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Introduction

A Poisson vertex algebra (we will abbreviate it with PVA) is a commutative as-
sociative algebra V , endowed with an even derivation ∂ and a bilinear λ-bracket
[·λ·] : V × V → V [λ] that satisfies sesquilinearity (a, b ∈ V ):

[∂aλb] = −λ[aλb] , [aλ∂b] = (λ+ ∂)[aλb] , (0.1)

skewsymmetry (a, b ∈ V ):
[aλb] = −[b−λ−∂a] , (0.2)

the Jacobi identity (a, b, c ∈ V ):

[aλ[bµc]]− [bµ[aλ, b]] = [[aλb]λ+µc] , (0.3)

and the left Leibniz rule
[aλbc] = [aλb]c+ [aλc]b . (0.4)

It is well known the relation between the theory of Poisson vertex algebras and
the integrability of Hamiltonian partial differential equations [BDSK09]. The first
appearence of a cohomological approach in order to study the integrability of
an Hamiltonian system is due to Krasilshchik [Kra88] and Olver [Ol87] (see also
[DSK13]).

More recently, in [BDSHK18], Bakalov, De Sole, Heluani and Kac, introduced a
different point of view on cohomology complexes of algebraic structure. In particular,
they translated De Sole and Kac’s costruction of the variational Poisson cohomology
([DSK13]) in terms of superoperads. (We will call them operads for simplicity).
Moreover, with these tools, they also define the classical operad Pcl(V ) associated
to a vector superspace V .

Given a vector superspace V with an even endomorphism ∂ ∈ End(V ), and
n > 0, the classical operad Pcl(V )(n) consists of maps

f : G(n)× V ⊗n −→ V [λ1, . . . , λn]�〈∂ + λ1 + · · ·+ λn〉 , (0.5)

which are linear in the second factor. Here and below G(n) denotes the set of
all oriented graphs (with no tadpoles) with set of vertices V (Γ) = {1, . . . , n} and
arbitrary set of edges E(Γ). Given the graph Γ ∈ G(n), the map

fΓ : V ⊗n −→ V [λ1, . . . , λn]�〈∂ + λ1 + · · ·+ λn〉 (0.6)
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in the classical operad Pcl(V )(n) satisfies the cycle relations (2.26) and (2.27) (as
regards the graphs), and the sesquilinearity conditions (2.29) and (2.30) (with re-
spect to the derivation). The composition maps in the classical operad Pcl(V ) are
described in section 2.8, see (2.33).

To an operad P (linear and symmetric) one associates a Z- graded Lie superal-
gebra W . The Z-graded Lie superalgebra associated to the classical operad Pcl(V ),
denoted W cl(V ), is defined, as Z-graded vector superspace, as

W cl(V ) =
∑
n≥−1

W cl
n (V ) =

∑
n≥−1

Pcl(V )(n+ 1)Sn+1 , (0.7)

with Lie bracket given by

[f, g] = f�g − (−1)p(f)p(g)g�f , (0.8)

where, for f ∈W cl
n (V ) and g ∈W cl

m(V ), their �-product is:

f�g =
∑

σ∈Sm+1,n

(f ◦1 g)σ−1 ∈W cl
m+n(V ) . (0.9)

In [BDSHK18], the authors show that the structures of Poisson vertex algebras
on V are in bijection with the odd elements X ∈ W cl

1 (ΠV ) such that [X,X] = 0.
Here ΠV stands for the same vector superspace V with reverse parity p̄. This give
us a cohomology complex (W cl, adX), called the PVA cohomology complex.

The PVA cohomology and the variational Poisson cohomology studied in [DSK13],
are related but defined differently. In particular, we have a canonical injective ho-
momorphism of Lie superalgebras from the variational Poisson cohomology to the
PVA cohomology, which is an isomorphism for the 0-th and 1-st cohomologies. The
results of the present thesis are the first (and main) step needed for the proof that,
under the assumption of smoothness for the PVA V , the PVA cohomology and the
variational Poisson cohomology are isomorphic.

In this work we will focus on studying the PVA cohomology complex, associated
to a Poisson vertex algebra V . Recall that on the space W cl

n−1(ΠV ) we have the
following grading: grr W cl

n−1(ΠV ) is the set of maps Y ∈ W cl
n−1(ΠV ) such that

Y Γ = 0 unless | E(Γ) |= r. By the cycle relations (2.26) and (2.27), the top degree
in grW cl

n−1(ΠV ) is r = n− 1. It consists of collection of maps

Y Γ : (ΠV )⊗n −→ (ΠV ) , for Γ ∈ G0(n), | E(Γ) |= n− 1,

satisfying cycle relations (2.26) and (2.27), the invariance under the action of the
symmetric group , and Y Γ(∂(v1 ⊗ . . .⊗ vn)) = ∂Y Γ(v1 ⊗ . . .⊗ vn). The main result
of the thesis is the following

Theorem 0.1. Let V be a Poisson vertex algebra. There is a natural surjective
morphism of cochain complexes

(W cl
• (ΠV ), adX)→ (C•∂,Har(V ), d) , (0.10)
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mapping Y ∈W cl
n−1(ΠV ) to Y Λn , where Λn is the standard n-line Λn = 1→ . . .→ n.

The morphism (0.10) restricts to a bijection on the top degree:

grn−1W cl
n−1(ΠV ) ∼−→ Cn∂,Har(V ) . (0.11)

In Theorem 0.1, (C•∂,Har(V ), d) is the differential Harrison complex ([Har62])
associated to the commutative associative differential algebra V (and its action on
V by left or right multiplication). It is defined as the subcomplex of the differential
Hochschild complex, whose n-cochain are elements F ∈ HomF[∂](V ⊗n, V ) such that

F (v1 ⊗ . . .⊗ vn) =
∑
π∈Sn

π monotone
π(1)=k

(−1)k−1sgn(π)F (vπ(1) ⊗ . . .⊗ vπ(n)) , ∀k = 2, . . . , n .

(0.12)
The differential of the Hochschild (hence the Harrison) cohomology complex is,
d : HomF[∂](V ⊗n, V )→ HomF[∂](V ⊗n+1, V ), given by

(df)(v1 ⊗ . . .⊗ vn+1) = v1f(v2 ⊗ . . .⊗ vn+1)

+
n∑
i=1

(−1)if(v1 ⊗ . . .⊗ vi−1 ⊗ vivi+1 ⊗ vi+2 ⊗ . . .⊗ vn+1)

+ (−1)n+1f(v1 ⊗ . . .⊗ vn)vn+1 . (0.13)

The key point of Theorem 0.1 is the relation between the Harrison’s condition
(0.12) and the property of invariance under the action of the symmetric group for
an element Y ∈ W cl

n−1(ΠV ). In fact, the key step for the proof of Theorem 0.1 is
the following

Lemma 0.2. If Y ∈W cl
n−1(ΠV ), then Y Λn satisfies the Harrison’s relations (1.12).

Moreover, given F ∈ Cn∂,Har(V ), there exists a unique Y ∈ grn−1W cl
n−1(ΠV ) such

that Y Λn = F . Hence, there is a bijective linear map

grn−1W cl
n−1(ΠV ) ∼−→ Cn∂,Har(V ) ,

mapping Y 7→ Y Λn.

The outline of the thesis is as follows. In Chapter 1 we recall basic notions
about Harrison cohomology. Since Harrison’s complex is defined as a subcomplex of
Hochschild’s one, first we review the definition of Hochschild cohomology. Then, we
follow the original paper of Harrison [Har62] to define his complex. The principal
tools are monotone permutations, so, Section 1.2 is focused on them and their
properties.

The second chapter is about the PVA cohomology. We follow the recent point of
view of Bakalov, De Sole, Heluani and Kac’s paper [BDSHK18], which involves the
theory of linear unitary symmetric operads.

In Chapter 3 we present the main result of the thesis, Theorem 3.1. The proof
of the theorem is divided in several lemmas. Sections 3.2 and 3.3 are focused on a
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particular class of graphs: lines. We study in a more deep way connected lines and
we present the identity that relates the lines obtained by the action of all monotone
permutations, starting at a fixed integer k, on the standard line Λn. This allows us
to prove Lemma 0.2 (Section 3.4). Finally, in Section 3.5, we investigate the relation
between the differentials of the two complexes.

In chapter 4, we give an overview of how Theorem 0.1 can be used towards
linking the classical PVA cohomology fo [BDSHK18] and the variational Poisson
cohomology of [DSK13]. We also recall the definition of variational Poisson complex
([DSK13]).

Throughout the thesis the base field F has characteristic 0, and, unless otherwise
specified, all vector spaces, their tensor products and Hom’s are over F.
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Chapter 1

Harrison cohomology

In this chapter we recall the definition of Harrison cohomology.

1.1 Hochschild complex
First, we need to define the Hoshschild complex, of which Harrison’s is a subcomplex.
Hochschild cohomology groups were introduced by Hochschild [Hoc45] in 1945. For
more references, see also [W94].

Let A be a unital and associative algebra over the base field F. Let M be an
A-bimodule. We will write A⊗n for the n-fold tensor product A ⊗ . . . ⊗ A. The
Hochschild cohomology is defined as follows. The space of n-cochain is

Hom(A⊗n,M) , (1.1)

and the differential d : Hom(A⊗n,M)→ Hom(A⊗n+1,M) is defined by

(df)(a1 ⊗ . . .⊗ an+1) = a1f(a2 ⊗ . . .⊗ an+1)

+
n∑
i=1

(−1)if(a1 ⊗ . . .⊗ ai−1 ⊗ aiai+1 ⊗ ai+2 ⊗ . . .⊗ an+1)

+ (−1)n+1f(a1 ⊗ . . .⊗ an)an+1 . (1.2)

It is not hard to check that d2 = 0. We thus get a cohomology complex

0 −→M
d−→ Hom(A,M) d−→ Hom(A⊗A,M) d−→ · · · (1.3)

Definition 1.1. The Hochschild cohomology of A with coefficients in M is

Hn(A,M) := Hn(Hom(A⊗∗,M), d)

= Ker(d : Hom(A⊗n,M)→ Hom(A⊗n+1,M))
Im(d : Hom(A⊗n−1,M)→ Hom(A⊗n,M)) . (1.4)

If A is a differential algebra, with derivation ∂ : A→ A, and M is a differential
module over A, we may consider the differential Hochschild complex by taking the
subspace of n-cochains

HomF[∂](A⊗n,M) . (1.5)
It is clear by the definition (1.2) that the differential d maps HomF[∂](A⊗n,M) to
HomF[∂](A⊗n+1,M). Hence, we have a cohomology subcomplex.
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1.2 Monotone permutations

Let Sn be the symmetric group. Using Harrison’s notation in [Har62] (see also
[GS87]), we have the following definition:

Definition 1.2. Let π ∈ Sn and i ∈ {1, . . . , n}. π is called monotone if, for each
i ∈ {1, . . . , n}, one of the two following conditions holds:

(a) π(j) < π(i) for all j < i;

(b) π(j) > π(i) for all j < i.

(Not necessarely the same condition (a) or (b) holds for every i.) When (b) holds,
we call i a drop with respect to π. Also, π(1) = k is called the start of π.

We denote byMn ⊂ Sn the set of monotone permutations and byMk
n ⊂Mn

the set of the ones starting at k.

Here is a simple description of all monotone permutations starting at k. Let us
identify the permutation π ∈ Sn with the n-tuple [π(1), . . . , π(n)]. So, in the first
position of π ∈Mk

n we put k. Then, for every choice of k− 1 positions in {2, . . . , n}
we have a different monotone permutation. In the "selected" positions (that will be
the drops with respect to π) we put numbers 1 to k− 1 in decreasing order from left
to right. In all the remaining positions we write numbers k + 1 to n in increasing
order from left to right.

According to the above description, we have a bijective correspondence

Mk
n
∼−→ {D ⊂ {2, . . . , n} s. t. | D |= k − 1} , (1.6)

associating the monotone permutation π ∈Mk
n to the set D(π) of drops with respect

to π, which are

π−1(k − 1) < π−1(k − 2) < . . . < π−1(1) ∈ {2, . . . , n} .

Example 1.3. Obviously, the only monotone permutation starting at 1 is the
identity, while the only monotone permutation starting at n is

σn = [n n− 1 . . . 2 1] . (1.7)

Example 1.4. Let n = 5 and k = 3. The monotone permutations starting at 3 are

[3 2 1 4 5] , [3 2 4 1 5] , [3 2 4 5 1] , [3 4 2 1 5] , [3 4 2 5 1] , [3 4 5 2 1] ,

where we underlined the positions of the drops.

Given a monotone permutation π, we denote by dr(π) the sum of all the drops
with respect to π. According to the previous description, we can easly see that

(−1)dr(π) = (−1)k−1sgn(π) , (1.8)



1.2 Monotone permutations 3

if k is the start of π.

