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Abstract

The specific class of binary-driven hypernovae within the induced gravitational
collapse scenario for the explanation of the long Gamma-Ray Bursts indicates as
progenitor a binary system composed of a carbon-oxygen core and a neutron star in
a tight orbit. The supernova explosion of the core triggers a hypercritical (highly
super-Eddington) accretion process onto the NS companion, making it reach the
critical mass with consequent formation of a Kerr black hole. Recent numerical
simulations of the above system show that a part of the ejecta keeps bound to the
newborn Kerr black hole with enough angular momentum to generate a new process
of hypercritical accretion, i.e. an accretion disk. Throughout this entire process,
we focus on two contexts of neutrino emission leading to two different systems in
which an analysis of neutrino flavour oscillations (or flavour transformations) not
only constitutes a novel extension of the induced gravitational collapse paradigm
literature but also can have an impact on a wide range of astrophysical phenomena:
from e−e+ plasma production in the vicinity of neutron stars or black holes in
GRB models, to r-process nucleosynthesis in disk winds and characterization of
astrophysical MeV neutrino sources. In particular, we study neutrino oscillations in:

1. Spherical accretion onto a neutron star: During this process, copious amounts
of neutrino–anti-neutrino pairs (νν̄) are emitted at the neutron star surface.
The neutrino emission can reach luminosities of up to 1057 MeV s−1, mean
neutrino energies 20 MeV, and neutrino densities 1031 cm−3. Along their
path from the vicinity of the NS surface outward, such neutrinos experience
flavour transformations dictated by the neutrino to electron density ratio. We
determine the neutrino and electron on the accretion zone and use them to
compute the neutrino flavour evolution. For normal and inverted neutrino-
mass hierarchies and within the two-flavour formalism (νeνx), we estimate
the final electronic and non-electronic neutrino content after two oscillation
processes: (1) neutrino collective effects due to neutrino self-interactions where
the neutrino density dominates and, (2) the Mikheyev-Smirnov-Wolfenstein
effect, where the electron density dominates. We find that the final neutrino
content is composed by ∼55% (∼62%) of electronic neutrinos, i.e. νe + ν̄e, for
the normal (inverted) neutrino-mass hierarchy.

2. Neutrino-cooled disks around a Kerr black hole: In this phase of the binary-
driven hypernovae, given the extreme conditions of high density (up to
1012 g cm−3) and temperatures (up to tens of MeV) inside this disk, neu-
trinos can reach densities of 1033 cm−3 and energies of 50 MeV. Although the
geometry of the disk is significantly different from that of spherical accretion,
these conditions provide an environment that allows neutrino flavour trans-
formations. We estimate the evolution of the electronic and non-electronic
neutrino content within the two-flavour formalism (νeνx) under the action of
neutrino collective effects by neutrino self-interactions. We find that neutrino
oscillations inside the disk can have frequencies between ∼ (105–109) s−1,
leading the disk to achieve flavour equipartition. This implies that the energy
deposition rate by neutrino annihilation (ν + ν̄ → e− + e+) in the vicinity



vi

of the Kerr black hole is smaller than previous estimates in the literature
not accounting by flavour oscillations inside the disk. The exact value of the
reduction factor depends on the νe and νx optical depths but it can be as high
as ∼ 5.

This work has allowed us to identify key theoretical and numerical features
involved in the study of neutrino oscillations and our results are a first step toward
the analysis of neutrino oscillations in unique astrophysical settings other than
core-collapse supernovae. As such, they deserve further attention.
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Chapter 1

Introduction

The first ideas of neutrino mixing were advanced by Bruno Pontecorvo in [224, 225]
soon after the discovery of the electron anti-neutrino by Cowan et al. [57]. Motivated
by the Kaon mixing K0 
 K̄0 proposed by Gell-Mann and Pais in [115], Pontecorvo
postulated that there might exist the phenomenon of neutrino-antineutrino mix-
ing.After the discovery of muon neutrinos [58], Maki et al. introduced a model of
two-flavour mixing [174] within the Nagoya model of particles [139]. Their ideas
lead to the core concept of neutrino oscillations: a neutrino created at a source in
a particular flavour state may be detected in a different flavour state at a certain
distance from the source. In 1967, motivated by the deficit reported by Davis on
the measurement of solar neutrinos at the Homestake experiment [62], Pontecorvo
published two articles [226, 122], establishing the phenomenological theory of two-
neutrino mixing. He suggested that the deficit can be explained if electron neutrinos
emitted from the sun are transformed during their travel to earth into a different
flavour, to which the Homestake experiment was insensitive. This is the core concept
behind the mechanism of neutrino oscillation.

Between 1975 and 1976 the standard theory of neutrino oscillations in vacuum was
developed in [86, 98, 34]. To these results, Wolfenstein, Mikheyev and Smirnov added
the insight that the medium induced modification of the neutrino dispersion relations
is critical to understand the solar neutrino problem and showed that oscillations can
be amplified when a neutrino beam travels through an adiabatic density gradient
[308, 192]. Concurrently, the efforts of Nötzold Dolgov, Rudzsky, Stodolsky, Sigl
and Raffelt helped develop the general kinetic equation for mixed neutrinos that
allows calculating the refraction index of neutrinos due to self-interactions (ν–ν)
[206, 74, 245, 235, 284].

The theory of neutrino mixing is now supported by the measurements in the
Super-Kamiokande experiment [110], the SNO experiment [9] and reactor KamLAND
experiment [84], and elevated by the 2015 Nobel Prize award. Accordingly, over the
last years, the aims of the neutrino community turned into analysing the consequences
of neutrino oscillations in different physical contexts, with a unique emphasis on the
study of SN neutrinos (see, e.g., [234, 216, 81, 279, 112, 78, 90, 82, 237, 88, 89, 50,
80, 77, 60, 59, 280, 83, 312, 33, 152, 305, 194, 131, 321]). However, core-collapse SN
is not the only astrophysical system with an immense emission of neutrinos or in
which neutrinos play an important role.
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Recently, Ruffini et al. [266] suggested a binary nature for the progenitors of
both long and short GRBs. For such systems, the IGC paradigm offers as progenitor
a binary system comprised of a COcore and a NS in a tight orbit. The core-collapse
of the COcore produces a supernova SN explosion ejecting material that triggers
an accretion process onto the binary NS companion. It was shown in [24] that in
spherical accretion onto a NS a large number of neutrinos are emitted from the
NS surface. Moreover, it was shown in [25] that the angular momentum of the
SN ejecta is high enough to circularize around the NS forming an accretion disk.
For high enough accretion rates, the physical behaviour of this disk is that of the
neutrino-cooled accretion disk (NCAD). Is in these two distinct accretion systems in
which we are interested in evaluating the possible outcomes of neutrino oscillations.

This thesis is based on research that, so far, produced two articles [27, 302] and
we believe that the best way to present this text is by keeping the structure of these
articles as constant as possible. With this in mind, this thesis is organized as follows.
This chapter is divided in two main sections. Sec. 1.1 reviews the essential equations
of neutrino oscillations in vacuum and matter (including neutrinos themselves). We
follow the standard derivation found in [212, 236, 315]. Although these derivations
are based on the paradoxical same momentum assumption, the method is easy to
understand and, it reproduces the correct equations. For a comment on the proper
interpretation of this scheme, we refer the reader to [11]. In Sec. 1.2, we present a
summary of the physics involved in GRB emission. We mention the role of neutrinos
in the production of the energetic plasma e−e+ that explains the GRB prompt
emission in gamma-rays. This summary frames and describes the astrophysical
systems where we applied the concepts of neutrino oscillations. A more extensive
review, including some of the results contained in this text, can be found in [248].

In Chapter 2 we describe the hydrodynamics of hypercritical spherical accretion
on a NS within the IGC scenario. For accretion rates between (10−2–10−5)M� s−1,
the range of temperature and density developed on the NS surface ensure that the
dominant channel of neutrino emission is electron-positron pair annihilation. This
emission reaches luminosities up to 1052 erg s−1 with average neutrino energies of
the order of 20 MeV. Such conditions make the XRFs and the BdHNe astrophysical
laboratories for MeV-neutrino physics. In particular, using the characterization of
the neutrino content at the surface, we follow the neutrino flavour transformations
from the bottom of the accretion zone, where neutrinos are created, until their escape
outside the Bondi-Hoyle region. This allows us to calculate the neutrino spectrum
emerging from the accreting system.

Finally, in recent SPH simulations it is confirmed that the accretion onto the
NS companion in a COcore occurs from a disk-like structure formed by the particles
that circularize before being accreted [26]. Additionally, in a NS-NS merger, matter
can remain bound to the newborn central object (NS or BH) and form an accreting
disk. NCADs (neutrino-cooled accretion disks) are of special interest for GRB
physics since their main cooling mechanism is the emission of copious amounts of
(anti)-neutrinos. These νν̄ pairs can be the source of the e−e+ plasma through the
ν + ν̄ → e− + e+ process, but the efficiency of this process depends on the emitted
neutrino flavour content which is affected by neutrino mixing. In that context, and
as a generalization of the system considered in Chapter 2, Chapter 3 focuses in
disk accretion onto BHs. In particular, we describe the hydrodynamic properties of
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NCADs and build a simplified model to add the dynamics of neutrino oscillations
to the already established equations of thin disk accretion. Under this model, the
disk reaches flavour equipartition. We evaluate how this fact influences the disk’s
behaviour and how the flavour emission changes.

1.1 Fundamentals of Neutrino Oscillations

1.1.1 Oscillations in Vacuum

Within the SM of particles, neutrinos are defined in terms of flavours (νe, νµ, ντ )
related to the three charged leptons (e, µ, τ) involved in their production processes via
the weak charged-current interactions (flavour states). However, we now know that
neutrinos are massive particles and when we think of a freely propagating massive
particle we usually think of a mass eigenstate νn of the Klein-Gordon equation1
(� + m2

n)νn = 0 with eigenvalue mn. If the mass states are non-degenerate, the
collection (νn, n ∈ {1, 2, 3}) does constitute a basis in which the mass matrix is
diagonal M = diag(m1,m2,m3). In general, the mass basis and the flavour basis
(να, α ∈ {e, µ, τ}) do not need to coincide2. Hence, the fields describing the massive
neutrinos νn and flavour-eigenstate neutrinos να and the corresponding states |νn〉
and |να〉 are related by an unitary transformation U such that3

να =
∑
i

(U)αi νi, |να〉 =
∑
i

(U∗)αi |νi〉. (1.1)

U is known as the lepton mixing matrix or the Maki-Nakagawa-Sakata-Pontecorvo
matrix (MNSP), and is parametrized by three rotations angles θ12, θ13, θ23 and a
CP-violating phase δcp

U =

 c12c13 sc13 s13e−iδcp

−s12c23 − c12s13s23eiδcp c12c23 − s12s13s23eiδcp s23c13
s12s23 − c12c23s13eiδcp −c12s23 − c23s12s13eiδcp c13c23

 , (1.2)

where cij = cos θij and sij = sin θij . These angles are measured parameters in the
SM [120, 292] and represent an extension of it. Consider a stationary source of
neutrinos of a definite flavour state propagating in the x direction. This flavour
state is a linear combination of mass eigenstates by Eq. (1.1). If we assume that
the mass eigenstates all have the same momentum p and expand the νn fields in
plane waves form νn(x, t) = νn(t) exp(ipx), we obtain the temporal evolution of the
Klein-Gordon equation as [(p + i∂t)(p − i∂t) −m2

n]νn(t) = 0. In the astrophysical
contexts we are interested in, neutrino energies are of the order ∼ 10 MeV, while
constraints on the neutrino masses require

∑
imi . 1 eV [185]. This means that we

can linearize the Klein-Gordon equation using the mass energy relation for ultra-
relativistic neutrinos Ei =

√
p2 +m2

i ≈ p+m2
i /2p and to a first order approximation

1Technically, an eigenstate of Dirac’s equation but the neutrino spinor structure is not important
to describe neutrino oscillations.

