it did not change in the 

manuscript - and hence is likely to still be confusing to readers. I suggest to clean up 

some of the wording in your response to the comment and replace the original sentence. 

 

Response: 
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Thank you for pointing this out. In revising the manuscript, we removed that sentence 

not to confuse the reader. 

 

 

Comment 3) 

Finally, I am quite unsatisfied with the authors' response regarding appropriate literature. 

I would like to see a significant improvement in both the introduction and either 

discussion or conclusion, that goes beyond simply the addition of a few sentences. Some 

particular comments regarding this issue are below. 

 

I do not think that the literature review that was added to the introduction has been well-

considered. For example, it is true that Jha et al. (2004) model only one catchment, but 

that one catchment covers a significant number of the catchments considered in your 

study - so to state that it is part of a group a studies that focuses on "floods at single 

specific catchments" is not really a fair assessment. I could make a similar comment for 

Schlef et al. (2018), which actually builds a model for 26 gages locations, spread over 

multiple states. This issue gives the impression that the authors did not take adequate 

time to understand the literature. I grant that this study on changes in frequency at the 

regional scale, using statistical models, is, to the best of my knowledge, novel and useful 

- but I am basing some of that understanding on the limited literature review provided by 

the authors. (Also in the introduction, regarding the different methods for long-term 

projection of floods, the recent review by François et al. 2019 in JoH is a good reference.) 

 

There still is no reference to the literature, and how the results from this study fit into 

what is already known, in the discussion/conclusion. There are ample areas of discussion 

even from studies published by the same authors. For example, do the results of this 

study indicate similar or different trends to those seen in the historical period in 

Mallakpour & Villarini (2015)? Or do they align with what we know about changing 

frequency of heavy rainfall in Villarini et al. (2011)? Or, how does the short-term view of 

the next 10 years as discussed in Neri et al. (2019) in IJoC (with very similar 

methodology, just on the scale of 1-10 years, rather than 100 years, which should be 

probably noted in the introduction) compare with the longer-term view out to 2100 

discussed in this work? (And, what about the issue of suppressed skill from basin-

averaged precipitation predictions noted at the end of the abstract of Neri et al., 2019?) 

And, from other studies for example, do the projected changes make sense with what we 

know regarding general climate changes in Byun & Hamlet (2018)? These are just some 

questions that can and should be addressed. I would hope and expect the authors to do 

due diligence to address any other pertinent questions and literature of similar nature not 

listed here. 

 

Response: 

Thank you for highlighting these issues. The literature provided in the previous 

version of the manuscript has been revised significantly. We included the work of Jha 

et al. (2004) among those focusing on “specific single catchments” because it does 

focus on the projection with respect to a single catchment (Mississippi river Grafton, 

Illinois): even though it includes some of the water basins considered in our study, it 
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focuses exclusively on that gage station and it does not allow to provide insights on 

the spatial variability of the projected changes of streamflow across the U.S. 

Midwest.  

 

We agree with the reviewer that the wording “single catchment” does not properly 

reflect what presented in Schlef et al. (2018). We included this reference in that 

context because the work focuses on water basins belonging to a small area of the 

Ohio River basin and thus lacking the capability of analyzing different hydrological 

processes driven by different climatic conditions. In revising the manuscript, 

however, we removed this reference from the group of papers cited at lines 113-114 

of the original manuscript because not completely congruent with them, and moved it 

to the second group of references at lines 114-115 of the revised manuscript, given 

that it focuses on flood magnitude rather than the frequency of flood events. Overall, 

the message we wanted to communicate to the reader by citing the two groups of 

papers at lines 113-114 and at lines 114-115 of the original manuscript is that the 

literature lacks of studies focusing on the catchment-specific projections of the 

frequency of flood events at a regional scale. 

 

Moreover, in revising the manuscript, we also added the suggested reference of 

François et al. (2019) in the part of the introduction where we summarize the 

approaches used for flood events prediction. 

 

We also agree with the Reviewer that the manuscript can be improved in terms of a 

proper discussion of how the present work advances the scientific knowledge about 

the projected changes in the frequency of flood events and of the similarities with 

respect to published papers. In revising the manuscript, we improved our discussions. 

