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1. Introduction

In the recent literature the problem of very long autocorrelation times and of the theoretical
control over the systematic error in numerical simulations has been addressed in a series of pa-
pers [1, 2, 3, 4, 5, 6, 7, 8] and several solutions to the topological critical slowing down have been
proposed [9, 10, 11, 12, 13, 14, 15, 16, 17].

Here we propose to address the problem of topological trapping by using metadynamics, that
was introduced to enhance the probability of observing rare conformational changes and recon-
structing the free energy in biophysics, chemistry and material sciences systems [18, 19].

In metadynamics, the dynamics in the space of a set of Collective Variables (CVs) is enhanced
by a history-dependent potential constructed as a sum of Gaussians centered along the trajectory
followed by the CVs. The sum of Gaussians is exploited to reconstruct iteratively an estimator
of the free energy. The system has access to a feedback which during the time evolution fills the
local free energy minima. Thus, even if at the beginning the system visits more often the region
at the bottom of a local minimum, after a few steps it starts exploring regions corresponding to
higher and higher values of the free energy. Sooner or later, the system fills the minimum, climbs
out of it, and visits another minimum that is eventually also filled, until all the relevant minima
are explored. The key idea of metadynamics is exploiting the time-dependent bias potential itself
as a free energy estimator. In particular, the time average of the bias potential has been shown to
converge to the negative of F with an error that scales to zero with the inverse square root of the
simulation time [20].

Here we propose to address the problem of topological trapping by performing metadynamics
on the topological charge. We will show that this approach induces a large number of transitions
between different sectors, and therefore converges very rapidly. At the same time, the approach al-
lows computing the unbiased average value of any observable by standard reweighting techniques.
In order to test our proposal we first study the two-dimensional CPN−1 models that have several
features in common with QCD, such as asymptotic freedom and a non-trivial topological structure.
Since these models require much smaller computing resources, they are an ideal theoretical labo-
ratory to be used in an early and exploratory stage of any new algorithm. We find the improvement
induced by metadynamics considerable and worth to be implemented in a QCD study that we plan
to perform in the near future. This presentation is based on our recent paper [21] to which we refer
for more details.

2. CPN−1 and the different definitions of the topological charge on the lattice

In the continuum the two dimensional CPN−1 model is defined by the action

S =
1
g

∫
d2xD̄µ z̄Dµz , (2.1)

where z is a complex N-dimensional field with unit norm z̄ · z = ∑
N
i=1 z∗i zi = 1 and the covariant

derivative is given by Dµ = ∂µ + iAµ . The connected correlation function is defined as

G(x) = 〈TrP(x)P(0)〉− 1
N
〈TrP(x)〉〈TrP(0)〉 , P(x)≡ z̄(x)⊗ z(x) (Pi, j(x) = z∗i z j) .(2.2)
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The topological-charge density q(x), the total charge Q and its susceptibility χt are defined as

q(x) =
1

2π
εµν∂µAν , Q =

∫
d2xq(x) , χt =

∫
d2x〈q(x)q(0)〉 = 〈Q

2〉
V

. (2.3)

The lattice action is given by [22] S = 1
g ∑~n,µ D̄µ z̄~nDµz~n, where we introduce the lattice covariant

derivative Dµ z̄~n = λ~n,µ̂ z̄~n+µ̂ − z̄~n , expressed in term of the U(1) gauge link λ~n,µ̂ ≡ exp(iAµ(~n+
µ̂a/2), where a is the lattice spacing and µ̂ the unit vector in the direction µ . We use the lattice
definition of the correlation length ξG [2]

ξ
2
G =

1
4sin2(qm/2)

G̃(0)− G̃(qm)

G̃(qm)
, (2.4)

where qm is the smallest non zero dimensionless momentum on a lattice with lattice spacing a and
physical volume aL, namely qm = (2π/L,0).

A definition of the topological charge that serves our scope is given in terms of the imaginary
part of the plaquette, as illustrated in Ref. [23]

Qλ =
1

2π
∑
n

ℑ[λµ(n)λν(n+ µ̂)λ̄µ(n+ ν̂)λ̄ν(n)] µ < ν . (2.5)

We make use of a modification of the stout smearing [24], adapted to treat U(1) variables to reduce
the noise associated with such definition.