2During this section we reserve Greek indices for flavour states and Latin indices for mass states.
3Remember that the one-particle states |ν〉 are obtained by the Hermitian-conjugate field operator

ν† acting on the vacuum state |0〉. For this reason the appearance of the complex conjugate in the
second equation.
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we get the Schrödinger-type equation

i∂tνn =
(
p+ m2

n

2p

)
νn. (1.3)

In terms of the state vectors, if the source emits a fixed flavour |ν(0)〉 = |να〉,
then after a time t, the nth mass eigenstate will picks up a phase factor exp(−iEnt)
such that

|να(t)〉 =
∑
n

(U)αn exp
(
−i
[
p+ m2

n

2p

])
|νn〉. (1.4)

and the probability of measuring a state νβ (transition probability) is

Pνα→νβ (t) = |〈νβ|να(t)〉|2 =
∑
i,j

(U)αi(U)βj(U∗)αj(U∗)βi exp
(
−i

∆m2
ji

2p t

)

=
∑
i

|(U)αi|2|(U)αi|2 + 2 Re

∑
i<j

(U)αi(U)βj(U∗)αj(U∗)βi exp
(
−i

∆m2
ji

2p t

)
(1.5)

where ∆m2
ji = m2

j−m2
i is the mass-squared difference. Through the unitary property

of the mixing matrix we can to prove that the Pνα→νβ is a probability measure over
the set {να, |α = e, µ, τ}, so that

∑
α Pνα→νβ =

∑
β Pνα→νβ = 1. Then, it is possible

to define the survival probability as

Pνα→να(t) = 1−
∑
β 6=α

Pνα→νβ (t) = 1− 4
∑
i<j

|(U)αi|2|(U)αj |2 sin2
(

∆m2
ji

2p t

)
. (1.6)

Is at this point that the concept of hierarchy becomes important. The neutrino
masses are characterized by two independent differences [92]

∆m2
21 = m2

2 −m2
1, ∆m2 = m2

3 −
m2

2 +m2
1

2 . (1.7)

∆m2
21 is often referred as the “solar” mass difference, while ∆m2 as the “atmo-

spheric” mass difference. Depending on the sign of ∆m2, there are two possible mass
hierarchies: normal (NH) and inverted (IH) (Table 1.1). The first corresponds to the
positive sign of ∆m2 (m1 < m2 < m3), whereas the latter refers to the negative sign
of ∆m2 (m3 < m1 < m2). The diagonal squared mass matrix M2 can be written as

M2 = (m2
3 −∆m2)1 + diag(−∆m2

21,∆m2
21,±∆m2). (1.8)

where the upper (lower) sign refers to NH (IH). The transition probabilities for anti-
neutrinos Pν̄α→ν̄β can be found analogously, by recalling that the one-particle states
|ν〉 are obtained by the neutrino field operator ν rather than its Hermitian-conjugate.

As can be seen from Eq. (1.5) and Eq. (1.6), oscillations are only sensitive to
the squared-mass difference, making it extremely difficult to measure the individual
neutrino masses directly [129]. For this reason, the information about the neutrino
masses is usually given in terms of inequalities. Neutrinos and anti-neutrinos are
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Table 1.1. Mixing and squared mass differences as they appear in [292]. Error values
in parenthesis are shown in 3σ interval. The squared mass difference is defined as
∆m2 = m2

3 −
(
m2

2 +m2
1
)
/2 and its sign depends on the hierarchy m1 < m2 < m3 or

m3 < m1 < m2.

∆m2
21 = 7.37 (6.93− 7.96)× 10−5 eV2

|∆m2| = 2.56 (2.45− 2.69)× 10−3 eV2 Normal Hierarchy

|∆m2| = 2.54 (2.42− 2.66)× 10−3 eV2 Inverted Hierarchy

sin2 θ12 = 0.297 (0.250− 0.354)

sin2 θ23(∆m2 > 0) = 0.425 (0.381− 0.615)

sin2 θ23(∆m2 < 0) = 0.589 (0.383− 0.637)

sin2 θ13(∆m2 > 0) = 0.0215 (0.0190− 0.0240)

sin2 θ13(∆m2 < 0) = 0.0216 (0.0190− 0.0242)

related by a CP transformation which interchanges ν with ν̄ and reverses the helicity.
Additionally, a T transformation interchanges the initial and final states. From this
we can deduce the relations [118]

Pνα→νβ
T←→ Pνβ→να , (1.9a)

Pνα→νβ
CP←−→ Pν̄α→ν̄β , (1.9b)

Pνα→νβ
CPT←−−→ Pν̄β→ν̄α . (1.9c)

Under the CPT invariance we are guaranteed the relations Pνα→νβ = Pν̄β→ν̄α and
Pνα→να = Pν̄α→ν̄α . Hence, it is possible to discover CP or T violation in oscillation
experiments by measuring only transition probabilities (appearance experiments)4.
Oscillation of the kind Pνα→ν̄β have been shown to be modulated by an extra factor
mi/p [281, 63], rendering them irrelevant for our purpose. Since in some astrophysical
applications we deal with a statistical mixture of neutrinos and not independent
single particle states, it is often useful to cast the equations of oscillations terms of
the density matrix (ρ =

∑
α pα|να〉〈να| and ρ̄ =

∑
α pα|ν̄α〉〈ν̄α| with the statistical

weights pα and the normalization condition
∑
α pα = 1).

ρ̇p = [Hvac, ρ] , ˙̄ρp = − [Hvac, ρ̄] . (1.10)

where the dot represents a time derivative and Hvac is the vacuum Hamiltonian

Hvac = 1
2pM2. (1.11)

4Neutrino oscillation experiments are divided in two categories. Appearance experiments: These
experiments measure transitions probabilities between different neutrino flavours by counting in the
detector the number of events due to flavours not emitted by the source. Disappearance experiments:
These experiments measure the survival probability of a neutrino flavour by counting in the detector
the number of events due to the same flavour emitted by the source.
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Figure 1.1. Feynman diagrams of the coherent forward elastic scattering processes (not
counting automorphisms of the diagram) that generate the charged-current potential
and the neutral-current potential.

To finish the discussion of the quantum mechanical picture of mixing, it should
be noted that, as we mentioned at the beginning of this chapter, the derivation of
Eq. (1.10) assumes that neutrinos of a definite flavour have a well-defined momentum
p, i.e. all the mass eigenstates involved in its linear decomposition have the same
momentum. However, in [144] it is remarked that although technically incorrect,
it is a harmless error since it can be proved that it leads to the right oscillation
probabilities by a significantly easier path [119, 11].

1.1.2 Oscillations in Matter

As neutrinos travel through ordinary matter (e.g. in the Sun, a SN or an accretion
disk), the weak interaction couples the neutrinos to matter and, as long as the density
is not high enough to trap them, besides few momenta changing scattering events,
they also experience elastic coherent forward scattering. This effect can modify the
oscillation behaviour significantly. The reason for this being that interactions with a
medium changes the dispersion relation particles travelling through it [308]. Is in
this aspect that equivalence can be drawn between this phenomenon and photons
propagating through glass. Now, when we say “ordinary matter” we refer to electron,
positrons, protons and neutrons. This induces an asymmetry between the scattering
events of electron neutrinos and non-electron neutrinos since νe can interact have
charged- and neutral-current interactions while νµ and ντ can have only neutral-
current interactions (Fig. 1.1). The essential point to be noted is that the refractive
index is different for different flavours so that the medium is flavour birefringent and
neutrinos of different flavours acquire different phases. Since the contribution to the
phase change due to neutral-current interactions is identical for all neutrino flavours,
only charged-current interactions affect the oscillation evolution.
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Figure 1.2. The Feynman diagram for charged-current contributions to self-energy of
neutrinos in the presence of background electrons.

To calculate the dispersion relation of a particle travelling through media we
need to calculate the pole of its propagator. This is done by calculating the neutrino
self-energy in the thermal bath of the medium [206]. The propagator is [68]

1
�p−m− Σ(p) (1.12)

In the lowest order, the contribution to Σ(p) comes from the 1-loop self-energy
correction in Fig. 1.2

iΣ(p) = i
(
gw

2
√

2

)2 ∫ dk4

(2π)4γα(1− γ5)iSe(k)γβ(1− γ5) igαβ

M2
w

(1.13)

where Se is the electron propagator, k is the electron four-momentum and the mo-
mentum dependence of the W -propagator is ignored [315]. The electron propagator
can be written as

iSe(k) = [�k +me]
( i
k2 −m2

e

− 2πδ(k2 −m2
e)η(k · u)

)
(1.14)

where u is the four-velocity of the medium and η(k · u) is defined in terms of
Fermi-Dirac distributions and the step function Θ (see also Appx. D for a list of
constants)

η(k · u) = Θ(x)
exp (Ek − µ) + 1 −

Θ(−x)
exp (Ek + µ) + 1 (1.15)

integration over the final-state phase space yields

Σ(k) =
√

2GF (ne− − ne+)γ0 (1.16)

where ne± are the respective integrals of the electron (positron) Fermi-Dirac distri-
butions in Eq. (1.16).

It is important to note that the similarity between the behaviours of νµ and ντ
allows us to make a useful approximation. It is possible to consider both flavours
of non-electronic neutrinos as a single flavour νx = νµ + ντ . Hence, Three-flavour
oscillations can be approximated by two-flavour oscillations. This approximation is
stressed by the strong hierarchy of the squared-mass differences |∆m2

13| ≈ |∆m2
23| �

|∆m2
12| and the smallness of the θ13 mixing angle (Table 1.1). In this case, the

mixing matrix is a 2 × 2 Hermitian matrix parametrized by the single mixing angle
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θ13 and in the vacuum potential only one squared-mass difference appears (we will
drop the suffix in the mixing angle)

Hvac = ∆m2

4p

(
− cos 2θ sin 2θ
sin 2θ cos 2θ

)
(1.17)

The Hamiltonian now includes an extra term Hm of the form

Hm = 1
2

( √
2GF (ne− − ne+) 0

0 −
√

2GF (ne− − ne+)

)
(1.18)

where Gf is the Fermi coupling constant. It is not difficult to see that the new
Hamiltonian can be written in a “vacuum-equivalent” form by redefining the mixing
angle and the squared-mass difference

tan 2θm = tan 2θ

1− 2
√

2GF (ne−−ne+ )
∆m2 cos 2θ

, (1.19a)

∆m2
m =

√(
∆m2 cos 2θ − 2

√
2GF (ne− − ne+)

)2
+ (∆m2 sin 2θ)2 (1.19b)

These equations exhibit an interesting feature. If the we have 2
√

2GF (ne− −
ne+) = ∆m2 cos 2θ, then the mixing angle is θ = π/4, i.e. the mixing is maximal
and is possible to observe a total transition between two neutrino flavours. Note,
however that this transition separates the behaviour of ν and ν̄. Since in ordinary
matter, the density of free electrons is positive, the total transition can only exist if
θ < π/4. If θ > π/4 the transition cannot be reached. On the other hand, due to
the −1 factor in the equation of oscillations for anti-neutrinos (see Eq. (1.10), there
is a total transition between two anti-neutrino flavors only if θ > π/4. Therefore,
the dynamics of neutrino oscillations in matter is different from that of neutrino
oscillations in vacuum. This phenomenon is called the MSW effect after Mikheyev,
Smirnov, and Wolfenstein [192, 31, 308].

It is a well known fact that in SN, around 99% of the energy released comes from
neutrino emission. This emission lasts about 10 s, and releases about 1058 MeV of
energy. Therefore, the number of neutrinos emitted is ∼ 1058. An incredibly large
number5. Meaning that in the analysis of the accretion systems we are interested,
our definition of ordinary matter should include neutrinos themselves, i.e. we must
consider the effects of coherent forward scattering of the form να + νβ → να + νβ.
If we examine the diagrams in Fig. 1.3, we can see that the first diagram does
not contribute to neutrino oscillations since it affects the neutrino refractive index
identically for all flavours (it is flavour blind). In the second diagram, the background
νp,e shifts the refractive index of the νq,e we observing via a interchange of momentum.
The same occurs in the third but instead of momentum, the particles interchange
flavours.

The derivation of the dispersion relation of neutrino self-interactions follows in
the same way as we did for the electron background. But there is a caveat. In
deriving Eq. (1.16) it is assumed that the background electrons are a isotropic gas.

5Compare with Avogadro’s number ∼ 1023.
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Figure 1.3. Possible diagrams representing ν-ν interactions with momenta p, q. The lines
without arrows represent the background or “medium neutrinos” and lines with arrows
represent the neutrinos we are following. In all cases the particles come from the left
and exit through the right of the diagram. The first diagram is does not contribute to
neutrino oscillations. The next two do contribute to neutrino oscillations [111, 213, 214].