Note that the description (1.6) ofMk
n in terms of positions of drops allows us to

count the elements inMk
n, for fixed n and k. We have:

| Mk
n |=

(
n− 1
k − 1

)
. (1.9)

Remark 1.5. Let us denote byMk,k−1
n ⊂Mk

n the subset of all monotone permutations
π starting at k with π(2) = k − 1, and byMk,k+1

n ⊂Mk
n the subset of all monotone

permutations π starting at k with π(2) = k + 1. We have

Mk
n =Mk,k−1

n tMk,k+1
n .

In accordance to (1.9), | Mk,k−1
n |=

(n−2
k−2
)
and | Mk,k+1

n |=
(n−2
k−1
)
, so that

(n−1
k−1
)

=(n−2
k−2
)

+
(n−2
k−1
)
.

Lemma 1.6. There are natural identifications Mk,k−1
n ' Mk−1

n−1 (respectively
Mk,k+1

n ' Mk
n−1), mapping π ∈ Mk,k−1

n to π̄ ∈ Mk−1
n−1 (resp. π ∈ Mk,k+1

n to
π̄ ∈Mk

n−1), given by π̄(1) := k − 1 (resp. k), and, for i = 2, . . . , n− 1,

π̄(i) :=
{
π(i+ 1) if π(i+ 1) < k

π(i+ 1)− 1 if π(i+ 1) > k
. (1.10)

Moreover,
(−1)dr(π̄) = (−1)dr(π)+k (resp. (−1)dr(π)+k−1) .

Proof. The maps π 7→ π̄ are trivially injective maps between sets with same cardi-
nality (cf. (1.9) and Remark 1.5). Hence, they are bijective.

Remark 1.7. Observe that, given a monotone permutation π, either π(n) = 1 or
π(n) = n. Let denote by 1Mk

n ⊂ Mk
n the set of all the monotone permutations

starting at k with π(n) = 1, and by nMk
n ⊂ Mk

n the set of all the monotone
permutations starting at k with π(n) = n. As in Remark 1.5, we have that

Mk
n = 1Mk

n t nMk
n .

In accordance to (1.9), | 1Mk
n |=

(n−2
k−2
)
and | nMk

n |=
(n−2
k−1
)
, so that | Mk

n |=(n−1
k−1
)

=
(n−2
k−2
)

+
(n−2
k−1
)
.

Lemma 1.8. There are natural identifications 1Mk
n 'Mk−1

n−1 (resp. nMk
n 'Mk

n−1),
mapping π ∈ 1Mk

n to π̃ ∈ Mk−1
n−1 (resp. π ∈ nMk

n to π̃ ∈ Mk
n−1), given by, for

i = 1, . . . , n− 1, π̃(i) := π(i)− 1 (resp. π̃(i) := π(i)). Moreover,

(−1)dr(π̃) = (−1)dr(π)+n (resp. (−1)dr(π)) .

Proof. The maps π 7→ π̃ are obviously bijective.
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1.3 Harrison cohomology
Let us now recall Harrison’s original definition of his cohomology ([Har62]). Let A
be a commutative, associative, unital algebra, and M be a symmetric A-bimodule,
i.e. such that am = ma, for all a ∈ A and m ∈ M . For every k > 1 and
F ∈ Hom(A⊗n,M) a cochain in the Hochschild complex, we use the following
notation:

LkF (a1 ⊗ . . .⊗ an) :=
∑

π∈Mk
n

(−1)dr(π)F (aπ(1) ⊗ . . .⊗ aπ(n)) , (1.11)

The Harrison’s complex is defined as the subcomplex of the Hochschild complex
(1.3) consisting of those F such that

F = LkF , for every 2 ≤ k ≤ n . (1.12)

We will denote by
CnHar(A,M) ⊂ Hom(A⊗n,M) (1.13)

the space of n-cochain in Harrison cohomology, and by

H•Har(A,M) := H•(C•Har(A,M), d) (1.14)

the corresponding Harrison cohomology (where d is the Hochschild differential (1.2)).

Furthermore, if A is a differential algebra with derivation ∂ : A→ A, and M is a
differential module, we may consider the differential Harrison subcomplex

Cn∂,Har(A,M) ⊂ HomF[∂](A⊗n,M) , (1.15)

again defined by the Harrison’s conditions (1.12).

Proposition 1.9 ([Har62]). 1. The Harrison complex (C•Har(A,M), d) is a sub-
complex of the Hochschild complex.

2. If A is a differential algebra, with a derivation ∂ : A→ A, the differential Har-
rison complex (C•∂,Har(A,M), d) is a subcomplex of the differential Hochschild
complex.

Proof. We need to prove that the Harrison’s conditions (1.12) are compatible with
the Hochschild differential (1.2). Let F ∈ Hom(A⊗n−1,M). We have to prove that

F = LkF , ∀ k = 2, . . . , n− 1 ⇒ dF = Lk(dF ) , ∀ k = 2, . . . , n . (1.16)

For k = n, recall that the only monotone permutation is σn as in (1.7). We have:

Ln(dF )(a1 ⊗ . . .⊗ an) = (−1)dr(σn)(dF )(an ⊗ . . .⊗ a1)
= (−1)dr(σn)anF (an−1 ⊗ . . .⊗ a1)

+
n∑
i=2

(−1)dr(σn)(−1)n−i+1F (an ⊗ . . .⊗ aiai−1 ⊗ . . .⊗ a1)
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+ (−1)dr(σn)(−1)nF (an ⊗ . . .⊗ a2)a1 . (1.17)

The first term in the right-hand side of (1.17) is

(−1)dr(σn)anF (an−1 ⊗ . . .⊗ a1)
= (−1)n(−1)dr(σn−1)anF (aσn−1(1) ⊗ . . .⊗ aσn−1(n−1))
= (−1)n(Ln−1F )(a1 ⊗ . . .⊗ an−1)an . (1.18)

For the second term appearing in the right-hand side of (1.17), let bj = aj for
1 ≤ j < i− 1, bi−1 = aiai−1, and bj = aj+1 for i ≤ j ≤ n− 1. We have:

n∑
i=2

(−1)dr(σn)(−1)n−i+1F (an ⊗ . . .⊗ aiai−1 ⊗ . . .⊗ a1)

=
n∑
i=2

(−1)dr(σn−1)(−1)−i+1F (bn−1 ⊗ . . .⊗ b1)

=
n∑
i=2

(−1)i−1Ln−1F (b1 ⊗ . . .⊗ bn−1)

=
n∑
i=2

(−1)i−1Ln−1F (a1 ⊗ . . .⊗ ai−1ai ⊗ . . .⊗ an) (1.19)

Finally, the last term of the right-hand side of (1.17) is

(−1)dr(σn)(−1)nF (an ⊗ . . .⊗ a2)a1

= (−1)dr(σn−1)F (aσn−1(1)+1 ⊗ . . .⊗ aσn−1(n−1)+1)a1

= a1Ln−1F (a2 ⊗ . . .⊗ an) (1.20)

Combining (1.17), (1.18), (1.19), and (1.20), we get

Ln(dF )(a1 ⊗ . . .⊗ an) = (−1)nanLn−1F (a1 ⊗ . . .⊗ an−1)

+
n−1∑
i=1

(−1)iLn−1F (a1 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ an)

+ a1Ln−1F (a2 ⊗ . . .⊗ an)
= d(Ln−1F )(a1 ⊗ . . .⊗ an) . (1.21)

Using the assumption (1.12) on F , we get (1.16) for k = n.

Now, let 2 ≤ k ≤ n− 1. Using the definition (1.2) of the differential, and (1.11),
we have:

Lk(dF )(a1 ⊗ . . .⊗ an) =
∑

π∈Mk
n

(−1)dr(π)dF (ak ⊗ aπ(2) ⊗ . . .⊗ aπ(n))

=
∑

π∈Mk
n

(−1)dr(π)akF (aπ(2) ⊗ . . .⊗ aπ(n))

+
∑

π∈Mk
n

n−1∑
i=1

(−1)dr(π)+iF (aπ(1) ⊗ . . .⊗ aπ(i)aπ(i+1) ⊗ . . .⊗ aπ(n))
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+
∑

π∈Mk
n

(−1)dr(π)+nF (ak ⊗ aπ(2) ⊗ . . .⊗ aπ(n−1))aπ(n) .

(1.22)

By Remark 1.5 and Lemma 1.6, the first term in the right-hand side of (1.22) is∑
π∈Mk

n

(−1)dr(π)akF (aπ(2) ⊗ . . .⊗ aπ(n))

= ak
∑

π∈Mk,k−1
n

(−1)dr(π)F (aπ(2) ⊗ . . .⊗ aπ(n))

+ ak
∑

π∈Mk,k+1
n

(−1)dr(π)F (aπ(2) ⊗ . . .⊗ aπ(n))

= (−1)kak
∑

π̄∈Mk−1
n−1

(−1)dr(π̄)F (aπ̄(1) ⊗ . . .⊗ aπ̄(i)+δπ̄(i)≥k ⊗ . . .)

+ (−1)k−1ak
∑

π̄∈Mk
n−1

(−1)dr(π̄)F (aπ̄(1)+1 ⊗ . . .⊗ aπ̄(i)+δπ̄(i)≥k ⊗ . . .)

= (−1)kak(Lk−1F )(a1 ⊗ . . . âk . . .⊗ an)
+ (−1)k−1ak(LkF )(a1 ⊗ . . . âk . . .⊗ an) , (1.23)

where âk denotes missing factor. We then use the assumption (1.12) to conclude
that (1.23) vanishes.

The third term in the right-hand side of (1.22), is, by Remark 1.7 and Lemma
1.8, ∑

π∈Mk
n

(−1)dr(π)(−1)nF (ak ⊗ aπ(2) ⊗ . . .⊗ aπ(n−1))aπ(n)

=
∑

π∈1Mk
n

(−1)dr(π)(−1)nF (ak ⊗ aπ(2) ⊗ . . .⊗ aπ(n−1))a1

+
∑

π∈nMk
n

(−1)dr(π)(−1)nF (ak ⊗ aπ(2) ⊗ . . .⊗ aπ(n−1))an

=
∑

π̃∈Mk−1
n−1

(−1)dr(π̃)F (aπ̃(1)+1 ⊗ . . .⊗ aπ̃(n−1)+1)a1

+
∑

π̃∈Mk
n−1

(−1)dr(π̃)+nF (aπ̃(1) ⊗ . . .⊗ aπ̃(n−1))an

= (Lk−1F )(a2 ⊗ . . .⊗ an)a1 + (−1)n(LkF )(a1 ⊗ . . .⊗ an−1)an
= a1F (a2 ⊗ . . .⊗ an) + (−1)nF (a1 ⊗ . . .⊗ an−1)an . (1.24)

Finally, in the second summand in the right-hand side of (1.22), we compute
separately the term with i = 1 and all other terms i 6= 1. By Remark 1.5 and by
Lemma 1.6, the term with i = 1 in the second summand of the right-hand side of
(1.22) is

−
∑

π∈Mk
n

(−1)dr(π)F (aπ(1)aπ(2) ⊗ aπ(3) ⊗ . . .⊗ aπ(n))
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= −
∑

π∈Mk,k−1
n

(−1)dr(π)F (akak−1 ⊗ aπ(3) ⊗ . . .⊗ aπ(n))

−
∑

π∈Mk,k+1
n

(−1)dr(π)F (akak+1 ⊗ aπ(3) ⊗ . . .⊗ aπ(n))

= (−1)k−1 ∑
π̃∈Mk−1

n−1

(−1)dr(π̃)F (akak−1 ⊗ aπ̃(2)+δπ̃(2)≥k ⊗ . . .⊗ aπ̃(n−1)+δπ̃(n−1)≥k)

+ (−1)k
∑

π̃∈Mk
n−1

(−1)dr(π̄)F (akak+1 ⊗ aπ̃(2)+δπ̃(2)≥k ⊗ . . .⊗ aπ̃(n−1)+δπ̃(n−1)≥k)

= (−1)k−1(Lk−1F )(a1 ⊗ . . .⊗ ak−2 ⊗ ak−1ak ⊗ ak+1 ⊗ . . .⊗ an)
+ (−1)k(LkF )(a1 ⊗ . . .⊗ ak−1 ⊗ akak+1 ⊗ ak+2 ⊗ . . .⊗ an)

= (−1)k−1F (a1 ⊗ . . .⊗ ak−1ak ⊗ . . .⊗ an)
+ (−1)kF (a1 ⊗ . . .⊗ akak+1 ⊗ . . .⊗ an) . (1.25)

For the last equality we used the Harrison conditions assumption (1.12).

We are left to compute the sum over i ∈ {2, . . . , n− 1} in the second summand
of the right-hand side of (1.22). It is:

n−1∑
i=2

(−1)i
∑

π∈Mk
n

(−1)dr(π)F (aπ(1) ⊗ . . .⊗ aπ(i)aπ(i+1) ⊗ . . .⊗ aπ(n)) . (1.26)

We have the following obvious set decomposition:

Mk
n =Mk

n(i, i+ 1 = drop) tMk
n(i, i+ 1 = not drop)t

tMk
n(i = drop, i+ 1 = not drop) tMk

n(i = not drop, i+ 1 = drop) , (1.27)

where

Mk
n(i, i+ 1 = drop) =

{
π ∈Mk

n | i and i+ 1 are drops with respect to π
}
,

and similarly for all the other sets in (1.27). Hence, (1.26) splits as four sums,
over the four sets in the right-hand side of (1.27). We have the obvious bijective
correspondence

Mk
n(i = drop, i+ 1 = not drop) ∼−→Mk

n(i = not drop, i+ 1 = drop) ,

obtained by switching π(i) and π(i+ 1) in the permutation:

π 7→ π̃ = π ◦ (i, i+ 1) .