3. Metadynamics

In metadynamics the action S (x) is modified by adding to it a history-dependent potential

VG(Q(x), t) = ∑
t ′=τG,2τG,..., t ′<t

g
(
Q(x)−q

(
t ′
))

(3.1)

where g(q) is a non-negative function of its argument, that rapidly vanishes for large |q| . In the
original implementation, g(q) = wexp

(
− q2

2δq2

)
, where w and δq are two parameters that can be

used to tune the growth speed of VG. Thus, the metadynamics potential is a sum of small repulsive
potentials, acting on the CV, and localized on all the configurations q(t) that have already been
explored during the trajectory, up to time t. This potential disfavors the system from revisiting
configurations that have already been visited. If the dynamics of q is bound in a finite connected
region, after a transient the probability distribution of q in this region can only be approximately flat.
Indeed, if this is not the case, by definition the system would spend more time in a subregion of q,
and VG would grow preferentially in that region, disfavoring the system from remaining there. Thus,
deviations from the flat distribution can only survive for a transient time. P(q)exp(−VG (q, t)) must
be approximately constant or, equivalently,

VG(q, t)∼−F(q) . (3.2)

This equation states that in metadynamics the free energy is estimated by the negative of the bias
potential itself. More precisely, since eq. (3.2) is valid at any time, the best estimator of the free
energy at time t is given by the (large) time average of VG up to time t,

−F (q)∼VG(q, t) =
1

t− teq

∫ t

teq

dt ′VG(q, t ′) (3.3)
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The equilibration time teq entering in eq. (3.3) is the time at which the history dependent potential
becomes approximately stationary (or, equivalently, the probability distribution as a function of q
becomes approximately flat). Like in the ordinary estimates of the average value of an observable,
the exact choice of teq influences only the convergence speed, but not the final result. The difference
between−F and VG in eq. (3.3) decreases as the square root of t− teq, with a prefactor that strongly
depends on the specific CV q [20].

For the sake of computational efficiency, we store the history-dependent potential on a regular
grid of spacing δq; (q0,q1, · · · ,qn), with qi = q0 + iδq. The use of the grid makes it possible to
carry on metadynamics for long runs at a fixed overhead per sweep (in computer time), whereas
the computer time with the naive procedure would linearly increase with the number of sweeps.

At the beginning of the simulation we set Vi =VG (qi) = 0. Then, at every step, we

1. compute the value of the CV q(t)≡ Qλ (t);

2. find the grid interval i where it falls i = int
(

q(t)−q0
δq +0.5

)
;

3. update the potential, Vi =Vi +w
(

1− q(t)−qi
δq

)
, Vi+1 =Vi+1 +w q(t)−qi

δq .

The force ruling the evolution of the fields x is then changed by adding to it the component
deriving from the history-dependent potential. The optimal grid spacing δq must be such that i)
the potential wells are filled rapidly, and this requires a large δq; ii) the free energy F(q), eq. (3.2),
can be accurately reconstructed.

The unbiased expectation value of an observable O is computed through reweighting

〈O〉= ∑i Oi exp(−V (Qλ
i ))

∑i exp(−V (Qλ
i ))

, (3.4)

where V (Qλ )) is defined in eq. (3.3).

4. Numerical results

We have studied CPN−1, with N = 21, at several values of the coupling constant, with different
physical volumes at fixed correlation length and with different values of the correlation length at
fixed physical size.

4.1 A comparison of standard HMC and metadynamics

We start by considering metadynamics run in the region of parameters where the standard
HMC is still able to explore different topological sectors, and achieve convergence. This allows
checking if the two approaches provide consistent results.