If neutrinos can be considered an isotropic gas, then we get a similar term of the
form

√
2GF (nν − nν̄). However, if neutrinos constitute an anisotropic gas, the new

term in the Hamiltonian takes the form

Hνν =
√

2GF
∫

(ρq,t − ρ̄q,t) (1− vq,t · vp,t)
d3q

(2π)3 (1.20)

where ρp,t (ρ̄p,t) is the matrix of occupation numbers: (ρp,t)ij = 〈a†jai〉p,t for
neutrinos and ((ρ̄p,t)ij = 〈ā†i āj〉p,t for anti-neutrinos, for each momentum p and
flavours i, j, and (ā†)a† and (ā)a are the (anti)-neutrino creation and annihilation
operators respectively. The diagonal elements are the distribution functions fνi(ν̄i) (p)
such that their integration over the momentum space gives the neutrino number
density nνi of a determined flavour i at time t. The off-diagonal elements provide
information about the overlapping between the two neutrino flavours. Collecting all
the terms an allowing for an isotropic background of ordinary matter, we write the
full oscillations Hamiltonian as [74, 284, 125]

Hp,t = Ωp,t +
√

2GF
∫ (
lq,t − l̄q,t

)
(1− vq,t · vp,t)

d3q
(2π)3

+
√

2GF
∫

(ρq,t − ρ̄q,t) (1− vq,t · vp,t)
d3q

(2π)3 (1.21a)

H̄p,t = −Ωp,t +
√

2GF
∫ (
lq,t − l̄q,t

)
(1− vq,t · vp,t)

d3q
(2π)3

+
√

2GF
∫

(ρq,t − ρ̄q,t) (1− vq,t · vp,t)
d3q

(2π)3 (1.21b)

where Ωp,t = Hvac is the matrix of vacuum oscillation frequencies, lp,t and l̄p,t are
matrices of occupation numbers for charged leptons built in a similar way to the
neutrino matrices, and vp,t = p/p is the velocity of a particle with momentum p
(either neutrino or charged lepton). Also, Hp,t (H̄p,t) is the full oscillation Hamiltonian
for (anti)-neutrinos.

The evolution of the oscillations of an ensemble of mixed neutrinos is governed
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by the Liouville equations

iρ̇p,t = [Hp,t, ρp,t] , (1.22a)

i ˙̄ρp,t =
[
H̄p,t, ρ̄p,t

]
. (1.22b)

This will be the starting point for our analysis of neutrino oscillations. Eq. (1.22)
can be simplified to a more tractable form when applied to a specific system, but
this process depends on its geometry and the matter conditions. So we will stop the
analysis of oscillations here and retake it in both Chapter 2 and Chapter 3 after we
describe the IGC paradigm of GRBs. For an extensive review in the techniques and
phenomenology involved in the physics if neutrino oscillations we refer the reader to
[236, 118, 315] and references therein.

1.2 Induced Gravitational Collapse, Binary-Driven Hy-
pernovae and Long Gamma-ray Bursts

1.2.1 The Binary Nature of GRB Progenitors

We first recall that GRBs have been traditionally classified by a phenomenological
division based on the duration of the time-interval in which the 90% of the total
isotropic energy in gamma-rays is emitted, the t90. Long GRBs are those with
t90 > 2 s and short GRBs the sources with t90 < 2 s [183, 149, 69, 160, 297].

In the case of short bursts, rapid consensus was reached in the scientific community
that they could be the product of mergers of NS-NS and/or NS-BH binaries (see,
e.g., the pioneering works [121, 209, 85, 204]). We shall return on this issue below
by entering into the description of their properties and also to introduce additional
mergers of compact-star object binaries leading to short bursts.

For long bursts, possibly the most compelling evidence of the necessity of a
binary progenitor comes from the systematic and spectroscopic analysis of the GRBs
associated with SNe, the so-called GRB-SNe, started with the pioneering discovery
of the spatial and temporal concomitance of GRB 980425 [220] and SN 1998bw [113].
Soon after, many associations of other nearby GRBs with type Ib/c SNe were
evidenced (see, e.g., [66, 48]).

There are models in the literature attempting an explanation of both the SN
and the GRB within the same astrophysical system. For instance, GRBs have
been assumed to originate from a violent SN from the collapse of a massive and
fast rotating star, a “collapsar” [311]. A very high rotating rate of the star is
needed to produce a collimated, jet emission. This traditional picture adopts for
the GRB dynamics the “fireball” model based on the existence of a single ultra-
relativistic collimated jet [38, 283, 188, 223, 179]. There is a vast literature devoted
to this “traditional" approach and we refer the reader to it for additional details
(see, e.g., [221, 222, 186, 187, 29, 162], and references therein).

Nevertheless, it is worth to mention here some of the most important drawbacks of
the aforementioned “traditional” approach and which has motivated the introduction
of an alternative model, based on a binary progenitor, for the explanation of long
GRBs:
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• SNe Ic as the ones associated with GRBs lack hydrogen and helium in their
spectra. It has been recognized that they most likely originate in helium
stars, COcore, or Wolf-Rayet stars, that have lost their outermost layers (see,
e.g., [288], and references therein). The pre-SN star, very likely, does not
follow a single-star evolution but it belongs to a tight binary with a compact
star companion (e.g., a NS). The compact star strips off the pre-SN star
outermost layers via binary interactions such as mass-transfer and tidal effects
(see, e.g., [205, 132, 109, 318, 288]).

• Denoting the beaming angle by θj , to an observed isotropic energy Eiso it
would correspond to a reduced intrinsic source energy released Es = fbEiso <
Eiso, where fb = (1 − cos θj) ∼ θ2

j/2 < 1. Extremely small beaming factors
fb ∼ 1/500 (i.e., θj ∼ 1◦) are inferred to reduce the observed energetics of
Eiso ∼ 1054 erg to the expected energy release by such a scenario ∼ 1051 erg [95].
However, the existence of such extremely narrow beaming angles have never
been observationally corroborated [56, 277, 43].

• An additional drawback of this scenario is that it implies a dense and strong
wind-like circumburst medium (CBM) in contrast with the one observed in
most GRBs (see, e.g., [134]). Indeed, the average CBM density inferred from
GRB afterglows is of the order of 1 baryon per cubic centimeter [254]. The
baryonic matter component in the GRB process is represented by the so-called
baryon load [260]. The GRB e+e− plasma should engulf a limited amount
of baryons in order to be able to expand at ultra-relativistic velocities with
Lorentz factors Γ & 100 as requested by the observed non-thermal component
in the prompt Gamma-ray emission spectrum [283, 223, 188]. The amount
of baryonic mass MB is thus limited by the prompt emission to a maximum
value of the baryon-load parameter, B = MB/Ee+e− . 10−2, where Ee+e− is
the total energy of the e+e− plasma [260].

• GRBs and SNe have markedly different energetics. SNe emit energies in the
range 1049–1051 erg, while GRBs emit in the range 1049–1054 erg. Thus, the
origin of GRB energetics point to the gravitational collapse to a stellar-mass
BH. The SN origin points to evolutionary stages of a massive star leading
to a NS or to a complete disrupting explosion, but not to a BH. The direct
formation of a BH in a core-collapse SN is currently ruled out by the observed
masses of pre-SN progenitors, . 18 M� [286]. It is theoretically known that
massive stars with such a relatively low mass do not lead to a direct collapse
to a BH (see [285, 286] for details) .

• It was recently shown in [267] that the observed thermal emission in the X-ray
flares present in the early (rest-frame time t ∼ 102 s) afterglow implies an
emitter of size ∼ 1012 cm expanding at mildly-relativistic velocity, e.g., Γ . 4.
This is clearly in contrast with the “collapsar-fireball” scenario in which there
is an ultra-relativistic emitter (the jet) with Γ ∼ 102–103 extending from the
prompt emission all the way to the afterglow.

Therefore, it seems most unlikely that the GRB and the SN can originate from
the same single-star progenitor. Following this order of ideas, it was introduced for
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the explanation of the spatial and temporal coincidence of the two phenomena the
concept of IGC [256, 263]. Two scenarios for the GRB-SN connection have been
addressed: [256] considered that the GRB was the trigger of the SN. However, for
this scenario to happen it was shown that the companion star had to be in a very
fine-tuned phase of its stellar evolution [256]. [263] proposed an alternative scenario
in a compact binary: the explosion of a Ib/c SN triggering an accretion process onto
a NS companion. The NS, reaching the critical mass value, gravitationally collapses
leading to the formation of a BH. The formation of the BH consequently leads to
the emission of the GRB. Much more about this binary scenario has been discovered
since its initial proposal; its theoretical studies and the search for its observational
verification have led to the formulation of a much rich phenomenology which will be
the main subject of this section.

Therefore, both short and long GRBs appear to be produced by binary systems,
well in line with the expectation that most massive stars belong to binary systems (see,
e.g., [276, 287], and references therein). The increasing amount and quality of the
multiwavelength data of GRBs have revealed the richness of the GRB phenomenon
which, in a few seconds, spans different regimes from X-ray precursors to the gamma-
rays of the prompt emission, to the optical and X-rays of the early and late afterglow,
to the optical emission of the associated SNe and, last but not least, the presence
or absence of high-energy GeV emission. This, in addition to the multiyear effort
of reaching a comprehensive theoretical interpretation of such regimes, have lead
to the conclusion that GRBs separate into subclasses, each with specific energy
release, spectra, duration, among other properties and, indeed, all with binary
progenitors [266, 250, 269, 271, 307].

1.2.2 GRB Subclasses

Up to 2017 we had introduced seven GRB subclasses summarized in Table 1.2. In
addition, we have recently introduced in [251, 249] the possibility of a further GRB
subclass produced by WD-WD mergers. We now give a brief description of all
the GRB subclasses identified. In [307] we have renominated the GRB subclasses
introduced in [266] and in [251, 249], and inserted them into two groups: BdHNe
and compact-object binary mergers. Below we report both the old and the new
names to facilitate the reader when consulting our works prior to [307].

i. X-ray flashes (XRFs). These systems have COcore-NS binary progenitors
in which the NS companion does not reach the critical mass for gravitational
collapse [24, 25]. In the SN explosion, the binary might or might not be
disrupted depending on the mass loss and/or the kick imparted [229]. Thus
XRFs lead either to two NSs ejected by the disruption, or to binaries composed
of a newly-formed ∼ 1.4–1.5 M� NS (hereafter νNS) born at the center of the
SN, and a massive NS (MNS) which accreted matter from the SN ejecta. Some
observational properties are: Gamma-ray isotropic energy Eiso . 1052 erg, rest-
frame spectral peak energy Ep,i . 200 keV and a local observed rate of ρXRF =
100+45
−34 Gpc−3 yr−1 [266]. We refer the reader to Table 1.2 and [266, 269] for

further details on this class. In [307], this class has been divided into BdHN
type II, the sources with 1050 . Eiso . 1052 erg, and BdHN type III, the
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sources with 1048 . Eiso . 1050 erg.

ii. Binary-driven hypernovae. Originate in compact COcore-NS binaries where
the accretion onto the NS becomes high enough to bring it to the point of
gravitational collapse, hence forming a BH. We showed that most of these
binaries survive to the SN explosion owing to the short orbital periods (P ∼
5 min) for which the mass loss cannot be considered as instantaneous, allowing
the binary to keep bound even if more than half of the total binary mass is
lost [103]. Therefore, BdHNe produce νNS-BH binaries. Some observational
properties are: Eiso & 1052 erg, Ep,i & 200 keV and a local observed rate
of ρBdHN = 0.77+0.09

−0.08 Gpc−3 yr−1 [266]. We refer the reader to Table 1.2
and [266, 269] for further details on this class. In [307] this class has been
renominated as BdHN type I.

iii. BH-SN. These systems originate in COcore (or Helium or Wolf-Rayet star)-
BH binaries, hence the hypercritical accretion of the SN explosion of the
COcore occurs onto a BH previously formed in the evolution path of the binary.
They might be the late evolutionary stages of X-ray binaries such as Cyg
X-1 [116, 28], or microquasars [193]. Alternatively, they can form following the
evolutionary scenario XI in [107]. If the binary survives to the SN explosion
BH-SNe produce νNS-BH, or BH-BH binaries when the central remnant of
the SN explosion collapses directly to a BH (see, although, [285, 286]). Some
observational properties are: Eiso & 1054 erg, Ep,i & 2 MeV and an upper
limit to their rate is ρBH−SN . ρBdHN = 0.77+0.09

−0.08 Gpc−3 yr−1, namely the
estimated observed rate of BdHNe type I which by definition covers systems
with the above Eiso and Ep,i range [266]. We refer the reader to Table 1.2
and [266, 269] for further details on this class. In [307] this class has been
renominated as BdHN type IV.
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We proceed with the short bursts which are amply thought to originate from
compact-object binary mergers. First, we discuss the traditionally proposed binary
mergers namely NS-NS and/or NS-BH mergers [121, 209, 85, 204, 189, 244, 166, 29].
These binary mergers can be separated into three subclasses [103, 264, 266]:

iv. Short Gamma-ray flashes. They are produced by NS-NS mergers leading
to a MNS, namely when the merged core does not reach the critical mass of a
NS. Some observational properties are: Eiso . 1052 erg, Ep,i . 2 MeV and a
local observed rate of ρS−GRF = 3.6+1.4

−1.0 Gpc−3 yr−1 [266]. We refer the reader
to Table 1.2 and [266, 269] for further details on this class. In [307] this class
has been renominated as BM type I.

v. Authentic short GRBs. They are produced by NS-NS mergers leading
to a BH, namely when the merged core reaches the critical mass of a NS,
hence it forms a BH as a central remnant [265, 264, 200]. Some observational
properties are: Eiso & 1052 erg, Ep,i & 2 MeV and a local observed rate of
ρS−GRB =

(
1.9+1.8
−1.1

)
×10−3 Gpc−3 yr−1 [266]. We refer the reader to Table 1.2

and [266, 269] for further details on this class. In [307] this class has been
renominated as BM type II.

vi. Ultra-short GRBs. This is a theoretical GRB subclass subjected for ob-
servational verification. U-GRBs are expected to be produced by νNS-BH
mergers whose binary progenitors can be the outcome of BdHNe type I
(see II above) or of BdHNe type IV (BH-SN; see III above). The follow-
ing observational properties are expected: Eiso & 1052 erg, Ep,i & 2 MeV
and a local observed rate similar to the one of BdHNe type I since we
have shown that most of them are expected to remain bound [103], i.e.,
ρU−GRB ≈ ρBdHN = 0.77+0.09

−0.08 Gpc−3 yr−1 [266]. We refer the reader to Ta-
ble 1.2 and [266, 269] for further details on this class. In [307] this class has
been renominated as BM type V.