Here we summarize the additions to the manuscript and the responses to the second 

part of the Reviewer’s comment: 

- At lines 261-266 of the revised manuscript we refer to some studies which show 

that observed trends in the frequency of flood events in the U.S. Midwest are 

similar to those obtained in the present work and we also recall the fact that it is 

the frequency of flood events, rather than its magnitude, which presents stronger 

time trends; 

- At lines 244-248 of the revised manuscript we cite some studies to confirm the 

outcomes with respect to the analysis of the best drivers responsible for the 

variability in the frequency of flood events in the U.S. Midwest; 

- With respect to the similarities between this work and the one investigating 

decadal predictions (Neri et al., 2019a), we already mentioned this aspect at the 

end of the introduction (line 123 of the original manuscript) and in the Method 

Section (line 205 of the original manuscript). To further stress the similarities, we 

added a sentence at lines 220-222 of the revised manuscript; 

- It is quite hard to compare the results of the work focusing on decadal predictions 

(Neri et al., 2019a) with those of the present work for several reasons: (i) for the 

projections, we do not have observations to evaluate the skill of our future 

prediction, which is instead assessed in Neri et al. (2019a); (ii) this work focuses 

on the projected changes in the frequency of flood events, not on the skill of the 
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models in reproducing the observations (which is addressed in Neri et al. (2019a) 

and in Neri et al. (2019b)); (iii) the projections are based on possible future 

scenarios and pathways (like for instance the increasing emissions of carbon 

dioxide) and change during the investigation period, while in the decadal 

predictions the forecasts are initialized based on the observed state of the 

atmosphere. Therefore, we did not include a detailed comparisons between the 

two studies.  

- We analyzed the work of Byun & Hamlet (2018), related to the projected changes 

of precipitation and temperature in the U.S. Midwest. They show that according 

to ten statistically downscaled GCMs, the U.S. Midwest seasonal temperature 

increases during all four seasons and precipitation increases during all seasons 

except summer, which shows a decreasing trend. These results are in accordance 

with our climate ensemble obtained from the LOCA and NA-CORDEX datasets. 

However, by looking at the projected trends in the frequency of flood events, the 

summer season is characterized by positive significant trends in most of the 

stations (even though the average increase in flood counts does not appear to be 

very strong; Figure 6). This is driven by two main reasons. The first reason is that 

in some stations during summer the best model selected is the P.M model, i.e., the 

model considering precipitation during summer and precipitation during spring 

(i.e., the antecedent wetness conditions) as predictors. Because the increase of 

precipitation during spring is higher compared to the decrease of precipitation 

during summer, the antecedent wetness conditions predictor has more of an effect 

on the flood counts, resulting in increasing trends in the frequency of flood 

events. The second reason is related to the stations where the best model is the P 

model, i.e., the model considering only precipitation as predictor: in these stations 

the trend in the projected frequency of flood events is positive, even though the 

projected seasonal precipitation shows a negative trend. However, given the fact 

that the decrease in precipitation is quite small and the variability is high, the 

discrete Poisson regression model does not catch the overall pattern, but only 

extreme events, which actually generate positive trends. In revising the 

manuscript, we discussed this issue in the Results and Discussion Section at lines 

298-307 of the revised manuscript. 
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Response to Reviewer 2’s comments on: 

Statistically-based projected changes in the frequency of flood events across 

the U.S. Midwest 

by 

ANDREA NERI, GABRIELE VILLARINI, AND FRANCESCO NAPOLITANO 

 
(Note: In the text below we have copied the Reviewer’s comments verbatim.) 

 
 

General Comments: 

I had reviewed a previous version of this manuscript. I liked the manuscript then, and the 

authors' responses have greatly improved the manuscript. The authors have explored 

historical and future (based on GCMs) trends in the frequency of historic peak daily 

average streamflow. The methods are well-documented, and the discussion does a great 

job of exploring the implications and limitations of the results. My additional comments 

are minor and are intended to deepen the impact of the work. 

 

Response: 

We thank the Reviewer for his/her comments and feedback. We have addressed the 

comments point by point. 

