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1. Introduction

Globular clusters (GCs) are spherical stellar systems essentially without gas or recent star
formation episodes, dust or younger elements. Their total mass can be found in the range 104 M⊙÷
106 M⊙. Around the Milky Way it has been possible to survey a large number of these systems:
Harris in 1996 catalogued more than 150 members [6]. These are privileged targets for observations
since it is possible to separate their single star components [7].

Moreover, GCs are the best possible laboratories to test the effects of thermodynamics on
their dynamical evolution, due to the collisions among stars, having a relatively small relaxation
time with respect to their age ranging between 10 to 13 Gyr. They are probably the only “point
of contact” between gravity and thermodynamics, and a complete analysis of this aspects allows
the individuation of the onset of gravothermal instability inducing the core collapse, leading to
conclude that this collapse occurs well before than commonly believed [14].

Numerical simulations are also an important and powerful tool to check the validity of the
theoretical models, but they enforce us to many limitations. Time of calculus is one of the most
significant because simulating N-body systems with 105 ÷ 106 stars requires several months of
computing time if one have not a very powerful calculator [20]. We need to simplify our work by
making assumptions which sometimes keep us away from studying all phenomena occuring in the
reality and therefore it is necessary to think new ways of implementing cluster models to be able to
take into account as many aspects as possible.

One important aspect of GCs is the spectrum of mass, which is often set aside in simulation and
modeling by assuming that all the stars have a constant mass value. In most cases this assumption
seems to be in accordance with observations, expecially in the central regions of the clusters [8][1],
but it moves us away from a correct analysis of the outermost regions of these systems. In fact, stars
with heavier masses tends to sink in the core, which is heavier than the single mass case, while the
lighter components gain higher velocities and widen the outermost regions. This phenomenon is
called mass segregation, which has implication in the evaporation of the stars and the core collapse,
and affects the evolution and stability of these systems. Nowadays, observational evidences of this
phenomenon stand without any question (see e.g. [3][9][22]).

2. The multimass King model: Da Costa-Freeman

The King distribution has been mostly applied ignoring the mass spectrum of the GCs. This
assumption seems to work well for several clusters, since comparison between the surface density
of the theoretical models and the luminosity profiles of the observed GCs in our galaxy shows a
fine match. However, this is an approximation that does not allow a full understanding of many
phenomena of these systems.

The mass spectrum modifies the luminosity profile of a globular cluster. Stars with greater
masses affect the luminosity of the system, whereas the lighter elements, which dominate in num-
ber, mainly affect the gravitational potential [2]. There are few GCs which show a significant
deviation of the luminosity profile from the theoretical single mass model. Da Costa & Freeman
pointed out how the GCs 47 Tuc, M3 and M15 show a luminosity profile divergence from the theo-
retical model. In the central regions of these systems we obtain a good fit, but not in the outermost
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regions. So that, when we compare numerical simulations with observed data, there are details we
cannot see and understand if we do not look at the theory.

In star clusters with a mass spectrum, elements with different mass intervals can have different
distributions in radius due to energy equipartition, which involves the kinetic energy of the different
mass classes. Thus, for example, if the system tends to equipartition, heavier masses have lower
velocities and cannot escape from the central regions with large values of the gravitational potential
[21]. As the system tends to equipartition, these elements sink to the core and loose energy to the
lighter stars, which can move to the external region and also evaporate.

Mass spectrum can also affect stability of these systems: if the ratio between relative density
of higher mass stars and lower mass is sufficiently high, the low mass stars cannot achieve all the
kinetic energy released by the greater ones and we have no more equilibrium and equipartition. In
such a case, the heavy core of the globular cluster would collapse, with a disruption of the outer
regions.

In 1976, Da Costa & Freeman [2] developed a dynamical model using the mass spectrum and
the observed luminosity function, finding a better representation of the brightness profile of M3,
starting from the King distribution function [8] in terms of the energy. They assumed that the stars
of the globular cluster can be grouped into discrete mass classes. Each of these has stars with mass
mi. The distribution in phase space was given by

fi(r,v) = αi

[
eEi/miσ2

i − eC/σ2
i

]
with Ei ≤−miC , (2.1)

where σi was related to the velocity dispersion of the stars of the i-mass class and C > 0 was
a constant connected to the normalization of the gravitational potential φ(rt) at the edge of the
system corresponding to tidal radius rt , while αi was a normalizing number factor also related to
the i-mass class. The energy for each mass class was given by

Ei =
1
2

miv2 +miφ(r) . (2.2)

The authors generated a model for a particular cluster varying the number factors αi and the value of
the central potential φ0, iteratively, until making the model consistent with the data. They verified
that the virial theorem was satisfied for all the models to better than 0.01% of the dimensionless
kinetic energy, and that the models were indistinguishable from those of King [8]. Finally they
compare the theoretical model to the observative data by fitting the surface brightness profile for
M3 (NGC 5272). The fit is shown in Fig.1.