Besides the existence of the above three subclasses of long bursts and three
subclasses of short bursts in which the presence of NSs plays a fundamental role,
there are two subclasses of bursts in which there is at least a WD component.

vii. Gamma-ray flashes. These sources show an extended and softer emission,
i.e., they have hybrid properties between long and short bursts and have no
associated SNe [67]. It has been proposed that they are produced by NS-WD
mergers [266]. These binaries are expected to be very numerous [45] and
a variety of evolutionary scenarios for their formation have been proposed
[32, 108, 296, 165]. GRFs form a MNS and not a BH [266]. Some observational
properties are: 1051 . Eiso . 1052 erg, 0.2 . Ep,i . 2 MeV and a local
observed rate of ρGRF = 1.02+0.71

−0.46 Gpc−3 yr−1 [266]. It is worth noting that
this rate is low with respect to the one expected from the current number
of known NS-WD in the Galaxy [45]. From the GRB observations only one
NS-WD merger has been identified (GRB 060614 [46]). This implies that
most NS-WD mergers are probably under the threshold of current X and
Gamma-ray instruments. We refer the reader to Table 1.2 and [266, 269] for
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further details on this class. In [307] this class has been renominated as BM
type III.

viii. Fallback kilonovae. This is a recently introduced GRB subclass having as
progenitors WD-WD mergers [251, 249]. The WD-WD mergers of interest are
those that do not produce type Ia SNe but that lead to a massive (M ∼ 1 M�),
fast rotating (P ∼ 1–10 s), highly-magnetized (B ∼ 109–1010 G) WD. Some
observational properties are: Eiso . 1051 erg, Ep,i . 2 MeV and a local
observed rate ρFB−KN = (3.7–6.7)× 105 Gpc−3 yr−1 [251, 249, 180, 181]. The
coined name FB-KN is due to the fact that they are expected to produce an
infrared-optical transient by the cooling of the ejecta expelled in the dynamical
phase of the merger and heated up by fallback accretion onto the newly-formed
massive WD.

The density rates for all GRB subclasses have been estimated assuming no
beaming [266, 269, 251, 249]. The GRB density rates have been analysed in [266]
following the method suggested in [291].

The Specific Case of BdHNe

We review in this section the specific case of BdHNe type I and II. As we have
mentioned, the progenitor system is an exploding COcore as a type Ic SN in presence
of a NS companion [266, 307]. Fig. 1.4 shows a comprehensive summary of the binary
path leading to this variety of compact binaries that are progenitors of the above
subclasses of long GRBs and that, at the same time, have an intimate connection
with the short GRBs.

We emphasize on the theoretical framework concerning the COcore-NS binaries
which have been extensively studied by our group in a series of publications [246,
133, 105, 103, 25, 24]. The COcore explodes as SN producing an accretion process
onto the NS. For sufficiently compact binaries, e.g., orbital periods of the order of
few minutes, the accretion is highly super-Eddington (hypercritical) leading to the
possibility of the IGC of the NS once it reaches the critical mass, and forms a BH
(see Fig. 1.5).

If the binary is not disrupted by the explosion, BdHNe produces new binaries
composed of a new NS (νNS) formed at the center of the SN, and a more massive
NS or a BH companion (see Fig. 1.4).

In the case of BH formation, the rotation of the BH together with the presence
of the magnetic field inherited from the NS and the surrounding matter conform
to what we have called the inner engine of the high-energy emission [272, 268, 273,
258]. The electromagnetic field of the engine is mathematically described by the
Wald solution [306]. The above ingredients induce an electric field around the BH
which under the BdHN conditions is initially overcritical, creating electron-positron
(e+e−) pair plasma which self-accelerates to ultra-relativistic velocities and whose
transparency explains to the GRB prompt emission in gamma-rays. The electric
field is also able to accelerate protons which along the rotation axis lead to ultra
high-energy cosmic rays (UHECRs) of up to 1021 eV. In the other directions the
acceleration process lead to proton-synchrotron radiation which explains the GeV
emission [272, 268]. The interaction/feedback of the GRB into the SN makes it
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Figure 1.4. Taken from Fig. 1 in [247]. Binary evolutionary paths leading to BdHNe I
(previously named BdHNe) and II (previously named XRFs) and whose out-states, in
due time, evolve into progenitors of short GRBs. The massive binary has to survive
two core-collapse SN events. The first event forms a NS (right-side path) or BH (left-
side path). The massive companion continues its evolution until it forms a COcore.
This simplified evolution diagram which does not show intermediate stages such as
common-envelope phases (see, e.g., [103, 25], and references therein). At this stage
the binary is a COcore-NS (right-side path) or a COcore-BH (left-side path). Then, it
occurs the second SN event which forms what we call the νNS at its center. We focus
in this here to review the theoretical and observational aspects of interaction of this
SN event with the NS companion (BdHNe I and II). We do not treat here the case of
a SN exploding in an already formed BH companion (BdHNe IV). At this point the
system can form a νNS-BH/NS (BdHN I/II) binary (right-side path), or a νNS-BH
(BdHN IV) in the (left-side path). The emission of gravitational waves will make this
compact-object binaries to merge, becoming progenitors of short GRBs [103]. We recall
to the reader that S-GRBs and S-GRFs stand for, respectively, authentic short GRBs
and short Gamma-ray flashes, the two subclasses of short bursts from NS-NS mergers,
the former produced when the merger leads to a more massive NS and the latter when a
BH is formed [266].
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Figure 1.5. Scheme of the IGC scenario (taken from Fig. 1 in [105]). The COcore undergoes
SN explosion, NS accretes part of the SN ejecta and then reaches the critical mass for
gravitational collapse to a BH, with consequent emission of a GRB. The SN ejecta reach
the NS Bondi-Hoyle radius and fall toward the NS surface. The material shocks and
decelerates while it piles over the NS surface. At the neutrino emission zone, neutrinos
take away most of the gravitational energy gained by the matter infall. The neutrinos
are emitted above the NS surface that allow the material to reduce its entropy to be
finally incorporated to the NS. For further details and numerical simulations of the
above process see [105, 25, 24].

become the hypernova (HN) [270, 26] observed in the optical, powered by nickel
decay, a few days after the GRB trigger. The SN shock breakout and the hypercritical
accretion can be observed as X-ray precursors [24]. The e+e− feedback onto the SN
ejecta also produces gamma- and X-ray flares observed in the early afterglow [267].
The synchrotron emission by relativistic electrons from the νNS in the expanding
magnetized HN ejecta and the νNS pulsar emission explain the early and late X-ray
afterglow [257].

1.2.3 Simulations of the IGC process and BdHNe

Preamble: First Analytic Estimates

The IGC scenario was formulated in 2012 [246] presenting a comprehensive astro-
physical picture supporting this idea as well as a possible evolutionary scenario
leading to the progenitor COcore-NS binaries. It was also there presented an analytic
formula for the accretion rate onto the NS companion on the basis of the following
simplified assumptions: (1) a uniform density profile of the pre-SN COcore; (2)
the ejecta was evolved following an homologous expansion; (3) the mass of the NS
(assumed to be initially 1.4 M�) and the COcore (in the range 4–8 M�) were assumed
nearly constant. So, it was shown that the accretion rate onto the NS is highly
super-Eddington, namely it is hypercritical, reaching values of up to 0.1 M� s−1 for
compact binaries with orbital periods of the order of a few minutes. This estimate
implied that the hypercritical accretion could induce the gravitational collapse of
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the NS which, in a few seconds, would reach the critical mass with consequence
formation of a BH. A first test of this IGC first model in real data was soon presented
in the case of GRB 090618 [133].

First Numerical Simulations: 1D Approximation

Figure 1.6. Hypercritical accretion rate onto the NS companion for selected separation
distances. The COcore is obtained with a progenitor star of zero-age main-sequence
(ZAMS) mass of 20M�, calculated in [105]. The numerical calculation leads to a sharper
accretion profile with respect to the one obtained assuming homologous expansion of
the SN ejecta. Taken from Fig. 3 in [105].

The first numerical simulations were implemented in 2014 in [105] via a 1D code
including (see Fig. 1.6): (1) the modeling of the SN via the 1D core-collapse SN
code of Los Alamos [99]; (2) the micro-physics experienced by the inflow within the
accretion region including the neutrino (ν) emission and hydrodynamics processes
such as shock formation; (3) with the above it was followed by the evolution of the
material reaching the Bondi-Hoyle capture region and the subsequent in-fall up to
the NS surface. Hypercritical accretion rates in the range 10−3–10−1 M� s−1 were
inferred, confirming the first analytic estimates and the IGC of the NS companion
for binary component masses similar to the previous ones and for orbital periods of
the order of 5 min.

The above simulations were relevant in determining that the fate of the system
is mainly determined by the binary period (P ); the SN ejecta velocity (vej) and the
NS initial mass. P and vej enter explicitly in the Bondi-Hoyle accretion rate formula
through the capture radius expression, and implicitly via the ejecta density since
they influence the decompression state of the SN material at the NS position.
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2D Simulations Including Angular Momentum Transfer

Soon after, in 2015, we implemented in [25] a series of improvements to the above
calculations by relaxing some of the aforementioned assumptions (see Fig. 1.7). We
adopted for the ejecta a density profile following a power-law with the radial distance
and evolved it with an homologous expansion. The angular momentum transport,
not included in the previous estimates, was included. With this addition it was
possible to estimate the spin-up of the NS companion by the transfer of angular
momentum from the in-falling matter which was shown to circularize around the
NS before being accreted. General relativistic effects were also introduced, when
calculating the evolution of the structure parameters (mass, radius, spin, etc) of the
accreting NS, in the NS gravitational binding energy, and in the angular momentum
transfer by the circularized particles being accreted from the innermost circular
orbit.

One of the most important results of [25] was that, taking into account that the
longer the orbital P the lower the accretion rate, it was there computed the maximum
orbital period (Pmax) for which the NS reaches the critical mass for gravitational
collapse, so for BH formation. The dependence of Pmax on the initial mass of the
NS was also there explored. The orbital period Pmax was then presented as the
separatrix of two families of long GRBs associated with these binaries: at the time
we called them Family-1, the systems in which the NS does not reach the critical
mass, and Family-2 the ones in which it reaches the critical mass and forms a BH.
It can be seen that the Family-1 and Family-2 long GRBs evolve subsequently into
the concepts of XRFs and BdHNe, respectively.

First 3D Simulations

A great step toward the most recent simulations was achieved in 2016 in [24] where
an SPH-like simulation was implemented in which the SN ejecta was emulated by
“point-like” particles. The mass and number of the particles populating each layer
were assigned, for self-consistency, according to the power-law density profile. The
initial velocity of the particles of each layer was set, in agreement with the chosen
power-law density profile, following a radial velocity distribution; i.e., v ∝ r.

The evolution of the SN particles was followed by Newtonian equations of motion
in the gravitational field of the NS companion, also taking into account the orbital
motion which was included under the assumption that the NS performs a circular
orbit around the COcore center that acts as the common center-of-mass, namely
assuming that the mass of the pre-SN core is much larger than the NS mass.