 

 

Comment 1) 

On line 141, the authors discuss the data of their peaks over threshold approach. I wonder 

if they could add a comment on the impact of using daily average streamflow rather than 

instantaneous peaks. I don't think their work is invalidated in anyway, but I think it 

important to point out that characterizing a high daily mean streamflow as a peak is 

different than traditional flood-frequency analysis that uses instantaneous peaks. (The 

daily averages will be lower, right?). 

 

Response: 

Thank you for pointing this out. In our analysis we use daily discharge records from 

287 USGS gauging stations and we select the flood events using a peak-over-

threshold approach. We agree with the Reviewer that the daily discharge peak is 

lower than the instantaneous peak (especially for small watersheds), but we think that 

since we are focusing on the number of events, the magnitude of the peak (whether 

daily or instantaneous) should not significantly impact the flood count time series. In 

other words, the way the flood events are selected (lines 140-149 of the original 

manuscript) implies that the x highest discharge values are selected; assuming that the 

ratio between daily and instantaneous peak is constant for all the flood events for a 

given basin, the selected flood events using either the daily or instantaneous time 
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series should be the same. In revising the manuscript, we have added text on lines 

152-156 to clarify this issue. 

 

 

Comment 2) 

Reading around line 165, I am reminded of the author's claim circa line 104. Around line 

104, it is claimed that grid-based data lacks applicability to basins and gages. Here, 

around line 165, the authors seem to be using grid-based products for their methods. 

What is the impact of gridded products? How is the problem identified around line 104 

surmounted here (around 165)? 

 

Response: 

Thank you for pointing this out. The limitations discussed at lines 107-117 of the 

original manuscript do not refer to the climate data used as input to the models, but to 

their outputs, i.e., the variable of interest. The works mentioned at lines 83-93 and at 

lines 104-105 of the original manuscript provide projections of the quantity of interest 

(i.e., flood frequency curves, discharge quintiles) in each pixel of a gridded map, 

which is often quite coarse because of computational requirements. Through our 

statistical models, instead, we are able to assess projections relative to a specific 

location (i.e., the gauging station) rather than to a pixel, being therefore more accurate 

and more useful for specific local flood mitigation plans. In other words, we are not 

questioning the usefulness of the gridded climate data, but rather that of the gridded 

projections outputs of hydrological models. 

 

 

Comment 3) 

On line 172, the authors note that they take the ensemble mean of GCM projections. 

While this is quite common, I wonder if the authors could add a statement on how this 

reduces the variability of the analysis. Given that we are looking at trends, that 

variability, which is currently averaged out, may be very important. Could averaging 

have been done later in the methods? At a minimum, and it's discussed in the authors' 

response to previous comments, I think it important to discuss this loss of variability. 

 

Response: 

Thank you for pointing this out. At lines 180-193 of the revised manuscript we 

explain the approach used to bias-correct the GCM ensembles. This approach, apart 

from correcting the average of the time series, also corrects its variability. By 

averaging the GCM members, in fact, the variability of the time series reduces 

substantially. In order to deal with this loss of variability, we also correct the standard 

deviation of both the historical and projection period, so that extreme events could be 

preserved in our precipitation and temperature basin-averaged time series. 
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Comment 4) 

The sentence on line 107 with "However…" needs to be revised. There are several 

connecting verbs missing. While I understand the intent of the sentence, I can't quite 

figure out what is wrong with it. One addition: "…these hydrological models [are] 

distributed over …" 

 

Response: 

Thank you for pointing this out. We have revised the sentence to read: “because the 

outputs of these hydrological models are distributed over grid cells and not 

necessarily related to the specific gauge station (Giuntoli et al., 2015), their 

applicability loses…” 

 

 

Comment 5) 

The sentence that traverses line 120 needs some additional words. For example, it should 

probably be "...because [they are] faster to implement, less time-consuming ...". 

 

Response: 

Thank you for pointing this out. In revising the manuscript we have changed the 

sentence to “because these models are faster to implement…” 

 

 

Comment 6) 

On line 238, please provide a specific, quantifiable metric that leads the authors to the 

conclusion that the results are "overall good". 