3. Multimass model with continuous mass function

Da Costa & Freeman [2] generated the multimass model by dividing the mass spectrum in
mass classes and using the average value for each of them. They found a good agreement with
the observational data in M3. There are several papers all considering multimass models with a
discrete mass distribution [15][2][5][16][4][18]. In view to the necessity to take into account a
continuous mass function for the distribution of stars in a globular cluster, we consider the Kroupa
mass function.
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Figure 1: Comparison between the observed surface brightness of the globular cluster M3, given by dots,
with the theoretical curve which represent the model developed by Da Costa & Freeman [2].

In order to correctly evaluate the influence of mass spectrum in the cluster dynamics, let us
consider the number of the stars with various mass values that have been formed in the system. For
stars with mass in the range between m and m+ dm, we have dN ∝ ξ (m)dm, where ξ (m) is the
initial mass function. Salpeter [19] found a theoretical power law form ξ (m) ∝ m−2.35 which is a
good approximation for stars with masses M > 0.5M⊙. For a more general form of ξ valid in a
wider range of masses, we use the mass function introduced by Kroupa [11]{

ξ (m) ∝ m−2.3 for m ≥ 0.5M⊙

ξ (m) ∝ m−1.3 for 0.1M⊙ ≤ m ≤ 0.5M⊙ .
(3.1)

We consider a range of star masses in the interval 0.1M⊙ ≤ m ≤ 1.1M⊙ and the condition of nor-
malization given by ∫ m1

m0

em∆φ/kθ ξ (m)dm = 1 , (3.2)

where m0 = 0.1M⊙ and m1 = 1.1M⊙. The term em∆φ/kθ takes into account the mass segregation
effects [21] and θ is the thermodynamical temperature, constant all over the equilibrium configu-
ration [12]. At this step of development of the model we choose to not include the contribution of
white dwarfs and neutron stars, limiting the maximum value of the star masses at m1 = 1.1M⊙.

In order to make a suitable adaptation of the King models to multimass GCs taking into ac-
count the Kroupa mass function, we have to calculate the most important quantities involved in the
gravitational equilibrium equation like the number density and the mass density, by using the King
distribution function with a particular care to the dependence on the mass. For the number density
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n(m) we have
N
V

≡ n(m) = A(m)em∆φ/kθ
∫ qc

0

[
eε(q)/kθ − eεc(m)/kθ

]
d3q , (3.3)

where ∆φ = φ(R)−φ(r) and A(m) is the normalizing factor. The kinetic energy of a single star
is ε(q), while εc(m) is the cutoff energy connected with the gravitational potential and depending
on the mass of the single star. Integrating on the entire spectrum of masses we obtain the quantity
n(r) depending on the radial coordinate

n(r) =

∫ m1
m0

n(m)em∆φ/kθ ξ (m)dm∫ m1
m0

em∆φ/kθ ξ (m)dm
. (3.4)

Analogously, for the mass density ρ(r)

ρ(r) =
∫ m1

m0
mn(m)em∆φ/kθ ξ (m)dm∫ m1
m0

em∆φ/kθ ξ (m)dm
, (3.5)

where, being in Newtonian regime, ρ(m) = mn(m).

4. Definition of the main parameters and results

We calculate the equilibrium configurations of multimass King models by the Poisson equation
adapted to the presence of a continuous mass function. The definition of parameters, quite similar
to one used by King [8], is introduced taking into account quantities calculated with respect to the
maximum mass m1 allowed in the model. In particular, the dimensionless cutoff parameter W is
given by the formula

W =
εc,1

kθ
=

1
σ 2

1
(φR −φ) , (4.1)

where σ 2
1 = kθ/m1 is the square of the velocity dispersion of the maximum mass. In the same way

we define the King radius rK,1 with respect to the maximum mass as

rK,1 =

√
9σ 2

1
4πGρ0

. (4.2)

The definition (4.1) leads to the relation

dφ
dr

=−σ2
1

dW
dr

(4.3)

and to the final form of the gravitational equilibrium equation

1
r2

d
dr

(
r2 dW

dr

)
=−4πGρ

σ2
1

. (4.4)

Also the radial coordinate r can be adimensionalized with respect to the King radius rK,1 introduc-
ing the quantity ξ = r/rK,1, so that the dimensionless form of the gravitational equilibrium equation
becomes