The accretion rate onto the NS was computed, as in [25], using the Bondi-Hoyle
accretion formula and, every particle reaching the Bondi-Hoyle surface, was removed
from the system. The maximum orbital period Pmax in which the NS collapses by
accretion could be further explored including the dependence on the mass of the
pre-SN COcore, in addition to the dependence on the NS mass.

A detailed study of the hydrodynamics and the neutrino emission in the accretion
region on top the NS surface was performed. Concerning the neutrino emission,
ν and ν̄ production processes were considered and showed that electron-positron
annihilation (e+e− → νν̄) overcomes by orders of magnitude any other mechanism
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Figure 1.7. Numerical simulations of the SN ejecta velocity field (red arrows) at selected
times of the accretion process onto the NS (taken from Fig. 3 in [25]). In these snapshots
we have adopted the COcore obtained from a MZAMS = 30 M� progenitor; an ejecta
outermost layer velocity v0star = 2 × 109 cm s−1, an initial NS mass, MNS(t = t0) =
2.0 M�. The minimum orbital period to have no Roche-lobe overflow is P0 = 4.85 min.
In the left, central and right columns of snapshots we show the results for binary periods
P = P0, 4P0, and 10P0, respectively. The Bondi-Hoyle surface, the filled gray circle,
increases as the evolution continues mainly due to the increase of the NS mass (the
decrease of the lower panels is only apparent due to the enlargement of the x-y scales).
The x-y positions refer to the center-of-mass reference frame. The last image in each
column corresponds to the instant when the NS reaches the critical mass value. For the
initial conditions of these simulations, the NS ends its evolution at the mass-shedding
limit with a maximum value of the angular momentum J = 6.14× 1049 g cm2 s−1 and a
corresponding critical mass of 3.15 M�.
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of neutrino emission in the range of accretion rates 10−8–10−2 M� s−1, relevant for
XRFs and BdHNe. The neutrino luminosity can reach values of up to 1052 erg s−1

and the neutrino mean energy of 20 MeV for the above upper value of the accretion
rate. For the reader interested in the neutrino emission, we refer to [27] for a detailed
analysis of the neutrino production in XRFs and BdHNe including flavour oscillations
experienced by the neutrinos before abandoning the system.

Concerning the hydrodynamics, the evolution of the temperature and density
of outflows occurring during the accretion process owing to convective instabilities
was estimated. It was there shown the interesting result that the temperature of
this outflow and its evolution can explain the early (i.e., precursors) X-ray emission
that has been observed in some BdHNe and in XRFs, exemplified there analyzing
the early X-ray emission observed in GRB 090618, a BdHN I, and in GRB 060218,
a BdHN II (an XRF).

A most important result of these simulations was the possibility of having a first
glance of the morphology acquired by the SN ejecta: the matter density, initially
spherically symmetric, becomes highly asymmetric due to the accretion process and
the action of the gravitational field of the NS companion (see Fig. 1.8).

Figure 1.8. Snapshot of the SN ejecta density in the orbital plane of the COcore-NS binary.
Numerical simulation taken from Fig. 6 in [24]. The plot corresponds to the instant when
the NS reaches the critical mass and forms the BH (black dot at (1,−1)), approximately
250 s from the SN explosion. The νNS is represented by the white dot at the origin
(0, 0). The binary parameters are: the initial mass of the NS companion is 2.0 M�;
the COcore leading to an ejecta mass of 7.94 M�, and the orbital period is P ≈ 5 min,
namely a binary separation a ≈ 1.5× 1010 cm.
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Most Recent 3D SPH Simulations

We have recently presented in [26] new, 3D hydrodynamic simulations of the IGC
scenario by adapting the SPH code developed at Los Alamos, SNSPH [104], which
has been tested and applied in a variety of astrophysical situations [106, 319, 72, 22].

The time t = 0 of the simulation is set as the time at which the SN shock
breaks out the COcore external radius. We calculate the accretion rate both onto
the NS companion and onto the νNS (via fallback), and calculate the evolution of
other binary parameters such as the orbital separation, eccentricity, etc. Fig. 1.9
shows an example of simulation for a binary system composed of a COcore of mass
≈ 6.85 M�, the end stage of a ZAMS progenitor star of Mzams = 25 M�, and a
2 M� NS companion. The initial orbital period is ≈ 5 min.

The accretion rate onto both stars was estimated from the flux of SPH particles
falling, per unit time, into the Bondi-Hoyle accretion region of the NS (see Fig. 1.10).
It is confirmed that the accretion onto the NS companion occurs from a disk-like
structure formed by the particles that circularize before being accreted; see vortexes
in the upper panel of Fig. 1.9 and the disk structure is clearly seen in the lower
panel.
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Figure 1.9. Snapshots of the 3D SPH simulations of the IGC scenario (taken from Fig. 2
in [26]). The initial binary system is formed by a COcore of mass ≈ 6.85 M�, from
a ZAMS progenitor star of 25 M�, and a 2 M� NS with an initial orbital period of
approximately 5 min. The upper panel shows the mass density on the equatorial (orbital)
plane, at different times of the simulation. The time t = 0 is set in our simulations at the
moment of the SN shock breakout. The lower panel shows the plane orthogonal to the
orbital one. The reference system has been rotated and translated for the x-axis to be
along the line joining the νNS and the NS centers, and its origin is at the NS position.

Several binary parameters were explored thanks to the new code. We performed
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simulations changing the COcore mass, the NS companion mass, the orbital period,
the SN explosion energy (so the SN kinetic energy or velocity). We also explored
intrinsically asymmetric SN explosion. We checked if the νNS and/or the NS
companion reach the mass-shedding (Keplerian) limit or the secular axisymmetric
instability, i.e., the critical mass. The NS can also become just a more massive,
fast rotating, stable NS when the accretion is moderate. All this was done for various
NS nuclear equations of state (NL3, TM1 and GM1).

We followed the orbital evolution up to the instant when most of the ejecta
has abandoned the system to determine if the system remains bound or becomes
unbound by the explosion. We thus assessed the COcore-NS parameters leading to
the formation of νNS-NS (from XRFs) or νNS-BH (from BdHNe) binaries. The first
proof that BdHNe remain bound leading to νNS-BH binaries was presented in [103]
(see next section).
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Figure 1.10. (a) Mass-accretion rate onto the NS companion in the IGC scenario (taken
from Fig. 9 in [26]). Different colors correspond to different initial orbital periods:
Porb,1 = 4.8 min (red line), Porb,1 = 8.1 min (blue line), Porb,1 = 11.8 min (orange
line). The other parameters that characterize the initial binary system are the same
as in Fig. 1.9. The solid lines correspond to a SN energy of 1.57× 1051 erg, while the
dotted ones correspond to a lower SN energy of 6.5× 1050 erg. It can be seen that the
mass-accretion rate scales with the binary orbital period. (b) Mass-accretion rate on the
NS companion for all the COcore progenitors (see Table 1 and Fig. 13 in [26]). The NS
companion has an initial mass of 2M� and the orbital period is close to the minimum
period that the system can have in order that there is no Roche-lobe overflow before the
collapse of the COcore: 6.5 min, 4.8 min, 6.0 min and 4.4 min for the Mzams = 15M�,
25M�, 30M� and 40M� progenitors, respectively.

1.2.4 Hypercritical Accretion: Rate and Hydrodynamics

We now give details of the accretion process within the IGC scenario following [105,
25, 103, 24]. There are two main physical conditions for which hypercritical (i.e.,
highly super-Eddington) accretion onto the NS occurs in XRFs and BdHNe. The first
is that the photons are trapped within the inflowing material and the second is that
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the shocked atmosphere on top of the NS becomes sufficiently hot (T ∼ 1010 K) and
dense (ρ & 106 g cm−3) to produce a very efficient neutrino–anti-neutrino cooling
emission. In this way the neutrinos become mainly responsible for releasing the
energy gained by accretion, allowing hypercritical accretion to continue.

Accretion Rate and NS Evolution

The first numerical simulations of the IGC were performed in [105], including: (1)
realistic SN explosions of the COcore; (2) the hydrodynamics within the accretion
region; (3) the simulated evolution of the SN ejecta up to their accretion onto the NS.
[25] then estimated the amount of angular momentum carried by the SN ejecta and
how much is transferred to the NS companion by accretion. They showed that the
SN ejecta can circularize for a short time and form a disc-like structure surrounding
the NS before being accreted. The evolution of the NS central density and rotation
angular velocity (the NS is spun up by accretion) was computed from full numerical
solutions of the axisymmetric Einstein equations. The unstable limits of the NS are
set by the mass-shedding (or Keplerian) limit and the critical point of gravitational
collapse given by the secular axisymmetric instability [25]. The accretion rate of the
SN ejecta onto the NS is given by:

ṀB(t) = πρejR
2
cap

√
v2

rel + c2
s,ej, Rcap(t) =

2MNS(t)
v2

rel + c2
s,ej
, (1.23)

where ρej and cs,ej are the density and sound speed of the ejecta, Rcap andMNS are the
NS gravitational capture radius (Bondi-Hoyle radius) and gravitational mass, and vrel
the ejecta velocity relative to the NS: ~vrel = ~vorb − ~vej; |~vorb| =

√
(Mcore +MNS)/a,

and ~vej is the velocity of the supernova ejecta (see Fig. 1.5).
Numerical simulations of the SN explosions suggest the adopted homologous

expansion of the SN, i.e., vej(r, t) = nr/t, where r is the position of each layer from
the SN center and n is the expansion parameter. The density evolves as

ρej(r, t) = ρ0
ej(r/Rstar(t), t0)Menv(t)

Menv(0)

(
Rstar(0)
Rstar(t)

)3
, (1.24)

whereMenv(t) the mass of the COcore envelope, Rstar(t) is the radius of the outermost
layer, and ρ0

ej is the pre-SN COcore density profile; ρej(r, t0) = ρcore(Rcore/r)m, where
ρcore, Rcore and m are the profile parameters obtained from numerical simulations.
Typical parameters of the COcore mass are (3.5–9.5) M� corresponding to (15–
30) M� zero-age-main-sequence (ZAMS) progenitors (see [105, 25] for details). The
binary period is limited from below by the request of having no Roche lobe overflow
by the COcore before the SN explosion [105]. For instance, for a COcore of 9.5 M�
forming a binary system with a 2 M� NS, the minimum orbital period allowed by
this condition is Pmin ≈ 5 min. For these typical binary and pre-SN parameters,
Equation (1.23) gives accretion rates 10−4–10−2M� s−1.

We adopt an initially non-rotating NS companion so its exterior spacetime at time
t = 0 is described by the Schwarzschild metric. The SN ejecta approach the NS with
specific angular momentum, lacc = L̇cap/ṀB, circularizing at a radius rcirc ≥ rlco if
lacc ≥ llso with rlco the radius of the last circular orbit (LCO). For a non-rotating
NS rlco = 6MNS and llco = 2

√
3MNS. For typical parameters, rcirc/rlco ∼ 10–103.
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The accretion onto the NS proceeds from the radius rin. The NS mass and
angular angular momentum evolve as [25, 54]:

ṀNS =
(
∂MNS
∂Mb

)
JNS

Ṁb +
(
∂MNS
∂JNS

)
Mb

J̇NS, J̇NS = ξ l(rin)ṀB, (1.25)

where Mb is the NS baryonic mass, l(rin) is the specific angular momentum of the
accreted material at rin, which corresponds to the angular momentum of the LCO,
and ξ ≤ 1 is a parameter that measures the efficiency of angular momentum transfer.
In this picture we have Ṁb = ṀB.

For the integration of Equations (1.23) and (1.25) we have to supply the values of
the two partial derivatives in Equation (1.25). They are obtained from the relation
of the NS gravitational mass, MNS, with Mb and JNS, namely from the knowledge
of the NS binding energy. For this we use the general relativistic calculations of
rotating NSs presented in [53]. They show that, independent on the nuclear EOS, the
following analytical formula represents the numerical results with sufficient accuracy
(error < 2%):

Mb

M�
= MNS

M�
+ 13

200

(
MNS
M�

)2 (
1− 1

137j
1.7
NS

)
, (1.26)

where jNS ≡ JNS/(M2
�).

In the accretion process, the NS gains angular momentum and therefore spins up.
To evaluate the amount of angular momentum transferred to the NS at any time
we include the dependence of the LCO specific angular momentum as a function
of MNS and JNS. For corotating orbits, the following relation is valid for the NL3,
TM1 and GM1 EOS [54, 25]:

llco = MNS

[
2
√

3− 0.37
(

jNS
MNS/M�

)0.85
]
. (1.27)

The NS continues the accretion until it reaches an instability limit or up to when
all the SN ejecta overcomes the NS Bondi-Hoyle region. We take into account the
two main instability limits for rotating NSs: the mass-shedding or Keplerian limit
and the secular axisymmetric instability limit. The latter defines critical NS mass.
For the aforementioned nuclear EOS, the critical mass can be approximately written
as [53]:

M crit
NS = MJ=0

NS (1 + kjpNS), (1.28)

where k and p are EOS-dependent parameters (see Table 1.3). These formulas fit
the numerical results with a maximum error of 0.45%.