Clearly,
dr(π̃) = dr(π) + 1 .

Moreover, since the algebra A is commutative,

aπ(i)aπ(i+1) = aπ̃(i)aπ̃(i+1) .
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Hence, the two contributions in (1.26) obtained by running over π in Mk
n(i =

drop, i+ 1 = not drop) and inMk
n(i = not drop, i+ 1 = drop) are the same, with

opposite sign, and they cancel each other. Hence, (1.26) is obtained by running over
π only in the first two sets in the right-hand side of (1.27). We thus get the two
contributions

n−1∑
i=2

(−1)i
∑

π∈Mk
n(i,i+1=drop)

(−1)dr(π)F (aπ(1) ⊗ . . .⊗ aπ(i)aπ(i+1) ⊗ . . .⊗ aπ(n)) (1.28)

and

n−1∑
i=2

(−1)i
∑

π∈Mk
n(i,i+1=not drop)

(−1)dr(π)F (aπ(1)⊗. . .⊗aπ(i)aπ(i+1)⊗. . .⊗aπ(n)) (1.29)

Let us compute (1.28). We can decompose

Mk
n(i, i+ 1 = drop) =

k−1⊔
j=2

{
π ∈Mk

n | π(i) = j, π(i+ 1) = j − 1
}
,

and we have a bijective correspondence{
π ∈Mk

n | π(i) = j, π(i+ 1) = j − 1
} ∼−→ {

π̄ ∈Mk−1
n−1 | π̄(i) = j − 1

}
mapping π to π̄, which is obtained by removing the drop in position i + 1, and
shifting accordingly all other indices. With a formula

π̄(α) =


π(α)− 1 if α ≤ i
π(α+ 1) if α ≥ i+ 1 and π(α+ 1) < j − 1
π(α+ 1)− 1 if α ≥ i+ 1 and π(α+ 1) > j − 1

. (1.30)

As for the drops, in passing from the permutation π to the permutation π̄, we remove
the drop i+ 1 and we shift by one position all the (j − 2) drops greater than i+ 1.
Hence,

dr(π̄) = dr(π)− i− j + 1 . (1.31)

Using (1.30) and (1.31), we can then rewrite (1.28) as

n−1∑
i=2

(−1)i
k−1∑
j=2

∑
π∈Mk

n
π(i)=j, π(i+1)=j−1

(−1)dr(π)F (aπ(1) ⊗ . . .⊗ aπ(i)aπ(i+1) ⊗ . . .⊗ aπ(n))

=
n−1∑
i=2

(−1)i
k−1∑
j=2

∑
π̄∈Mk−1

n−1
π̄(i)=j−1

(−1)dr(π̄)+i+j−1F (aπ̄(1)+δπ̄(1)≥j ⊗ . . .⊗ aj−1aj ⊗ . . .⊗ aπ̄(n−1)+δπ̄(n−1)≥j )

=
k−1∑
j=2

(−1)j−1 ∑
π̄∈Mk−1

n−1

(−1)dr(π̄)F (aπ̄(1)+δπ̄(1)≥j ⊗ . . .⊗ aj−1aj ⊗ . . .⊗ aπ̄(n−1)+δπ̄(n−1)≥j )
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=
k−1∑
j=2

(−1)j−1(Lk−1F )(a1 ⊗ . . .⊗ aj−1aj ⊗ . . .⊗ an)

=
k−1∑
j=2

(−1)j−1F (a1 ⊗ . . .⊗ aj−1aj ⊗ . . .⊗ an) , (1.32)

by the Harrison conditions (1.12) on F .

Similarly, we compute (1.29). We decompose

Mk
n(i, i+ 1 = not drop) =

n⊔
j=k+1

{
π ∈Mk

n | π(i) = j, π(i+ 1) = j + 1
}
,

and we have a bijective correspondence{
π ∈Mk

n | π(i) = j, π(i+ 1) = j + 1
} ∼−→ {

π̄ ∈Mk
n−1 | π̄(i) = j

}
mapping π to π̄, given by:

π̄(α) =


π(α) if α ≤ i
π(α+ 1) if α ≥ i+ 1 and π(α+ 1) < j

π(α+ 1)− 1 if α ≥ i+ 1 and π(α+ 1) > j + 1
. (1.33)

As for the drops, in going from the permutation π to π̄, we shift by one position all
drops to the right of i+ 1. Since π(i+ 1) = j + 1, of the n− (i+ 1) positions to the
right of i+ 1, precisely n− (j + 1) are not drops, and the remaining j − i are drops.
Hence,

dr(π̄) = dr(π)− j + i . (1.34)
Using (1.33) and (1.34), we can then rewrite (1.29) as
n−1∑
i=2

(−1)i
n∑

j=k+1

∑
π∈Mk

n
π(i)=j, π(i+1)=j+1

(−1)dr(π)F (aπ(1) ⊗ . . .⊗ aπ(i)aπ(i+1) ⊗ . . .⊗ aπ(n))

=
n−1∑
i=2

(−1)i
n∑

j=k+1

∑
π̄∈Mk

n−1
π̄(i)=j

(−1)dr(π̄)+j−iF (aπ̄(1)+δπ̄(1)≥j+1 ⊗ . . .⊗ ajaj+1 ⊗ . . .⊗ aπ̄(n−1)+δπ̄(n−1)≥j+1)

=
n∑

j=k+1
(−1)j

∑
π̄∈Mk

n−1

(−1)dr(π̄)F (aπ̄(1)+δπ̄(1)≥j+1 ⊗ . . .⊗ ajaj+1 ⊗ . . .⊗ aπ̄(n−1)+δπ̄(n−1)≥j+1)

=
n∑

j=k+1
(−1)j(LkF )(a1 ⊗ . . .⊗ ajaj+1 ⊗ . . .⊗ an)

=
n∑

j=k+1
(−1)jF (a1 ⊗ . . .⊗ ajaj+1 ⊗ . . .⊗ an) . (1.35)

Combining (1.24), (1.25), (1.32), and (1.35) we get

(dF )(a1 ⊗ . . .⊗ an) ,

as claimed. The last assertion of the proposition is obvious.
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Chapter 2

PVA cohomology

In this chapter, we recall some basic notions that will be useful throughout the
thesis, and we review the construction of the PVA cohomology complex as described
in [BDSHK18].

2.1 Symmetric group actions

Let Sn be the symmetric group as in Section 1. There is a natural left action of Sn
on an arbitrary n-tuple of objects (λ1, . . . , λn):

σ(λ1, . . . , λn) = (λσ−1(1), . . . , λσ−1(n)) , σ ∈ Sn . (2.1)

Also, given V = V0̄⊕V1̄ a vector superspace with parity p, we have a linear left action
of the symmetric group Sn on the tensor product V ⊗n (σ ∈ Sn, v1, . . . , vn ∈ V ):

σ(v1 ⊗ · · · ⊗ vn) := εv(σ) vσ−1(1) ⊗ · · · ⊗ vσ−1(n) , (2.2)

where, following the Koszul-Quillen rule,

εv(σ) =
∏

i<j |σ(i)>σ(j)
(−1)p(vi)p(vj) . (2.3)

The corresponding right action of Sn on the the space Hom(V ⊗n, V ) is given by
(f ∈ Hom(V ⊗n, V ), σ ∈ Sn)

fσ(v1 ⊗ . . .⊗ vn) = f(σ(v1 ⊗ . . .⊗ vn)) . (2.4)

The following lemma will be useful later:

Lemma 2.1. Let σn = [n , n − 1 , . . . , 2 , 1] ∈ Sn (cf. (1.7)), R a commutative,
unitary ring and A a commutative R-algebra. Let f ∈ HomR(A⊗n, A) and d be the
Hochschild differential (1.2). The following identity holds:

d(fσn) = (−1)n+1(df)σn+1 , (2.5)

where the symmetric action on f and df is given by (2.4).
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Proof. Using the definition of the Hochschild differential (1.2) and the symmetric
action (2.4), we get the following identities:

d(fσn)(a1 ⊗ . . .⊗ an+1)

= a1f
σn(a2 ⊗ . . .⊗ an+1) +

n∑
i=1

(−1)ifσn(a1 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ an+1)

+ (−1)n+1fσn(a1 ⊗ . . .⊗ an)an+1

= a1f(an+1 ⊗ . . .⊗ a2) +
n∑
i=1

(−1)if(an+1 ⊗ . . .⊗ ai+1ai ⊗ . . .⊗ a1)

+ (−1)n+1f(an ⊗ . . .⊗ a1)an+1

= (−1)n+1(df)(an+1 ⊗ . . .⊗ a1)
= (−1)n+1(df)σn+1(a1 ⊗ . . .⊗ an+1) .

2.2 Composition of permutations and shuffles
Let n ≥ 1 and m1 , . . . ,mn ≥ 0. We introduce the following notation: M0 = 0 and

Mi =
i∑

j=1
mj , i = 1, . . . , n . (2.6)

Given σ ∈ Sn and τ1 ∈ Sm1 , . . . , τn ∈ Smn , we describe the composition

σ(τ1, . . . , τn) ∈ SMn

saying how it acts on the tensor power VMn of a vector space V :

(σ(τ1, . . . , τn))(v1⊗. . .⊗vMn) = σ(τ1(v1⊗. . .⊗vM1)⊗. . .⊗τn(vMn−1+1⊗. . .⊗vMn)) .
(2.7)

Definition 2.2. A permutation σ ∈ Sm+n is called an (m,n)-shuffle if

σ(1) < . . . < σ(m) , σ(m+ 1) < . . . < σ(m+ n) .

The subset of (m,n)-shuffles is denoted by Sm,n ⊂ Sm+n.

Observe that, by definition, S0,n = Sn,0 = 1 for every n ≥ 0. If either m or n is
negative, we set Sm,n = ∅ by convention.

2.3 n-graphs
For an oriented graph Γ, we denoted by V (Γ) the set of vertices of Γ, and by E(Γ)
the set of edges. We call Γ an n-graph if V (Γ) = {1, . . . , n}. Denote by G(n) the
collection of all n-graphs without tadpoles, and by G0(n) the collection of all acyclic
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n-graphs.

A graph L will be called an n-line if its set of edges is of the form {i1 → i2, i2 →
i3, . . . , in−1 → in} where {i1, . . . , in} is a permutation of {1, . . . , n}:

L =
i1 i2

· · ·
in

.

We have a natural left action of Sn on the set G(n): for the n-graph Γ and the
permutation σ, the new graph σ(Γ) is defined to be the same graph as Γ but with
the vertex which was labelled as i relabelled as σ(i), for every i = 1, . . . , n. So, if in
Γ there is the edge i→ j, then in σ(Γ) there is the oriented edge σ(i)→ σ(j). Note
that Sn permutes the set of n-lines.

Let us now recall the cocomposition of n-graphs, as described in [BDSHK18].
Given an n-tuple (m1, . . . ,mn) of positive integers, let Mi as in (2.6). If Γ ∈ G(Mn),
define ∆m1,...,mn

i (Γ) ∈ G(mi), i = 1, . . . , n, the subgraph of Γ associated to the set
of vertices {Mi−1 + 1, . . . ,Mi}, relabelled as {1, . . . ,mi}. Define also ∆m1,...,mn

0 (Γ)
to be the graph obtained from Γ by collapsing the vertices and the edges of each
∆m1,...,mn
i (Γ) into a single vertex, relabelled as i. Then the cocomposition map is

the map

∆m1,...,mn : G(Mn)→ G(n)× G(m1)× · · · × G(mn) (2.8)
Γ 7→ (∆m1,...,mn

0 (Γ), ∆m1,...,mn
1 (Γ), . . . ,∆m1,...,mn

n (Γ)) .

Example 2.3. Let n = 3, (m1,m2,m3) = (3, 1, 4), and Γ ∈ G(8) be the following
graph

Γ =
1 2 3 4 5 6 7 8

(2.9)

The cocomposition ∆3,1,4(Γ) =
(
∆3,1,4

0 (Γ), ∆3,1,4
1 (Γ),∆3,1,4

2 (Γ),∆3,1,4
3 (Γ)

)
is given

by the following graphs. ∆3,1,4
1 (Γ) is the subgraph of Γ generated by the first three

vertices:
∆3,1,4

1 (Γ) =
1 2 3

∈ G(3) ;

∆3,1,4
2 (Γ) is the subgraph of Γ associated to the fourth vertex:

∆3,1,4
2 (Γ) =

1
∈ G(1) ;
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∆3,1,4
3 (Γ) is the subgraph of Γ associated to the last four vertices:

∆3,1,4
3 (Γ) =

1 2 3 4
∈ G(4) ;

and, finally, ∆3,1,4
0 (Γ) is:

∆3,1,4
0 (Γ) =

1 2 3
∈ G(3) .