1
ξ 2

d
dξ

(
ξ 2 dW

dξ

)
=−9

ρ
ρ0

, (4.5)
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with the initial conditions W (0) =W0 and W ′(0) = 0.
We obtain a family of multimass equilibrium configurations for different values of W0. We can

compare and contrast these configurations with the single mass models obtained by King [8]. Each
configuration is characterized by the dimensionless total mass µ = M/ρ0 r3

K,1 and the concentration
c = rt/rK,1, where the tidal radius rt ≡ R is the value corresponding to the edge of the configuration
where ρ = 0. The dimensionless total mass is simply obtained by using Eq.(4.5) and the definition
of ξ . We have

µ =
M

ρ0 r3
K,1

=
1

ρ0 r3
K,1

∫ rt

0
4πρr2dr = 4π

∫ c

0

ρ
ρ0

ξ 2dξ =−4π
9

(
ξ 2 dW

dξ

)
ξ=c

. (4.6)

In Fig.2 the behavior of the concentration c and the dimensionless total mass µ is shown for multi-
mass models and King single mass models at different values of W0. We note at same values of W0

that multimass models are more extended and massive than King ones. The reason arises from the
mass segregation in multimass models where lighter and faster stars occupy the external regions of
the cluster making it more extended, while the heavier ones remain in the central regions.

Figure 2: Concentration and dimensionless total mass of multimass equilibrium configurations are com-
pared and contrasted with ones obtained by King [8].

We can also analyze the projected mass density of multimass models at different values of W0

and compare the results with ones corresponding to single mass King models. In Fig.3 the plotted
quantity σ/σ0 refers to values of the projected mass density with respect to its central value. The
expression of σ(r), not to be confused with the velocity dispersion σ1, is given by

σ(r) = 2
∫ rt

r

ρ(s)sds√
s2 − r2

. (4.7)

This quantity is the relevant one in the comparison with the surface brightness of the observed
clusters, in the hypothesis that the mass-luminosity ratio M/L remains quite constant in the ob-
served system. It is interesting to note that models with the same concentration c (both multimass
and King ones) show pratically the same profile. This could be the reason which allows a good fit
between the observed surface brightness of the clusters with single mass King models, in spite of
the presence of stars with different masses in GCs.
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Figure 3: Projected mass density of multimass and King models with respect to radial coordinate at same
values of the parameter W0 and the concentration c, respectively.

Figure 4: Projected mass densities for three fixed values of the parameter W0 and the concentration c for
both models.
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Even more interesting is the analysis shown in Fig.4. In the first three plots (top of figure)
we can see the behavior of normalized projected mass density σ/σ0 for three fixed values of the
parameter W0. In each plot the profile of the multimass model is compared with the King one. These
profiles are different, especially in the external regions, and, even if they have the same value of W0,
they correspond to different values of the concentration c. In the last three plots (bottom of figure)
we can see the behavior of the same quantity for three fixed values of the concentration c. In each
plot the profiles of both models overlap in spite of the different value of W0. The conclusion is that
the concentration is the relevant quantity which characterizes the profiles and it seems unaffected
by the choice of the model: multimass models and King models with equal concentration have
exactly the same profile.

Figure 5: Observational data from three clusters: NGC 5053 and NGC 6205 (globular clusters), and NGC
3379 (elliptical galaxy). Theoretical projected mass densities of both models (multimass and King) fit data
for specific values of the concentration. Fits with King models are due to King [8].

Finally, in Fig.5, observational data from three different clusters (NGC 5053, NGC 6205 and
NGC 3379) are compared with the profiles of both multimass and King models. The choice of the
fitting values of the concentration is given by King [8]. Note that also the multimass model with
the same value of the concentration fits the observational data, leading to the conclusion that also
the multimass model is able to fit every surface brightness of GCs like the King one.

5. Mass segregation and cluster instability

Mass segregation is an important effect we can observe in GCs, separating heavier masses from
lighter ones in different regions. This phenomenon may be observed also in numerical simulations
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with multimass population of stars. In our multimass theoretical model the segregation effect is
also clearly present as shown in Fig.6, due to the presence of Spitzer term em∆φ/kθ . We can see that
heavier masses are prevailing at larger values of W , corresponding to central regions of the clusters.
At W = 0 we recover the pure Kroupa mass function defined by Eq.(3.1).

Figure 6: Effect of mass segregation on Kroupa mass function. Larger values of W correspond to central
regions where the gravitational potential is increasing in absolute value.