Additional details and improvements of the hypercritical accretion process leading
to XRFs and BdHNe were presented in [24]. Specifically:

1. The density profile included finite size/thickness effects and additional COcore
progenitors, leading to different SN ejecta masses being considered.

2. In [25] the maximum orbital period, Pmax, over which the accretion onto NS
companion is not sufficient to bring it to the critical mass, was inferred. Thus,
binaries with P > Pmax lead to XRFs while the ones with P . Pmax lead to
BdHNe. Becerra et al. [24] extended the determination of Pmax for all the
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Table 1.3. Critical NS mass in the non-rotating case and constants k and p needed to
compute the NS critical mass in the non-rotating case given by Equation (1.28). The
values are for the NL3, GM1 and TM1 EOS.

EOS MJ=0
crit (M�) p k

NL3 2.81 1.68 0.006

GM1 2.39 1.69 0.011

TM1 2.20 1.61 0.017

possible initial values of the NS mass. They also examined the outcomes for
different values of the angular momentum transfer efficiency parameter.

3. The expected luminosity during the process of hypercritical accretion for a
wide range of binary periods covering both XRFs and BdHNe was estimated.

4. It was shown that the presence of the NS companion originates asymmetries
in the SN ejecta (see, e.g., Fig. 6 in [24]). The signatures of such asymmetries
in the X-ray emission was there shown in the specific example of XRF 060218.

Hydrodynamics in the Accretion Region

The accretion rate onto the NS can be as high as ∼ 10−2–10−1 M� s−1. For such
accretion rates:

1. The magnetic pressure is much smaller than the random pressure of the
infalling material, therefore the magnetic-field effects on the accretion process
are negligible [101, 246].

2. The photons are trapped within the infalling matter, hence the Eddington
limit does not apply and hypercritical accretion occurs. The trapping radius
is defined as [52]:

rtrapping = min{ṀBκ/(4π), Rcap}, (1.29)

where κ is the opacity. [105] estimated a Rosseland mean opacity of ≈ 5 ×
103 cm2 g−1 for the COcores. This, together with our typical accretion rates,
lead to ṀBκ/(4π) ∼ 1013–1019 cm. This radius is much bigger than the
Bondi-Hoyle radius.

3. The above condition, and the temperature-density values reached on top of
the NS surface, lead to an efficient neutrino cooling which radiates away the
gain of gravitational energy of the infalling material [322, 262, 101, 246, 105].

The accretion shock moves outward as the material piles onto the NS. Since the
post-shock entropy is inversely proportional to the shock radius position, the NS
atmosphere is unstable with respect to Rayleigh-Taylor convection at the beginning
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of the accretion process. Such instabilities might drive high-velocity outflows from
the accreting NS [102, 100]. The entropy at the base of the atmosphere is [101]:

Sbubble ≈ 16
(1.4M�
MNS

)−7/8
(
M� s−1

ṀB

)1/4(106 cm
r

)3/8

/nucleon, (1.30)

The material expands and cools down adiabatically, i.e., T 3/ρ = constant. In
the case of a spherically symmetric expansion, ρ ∝ 1/r3 and

Tbubble = 195S−1
bubble

(
106 cm
r

)
MeV. (1.31)

In the more likely case that the material expand laterally we have [100]: ρ ∝ 1/r2,
i.e., Tbubble = T0(Sbubble) (r0/r)2/3, where T0(Sbubble) is obtained from the above
equation at r = r0 ≈ RNS. This implies a bolometric blackbody flux at the source
from the rising bubbles:

Fbubble ≈ 2× 1040
(
MNS

1.4M�

)−7/2
(

ṀB
M� s−1

)(
RNS

106 cm

)3/2 (r0
r

)8/3
erg s−1cm−2.

(1.32)
The above thermal emission has been shown [105] to be a plausible explanation

of the early X-ray (precursor) emission observed in some GRBs. The X-ray precursor
observed in GRB 090618 [134, 133] is explained adopting an accretion rate of
10−2 M� s−1, the bubble temperature drops from 50 keV to 15 keV while expanding
from r ≈ 109 cm to 6× 109 cm (see Fig. 1.11). More recently, the X-ray precursor
has been observed in GRB 180728A and it is well explained by a bubble of ∼7 keV
at ∼ 1010 cm and an accretion rate of 10−3 M� s−1 (see [307] for details).

Figure 1.11. (a) Fermi-GBM (NaI 8–440 keV) light-curve of GRB 090618 (adapted from
Fig. 1 in [134]). (b) Expanding radius of the thermal blackbody emission observed in the
“Episode 1” of GRB 090618 (adapted from Fig. 2 in [134]). The interpretation of such
an X-ray precursor as being due to the emission of the convective bubbles during the
process of hypercritical accretion onto the NS was proposed for the first time in [105].
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Accretion Luminosity

The energy release in a time-interval dt, when an amount of mass dMb with angular
momentum lṀb is accreted, is [24]:

Lacc = Ṁb − ṀNS = Ṁb

[
1−

(
∂MNS
∂JNS

)
Mb

l −
(
∂MNS
∂Mb

)
JNS

]
. (1.33)

This is the amount of gravitational energy gained by the matter by infalling
to the NS surface that is not spent in NS gravitational binding energy. The total
energy release in the time interval from t to t+ dt,

∆Eacc ≡
∫
Laccdt, (1.34)

is given by the NS binding energy difference between its initial and final state.
The typical luminosity is Lacc ≈ ∆Eacc/∆tacc, where ∆tacc is the duration of the
accretion process.

The value of ∆tacc is approximately given by the flow time of the slowest layers of
the SN ejecta to the NS companion position. If we denote the velocity of these layers
by vinner, we have ∆tacc ∼ a/vinner, where a is the binary separation. For a ∼ 1011 cm
and vinner ∼ 108 cm s−1, ∆tacc ∼ 103 s. For shorter separations, e.g., a ∼ 1010 cm
(P ∼ 5 min), ∆tacc ∼ 102 s. For a binary with P = 5 min, the NS accretes ≈ 1 M� in
∆tacc ≈ 100 s. From Equation (1.26) one obtains that the binding energy difference
of a 2 M� and a 3 M� NS, is ∆Eacc ≈ 13/200(32 − 22) M� ≈ 0.32 M�. This
leads to Lacc ≈ 3 × 10−3 M� ≈ 0.1Ṁb. The accretion power can be as high as
Lacc ∼ 0.1Ṁb ∼ 1047–1051 erg s−1 for accretion rates in the range Ṁb ∼ 10−6–
10−2 M� s−1.

1.2.5 Post-Explosion Orbits and Formation of NS-BH Binaries

The SN explosion leaves as a central remnant a νNS and the induced gravitational
collapse of the NS companion leads to BH formation. Therefore, BdHNe potentially
leads to νNS-BH binaries, providing the binary keeps bound. This question was
analysed via numerical simulations in [103].

Typical binaries become unbound during an SN explosion because of mass loss
and the momentum imparted (kick) to the νNS by the explosion. A classical
astrophysical result shows that, assuming the explosion as instantaneous (sudden
mass loss approximation), disruption occurs if half of the binary mass is lost. For
this reason the fraction of massive binaries that can produce double compact-object
binaries is usually found to be very low (e.g., ∼0.001–1%) [107, 76, 229].

Assuming instantaneous mass loss, the post-explosion semi-major axis is [130]:

a

a0
= M0 −∆M
M0 − 2a0∆M/r

, (1.35)

where a0 and a are the initial and final semi-major axes respectively, M0 is the
(initial) binary mass, ∆M is the change of mass (in this case the amount of mass
loss), and r is the orbital separation before the explosion. For circular orbits, the
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system is unbound if it loses half of its mass. For the very tight BdHNe, however,
additional effects have to be taken into account to determine the fate of the binary.

The shock front in an SN moves at roughly 104 km s−1, but the denser, lower-
velocity ejecta, can move at velocities as low as 102–103 km s−1 [105]. This implies
that the SN ejecta overcomes an NS companion in a time 10–1000 s. For wide
binaries this time is a small fraction of the orbital period and the “instantaneous”
mass-loss assumption is perfectly valid. BdHNe have instead orbital periods as short
as 100–1000 s, hence the instantaneous mass-loss approximation breaks down.

We recall the specific examples studied in [103]: close binaries in an initial
circular orbit of radius 7× 109 cm, COcore radii of (1–4)× 109 cm with a 2.0 M�
NS companion. The COcore leaves a central 1.5 M� NS, ejecting the rest of the
core. The NS leads to a BH with a mass equal to the NS critical mass. For these
parameters it was there obtained that even if 70% of the mass is lost the binary
remains bound, providing the explosion time is of the order of the orbital period
(P = 180 s) with semi-major axes of less than 1011 cm (see Fig. 1.12).

The tight νNS-BH binaries produced by BdHNe will, in due time, merge owing
to the emission of gravitational waves. For the above typical parameters the merger
time is of the order of 104 year, or even less (see Fig. 1.12). We expect little baryonic
contamination around such merger site since this region has been cleaned-up by
the BdHN. These conditions lead to a new family of sources which we have called
ultrashort GRBs, U-GRBs.
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Figure 1.12. (a) Semi-major axis versus explosion time for three different mass ejecta
scenarios: 3.5 M� (solid), 5.0 M� (dotted), 8.0 M� (dashed), including mass accretion
and momentum effects (taken from Fig. 2 in [103]). Including these effects, all systems
with explosion times above 0.7 times the orbital time are bound and the final separations
are on par with the initial separations. (b) Merger time due to gravitational wave
emission as a function of explosion time for the same three binaries of the left panel
(taken from Fig. 3 in [103]). Note that systems with explosion times 0.1–0.6 Torbit have
merger times less than roughly 104 y. For most of our systems, the explosion time is
above this limit and we expect most of these systems to merge quickly.
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1.2.6 BdHN Formation, Occurrence Rate and Connection with
Short GRBs

An Evolutionary Scenario

The X-ray binary and SN communities have introduced a new evolutionary scenario
for the formation of compact-object binaries (NS-NS or NS-BH). After the collapse
of the primary star forming a NS, the binary undergoes mass-transfer episodes finally
leading to the ejection of both the hydrogen and helium shells of the secondary
star. These processes lead naturally to a binary composed of a COcore and an NS
companion (see Fig. 1.4). In the X-ray binary and SN communities these systems
are called “ultra-stripped” binaries [295]. These systems are expected to comprise
0.1–1% of the total SNe [294].

The existence of ultra-stripped binaries supports our scenario from the stellar
evolution side. In the above studies most of the binaries have orbital periods in the
range 3× 103–3× 105 s which are longer with respect to the short periods expected
in the BdHN scenario. Clearly, XRF and BdHN progenitors should be only a small
subset that result from the binaries with initial orbital separation and component
masses leading to COcore-NS binaries with short orbital periods, e.g., 100–1000 s for
the occurrence of BdHNe. This requires fine-tuning both of the COcore mass and the
binary orbit. From an astrophysical point of view the IGC scenario is characterized
by the BH formation induced by the hypercritical accretion onto the NS companion
and the associated GRB emission. Indeed, GRBs are a rare phenomenon and the
number of systems approaching the conditions for their occurrence must be low
(see [103] for details).

Occurrence Rate

If we assume that XRFs and BdHNe can be final stages of ultra-stripped binaries,
then the percentage of the ultra-stripped population leading to these long GRBs must
be very small. The observed occurrence rate of XRFs and BdHNe has been estimated
to be ∼ 100 Gpc−3 yr−1 and ∼1 Gpc−3 yr−1, respectively [266], namely the 0.5%
and 0.005% of the Ibc SNe rate, 2×104 Gpc−3 yr−1 [124]. It has been estimated that
(0.1–1%) of the SN Ibc could originate from ultra-stripped binaries [294], which would
lead to an approximate density rate of (20–200) Gpc−3 yr−1. This would imply that
a small fraction (.5%) of the ultra-stripped population would be needed to explain
the BdHNe while, roughly speaking, almost the whole population would be needed to
explain the XRFs (see Table 1.2). These numbers, while waiting for a confirmation
by further population synthesis analyses, would suggest that most SNe originated
from ultra-stripped binaries should be accompanied by an XRF. It is interesting that
the above estimates are consistent with traditional estimates that only ∼0.001–1%
of massive binaries lead to double compact-object binaries [107, 76, 229].