From the construction of ∆m1,...,mn
i (Γ), it is easy to see that there is a natural

bijective correspondence

∆: E(Γ) ∼−→ E
(
∆m1...mn

0 (Γ)
)
t E

(
∆m1...mn

1 (Γ)
)
t · · · t E

(
∆m1...mn
n (Γ)

)
. (2.10)

Definition 2.4. Let k ∈ {1, . . . ,Mn} and j ∈ {1, . . . , n}. We say that j is externally
connected to k (via the graph Γ and its cocomposition ∆m1...mn(Γ)) if there is an
unoriented path (without repeating edges) of ∆m1...mn

0 (Γ) joining j to i, where
i ∈ {1, . . . , n} is such that k ∈ {Mi−1 + 1, . . . ,Mi}, and the edge out of i is the
image, via the map ∆ in (2.10), of an edge which has its head or tail in k. Given a
set of variables x1, . . . , xn, we denote

X(k) =
∑

j externally
connected to k

xj . (2.11)

Example 2.5. For the graph (2.9), we have

X(1) = 0, X(2) = x1 + x2 + x3, X(3) = 0, X(4) = x1 + x3, X(5) = x1 + x2 + x3,

X(6) = x1 + x2 + x3, X(7) = 0, X(8) = 0.

2.4 Lie conformal algebras and PVA’s
Definition 2.6. A Lie conformal algebra is a vector space V , endowed with an
endomorphism ∂ ∈ End(V ) and a bilinear (over F) λ-bracket [· λ ·] : V × V → V [λ]
satisfying sesquilinearity (a, b ∈ V ):

[∂aλb] = −λ[aλb] , [aλ∂b] = (λ+ ∂)[aλb] , (2.12)

skewsymmetry (a, b ∈ V ):
[aλb] = −[b−λ−∂a] , (2.13)

and the Jacobi identity (a, b, c ∈ V ):

[aλ[bµc]]− [bµ[aλ, b]] = [[aλb]λ+µc] . (2.14)

Definition 2.7. A Poisson vertex algebra (PVA) is a unital commutative associative
algebra V endowed with a derivation ∂ and a Lie conformal algebra λ-bracket [·λ·]
that satisfies the left Leibniz rule

[aλbc] = [aλb]c+ [aλc]b . (2.15)
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Example 2.8 (Virasoro PVA). An example of PVA is the Virasoro Poisson vertex
algebra with central charge c ∈ F. It is, as differential algebra,

Virc = F[L(n) | n ∈ Z] ,

where L is the Virasoro element with λ-bracket

[LλL] = (∂ + 2λ)L+ c

12λ
3 ,

and the derivation is L(n) = ∂nL. The λ-bracket is extended uniquely to Virc by
the left and right Leibniz rule and the sesquilinearity conditions.

Example 2.9 (Free boson). Another example of a PVA is the Poisson vertex algebra
of N free bosons. It is, as differential algebra, the algebra of differential polynomials
in N generators

B = F[u(n)
i | i = 1, . . . , N, n ∈ Z+] ,

where the derivation ∂ is defined by ∂u(n)
i = u

(n+1)
i . The Lie conformal algebra

λ-bracket is given on the generators by

[uiλuj ] = λδij for i, j = 1, . . . , N ,

and it is extended to B ⊗ B by the sesquilinearity (2.12) and the left (and right)
Leibniz rule (2.15).

Example 2.10 (Free fermion). The Poisson vertex algebra of N free fermions is,
as differential algebra, the algebra of differential polynomials in N odd generators

F =
∧

(u(n)
i | i = 1, . . . , N, n ∈ Z+) .

As in Example 2.9, the derivation ∂ is defined by ∂u(n)
i = u

(n+1)
i . The Lie conformal

algebra λ-bracket is given on the generators by

[uiλuj ] = δij for i, j = 1, . . . , N ,

and it is extended by the sesquilinearity (2.12) and the left (and right) Leibniz rule
(2.15).

2.5 Operad
Recall that a (linear, unital, symmetric) superoperad P is a collection of vector super-
spaces P(n), n ≥ 0, with parity p, endowed, for every f ∈ P(n) and m1, . . . ,mn ≥ 0,
with a composition parity preserving linear map,

P(n)⊗ P(m1)⊗ · · · ⊗ P(mn) → P(Mn) ,
f ⊗ g1 ⊗ · · · ⊗ gn 7→ f(g1 ⊗ · · · ⊗ gn) ,

(2.16)

where Mn is as in (2.6), satisfying the following associativity axiom:

f
(
(g1⊗ · · ·⊗ gn)(h1⊗ · · ·⊗hMn)

)
=
(
f(g1⊗ · · ·⊗gn)

)
(h1⊗ · · ·⊗hMn) ∈ P

( Mn∑
j=1

`j
)
,

(2.17)



16 2. PVA cohomology

for every f ∈ P(n), gi ∈ P(mi) for i = 1, . . . , n, and hj ∈ P(`j) for j = 1, . . . ,Mn.
In the left-hand side of (2.17) the linear map

n⊗
i=1

gi :
Mn⊗
j=1
P(`j)→

n⊗
i=1
P
( Mi∑
j=Mi−1+1

`j
)

is the tensor product of composition maps applied to

h1⊗· · ·⊗hMn = (h1⊗· · ·⊗hM1)⊗(hM1+1⊗· · ·⊗hM2)⊗· · ·⊗(hMn−1+1⊗· · ·⊗hMn).

We assume that P is endowed with a unit element 1 ∈ P(1) satisfying the
following unity axioms:

f(1⊗ · · · ⊗ 1) = 1(f) = f , for every f ∈ P(n) . (2.18)

Furthermore, we assume that, for each n ≥ 1, P(n) has a right action of the symmetric
group Sn, denoted fσ, for f ∈ P(n) and σ ∈ Sn, satisfying the following equivariance
axiom (f ∈ P(n), g1 ∈ P(m1), . . . , gn ∈ P(mn), σ ∈ Sn, τ1 ∈ Sm1 , . . . , τn ∈ Smn):

fσ(gτ11 ⊗ · · · ⊗ g
τn
n ) =

(
f(σ(g1 ⊗ · · · ⊗ gn))

)σ(τ1,...,τn)
, (2.19)

where the left action of σ ∈ Sn on the tensor product of vector superspaces was
defined in (2.2), and the composition σ(τ1, . . . , τn) is described in (2.7).

For simplicity, from now on, we will use the term operad in place of superoperad.
Given an operad P, one defines, for each i = 1, . . . , n, the ◦i-product ◦i : P(n) ×
P(m)→ P(n+m− 1) by insertion in position i, i.e.

f ◦i g = f(
i−1︷ ︸︸ ︷

1⊗ · · · ⊗ 1⊗
i

g ⊗
n−i︷ ︸︸ ︷

1⊗ · · · ⊗ 1) . (2.20)

Example 2.11. The simplest example of an operad is P = Hom. Given a vector
superspace V , Hom = Hom(V ) is defined as the collection of (n ≥ 0)

Hom(n) := Hom(V ⊗n, V ) ,

endowed with the composition maps (f ∈ Hom(n), gi ∈ Hom(mi) for i = 1, . . . , n,
vj ∈ V for j = 1, . . . ,Mn)

(f(g1 ⊗ . . .⊗ gn))(v1 ⊗ . . .⊗ vMn) := f((g1 ⊗ . . .⊗ gn)(v1 ⊗ . . .⊗ vMn)) ,

where Mn is as in (2.6). Hom is a unital operad with unity 1 = 1V ∈ End(V ), and
the right action of Sn on Hom(n) is given by (2.4).

Example 2.12. Another example is the Lie operad. It is defined as follows:
Lie(1) = F1, Lie(2) = Fβ is the sign representation of S2, and, for every n > 2, the
elements in Lie(n) are obtained by composition of β ∈ Lie(2), subject to the Jacoby
identity in Lie(3)

β(β, 1) = β(1, β)− (β(1, β))(12) .

One can show that Lie superalgebra structure on a vector superspace V is the same
as a morphism of operads Lie→ Hom(V ).
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2.6 The associated Z-graded Lie superalgebra
Recall that, given a superoperad P, one can construct the associated Z-graded Lie
superalgebra W (P). It is defined, as Z-graded vector superspace, as

W (P) =
∑
n≥−1

Wn(P) =
∑
n≥−1

P(n+ 1)Sn+1 . (2.21)

For f ∈Wn(P) and g ∈Wm(P), their �-product is:

f�g =
∑

σ∈Sm+1,n

(f ◦1 g)σ−1 ∈Wm+n(P) (2.22)

and the Lie bracket on W (P) is given by

[f, g] = f�g − (−1)p(f)p(g)g�f . (2.23)

2.7 The classical operad P cl

Let V = V0̄ ⊕ V1̄ be a vector superspace with parity p, endowed with an even
endomorphism ∂ ∈ EndV . For n ≥ 0, define P cl(n) as the vector superspace of all
maps

f : G(n)× V ⊗n −→ V [λ1, . . . , λn]�〈∂ + λ1 + · · ·+ λn〉 , (2.24)

which are linear in the second factor, mapping the n-graph Γ ∈ G(n) and the
monomial v1 ⊗ · · · ⊗ vn ∈ V ⊗n to the polynomial

fΓ
λ1,...,λn(v1 ⊗ · · · ⊗ vn) , (2.25)

satisfying the cycle relations and the sesquilinearity conditions described as follows.
The cycle relations say that

if Γ /∈ G0(n) then fΓ = 0 , (2.26)

and if C ⊂ E(Γ) is an oriented cycle of Γ, then∑
e∈C

fΓ\e = 0 , (2.27)

where Γ\e is the graph obtained from Γ by removing the edge e. Observe that for
oriented cycles of length 2, the cycle relation (2.27) means that changing orientation
of a single edge of the n-graph Γ ∈ G(n) amounts to a change of sign of fΓ.

As for the sesquilinearity conditions, let Γ = Γ1 t · · · t Γs be the decomposition
of Γ as disjoint union of its connected components, and let I1, . . . , Is ⊂ {1, . . . , n}
be the sets of vertices associated to these connected components. Introducing the
same notation as in [BDSHK18], for a graph Γ̃ and its set of vertices Ĩ ⊂ {1, . . . , n},
we write

λΓ̃ =
∑
i∈Ĩ

λi , ∂Γ̃ =
∑
i∈Ĩ

∂i , (2.28)

with ∂i the action of ∂ on the i-th factor in a tensor product V ⊗n. Then, for every
α = 1, . . . , s, we have
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∂

∂λi
fΓ
λ1,...,λn(v1 ⊗ · · · ⊗ vn) is the same for all i ∈ Iα (2.29)

and
fΓ
λ1,...,λn(∂Γα(v1 ⊗ · · · ⊗ vn)) = −λΓαf

Γ
λ1,...,λn(v1 ⊗ · · · ⊗ vn) . (2.30)

Observe that the first sesquilinearity condition (2.29) is equivalent to state that the
polynomial fΓ

λ1,...,λn
(v1 ⊗ · · · ⊗ vn) is a function of the variables λΓα , α = 1, . . . , s,

defined in (2.28), and not of the variables λ1, . . . , λn separetely. Hence, in particular,
when Γ is a connected graph fΓ

λ1,...,λn
(v1 ⊗ · · · ⊗ vn) is indipendent of λ1, . . . , λn.

Whereas, the second sesquilinearity condition (2.30) implies

fΓ
λ1,...,λn(∂v) = −

n∑
i=1

λi f
Γ
λ1,...,λn(v) = ∂

(
fΓ
λ1,...,λn(v)

)
, v ∈ V ⊗n . (2.31)

The classical operad P cl(V ) is defined as the collection of the vector superspaces
P cl(n), n ≥ 0, endowed, for every f ∈ P cl(n) and m1, . . . ,mn ≥ 0, with the
composition parity preserving linear map

P cl(n)⊗ P cl(m1)⊗ · · · ⊗ P cl(mn) → P cl(Mn) ,
f ⊗ g1 ⊗ · · · ⊗ gn 7→ f(g1, . . . , gn) ,

described as follows. Let Mi be as in (2.6), and

Λi =
Mi∑

j=Mi−1+1
λj , i = 1, . . . , n . (2.32)

If Γ ∈ G(Mn), let

(f(g1, . . . , gn))Γ : V ⊗Mn → V [λ1, . . . , λMn ]�〈∂ + λ1 + · · ·+ λMn〉

be defined by the formula:

(f(g1, . . . , gn))Γ
λ1,...,λMn

(v1 ⊗ · · · ⊗ vMn)

= f
∆m1...mn

0 (Γ)
Λ1,...,Λn

(((∣∣∣
x1=Λ1+∂

(g1)∆m1...mn
1 (Γ)

λ1+X(1),...,λM1+X(M1)

)
⊗ · · ·

· · · ⊗
(∣∣∣
xn=Λn+∂

(gn)∆m1...mn
n (Γ)

λMn−1+1+X(Mn−1+1),...,λMn+X(Mn)

))
(v1 ⊗ · · · ⊗ vMn)

)
(2.33)

where ∆m1,...,mn(Γ) is the cocomposition of Γ described in Section 2.3, X(1), . . .
. . . , X(Mn) are the variables as in (2.11), and the notation is as follows. For given
graphs Γ1 ∈ G(m1), . . . ,Γn ∈ G(mn), we have:(

(g1)Γ1
λ1,...,λM1

⊗ · · · ⊗ (gn)Γn
λMn−1+1,...,λMn

)
(v1 ⊗ · · · ⊗ vMn)

:= (−1)
∑

i<j
p(gj)(p(vMi−1+1)+···+p(vMi )) (g1)Γ1

λ1,...,λM1
(v1 ⊗ · · · ⊗ vM1)⊗ . . .