Mass segregation is an important factor in the evolution of GCs and the thermodynamical sta-
bility of the system is greatly affected by this phenomenon. Mass segregation induces an increasing
of the star evaporation and tidal forces prevail on gravity if the mass distribution is not well tuned:
the most part of lighter and faster stars leave the system and are captured by the gravitational poten-
tial of the hosting galaxy. This effect also influences the process of virialization and equipartion of
the clusters making the system unstable with respect to tidal disgregation. This connection among
these different effects is not yet well understood and remains one of the open problems of stellar
dynamics of GCs (see e.g. [17][20][18]) which could be called the ESEV puzzle (Equipartition →
Segregation → Evaporation → Virialization).

This instability is clearly visible in Fig.7 where the total energy including the contribution of
the effective potential [12] is plotted in function of W0. Here the total energy, due to the virial
condition, can be rewritten as Etot = −Ekin +Ee f f [13]. Differently from the single mass King
model, where the mass segregation is not present, the total energy for the multimass model is
always in the positive values region, leading to the conclusion that the system is unstable with
respect to disgregation due to tidal forces induced by the hosting galaxy. Also the other multimass
models existing in literature suffer the same problem.

The instability for tidal disgregation is also present in King models but only for W0 ≤ 3 [13]. In
this case, due to small gravitational potential not sufficient to contrast the tidal forces of the hosting
galaxy, the evaporation of stars leads to the deplition of the stellar population, making the system
not able to maintain bound itself. This is the case of Koposov systems, well known in literature
[10], which have values of W0 lesser than 3 and therefore they are fated to tidal disruption.
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Figure 7: Total energy of the system, including the effective potential contribution at different values of W0

for multimass and King models.

6. Conclusions

At equal concentration, the value of W0 of each model obtained by considering a multimass
function sistematically decrease with respect to the corresponding King model, shifting the GCs
distribution in W0 at lesser values. Differences in projected density with the corresponding King
model at equal value of W0 are appreciable only in the external region at r > rk. Differently, models
with the same concentration c show identical profiles both in multimass and single mass (King)
case.

Moreover, while in the King models the possibility to obtain positive values of the total energy
of the clusters, due to presence of the effective potential, gives the opportunity to explain the
conditions of disruption of the clusters at very small values of W0 where the tidal forces prevail
on the gravitational ones, and these conditions are in accordance with the observations and several
N-body simulations, in multimass models the mass segregation makes unstable each configuration,
being the total enengy always positive. This is an open problem.

Measurements of transversal star velocities allowing to analyze the real kinematics in GCs
showed problems in order to verify the possible phenomenon of the equipartition in presence of
mass segregation [17]. Nevertheless such measurements can give the possibility to test multimass
model and check the existence of the effective potential from observational data, instead of using
numerical simulations.

Similarly, observations on kinematics of stars can be useful for giving information about mass
segregation, in order to set in the better way the factor A(m) and solve the problem of the total
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energy. This is important for a correct analysis of the thermodinamical instability of the system,
through the calculation of the effective potential related to tidal forces induced by the hosting
galaxy. In this way also the ESEV puzzle could have a decisive clarification.

Definitely, the model must be expanded for including the presence of neutron stars and white
dwarfs and (possibly) taking into account the different contribution in luminosity of stars in the
calculation of the projected mass density.

Finally, it is necessary to improve the observations to detect fainter objects and avoid possible
observative selection effects, in order to obtain data from M31 and NGC5128 useful to implement
a unique W0-distribution valid for different GCs-galaxy systems.
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DISCUSSION

JORDI ISERN QUESTION: How white dwarf distribution is affected by this formulation?

MARCO MERAFINA ANSWER: At this step of development of the model I did not include
the presence of white dwarfs and neutron stars. As I wrote in the conclusions, I plan to improve
the model with the presence of such kind of stars. The presence of these stars mainly affects the
mass segregation with an increase of the concentration of heavier stars in the innermost region of
the cluster. This also affects the evaporation of stars which is greatly increased, making the system
more unstable. Another effect is the increase in binary systems formation leading to a relevant
contrast to the energy equipartion process.

DMITRY BISICALO QUESTION: How the dissipation processes change the solution?

MARCO MERAFINA ANSWER: The solution is given by the Fokker-Planck equation which
takes into account the orbit diffusion of stars. Collisions are elastic in almost all the cases. We have
only an exchange of kinetic energy which tends to diffuse in phase space, but this phenomenon
is contrasted by the star evaporation which keeps constant the form of the distribution function.
Evolution is therefore characterized by the changement of the parameters, like in a thermodynamic
transformation.
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