 

Response: 

Thank you for pointing this out. Figure 3 shows the values of the correlation 

coefficient computed between observed and modeled flood counts time series. The 

map suggests higher or lower values depending on the location and/or on the season, 

but considering all the stations together, the R values are satisfactorily high. Because 

evaluating the model performance is not the main objective of the work, we used the 

word “overall” to assess the model performance in a general way, referring the reader 

to a previous study for a more detailed evaluation of the statistical framework skill. In 

revising the manuscript, we have added text to say that the average correlation 

coefficient among the different seasons is 0.56. 

 

 

 

Comment 7) 

On line 254, please add an explicit sentence summarize your conclusions. Despite 

disagreement, you feel comfortable proceeding to projection. Please state that explicitly, 

with a specific quantifiable metric to support it, if possible. 
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Response: 

Thank you for pointing this out. We agree that a sentence introducing the projection 

analysis is required at the end of the historical simulations assessment. In revising the 

manuscript, we added a phrase (at lines 273-277 of the revised manuscript) which 

introduces to the projection results. 

 

 

Comment 8) 

On the paragraph ending on line 294: No change needed here, just wanted to say that this 

is a really excellent job of capturing and discussing this limitation. 

 

Response: 

Thank you! 

 

 

Comment 9) 

In the conclusions, please consider adding a sentence to remind the reader of the novelty 

of this work. 

 

Response: 

Thank you for pointing this out. In revising the manuscript, we have added a sentence 

in the Conclusions to summarize the novelty of this work.  
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Table 1 – List of the four statistical models used to relate the seasonal occurrence of flood events to the 

three drivers: precipitation (  ), wetness conditions (  ) and temperature (  ). 

Figure 1 - Location of the 286 USGS gauging stations (white circles) and the relative upstream 

drainage area (light gray polygons). 

Figure 2 – Observed, historical and projected basin-averaged bias-corrected precipitation (left panels) 

and temperature (right panels) seasonal time series for USGS station 07014500 (Meramec River near 

Sullivan, Missouri). The black line represents the observed values, while the red and blue solid (dotted) 

lines the values based on bias corrected (raw) LOCA and NA-CORDEX, respectively. 

Figure 3 – Map showing the selected best models (four panels on the left) and their skill (four panels on 

the right) for each season (rows) and for a flood threshold value that gives two peaks per year on 

average. The blue, brown, orange and yellow circles on the left refer to the  ,    ,    , and       

models, respectively. In some stations, no model is selected largely because the observed time series 

does not have at least five years with a flood count value different from zero. Note that not every best 

model provides a predicted time series with at least five years with a flood count value different from 

zero, therefore no correlation coefficient can be computed. 

Figure 4 – Map showing the trends of the frequency of flood events during the historical period (i.e., 

1950-2005) for the observations and for the median of the Poisson regression models using 

observations, LOCA and NA-CORDEX. The results refer to the threshold values that gives two peaks 

per year on average among the observational period 1940-2016 (see Figure S3 of the supplemental 

material for the other flood threshold values). The four columns represent the four considered datasets, 

and the rows the four seasons. In each panel, the dark red and dark blue (red and blue) circles indicate 

the positive and negative trends significant at the 5% (10%) significance level, respectively. The trend 

in some stations is not estimated because the predicted time series does not have at least five years with 

a flood count value different from zero. 

Figure 5 – Map showing the projected trends (2006-2100) in the frequency of flood events based on the 

LOCA (left column) and NA-CORDEX (right column) for the four seasons and for a flood threshold 

value that gives two peaks per year on average. The symbol notation is the same as in Figure 4. The 

trend in some stations is not estimated because the predicted time series does not have at least five 

years with a flood count value different from zero. The same results relative to the other flood 

thresholds are presented in Figure S4 of the supplemental material. 

Figure 6 – Map showing the difference between the average value of flood counts during three spans 

(i.e., 2006:2035, 2036:2069, 2070:2099) of the projection period and the average value of flood counts 

during the last 30 years of the historical period (i.e., 1976:2005) using the LOCA (left set of panels) 

and NA-CORDEX (right set of panels) dataset. The results refer to the threshold values that give, two 

peaks per year on average among the observational period 1940-2016. For each set of panels, the three 

columns represent the three considered spans, and the rows the four seasons. For the other flood 

threshold values see Figure S5 and Figure S6 of the supplemental material for the LOCA and NA-

CORDEX datasets, respectively. 

Figures and table captions