· · · ⊗ (gn)Γn
λMn−1+1,...,λMn

(vMn−1+1 ⊗ · · · ⊗ vMn),

(2.34)
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and for polynomials P (λ) =
∑
m pmλ

m and Q(µ) =
∑
n qnµ

n with coefficients in V ,
we write

(∣∣
x=∂P (λ+ y)

)
⊗
(∣∣
y=∂Q(µ+ x)

)
=
∑
m,n

((µ+ ∂)npm)⊗ ((λ+ ∂)mqn) . (2.35)

For each n ≥ 1, P cl(n) is assumed to have a natural right action of the symmetric
group Sn. This is given by (f ∈ P cl(n), Γ ∈ G(n), v1, . . . , vn ∈ V ):

(fσ)Γ
λ1,...,λn(v1 ⊗ . . . ⊗ vn) = f

σ(Γ)
σ(λ1,...,λn)(σ(v1 ⊗ · · · ⊗ vn)) , (2.36)

where σ(λ1, . . . , λn) is defined by (2.1), σ(v1⊗ · · · ⊗ vn) is defined by (2.2), and σ(Γ)
is defined in Section 2.3.

On the space P cl(n) we can also define a grading:

P cl(n) =
⊕
r≥0

grrP cl(n) , (2.37)

where grrP cl(n) is the subspace of all maps in P cl(n) vanishing on graphs with a
number of edges not equal to r.

2.8 PVA cohomology

Given the vector superspace V with parity p, and the even endomorphism ∂ ∈
End(V ), consider as usual ΠV the same vector space with reverse parity p̄ and the
corresponding classical operad P cl(ΠV ) from Section 2.7. The associated Z-graded
Lie superalgebra is W cl(ΠV ) := W (P cl(ΠV )), with Lie bracket defined by (2.23).
We have the following

Theorem 2.13. There is a bijective correspondence between the odd elements X ∈
W cl

1 (ΠV ) such that X�X = 0 and the Poisson vertex superalgebra structures on V ,
defined as follows. The commutative associative product and the λ-bracket of the
Poisson vertex superalgebra V corresponding to X are given by

ab = (−1)p(a)X•−→•(a⊗ b) , [aλb] = (−1)p(a)X• •λ,−λ−∂(a⊗ b) . (2.38)

Thanks to the Jacobi identity for the Lie superalgebraW cl(ΠV ), ifX ∈W cl
1 (ΠV )1̄

satisfies X�X = 0, then (adX)2 = 0. In view of Theorem 2.13, this means that we
have a cohomology complex

(W cl(ΠV ), adX) ,

called PVA cohomology complex, where X ∈W1(ΠV )1̄ is given by (2.38).
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2.9 The finite analog P fn

In [BDSHK18] is defined a finite analog P fn of the operad P cl as follows. For a
vector superspace V , let P fn(n) be the space of all maps

f : G(n)× V ⊗n −→ V (2.39)
Γ× (v1,⊗ · · · ⊗ vn) 7→ fΓ(v1 ⊗ · · · ⊗ vn) , (2.40)

which are linear in the second factor and satisfy the cycle relations (2.26) and (2.27).
Similar to (2.33), the composition maps are

(f(g1, . . . , gn))Γ = f∆m1...mn
0 (Γ)

(
g1

∆m1...mn
1 (Γ) ⊗ · · · ⊗ gn∆m1...mn

n (Γ)
)
, (2.41)

for f ∈ P fn(n), g1 ∈ P fn(m1), . . . , gn ∈ P fn(mn), and Γ ∈ G(Mn). In this case, the
action of the symmetric group Sn is given by

(fσ)Γ(v1 ⊗ · · · ⊗ vn) = fσ(Γ)(σ(v1 ⊗ · · · ⊗ vn)) , (2.42)

where again we are using the actions described in (2.2) and in Section 2.3.

The analog of Theorem 2.13 is the following:

Theorem 2.14. There is a bijective correspondence between the odd elements X ∈
W fn

1 (ΠV ) such that X�X = 0 and the Poisson superalgebra structures on V , given
by

ab = (−1)p(a)X•−→•(a⊗ b) , {a, b} = (−1)p(a)X• •(a⊗ b) . (2.43)

As we have for the classical operad, we can define the Lie superalgebra W fn(ΠV )
associated to P fn(ΠV ) as W fn(ΠV ) :=

∑
n≥−1 P

fn(ΠV )(n+ 1)Sn+1 with Lie bracket
described in (2.23). The corresponding cohomology complex is(

W fn(ΠV ), adX
)

(2.44)

with X given by Theorem 2.14.
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Chapter 3

Relation between PVA
cohomology and Harrison
cohomology

3.1 Main theorem
Let V be a Poisson vertex algebra. By Theorem 2.13, we have an odd element
X ∈W cl(ΠV ) such that [X,X] = 0, which is associated to the PVA structure of V
by (2.38). Thus, there is the PVA cohomology complex(

W cl
• (ΠV ), adX

)
. (3.1)

A classic n-cochain is an element Y ∈W cl
n−1(ΠV ), namely

Y : G(n)× (ΠV )⊗n −→ (ΠV )[λ1, . . . , λn]�〈∂ + λ1 + · · ·+ λn〉 (3.2)

satisfying relations (2.26), (2.27), (2.29), (2.30), and symmetry property (by defini-
tion (2.21))

Y σ = Y , ∀σ ∈ Sn . (3.3)

Recall the grading of the superoperad P cl(ΠV ) from (2.37): grr W cl
n−1(ΠV ) is

the set of maps Y as in (3.2) such that

Y Γ = 0 unless | E(Γ) |= r .

Note that if Γ ∈ G(n) has | E(Γ) |≥ n, then necessarely Γ contains a cycle. Hence,
by the cycle relation (2.26), Y Γ = 0. Therefore the top degree in grW cl

n−1(ΠV ) is
r = n− 1, i.e.

grr W cl
n−1(ΠV ) = 0 if r ≥ n .

Let us consider the top degree subspace grn−1W cl
n−1(ΠV ). It consists of collection

of maps
Y Γ : (ΠV )⊗n −→ (ΠV ) , for Γ ∈ G0(n), | E(Γ) |= n− 1,

satisfying (2.26), (2.27), (3.3), and Y Γ(∂(v1⊗ . . .⊗ vn)) = ∂Y Γ(v1⊗ . . .⊗ vn). Note
that, if Γ ∈ G0(n), then | E(Γ) |= n − 1 if and only if Γ is connected. If Γ is not
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connected we have Y Γ = 0.

In addition, as explained in section 1.3, there is an another cohomology complex
associated to V , as a commutative algebra, namely

(C•Har(V ), d) , (3.4)

where CnHar(V ) ⊂ Hom(V ⊗n, V ) is defined by the Harrison’s conditions (1.12), and
d is the Hochschild differential (1.2).

The main result of this thesis is the following:

Theorem 3.1. Let V be a Poisson vertex algebra. There is a natural surjective
morphism of cochain complexes

(W cl
• (ΠV ), adX)→ (C•Har(V ), d) , (3.5)

mapping Y ∈W cl
n−1(ΠV ) to Y Λn, where Λn is the standard n-line

Λn =
1 2

...
n . (3.6)

The morphism (3.5) restricts to a bijection on the top degree:

grn−1W cl
n−1(ΠV ) ∼−→ CnHar(V ) . (3.7)

We will prove Theorem 3.1 in Section 3.6. For that, we will need some preliminary
results.

3.2 Lines
We say that a graph Γ ∈ G(n) is a disjoint union of lines if it has the following form:

Γ =
i11 i12

· · ·
i1k1 i21 i22

· · ·
i2k2

· · ·
is1 is2

· · ·
isks

= L1 t L2 t · · · t Ls ,

(3.8)

where 1 ≤ k1 ≤ . . . ≤ ks are such that k1 + · · ·+ ks = n, and the set of indices {iab}
is a permutation of {1, . . . , n} such that

il1 = min{il1, . . . , ilkl} ∀ l = 1, . . . , s . (3.9)

If kl = kl+1, we also assume that il1 < il+1
1 . In particular, the connected lines are all

of the form
σ(Λn) , σ ∈ Sn s. t. σ(1) = 1 , (3.10)

where Λn is the n-line (3.6). Let L(n) ⊂ G(n) be the set of graphs that are disjoint
union of lines. Let also FG(n) be the vector space with basis the set of graphs G(n).

Definition 3.2. The cycle relations in FG(n) are the following elements:

(i) all Γ ∈ G(n) \ G0(n) (i.e. graphs containing a cycle);
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(ii) all linear combinations
∑
e∈C Γ\e, where Γ ∈ G(n) and C ⊂ E(Γ) is an oriented

cycle.

Denote by R(n) ⊂ FG(n) the subspace spanned by the cycle relations (i) and
(ii).

Note that reversing an arrow in a graph Γ ∈ G(n) gives us, modulo cycle relations,
the element −Γ ∈ FG(n).

Example 3.3. For n = 3, a cycle relation of type (ii) is:

2 3

1

+ 2 3

1

+ 2 3

1

(3.11)

Remark 3.4. The cycle relations (2.26) and (2.27) on Y ∈ Pcl, can be restated by
saying that Y Γ = 0 for Γ ∈ R(n).

From [BDSHK18b], we have:

Theorem 3.5 ([BDSHK18b, Theorem 4.7]). The set L(n) is a basis for the quotient
space FG(n)/R(n).

By Theorem 3.5 and (3.10), we can write every connected graph Γ ∈ G(n),
uniquely, as follows:

Γ ≡
∑
σ∈Sn
σ(1)=1

cΓ
σ σΛn , (3.12)

modulo cycle relations, where the coefficients cΓ
σ ∈ F and the action of the symmetric

group on graphs is defined in Section 2.3.

Here and further, by Γ ≡ Γ̃ we mean equivalence modulo cycle relations, i.e. in
the quotient space FG(n)/R(n).

3.3 Connected lines

We have the following lemmas on connected lines.

Lemma 3.6. For every n, the following identity on connected lines holds:

1 2
...

n
+ 2 1 3

...
n

+ . . .+ 2 3
...

n−1 1 n + 2 3
...

n 1 ≡ 0 .

(3.13)

Proof. Let us consider the first two terms in the left-hand side of (3.13). Reversing
the edges 2→ 1 and 1→ 3 in the second graph, and by (3.11), we have:

2

1

3 ... n
+ 2

1

3 4 ... n
≡− 2

1

3 ... n
≡ 2

1

3 4 ... n (3.14)
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Adding (3.14) to the third term appearing in the left-hand side of (3.13), and
applying again (3.11), we obtain:

2 3

1

4 ... n
+ 2 3

1

4 ... n
≡− 2 3

1

4 ... n
≡ 2 3

1

4 ... n (3.15)

We proceed in the same way, up to

2 3 ... (n−1) n

1

+ 2 3 ... (n−1) n

1

+ 2 3 ... (n−1) n

1

≡ 0 (3.16)

Remark 3.7. Observe that equation (3.13) can be viewed as a "local" identity: Lemma
3.6 holds even if we attach the same graph Γ at any vertex of every graph appearing
in the identity.

Lemma 3.8. Let Λn be as in (3.6). For every k ∈ {2, . . . , n}, the following identity
holds:

Λn + (−1)k
∑

π∈Mk
n

πΛn ≡ 0 , (3.17)

where the sum is over all the monotone permutations π starting at k, and the
symmetric action on graphs is described in Section 2.3.

Proof. The proof is done by induction on k. Formula (3.13) is equivalent to (3.17)
for k = 2, and this proves the base of the induction.

Fix k > 2. Recall the description 1.6 of the monotone permutations π ∈Mk
n in

terms of the set D(π) of drops. Given the collection of drops D = (2 ≤ dk−1 < . . . <
d1 ≤ n), the corresponding monotone permutation πD ∈Mk

n is uniquely determined
by π−1(i) = di, ∀i = 1 . . . , k − 1. Hence:

πD(Λn) = k (k+1) ... (k−1)

[dk−1]

... 2

[d2]

... 1

[d1]

... n

where the underlying positions correspond to drops, while all other positions have
vertices in increasing order from k + 1 to n.