Connection with Short GRBs

It is then clear that XRFs and BdHNe lead to νNS-NS and νNS-BH binaries. In
due time, the emission of gravitational waves shrink their orbit leading to mergers
potentially detectable as short GRBs. This implies a connection between the rate of
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long and short GRBs. It is clear from the derived rates (see Table 1.2 and [266, 269])
that the short GRB population is dominated by the low-luminosity class of short
Gamma-ray flashes (S-GRFs), double NS mergers that do not lead to BH formation.
It can be seen that it is sufficient . 4% of XRFs to explain the S-GRFs population,
which would be consistent with the fact that many XRF progenitor binaries will get
disrupted by the SN explosion. Therefore, by now, the observed rates of the GRB
subclasses are consistent with the interesting possibility of a connection between the
progenitors of the long and the ones of the short GRBs.

In this line, it is important to mention that, for instance, in a NS-NS merger,
matter can remain bound to the newborn central object (a massive NS or a BH) and
form a disk of high-density matter accreting at high rates onto the central object.
The results of this thesis are also relevant for the analysis of the neutrino emission
and their subsequent annihilation into e+e− pairs in the vicinity of the newborn NS
or BH.
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Chapter 2

Neutrino Oscillations in
Spherical Accretion onto a NS

2.1 Introduction

The emergent picture of gamma-ray burst is that both, short-duration and long-
duration GRBs, originate from binary systems [266].

Short bursts originate from NS-NS or NS-BH mergers [121, 209, 85, 204, see, e.g.,].
For this case [202] introduced the role of neutrino-anti-neutrino (νν̄) annihilation
leading to the formation of an electron-positron plasma (e−e+) in NS-NS and NS-BH
mergers. Such a result triggered many theoretical works, including the general
relativistic treatment by [275] of the νν̄ annihilation process giving rise to the e−e+

plasma in a NS-NS system.
For long bursts we stand on the IGC paradigm [255, 263, 133, 246, 105, 261],

based on the hypercritical accretion process of the SN ejecta of the explosion of
a COcore onto a NS binary companion. In the above processes, the emission of
neutrinos is a key ingredient.

We focus hereafter on the neutrino emission of long bursts within the IGC scenario.
The role of neutrinos in this paradigm has been recently addressed [105, 103, 25, 24].
The hypercritical accretion of the SN ejecta onto the NS companion can reach
very high rates of up to 10−2 M� s−1 and its duration can be of the order of
10–104 s depending on the binary parameters. The photons become trapped within
the accretion flow and thus do not serve as an energy sink. The high temperature
developed on the NS surface leads to e−e+ pairs that, via weak interactions, annihilate
into νν̄ pairs with neutrino luminosities of up to 1052 erg s−1 for the highest accretion
rates. Thus, this process dominates the cooling and give rise to a very efficient
conversion of the gravitational energy gained by accretion into radiation. We refer
to [24] for further details on this process.

The above hypercritical accretion process can lead the NS to two alternative
fates, leading to the existence of two long GRB sub-classes [105, 103, 25, 24, 266]:

I. The hypercritical accretion leads to a more massive NS companion but not
to a BH. These binaries explain the XRFs; long bursts with isotropic energy
Eiso . 1052 erg and rest-frame spectral peak energy Ep,i . 200 keV (see [266]
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for further details). The local observed number density rate of this GRB
sub-class is [266]: ρGRB = 100+45

−34 Gpc−3yr−1.

II. The hypercritical accretion is high enough to make the NS reach its critical
mass triggering its gravitational collapse with consequent BH formation. These
binaries explain the BdHNe; long bursts with Eiso & 1052 erg and Ep,i &
200 keV (see [266] for further details). The local observed number density rate
of this GRB sub-class is [266]: ρGRB = 0.77+0.09

−0.08 Gpc−3yr−1.

Simulations of the hypercritical accretion process in the above binaries have been
presented in [105, 103, 25, 24]. It has been shown how, thanks to the development
of a copious neutrino emission near the NS surface, the NS is allowed to accrete
matter from the SN at very high rates. The specific conditions leading to XRFs and
BdHNe as well as a detailed analysis of the neutrino production in these systems
have been presented in [24]. Neutrino emission can reach luminosities of 1052 erg s−1

and the mean neutrino energy of the order of 20 MeV. Under these conditions, XRFs
and BdHNe become astrophysical laboratories for MeV-neutrino physics additional
to core-collapse SNe.

On the other hand, the emission of TeV-PeV neutrinos is relevant for the ob-
servations of detectors such as the IceCube [1]. High-energy neutrino emission
mechanisms have been proposed within the context of the traditional model of
long GRBs. In the traditional “collapsar” scenario [310, 210, 173] the gravitational
collapse of a single, fast rotating, massive star originates a BH surrounded by a
massive accretion disk (see [222] for a review), and the GRB dynamics follows the
“fireball” model that assumes the existence of an ultra-relativistic collimated jet with
Lorentz factor Γ ∼ 102–103 (see, e.g., [283, 223, 188, 179]). This scenario has been
adopted for the explanation of the prompt emission, as well as both the afterglow
and the GeV emission of long GRBs. The GRB light-curve structures are there
described by (internal or external) shocks (see, e.g., [242, 243]). The high-energy
neutrinos in this context are produced from the interaction of shock-accelerated
cosmic-rays (e.g. protons) with the interstellar medium (see [8, 162] and references
therein). A recent analysis of the thermal emission of the X-ray flares observed in
the early afterglow of long GRBs (at source rest-frame times t ∼ 102 s) show that it
occurs at radii ∼ 1012 cm and expands with a mildly-relativistic Γ . 4 (see [267]
for further details). This rules out the ultra-relativistic expansion in the GRB
afterglow traditionally adopted in the literature. Interestingly, the aforementioned
mechanisms of high-energy neutrino production conceived in the collapsar-fireball
model can still be relevant in the context of BdHNe and authentic short GRBs
(S-GRBs, NS-NS mergers with Eiso & 1052 erg leading to BH formation; see [266],
for the classification of long and short bursts in seven different sub-classes). The
emission in the 0.1–100 GeV energy band observed in these two GRB sub-classes
has been shown to be well explained by a subsequent accretion process onto the
newly-born BH [261, 264, 265, 266, 10]. Such GeV emission is not causally connected
either with the prompt emission or with the afterglow emission comprising the flaring
activity [267]. An ultra-relativistic expanding component is therefore expected to
occur in BdHNe and S-GRBs which deserves to be explored in forthcoming studies
as a possible source of high-energy neutrinos. Specifically, this motivates the to
identify the possible additional channels to be explored in the hypercritical accretion
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not around a NS but around a BH. The aim of this work is to extend the analysis of
the MeV-neutrino emission in the hypercritical accretion process around a NS in the
XRFs and BdHNe to assess the possible occurrence of neutrino flavour oscillations.

We shall show in this chapter that, before escaping to the outer space, i.e.
outside the Bondi-Hoyle accretion region, the neutrinos experience an interesting
phenomenology. The neutrino density near the NS surface is so high that the neutrino
SIP, usually negligible in other very well-known scenarios like the Sun, the upper
layers of Earth’s atmosphere and terrestrial reactor and accelerator experiments,
becomes more relevant than the matter potential responsible for the famous MSW
effect [308, 192]. A number of papers have been dedicated to the consequences of the
neutrino self-interaction dominance [206, 215, 234, 216, 81, 279, 112, 90, 82, 237, 88,
89, 50, 77, 80, 60, 59, 280, 83, 312], most of them focused on SN neutrinos. In these
cases, the SN induces the appearance of collective effects such as synchronized and
bipolar oscillations leading to an entirely new flavour content of emitted neutrinos
when compared with the spectrum created deep inside the star. The density of
neutrinos produced in the hypercritical accretion process of XRFs and BdHNe is
such that the neutrino self-interactions, as in the case of SNe, dominate the neutrino
flavour evolution, giving rise to the aforementioned collective effects. The main
neutrino source, in this case, is the νν̄ pair production from e−e+ annihilation [24]
which leads to an equal number of neutrinos and anti-neutrinos of each type. This
equality does not happen in the SN standard scenario. We will show that bipolar
oscillations, inducing very quick flavour pair conversions νeν̄e ↔ νµν̄µ ↔ ντ ν̄τ , can
occur with oscillation length as small as O(0.05–1) kilometers. However, the ν–ν̄
symmetry characterizing our system leads to the occurrence of kinematic decoherence
making the neutrino flavour content to reach equipartition deep inside the accretion
zone. In the regions far from the NS surface where the neutrino density is not
so high, the matter potential turns to dominate and MSW resonances can take
place. As a result, an entirely different neutrino flavour content emerges from the
Bondi-Hoyle surface when compared with what was originally created in the bottom
of the accretion zone.

This chapter is organized as follows. In Sec. 2.2 we outline the general features of
the accretion process onto the NS within the IGC paradigm and present the processes
responsible for the neutrino creation. From these features, we obtain the distribution
functions that describe the neutrino spectrum near the NS surface. Sec. 2.3 shows a
derivation of the equations that drive the evolution of neutrino oscillations closely
related to the geometrical and physical characteristics of our system. In Sec. 2.4 we
discuss some details on the neutrino oscillation phenomenology. Since we have to
face a non-linear integro-differential system of equations of motion, we introduce the
single-angle approximation to later recover the full realistic phenomenology after
generalizing our results to the multi-angle approach and, consequently, decoherent
picture. In Sec. 2.5 the final neutrino emission spectra are presented and compared
with those ones in which neutrinos are created in the accretion zone. Finally, we
present in Sec. 2.6 the conclusions and some perspectives for future research on this
subject.
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Figure 2.1. Schematic representation of the accretion process onto the NS and the neutrino
emission. The supernova ejected material reaches the NS Bondi-Hoyle radius and falls
onto the NS surface. The material shocks and decelerates as it piles over the NS surface.
At the neutrino emission zone, neutrinos take away most of the infalling matter’s energy.
The neutrino emission allows the material to reduce its entropy to be incorporated to the
NS. The image is not to scale. For binary system with MNS = 2M� and RNS = 10 km,
and a MZAMS = 20M� progenitor, at Ṁ = 10−2M�/s, the position of the Bondi-Hoyle
and Shock radii are 2.3× 105 km and 31 km, respectively. The neutrino emission zone’s
thickness is ∆rν = 0.8 km.

2.2 Neutrino Creation During Hypercritical Accretion

The SN material first reaches the gravitational capture region of the NS companion,
namely the Bondi-Hoyle region. The infalling material shocks as it piles up onto the
NS surface forming an accretion zone where it compresses and eventually becomes
sufficiently hot to trigger a highly efficient neutrino emission process. Neutrinos
take away most of the infalling matter’s gravitational energy gain, letting it reduce
its entropy and be incorporated into the NS. Fig. 2.1 shows a sketch of this entire
hypercritical accretion process.

It was shown in [24] that the matter in the accretion zone near the NS surface
develops conditions of temperature and density such that it is in a non-degenerate,
relativistic, hot plasma state. The most efficient neutrino emission channel under
those conditions becomes the electron positron pair annihilation process:

e−e+→ ν ν̄. (2.1)

The neutrino emissivity produced by this process is proportional to the accretion
rate to the 9/4 power (see below). This implies that the higher the accretion rate
the higher the neutrino flux, hence the largest neutrino flux occurs at the largest
accretion rate. We turn now to estimate the accretion rate and thus the neutrino
emissivity we expect in our systems.
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2.2.1 Accretion Rate in XRFs and BdHNe

We first discuss the amount of SN matter per unit time reaching the gravitational
capture region of the NS companion, namely the Bondi-Hoyle accretion rate. It has
been shown in [23, 24] that the shorter (smaller) the orbital period (separation) the
higher the peak accretion rate Ṁpeak and the shorter the time at which it peaks,
tpeak. The Bondi-Hoyle accretion rate is proportional to the density of the accreted
matter and inversely proportional to its velocity. Thus, we expect the accretion rate
to increase as the denser and slower inner layers of the SN reach the accretion region.
Based on these arguments, [24] derived simple, analytic formulas for Ṁpeak and tpeak
as a function of the orbital period (given all the other binary parameters) that catch
both the qualitatively and quantitatively behaviors of these two quantities obtained
from full numerical integration. We refer the reader to the Appx. A of that article
for further details. For the scope of this work these analytic expressions are sufficient
to give us an estimate of the hypercritical accretion rates and related time scale
developed in these systems:

tpeak ≈
(

1− 2MNS
M

)(
M

4π2

)1/3
(
R0

star
ηRcore

)
P 2/3

vstar,0
, (2.2a)

Ṁpeak ≈ 2π2 (2MNS/M)5/2

(1− 2MNS/M)3 η
3−m ρcoreR

3
core

P
, (2.2b)

where P is the orbital period, m is the index of the power-law density profile of
the pre-SN envelope, vstar,0 is the velocity of the outermost layer of the SN ejecta,
M = MCO +MNS is the total binary mass, MCO = Menv +MνNS is the total mass
of the COcore given by the envelope mass and the mass of the central remnant, i.e.
the new NS (hereafter νNS) formed from the region of the COcore which undergoes
core-collapse (i.e. roughly speaking the iron core of density ρcore and radius Rcore).
We here adopt MνNS = 1.5 M�. The parameter η is given by

η ≡ R0
star

Rcore

1 +m

1 +m(R0
star/R̂core)

, (2.3)

where R0
star is the total radius of the pre-SN COcore; ρ̂core and R̂core are parameters

of the pre-SN density profile introduced to account of the finite size of the envelope,
and m is the power-law index followed by the density profile at radii r > Rcore
(see [24] for further details).