The most important effect of the metadynamics bias is reducing the autocorrelation time of
the observables by orders of magnitude. For example in the case β = 0.75 and L = 60 (already
explored in Ref. [23]) we find τQ = 155000± 10000 in the HMC run, whereas the corresponding
value for the metadynamics run is τQ = 5600±1000. A related quantity is the transition probability
per unit time between two different topological sectors, ν . This quantity is defined as the number
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Figure 1: (a) and (b) Topological charge as a function of the number of sweeps with the standard HMC and
metadynamics respectively at β = 0.75 and L = 60.

of jumps between two different values of Qg divided by the total number of sweeps. For the two
runs corresponding to Fig. 1, we have ν = 4.98 · 10−5 with the HMC and ν = 2.24 · 10−3 for
metadynamics respectively.

One of the main results of the method is the reconstructed free energy. In Fig. 2 we compared
the reconstructed average free energy of the topological charge F

(
Qλ
)

obtained with metadynam-
ics, with −log(P(Qλ )) estimated in a standard HMC run. Remarkably, the two estimates are fully
consistent within the small error bars, indicating that metadynamics allows computing reliably the
probability distribution of the charge. F(Q) is very well approximated by the function

F(Q) = AQ2 +B sin2(πQ), (4.1)

-4 -3 -2 -1 0 1 2 3 4
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λ
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Q

λ )
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Figure 2: Comparison between the free energy F
(
Qλ
)

estimated by 30k sweeps with metadynamics and
−log(P(Q)) estimated wiht 300k sweeps of standard HMC at β = 0.70 with L = 62.
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where A and b are numerical constants which in general, at fixed N, depend on L and β .
As an example, in Fig. 2 we fitted the effective potential reported in the metadynamics case,

obtaining A = 0.20± 0.06 and B = 4.38± 0.10, with a χ2/do f ∼ 1. By using the relation A ∼
1/(2χtV ), this corresponds to χt = (6.50±1.9)×10−4 well compatible with the results known in
the literature for this setup (see Ref. [23]).

4.2 The central question: Towards the continuum limit

In order to demonstrate that the approach presented in this work allows addressing efficiently
the problem of topological trapping, we now discuss the scaling of the autocorrelation time as a
function of the lattice spacing a ∼ ξ

−1
G , namely of ξG, and of the physical volume L/ξG. In the

left panel of Fig. 3 we display the dependence of ν on ξG with HMC and metadynamics at several
values of L/ξG. As expected, because of entropy, in the standard HMC ν is an increasing function
of the lattice size, and this corresponds to an increase in the dispersion of the topological charge,
namely of 〈Q2〉. At larger values of β , as we proceed toward the continuum limit, with the standard
HMC, ν decreases exponentially as a function of the correlation length ξG [1, 2], so that for aξG & 9
the changes of the topological sector are so rare that only an upper limit for ν can be provided.

The behavior observed with the HMC is to be contrasted with the results obtained with meta-
dynamics (corrected for the bias using eq. 3.4) since in this case ν is sensibly flatter, and the
simulation spans all the possible sectors of Q allowing to produce reliable results.

To assess the scaling of error on observable quantity estimated with Metadynamics, in Fig. 3
we compare the Renormalization Group Invariant quantity ξ 2

GχQ estimated with Metadynamics
and Hybrid Monte Carlo, for a fixed number of sweeps. At coarse lattice spacing (small values
of ξG/a) the two estimate are both accurate and in agreement with each other. Increasing the
lattices psacing (moving to larger values of ξG/a) it is clear that the HMC estimate deteriorate
very quickly, reaching soon a point where only an upper estimate can be given. On the contrary,
the error of Metadynamics estimate grows mildly with the decrease of the lattice spacing, and the
various estimates remains consistent with each others.
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Figure 3: Left: Scaling of the frequency ν as a function of ξG with metadynamics (dashed) and HMC (full
line). Right: ξ 2

GχQ estimated with Metadynamics and Hybrid Monte Carlo, for a fixed number of sweeps,
for a number of lattice spacing.
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5. Conclusions

We have shown that the metadynamics approach [18, 19] can be used to simulate CPN−1

improving dramatically the problem of the slowing down observed in numerical simulations for
quantities related to the topological charge.

The much reduced slowing down allows us to study a range of β much larger than that available
with ordinary HMC. It seems straightforward to extend the general method exposed to the case of
QCD. Metadynamics might also offer a solution to the simulating theories with complex actions
(for example QCD with a non zero θ term or at finite chemical potential).
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