We then have:∑
π∈Mk

n

πΛn =
∑

2≤dk−1<...<d1≤n
k (k+1) ... (k−1)

[dk−1]

... 2

[d2]

... 1

[d1]

... n .
(3.18)

By Lemma 3.6, summing over d1 ∈ {d2 + 1, . . . , n} in (3.18), we get:

n∑
d1=d2+1

k (k+1) ... (k−1)

[dk−1]

... 2

[d2]

... 1

[d1]

... n = − k (k+1) ... (k−1)

[dk−1]

... 2

[d2]

1

... n .

(3.19)
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Summing (3.19) over d2 ∈ {d3 + 1, . . . , n} and using again Lemma 3.6 (cf. also
Remark 3.7), we get:

−
n∑

d2=d3+1
k (k+1) ... (k−1)

[dk−1]

... 3

[d3]

...
1

2

[d2]

... n = (−1)2 k (k+1) ... (k−1)

[dk−1]

... 3

[d3]

2

1

... n .

(3.20)
Repeating the same argument k times, we conclude that

∑
π∈Mk

n

πΛn = (−1)k−2
n∑

dk−1=2
k (k+1) ... (k−1)

[dk−1]

(k−2)

...
1

... n

= (−1)k−1 k

(k−1)

...
1

(k+1) ... n

= (−1)k−1Λn . (3.21)

3.4 Relation between symmetry property and Harri-
son’s conditions

Recall that Y ∈ W cl
n (ΠV ) satisfies the symmetry property (3.3). Using equation

(3.12) on connected lines, we get the following relation:

∀ τ ∈ Sn τΛn ≡
∑
σ∈Sn
σ(1)=1

cτΛn
σ σΛn . (3.22)

Hence, by Remark 3.4, we have:

∀ τ ∈ Sn Y τΛn =
∑
σ∈Sn
σ(1)=1

cτΛn
σ Y σΛn . (3.23)

We denote for simplicity f := Y Λn . By the symmetry condition (3.3) and the
definition (2.36) of the action of Sn on Pcl(n), equation (3.23) becomes:

sgn(τ)f(vτ(1) ⊗ . . .⊗ vτ(n)) =
∑
σ∈Sn
σ(1)=1

cτΛn
σ sgn(σ)f(vσ(1) ⊗ . . .⊗ vσ(n)) . (3.24)

Hence, the symmetry conditions for f coming from the lines are the following:

f(v1 ⊗ . . .⊗ vn) =
∑
σ∈Sn
σ(1)=1

cτΛn
σ

sgn(σ)
sgn(τ)f(vτ−1σ(1) ⊗ . . .⊗ vτ−1σ(n)) . (3.25)
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Lemma 3.9. If Y ∈W cl
n−1(ΠV ), then Y Λn satisfies the Harrison’s relations (1.12),

hence it lies in the differential Harrison cohomology complex

Y Λn ∈ Cn∂,Har(V ) .

Moreover, given F ∈ Cn∂,Har(V ), there exists a unique Y ∈ grn−1W cl
n−1(ΠV ) such

that
Y Λn = F .

Hence, there is a bijective linear map

grn−1W cl
n−1(ΠV ) ∼−→ Cn∂,Har(V ) , mapping Y 7→ Y Λn .

Proof. Firstly, we prove that, since Y ∈W cl
n−1(ΠV ) satisfies the symmetry relations

(3.3), f = Y Λn satisfies the Harrison’s conditions (1.12). By Lemma 3.8 (cf. Remark
3.4), we get

Y Λn = (−1)k−1 ∑
π∈Mk

n

Y π(Λn) . (3.26)

The left-hand side of this identity is simply Y Λn(v1 ⊗ . . .⊗ vn) = f(v1 ⊗ . . .⊗ vn).
On the right-hand side we have

(−1)k−1 ∑
π∈Mk

n

Y π(Λn)(v1 ⊗ . . .⊗ vn) = (−1)k−1 ∑
π∈Mk

n

(Y π−1)π(Λn)(v1 ⊗ . . .⊗ vn)

= (−1)k−1 ∑
π∈Mk

n

sgn(π)Y Λn(vπ(1) ⊗ . . .⊗ vπ(n))

= Lkf(v1 ⊗ . . .⊗ vn) ,

by the defintion (1.11) of Lk. Hence, f satisfies the Harrison’s conditions (1.12) as
claimed.

We next turn to the second claim of the lemma. Let F ∈ Cn∂,Har(V ), i.e.
F : V ⊗n → V is an F[∂]-module homomorphism satisfying the Harrison’s conditions
(1.12). We want to construct the corresponding Y ∈ grn−1W cl

n−1(ΠV ) such that
Y Λn = F . It is defined as follows. For Γ ∈ R(n), or if Γ ∈ L(n) is not connected, we
set

Y Γ = 0 . (3.27)

For Γ ∈ L(n) connected, there exists a unique τ ∈ Sn such that τ(1) = 1 and
Γ = τ(Λn). We then set

Y Γ(v1 ⊗ . . .⊗ vn) = sgn(τ)F (vτ(1) ⊗ . . .⊗ vτ(n)) . (3.28)

We need to prove that equations (3.27) and (3.28) determine a unique element Y in
grn−1W cl

n−1(ΠV ), and that Y Λn = F . The last assertion is obtained as the special
case of (3.27) when Γ = Λn (for which τ = 1). By Theorem 3.5 and Remark 3.4, Y
automatically satisfies the cycle relations, since by construction Y Γ = 0 for Γ ∈ R(n).
We need to show that Y satisfies all symmetry conditions (3.3).
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Obviously, the action of the symmetric group Sn preserves R(n) and the set
of non-connected lines. Hence, when we evaluate (3.3) on Γ ∈ R(n) or on a non-
connected n-line Γ ∈ L(n), we get 0 = 0.

We are left to prove that (3.3) holds when evaluated on a connected line Γ ∈ L(n),
which, as remarked above, can be obtained as Γ = τ(Λn), for a unique τ ∈ Sn such
that τ(1) = 1. The right-hand side of (3.3), when evaluated on such a Γ is given by
(3.28). The left-hand side is, by (2.36),

(Y σ)Γ(v1 ⊗ . . .⊗ vn) = Y στ(Λn)(σ(v1 ⊗ . . .⊗ vn))
= sgn(σ)Y στ(Λn)(vσ(1) ⊗ . . .⊗ vσn) . (3.29)

By Lemma 3.8, we have, modulo R(n),

στ(Λn) ≡ (−1)τ−1σ−1(1)−1 ∑
π∈Mτ−1σ−1(1)

n

στπ(Λn) .

Hence, by Remark 3.4, the right-hand side of (3.29) becomes

sgn(σ)(−1)τ−1σ−1(1)−1 ∑
π∈Mτ−1σ−1(1)

n

Y στπ(Λn)(vσ−1(1) ⊗ . . .⊗ vσ−1(n)) . (3.30)

Note that, if π ∈Mτ−1σ−1(1)
n , then στπ(1) = 1. Hence, we can apply formula (3.28)

to Γ = στπ(Λn) to get

Y στπ(Λn)(vσ−1(1) ⊗ . . .⊗ vσ−1(n)) = sgn(στπ)F (vτπ(1) ⊗ . . .⊗ vτπ(n)) . (3.31)

Combining (3.29), (3.30), and (3.31), we get, by the definition (1.11) of Lk, and by
(1.8),

(Y σ)Γ(v1 ⊗ . . .⊗ vn) = sgn(τ)(−1)τ−1σ−1(1)−1 ∑
π∈Mτ−1σ−1(1)

n

sgn(π)F (vτπ(1) ⊗ . . .⊗ vτπ(n))

= sgn(τ)(Lτ−1σ−1(1)F )(vτ(1) ⊗ . . .⊗ vτ (n)) ,

which equals (3.28) by the Harrison’s conditions (1.12).

Hence, Y is a well defined element of grn−1W cl
n−1(ΠV ) such that Y Λn = F ,

as required. The uniqueness of such a Y is obvious since, by Theorem 3.5, Y ∈
grn−1W cl

n−1(ΠV ) is uniquely determined by its value on Λn.

3.5 Relation between adX and the Hochschild differen-
tial

Lemma 3.10. For Y ∈W cl
n−1(ΠV ) and X defined in (2.38), we have

[X,Y ]Λn+1(v1 ⊗ . . .⊗ vn+1) = (−1)n+1d(Y Λn)(v1 ⊗ . . .⊗ vn+1) ,

where Λn is as in (3.6) and d is the Hochschild differential (1.2).
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Recall some notions that will be useful in the proof of the lemma. Let X ∈
W cl

1 (ΠV ) be the element given by (2.38) with parity p̄(X) = 1. The adjoint action
of X on Y ∈W cl

n−1(ΠV ) is, by definition (2.23), the following:

[X,Y ] = X�Y − (−1)n−1Y�X =
∑

σ∈Sn,1
(X ◦1 Y )σ−1 + (−1)n

∑
τ∈S2,n−1

(Y ◦1 X)τ−1

(3.32)
since p̄(Y ) = n− 1. The elements in Sn,1 are (k = 1, . . . , n+ 1)

σk =
(

1 2 . . . k − 1 k k + 1 . . . n n+ 1
1 2 . . . k − 1 k + 1 k + 2 . . . n+ 1 k

)
= (k k + 1 . . . n+ 1) ,

(3.33)

and the elements in S2,n−1 are (1 ≤ i < j ≤ n+ 1)

τi,j =
(

1 2 3 . . . i+ 1 i+ 2 . . . j j + 1 . . . n+ 1
i j 1 . . . i− 1 i+ 1 . . . j − 1 j + 1 . . . n+ 1

)
, (3.34)

if j ≥ i+ 2, and (1 ≤ i ≤ n)

τi,i+1 =
(

1 2 3 . . . i+ 1 i+ 2 . . . n+ 1
i i+ 1 1 . . . i− 1 i+ 2 . . . n+ 1

)
. (3.35)

Proof of Lemma 3.10. First, using the definition (3.32) and (3.33), we evaluate(
(X ◦1 Y )σ

−1
k

)Λn+1
(v1 ⊗ . . .⊗ vn+1)

= (−1)n+1−k(X ◦1 Y )σ
−1
k

(Λn+1)(v1 ⊗ . . .⊗ vk−1 ⊗ vk+1 ⊗ . . .⊗ vn+1 ⊗ vk) . (3.36)

For k = 1, by the symmetric group’s action described in Section 2.3, we have

σ−1
1 (Λn+1) =

σ−1
1 (1) σ−1

1 (2)
. . .

σ−1
1 (n+1)

=
1

. ..
n n+1

.

When we apply the cocomposition map ∆n,1 to this graph, we get

∆n,1
0 (σ−1

1 (Λn+1)) =
1 2

∆n,1
1 (σ−1

1 (Λn+1)) =
1 2

. . .
n

= Λn .

Hence, by the definition (2.33) of the composition map, (3.36) becomes(
(X ◦1 Y )σ

−1
1
)Λn+1

(v1 ⊗ . . .⊗ vn+1)
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= (−1)n(X ◦1 Y )σ
−1
1 (Λn+1)(v2 ⊗ . . .⊗ vn+1 ⊗ v1)

= (−1)nX•←−•(Y Λn(v2 ⊗ . . .⊗ vn+1)⊗ v1)
= (−1)n+1Y Λn(v2 ⊗ . . .⊗ vn+1) v1 . (3.37)

Similarly, for k = n+ 1, we have σn+1 = 1, and applying the cocomposition map
∆n,1 to σ−1

n+1(Λn+1) = Λn+1, we get:

∆n,1
0 (σ−1

n+1(Λn+1)) =
1 2

∆n,1
1 (σ−1

n+1(Λn+1)) =
1 2

. . .
n

= Λn .

Hence, by the definition (2.33) of the composition maps, (3.36) becomes(
(X ◦1 Y )σ

−1
n+1
)Λn+1

(v1 ⊗ . . .⊗ vn+1)

= X•→−•(Y Λn(v1 ⊗ . . .⊗ vn)⊗ vn+1)
= Y Λn(v1 ⊗ . . .⊗ vn) vn+1 . (3.38)

Furthermore, for 2 ≤ k ≤ n, we have

σ−1
k (Λn+1) =

σ−1
k

(1) σ−1
k

(2)
. . .

σ−1
k

(n+1)

=
1

. ..
k−1 k

. . .
n n+1

.

Hence, applying the cocomposition map ∆n,1 we get

∆n,1
0 (σ−1

k (Λn+1)) =
1 2

which has a cycle. Therefore,

(
(X ◦1 Y )σ

−1
k

)Λn+1
= X (. . .) = 0 . (3.39)

Next, we compute (
(Y ◦1 X)τ

−1
i,j

)Λn+1
(v1 ⊗ . . .⊗ vn+1) , (3.40)

with τi,j defined in (3.34). By the symmetric group’s action described in Section 2.3
we have

τ−1
i,j (Λn+1) =

τ−1
i,j

(1) τ−1
i,j

(2)
. . .

τ−1
i,j

(n+1)
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=
1 2 3

. . .
i+1 i+2

. . .
j j+1

. . .
n+1

.

Hence, applying the cocomposition ∆2,1,...,1 we get

∆2,1,...,1
0 (τ−1

i,j (Λn+1)) =
1 2

. . .
i i+1

. . .
j−1 j

. . .
n

,

which has a cycle. Therefore,(
(Y ◦1 X)τ

−1
i,j

)Λn+1
= Y ∆2,1,...,1

0 (τ−1
i,j (Λn+1))(. . .) = 0 . (3.41)

Finally, we evaluate (
(Y ◦1 X)τ

−1
i,i+1

)Λn+1
(v1 ⊗ . . .⊗ vn+1) , (3.42)

with τi,i+1 defined in (3.35). In this case, we have

τ−1
i,i+1(Λn+1) =

τ−1
i,i+1(1)τ−1

i,i+1(2)
. . .

τ−1
i,i+1(n+1)

=
1 2 3

. . .
i+1 i+2

. . .
n+1

.

Hence, applying the cocomposition ∆2,1,...,1 we get

∆2,1,...,1
0 (τ−1

i,i+1(Λn+1)) =
1 2

. . .
i i+1

. . .
n

,
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∆2,1,...,1
1 (τ−1

i,i+1(Λn+1)) =
1 2

.

Therefore, by definition (2.33) of the composition map, (3.42) becomes:(
(Y ◦1 X)τ

−1
i,j

)Λn+1
(v1 ⊗ . . .⊗ vn) =

= (Y ◦1 X)τ
−1
i,j (Λn+1)(vi ⊗ vi+1 ⊗ v1 ⊗ . . .⊗ vi−1 ⊗ vi+2 ⊗ . . .⊗ vn+1)

= Y ∆2,1,...,1
0 (τ−1

i,i+1(Λn+1))(X•→−•(vi ⊗ vi+1)⊗ v1 ⊗ . . .⊗ vi−1 ⊗ vi+2 ⊗ . . .⊗ vn+1)

= Y ∆2,1,...,1
0 (τ−1

i,i+1(Λn+1))(vivi+1 ⊗ v1 ⊗ . . .⊗ vi−1 ⊗ vi+2 ⊗ . . .⊗ vn+1) . (3.43)

Note that
∆2,1,...,1

0 (τ−1
i,i+1(Λn+1)) = σ(Λn) ,

where σ = (1 2 . . . i) ∈ Sn is the i-cycle. Hence, by the symmetry property (3.3),
we can replace Y by Y σ−1 in the right-hand side of (3.43) to get

(−1)i+1Y Λn(v1 ⊗ . . .⊗ vi−1 ⊗ vivi+1 ⊗ vi+2 ⊗ . . .⊗ vn+1) . (3.44)

By definition (3.32), and combining equations (3.37), (3.38), (3.39), (3.41), (3.43),
and (3.44), we get:

[X,Y ]Λn+1(v1 ⊗ . . .⊗ vn)
= (−1)n+1Y Λn(v2 ⊗ . . .⊗ vn+1) v1

+ Y Λn(v1 ⊗ . . .⊗ vn) vn+1

+ (−1)n
n∑
i=1

(−1)i+1Y Λn(v1 ⊗ . . .⊗ vi−1 ⊗ vivi+1 ⊗ vi+2 ⊗ . . .⊗ vn+1)

= (−1)n+1d(Y Λn)(v1 ⊗ . . .⊗ vn) ,

completing the proof.

Corollary 3.11. Let X be defined in (2.38) and Y ∈W cl
n−1(ΠV ) such that [X,Y ] =

0. Then Y Λn is a cocyle in the Hochschild cohomology.

Proof. Obvious, by Lemma 3.10.

3.6 Proof of theorem 3.1
By Lemma 3.9, given Y ∈ W cl

n−1(ΠV ), Y Λn is a cochain in the Harrison complex,
and also, for any F ∈ CnHar(V ), there is a unique Y ∈ grn−1W cl

n−1(ΠV ) such that
F = Y Λn . So, the following diagram is well defined:

Y 3 W cl
n−1(ΠV ) adX−−→ W cl

n (ΠV )
↓ ↓ ↓

Y Λn 3 Cn∂,Har(V ) d−→ Cn+1
∂,Har(V )

, (3.45)

where the vertical maps are surjective and restrict to bijective maps on top degree:
grn−1W cl

n−1(ΠV ) ∼−→ Cn∂,Har(V ). Lemma 3.10 says that, up to a sign, (3.45) is also
commutative.
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Chapter 4

Relation between variational
Poisson cohomology and PVA
cohomology

4.1 Variational Poisson cohomology
Let V = V0̄ ⊕ V1̄ be a vector superspace with parity p, endowed with an even
endomorphism ∂ ∈ EndV . For n ≥ 0, define Chom(n) the superspaces consisting of
all linear maps

f : V ⊗n −→ V [λ1, . . . , λn]�〈∂ + λ1 + · · ·+ λn〉
v1 ⊗ · · · ⊗ vn 7→ fλ1,...,λn(v1 ⊗ · · · ⊗ vn) ,

(4.1)

satisfying the sesquilinearity conditions:

fλ1,...,λn(v1 ⊗ · · · ∂vi · · · ⊗ vn) = −λifλ1,...,λn(v1 ⊗ · · · ⊗ vn) for all i = 1, . . . , n .
(4.2)

Given an n-tuple (m1, . . . ,mn) of positive integers, let Mi and Λi be as in (2.6) and
(2.32). The operad Chom(V ) is defined as the collection of the vector superspaces
Chom(n), n ≥ 0, endowed, for every f ∈ Chom(n) andm1, . . . ,mn, with composition
parity preserving linear maps as follows. Let g1 ∈ Chom(m1), . . . , gn ∈ Chom(mn),
then we have f(g1 ⊗ · · · ⊗ gn) ∈ Chom(Mn),(

f(g1 ⊗ · · · ⊗ gn)
)
λ1,...,λMn

(v1 ⊗ · · · ⊗ vMn)

:= fΛ1,...,Λn
(
((g1)λ1,...,λM1

⊗ · · · ⊗ (gn)λMn−1+1,...,λMn )(v1 ⊗ · · · ⊗ vMn)
)
,

(4.3)

where, recalling the definition of tensor product between linear maps of vector
superspaces and notation (2.6),(

(g1)λ1,...,λM1
⊗ · · · ⊗ (gn)λMn−1+1,...,λMn

)
(v1 ⊗ · · · ⊗ vMn)

:= (−1)
∑

i<j
p(gj)(p(vMi−1+1)+···+p(vMi )) (g1)λ1,...,λM1

(v1 ⊗ · · · ⊗ vM1)⊗ . . .
· · · ⊗ (gn)λMn−1+1,...,λMn(vMn−1+1 ⊗ · · · ⊗ vMn) .

(4.4)
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The unity in the Chom operad is 1 = 1V ∈ Chom(1) = EndF[∂] V , and the right
action of Sn on Chom(n) is given by (cf. (2.2) and (2.1)):

(fσ)λ1,...,λn(v1 ⊗ · · · ⊗ vn) = fσ(λ1,...,λn)(σ(v1 ⊗ · · · ⊗ vn))

= εv(σ)fλσ−1(1),...,λσ−1(n)
(vσ−1(1) ⊗ · · · ⊗ vσ−1(n)) ,

(4.5)

for every σ ∈ Sn, where εv(σ) is given by (2.3).

Denote by W ∂(ΠV ) := W (Chom(ΠV )) the associated Z-graded Lie superalgebra
from (2.21) with Lie bracket (2.23). Let now V be a commutative, associative, unital,
differential algebra, with an even derivation ∂. Following the notation in [DSK13],
for k ≥ −1, we let W ∂,as

k (ΠV ) be the subspace of W ∂
k (ΠV ) consisting of all linear

maps

f : V ⊗n −→ F−[λ1, . . . , λn]⊗F[∂] V

v1 ⊗ . . . ⊗ vn 7→ fλ1,...,λn(v1 ⊗ . . . ⊗ vn) ,
(4.6)

satisfying the sesquilinearity conditions (4.2) and the following Leibniz rules:

fλ1,...,λn(v1, . . . , uiwi, . . . , vn)

= (−1)p(wi)(si+1,k+k−i)fλ1,...,λi+∂,...,λn(v1, . . . , ui, . . . , vn)→wi

+ (−1)p(ui)(p(wi)+si+1,k+k−i)fλ1,...,λi+∂,...,λn(v1, . . . , wi, . . . , vn)→ui ,

(4.7)

where the arrow means that ∂ is moved to the right and{
sij = p(vi) + . . .+ p(vj) if i ≤ j
sij = 0 if i > j .

(4.8)

Theorem 4.1 ([DSK13, Prop. 5.1-5.2]). The space

W ∂,as(ΠV ) =
⊕
k≥−1

W ∂,as
k (ΠV )

is a subalgebra of the Lie superalgebra W ∂(ΠV ). Moreover, there is a bijective
correspondence between the odd elements X̄ ∈W ∂,as

1 (ΠV ) such that [X̄, X̄] = 0 and
the Poisson vertex algebra λ-brackets on V , given by

[aλb] = (−1)p(a)X̄λ,−λ−∂(a⊗ b) . (4.9)

As a consequence, given a Poisson vertex algebra λ-bracket on V , we have the
corresponding cohomology complex (W ∂,as(ΠV ), dX̄) with differential dX̄ = ad X̄.

4.2 Relation between PVA cohomology and variational
Poisson cohomology

To a Poisson vertex algebra V we associate two cohomology complexes: the PVA
cohomology complex (W cl(ΠV ), adX) introduced in Section 2.8, and the variational
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Poisson cohomology complex (W ∂,as(ΠV ), adX̄) introduced above. It is natural to
ask what is the relation between these two cohomology theories.

As explained in [BDSHK18], the complexes (W cl(ΠV ), adX) and (W ∂,as(ΠV ), adX̄)
are related by the following

Lemma 4.2 ([BDSHK18, Lemma 11.2]). We have a natural Lie algebra isomorphism

W ∂(ΠV ) ∼−→ gr0W cl(ΠV ) , (4.10)

mapping f̄ ∈W ∂(ΠV ) to the element f ∈ gr0W cl(ΠV ) such that

f• ··· • = f̄ and fΓ = 0 if |E(Γ)| 6= ∅ .

Theorem 4.3 ([BDSHK18, Theorem 11.4]). We have a canonical injective homo-
morphism of Lie superalgebras

H(W ∂,as(ΠV ), dX̄) ↪→ H(W cl(ΠV ), dX) (4.11)

induced by the map (4.10).

The map (4.11) is an isomorphism for the 0-th and 1-st cohomologies, and it is
left as an open question in [BDSHK18] whether (4.11) is, in fact, an isomorphism.

The main application of Theorem 3.1 will be the proof that this is indeed the
case, under some regularity assumption on V . Recall the following definitions (see
[W94] for details):

Definition 4.4. Let R be a F-algebra andM a R-module. A squarezero extension of
R by M is a F-algebra E, together with a surjective ring homomorphism ε : E → R
such that Ker(ε) is an ideal of square zero, and an R-module isomorphism of M
with Ker(ε).

Definition 4.5. A commutative F-algebra is smooth (over F) if for every squarezero
extension 0→M → E

ε−→ T → 0 of commutative F-algebras and every algebra map
ν : R→ T there exists a F-algebra homomorphism u : R→ E lifting ν in the sense
that εu = ν.

For example, every polynomial algebra R = F[x1, ..., xn] is smooth over F.

Theorem 4.6. Assuming that the PVA V is finitely generated and smooth as a
differential algebra, the Lie homomorphism (4.11) is an isomorphism.

We shall not provide here a full proof of Theorem 4.6, which is deferred to a
future research project. Here we outline the main ideas for the proof. Before, let us
describe an enlightening example.

Example 4.7. Let V be an (even) algebra of polynomials in finitely many variables
with a Poisson structure, i.e. a Lie bracket [· , ·] satisfying the Leibniz rule. We
compute the second cohomology of the finite Poisson cohomology complex (2.44).
Bearing the shift of the grading in mind, we have to calculate

H2(W fn(ΠV ), adX) = Ker(adX : W fn
1 (ΠV )→W fn

2 (ΠV ))
Im(adX : W fn

0 (ΠV )→W fn
1 (ΠV ))

.
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Recall that Y ∈W fn
1 (ΠV ) is a map Y : G(2)× V ⊗2 → V , with parity p̄(Y ) = 1, and

such that

Y • •(v1⊗v2) = −Y • •(v2⊗v1), Y •→−•(v1⊗v2) = Y •→−•(v2⊗v1) = −Y •←−•(v1⊗v2) ,
(4.12)

and Y Γ = 0 if Γ ∈ G(2) containes a cycle. By (2.23), adX on such a Y is defined as:

[X,Y ] = X�Y + Y�X

=
∑

σ∈S2,1

(X ◦1 Y )σ−1 +
∑

τ∈S2,1

(Y ◦1 X)τ−1

= X ◦1 Y +X ◦2 Y + (X ◦2 Y )(12) + Y ◦1 X + Y ◦2 X + (Y ◦2 X)(12).

(4.13)

Y ∈ Ker(adX : W fn
1 (ΠV )→W fn

2 (ΠV )) means that [X,Y ] = 0 and, by the invariance
of the �-product under the action of the symmetric group this is the same as to
impose [X,Y ]Γ = 0 for each of the three graphs:

1 2 3
,

1 2 3
,

1 2 3 .
(4.14)

By Corollary 3.11, we know that evaluating [X,Y ] on the connected line, we find
that Y •−→• is a cocyle in the Hochschild cohomology. Evaluating [X,Y ] on the second
graph in (4.14), we get:

(X ◦1 Y )• •−→•(v1 ⊗ v2 ⊗ v3) = X•−→• (Y • •(v1 ⊗ v2) ⊗ v3)
= Y • •(v1 ⊗ v2)v3 ,

(X ◦2 Y )• •−→•(v1 ⊗ v2 ⊗ v3) = −X• •
(
v1 ⊗ Y •−→•(v2 ⊗ v3)

)
= −[v1, Y

•−→•(v2 ⊗ v3)] ,

((X ◦2 Y )(12))• •−→•(v1 ⊗ v2 ⊗ v3) = −(X ◦2 Y ) (v2 ⊗ v1 ⊗ v3)
= v2Y

• •(v1 ⊗ v3) ,
(Y ◦1 X)• •−→•(v1 ⊗ v2 ⊗ v3) = Y •−→• ([v1, v2] ⊗ v3) ,
(Y ◦2 X)• •−→•(v1 ⊗ v2 ⊗ v3) = −Y • • (v1 ⊗ v2v3) ,

((Y ◦2 X)(12))• •−→•(v1 ⊗ v2 ⊗ v3) = − (Y ◦2 X) (v2 ⊗ v1 ⊗ v3)
= Y •−→•(v2 ⊗ [v1, v3]) .

Thus, we have:

[X,Y ]• •−→•(v1 ⊗ v2 ⊗ v3)
= Y • •(v1 ⊗ v2)v3 − [v1, Y

•−→•(v2 ⊗ v3)] + v2Y
• •(v1 ⊗ v3)

+ Y •−→• ([v1, v2] ⊗ v3)− Y • • (v1 ⊗ v2v3) + Y •−→•(v2 ⊗ [v1, v3]) = 0.
(4.15)

Next, evaluating all six summands of [X,Y ] on the disconnected graph in (4.14), we
get:

(X ◦1 Y )• • •(v1 ⊗ v2 ⊗ v3) = X• • (Y • •(v1 ⊗ v2) ⊗ v3)
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= [Y • •(v1 ⊗ v2), v3] ,
(X ◦2 Y )• • •(v1 ⊗ v2 ⊗ v3) = −X• • (v1 ⊗ Y • •(v2 ⊗ v3))

= −[v1, Y
• •(v2 ⊗ v3)] ,

((X ◦2 Y )(12))• • •(v1 ⊗ v2 ⊗ v3) = −(X ◦2 Y )• • •(v2 ⊗ v1 ⊗ v3)
= [v2, Y

• •(v1 ⊗ v3)] ,
(Y ◦1 X)• • •(v1 ⊗ v2 ⊗ v3) = Y • • ([v1, v2] ⊗ v3) ,
(Y ◦2 X)• • •(v1 ⊗ v2 ⊗ v3) = −Y • • (v1 ⊗ [v2, v3]) ,

((Y ◦2 X)(12))• • •(v1 ⊗ v2 ⊗ v3) = Y • •(v2 ⊗ [v1, v3]) .

Hence,

[X,Y ]• • •(v1 ⊗ v2 ⊗ v3)
= [Y • •(v1 ⊗ v2), v3]− [v1, Y

• •(v2 ⊗ v3)] + [v2, Y
• •(v1 ⊗ v3)]

+ Y • • ([v1, v2] ⊗ v3)− Y • • (v1 ⊗ [v2, v3]) + Y • •(v2 ⊗ [v1, v3]) = 0.
(4.16)

By Theorem 3.1, Y •−→• is a cochain of the Harrison complex, and, since it also
has zero Hochschild differential, Y •−→• is a cocycle in the Harrison cohomology. It is
well known that the Harrison cohomology of V is trivial. So, up to a coboundary,
we can set Y •−→• to be zero.

Assuming Y •−→• = 0, equation (4.15) becomes:

Y • •(v1 ⊗ v2)v3 + v2Y
• •(v1 ⊗ v3)− Y • • (v1 ⊗ v2v3) = 0 , (4.17)

i.e. Y • • satisfies the finite analog of Leibniz rule in (4.7). So, Y ∈ H2(W fn(ΠV ))
is as follows: Y •−→• = 0, and Y • • satisfies the skewsymmetry property (4.12) and
equations (4.16), (4.17). These relations are the same that describe the Lie algebra
cohomology.

4.3 Sketch of the proof of Theorem 4.6
The proof of Theorem 4.6 will be divided in two claims.

4.3.1 Claim 1

The first step of the proof consists in showing that, under the smoothness assumption
on V , the PVA cohomology is concentrated in degree 0, i.e. on the maps Y ∈
W cl
n (ΠV ) vanishing on all graphs Γ ∈ G(n) with at least one edge. In other words,

given Y a cocycle for the classical complex (3.1), and Γ a graph such that | E(Γ) |6= 0,
Y Γ vanishes in the cohomology. More precisely,
Proposition 4.8. For every n ≥ 0, given Y ∈ W cl

n−1(ΠV ) such that [X,Y ] = 0,
there exist Z ∈W cl

n−2(ΠV ) and Ỹ ∈W cl
n−1(ΠV ) such that

Y = [X,Z] + Ỹ ∈W cl
n−1(ΠV ) , [X, Ỹ ] = 0 , (4.18)

and
Ỹ Γ = 0, ∀Γ ∈ G(n) such that |E(Γ)| 6= 0 . (4.19)
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By Lemma 3.5, we can write every graph Γ ∈ G(n), modulo cycle relations,
uniquely, as linear combination of disjoint unions of lines

L1 t . . . t Ls

defined in Section 3.2. To prove Proposition 4.8, we proceed by induction on the
multi-index (s, k1, . . . , ks) ordered lexicographically, i.e.

(s, |L1|, . . . , |Ls|) < (t, |l1|, . . . , |lt|) if


s < t

or
s = t and ∃ i : |Lj | = |lj | ∀ j < i and |Li| < |li| .

(4.20)
At every step h = (s, k1, . . . , ks) of the induction, we produce an element Zh ∈

W cl
n−2(ΠV ) as follows. Let

Γh =
1 2

· · ·
k1 k1 +1

· · ·
k1 +k2

· · ·
k1 +. . .+ks−1 +1

· · ·
n

∈ L(n)
(4.21)

In particular, for s = 1 the corresponding graph is Γh = Λn, while for s = n the
corresponding graph is completely disconnected: Γh = • • · · · •. Note that,
for every disjoint union of s lines Γ ∈ L(n), with |E(Γ)| = n− s, there is a unique
permutation σ ∈ Sn such that

Γ = σ(Γh) . (4.22)

We want to construct an element Zh ∈ grn−sW cl
n−2(ΠV ) such that

Y Γ = [X,Zh]Γ . (4.23)

for every other graph Γ such that |E(Γ)| = n − s. Note that, by Theorem (3.5),
Remark 3.4, and the symmetry property (3.3), equation (4.23) holds as soon as

Y Γh = [X,Y ]Γh . (4.24)

The construction of these elements Zh is obtained in Section 4.3.3 for the case s = 1
(the base of the induction), and in Section 4.3.4 for a generic h (the inductive step).
Once we have all the elements Zh, we set

Z =
∑
h

Zh .

Hence, by construction,
Y Γ = [X,Z]Γ

for all Γ ∈ G(n) with |E(Γ)| 6= 0. Therefore, (4.18) and (4.19) hold with Ỹ =
Y − [X,Z].
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4.3.2 Differential Harrison cohomology of smooth differential alge-
bras

It is well known that the Harrison cohomology of a smooth algebra is trivial (see
[L13] and [Hoc45]). An important key ingredient for the conctruction of the elements
Zh is a differential analog of this statement:

Proposition 4.9. The differential Harrison cohomology H∂,Har(V ) of a smooth
differential algebra is trivial in degree > 1.

The proof of Proposition 4.9 will be part of a future research project.

4.3.3 Base of the induction

Let us go into detail explaining the base of the induction. It corresponds to
s = 1. Given Y ∈ Ker(adX : W cl

n−1(ΠV ) → W cl
n (ΠV )), we want to construct

Z1 ∈W cl
n−2(ΠV ) such that (cf. (4.24)):

Y Λn = [X,Z1]Λn . (4.25)

Let us denote f = Y Λn . By the assumption [X,Y ] = 0, and so, by Lemma 3.11, f is
a cocycle in the Hochschild cohomology. Moreover, by Theorem 3.1, f is a cochain
in the differential Harrison cohomology complex, namely f ∈ Cn∂,Har(V ). Hence, f is
a cocycle in the differential Harrison cohomology. (Since we already know that Theo-
rem 4.6 is true for the 0-th and the 1-st cohomologies, we can assume here that n > 1.)

By Proposition 4.9, there exists g ∈ Cn−1
∂,Har(V ) such that f = dg. Again by

Theorem 3.1, we then have an element Z̄1 ∈ grn−2W cl
n−2(ΠV ) such that Z̄Λn−1

1 = g.
Hence, by Lemma 3.10

Y Λn = d(Z̄Λn−1
1 ) = (−1)n[X, Z̄1]Λn . (4.26)

Thus, Z1 ∈ W cl
n−2(ΠV ) is defined as an element in grn−2W cl

n−2(ΠV ) (i.e. Z1
vanishes when evaluated on a graph with number of edges not equal to n − 2),
Z

Λn−1
1 = (−1)nZ̄Λn−1

1 , and, for Γ′ ∈ G(n), Γ′ connected, ZΓ′
1 is defined combining

identity (3.12), Remark 3.4, and symmetry property (3.3).

4.3.4 Inductive step

Here is a sketch of the inductive step. All the computations are deferred to a future
research project. For the inductive step, let Γh be as in (4.21), and suppose that
equations (4.18) and (4.19) are true for every (t, h1, . . . , ht) < (s, k1, . . . , ks). Let
also Γ̃h be the graph obtained by Γh by adding a vertex (labelled as n+ 1) and the
edge n→n+ 1, i.e.

Γ̃h = •1−→•−→· · ·−→•k1︸ ︷︷ ︸
L̃1

•k1+1−→•−→· · ·−→•k1+k2︸ ︷︷ ︸
L̃2

· · · •k1+...+ks−1+1−→•−→· · ·−→•n−→•n+1︸ ︷︷ ︸
L̃s

,

(4.27)
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By assumption, we have [X,Y ] = 0. Hence, in particular,

[X,Y ]Γ̃hλ1,...,λn+1
(v1 ⊗ . . .⊗ vn+1) = 0 . (4.28)

Computing explicitly the left-hand side of (4.28), using the definition (2.23) of
the Lie bracket in W cl(ΠV ) and (2.38) of the element X ∈ W cl

1 (ΠV ), we get the
Hochschild differential of Y Γ viewed as a function of only the last ks + 1 factors
vk1+...+ks−1+1, . . . , vn, vn+1. Hence, we should be able to use Proposition 4.9, in a
way similar to what we did in Section 4.3.3, to construct the corresponding element
Zh ∈ grn−sW cl

n−2(ΠV ) such that (4.24) holds. We omit here the details of this
computation, which are deferred to a future project.

4.3.5 Claim 2

Proposition 4.10. Let V be a PVA. Suppose that, for every n ≥ 0, for every
Y ∈W cl

n−1(ΠV ) such that [X,Y ] = 0, Y Γ = 0 if Γ is a graph with at least one egde.
Then, there exit an element Z ∈ W cl

n−2(ΠV ) and an element Ỹ ∈ W cl
n−1(ΠV ) such

that

Y • ··· • = [X,Z]• ··· • + Ỹ • ··· • with Ỹ • ··· • = Ȳ ∈W ∂,as
n−1 (ΠV ) . (4.29)

Here is an outline of the proof. Evaluating [X,Y ] on the disconnected graph

... ,

and by the assumption [X,Y ] = 0 and Y Γ = 0 for every graph Γ with at least one
edge, we get the Lie conformal algebra relation. Whereas, evaluating [X,Y ] on the
graph

... ,

we get the Leibniz rule (4.7).

4.4 Examples
In [BDSK19] the authors compute the variational Poisson cohomology of the most
important examples of PVA’s arising in conformal field theory. By Theorem 4.6, we
can also obtain their Poisson vertex algebra cohomologies. Here, we just present two
of them, and we refer to [BDSK19] for details and more examples.

Example 4.11. Let Virc the Virasoro PVA with central charge c ∈ F, as in Example
2.8. We have ([BDSK19, Theorem 4.17]):

dimHn
cl(Virc) =

{
1, for n = 0, 2, 3,
0, otherwise.

Example 4.12. Let F the PVA of free fermions described in Example 2.10. From
[BDSK19], we have that the PVA cohomology of F is trivial ([BDSK19, Theorem
4.7]):

dimHn
cl(F) = δn,0 n ≥ 0 .
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