Fig. 2.2 shows the peak accretion rate in Eq. (2.2) as a function of the orbital
period. In this example, we consider the following binary parameters [24]: a COcore
produced by a zero-age main-sequence (ZAMS) progenitor with MZAMS = 20 M�,
i.e. MCO = 5.4 M�, an initial NS mass 2.0 M�, and a velocity of the outermost
ejecta layer vstar,0 = 2× 109 cm s−1. For these parameters, η ≈ 0.41.

It was shown in [25, 24] the existence of a maximum orbital period, Pmax,
over which the accretion onto NS companion is not high enough to bring it to
the critical mass for gravitational collapse to a BH. As we have recalled in the
Introduction, COcore-NS binaries with P > Pmax lead to XRFs while the ones with
P . Pmax lead to BdHNe. For the binary parameters of the example in Fig. 2.2,
Pmax ≈ 127 min (vertical dashed line). We can therefore conclude that BdHNe can
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Figure 2.2. Peak accretion rate, Ṁpeak, as a function of the binary orbital period, as given
by Eq. (2.2). This example corresponds to the following binary parameters: a COcore
formed by a MZAMS = 20 M� progenitor, i.e. MCO = 5.4 M�, an initial NS mass
2.0 M�, vstar,0 = 2 × 109 cm s−1, η ≈ 0.41 and index m = 2.946 (see [24] for further
details). For these parameters the largest orbital period for the induced collapse of the
NS to a BH by accretion is Pmax ≈ 127 min which is represented by the vertical dashed
line.

have peak accretion rates in the range Ṁpeak ∼ 10−3– few 10−2 M� s−1 while XRFs
would have Ṁpeak ∼ 10−4–10−3 M� s−1.

2.2.2 Neutrino Emission at Maximum Accretion

For the accretion rate conditions characteristic of our models at peak ∼ 10−4–
10−2 M� s−1, pair annihilation dominates the neutrino emission and electron neutri-
nos remove the bulk of the energy [24]. The e+e− pairs producing the neutrinos are
thermalized at the matter temperature. This temperature is approximately given
by:

Tacc ≈
(3Pshock

4σ

)1/4
=
(

7
8
Ṁaccvacc
4πR2

NSσ

)1/4

, (2.4)

where Pshock is the pressure of the shock developed on the accretion zone above the
NS surface, Ṁacc is the accretion rate, vacc is the velocity of the infalling material
and σ is the Stefan-Boltzmann constant. It can be checked that, for the above
accretion rates, the system develops temperatures and densities (T & 1010 K and
ρ & 106 g cm−3; see, e.g., Fig. 16 in [24]) for which the neutrino emissivity of the
e+e− annhiliation process can be estimated by the simple formula [317]:

εe−e+ ≈ 8.69× 1030
(

T

1 MeV

)9
MeV cm−3 s−1, (2.5)

The accretion zone is characterized by a temperature gradient with a typical
scale height ∆rER = T/∇T ≈ 0.7 RNS. Owing to the strong dependence of the
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neutrino emission on temperature, most of the neutrinos are emitted from a spherical
shell around the NS of thickness (see Fig. 2.1)

∆rν = εe−e+

∇εe−e+
= ∆rER

9 ≈ 0.08RNS. (2.6)

Eqs. (2.4) and (2.5) imply the neutrino emissivity satisfies εe−e+ ∝ Ṁ
9/4
acc as we had

anticipated. These conditions lead to the neutrinos to be efficient in balancing the
gravitational potential energy gain, allowing the hypercritical accretion rates. The
effective accretion onto the NS can be estimated as

Ṁeff ≈ ∆Mν
Lν
Eg
, (2.7)

where ∆Mν , Lν are, respectively, the mass and neutrino luminosity in the emission
region, and Eg = (1/2)MNS∆Mν/(Rν + ∆rν) is half the gravitational potential
energy gained by the material falling from infinity to the RNS + ∆rν . The neutrino
luminosity is

Lν ≈ 4πR2
NS∆rνεe−e+ . (2.8)

with εe−e+ being the neutrino emissivity in Eq. (2.5). For MNS = 2 M� and
temperatures 1–10 MeV, the Eqs. (2.7) and (2.8) result Ṁeff ≈ 10−10–10−1 M� s−1

and Lν ≈ 1048–1057 MeV s−1.
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2.2.3 Neutrino Spectrum at the NS Surface

After discussing the general features of neutrino emission during the accretion
process, it is necessary for our analysis of the neutrino oscillations to determine
the neutrino spectrum at the NS surface using the technical details in Appx. D.
Specifically, we need to determine the ratios at which the neutrinos of each flavour
are created and their average energy so that we can find a fitting distribution function
fν with these characteristics, as it is usually done in supernovae neutrino emission
[137, 138]. That is, a Fermi-Dirac distribution in terms of two parameters: the
effective neutrino temperature Tνν̄ and the effective neutrino degeneracy parameter
ηνν̄ otherwise known as the pinching parameter [236, 145]. To that end, it is enough
to calculate the first two moments. In particular, for a relativistic non-degenerate
plasma (kBT > 2mec

2 and 1 > ηe∓ , see Table 2.1) Eq. (D.7) can be approximated
with a very good accuracy by [317].

εmi ≈
2G2

F (T )8+m

9π5 C2
+,i [Fm+1,0 (ηe+)F1,0 (ηe−) + Fm+1,0 (ηe−)F1,0 (ηe+)] (2.9)

where Fk,` (η) = Fk,` (y = 0, η). Since the main source of neutrinos is the e−e+ pair
annihilation process we can conclude that neutrinos and anti-neutrinos are created
in equal number. For m = 1, ηe± = 0 and adding over every flavour this expression
reduces to Eq. (2.5). With Eqs. (D.8) and (2.9) we find

〈Eν〉 = 〈Eν̄〉 ≈ 4.1T (2.10a)
〈E2

ν〉 = 〈E2
ν̄〉 ≈ 20.8T 2, (2.10b)

regardless of the neutrino flavour. Furthermore, we can calculate the ratio of emission
rates between electronic and nonelectronic neutrino flavours in terms of the weak
interaction constants

ε0
e

ε0
x

= ε0
e

ε0
µ + ε0

τ

=
C2

+,e
C2

+,µ + C2
+,τ
≈ 7

3 . (2.11)

Some comments must be made about the results we have obtained:

• It is well known that, within the Standard Model of Particles, there are three
neutrino flavours νe, ν̄e, νµ, ν̄µ and ντ , ν̄τ . However, as in Eq. (2.11), we will
simplify our description using only two flavours: the electronic neutrinos and
anti-neutrinos νe, ν̄e, and a superposition of the other flavours νx, ν̄x (x = µ+τ).
This can be understood as follows. Since the matter in the accretion zone is
composed by protons, neutrons, electrons and positrons, νe and ν̄e interact
with matter by both charged and neutral currents, while νµ, ντ , ν̄µ and ν̄τ
interact only by neutral currents. Therefore, the behavior of these states can
be clearly divided into electronic and non-electronic. This distinction will come
in handy when studying neutrino oscillations.

• Representing the neutrino (anti-neutrino) density and flux in the moment of
their creation with ncνi(ν̄i) and F cνi(ν̄i) respectively and using Eq. (2.11) we can
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recollect two important facts:

nCνi = nCν̄i , F
C
νi = FCν̄i ∀i ∈ {e, µ, τ} (2.12a)

nCνe
nCνx

=
nCν̄e
nCν̄x

=
FCνe
FCνx

=
FCν̄e
FCν̄x
≈ 7

3 . (2.12b)

Eqs. (2.12) imply that, in the specific environment of our system, of the total
number of neutrinos+anti-neutrinos emitted, Nν + Nν̄ , 70% are electronic
neutrinos (Nνe + Nν̄e), 30% are non-electronic (Nνx + Nν̄x), while the total
number of neutrinos is equal to the total number of anti-neutrinos, i.e. Nν = Nν̄ ,
where Nν = Nνe +Nνx and Nν̄ = Nν̄e +Nν̄x .

• Bearing in mind such high neutrino energies as the ones suggested by Eqs. (2.10)
, from here on out we will use the approximation

Eν ≈ |p| � mν , (2.13)

where p is the neutrino momentum.

• From Eq. (D.8) we obtain the same energy moments for both neutrinos and
anti-neutrinos but, as [195] points out, these energies should be different
since, in reality, this expression returns the arithmetic mean of the particle
and antiparticle energy moments, that is (〈Emν 〉+ 〈Emν̄ 〉) /2. However, if we
calculate the differences between the energy moments with equations (41)
and (46) in [195] for the values of T and ηe± we are considering, we get
∆〈E〉 ∼ 10−2–10−3 MeV and ∆〈E2〉 ∼ 10−3–10−4 MeV2. These differences are
small enough that we can use the same effective temperature and pinching
parameter for both neutrinos and anti-neutrinos.

Solving the equations

4.1T = Tνν̄
F3,0 (ηνν̄)
F2,0 (ηνν̄) (2.14a)

20.8T 2 = T 2
νν̄

F4,0 (ηνν̄)
F2,0 (ηνν̄) (2.14b)

for any value of T in Table (2.1) we find Tνν̄ = 1.1331T and ηνν̄ = 2.0376. Integrating
a Fermi-Dirac distribution over the neutrino momentum space using these values
should give the neutrino number density. To achieve this we normalize it with the
factor 1/

(
2π2T 3

νν̄F2,0 (ηνν̄)
)
and then we multiply by

nCνi(ν̄i) = wνi(ν̄i)
Lν

4πR2
NS〈Eν〉〈v〉

= 2wνi(ν̄i)ε
0
i∆rν , (2.15)

where the neutrino’s average radial velocity at r = RNS is 〈v〉 = 1/2 [61] and
wνe = wν̄e = 0.35 and wνx = wν̄x = 0.15. To calculate the neutrino fluxes we simply
set FCν(ν̄i) = 〈v〉nCνi(ν̄i). Gathering our results we can finally write the distribution
functions as

fνe = fν̄e =
2π2nCνe

T 3
νν̄F2,0 (ηνν̄)

1
1 + exp (E/Tνν̄ − ηνν̄) (2.16a)

fνx = fν̄x =
2π2nCνx

T 3
νν̄F2,0 (ηνν̄)

1
1 + exp (E/Tνν̄ − ηνν̄) (2.16b)
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It can be checked that these distributions obey∫
fνi

d3p
(2π)3 = nCνi (2.17a)∫

Efνi
d3p

(2π)3 = 〈Eν〉nCνi = ε1
i (2.17b)

and with these conditions satisfied we can conclude that Eqs. (2.16) are precisely
the ones that emulate the neutrino spectrum at the NS surface. In Table 2.1 we
have collected the values of every important quantity used in the calculations within
this section for the range of accretion rates in which we are interested.

Considering that the problem we attacked in this section reduces to finding a
normalized distribution whose first two moments are fixed, the choice we have made
with Eqs. (2.16) is not unique. The solution depends on how many moments are used
to fit the distribution and what kind of function is used as an ansatz. A different
solution based on a Maxwell-Boltzmann distribution can be found in [145, 93, 195].

At this stage, we can identify two main differences between neutrino emission in
SNe and in the IGC process of XRFs and BdHNe, within the context of neutrino
oscillations. The significance of these differences will become clearer in next sections
but we mention them here to establish a point of comparison between the two
systems since SN neutrino oscillations have been extensively studied.

• Neutrinos of all flavours in XRFs and BdHNe have the same temperature, which
leads to equal average energy. The neutrinos produced in SNe are trapped
and kept in thermal equilibrium within their respective neutrino-sphere. The
neutrino-spheres have different radii, causing different flavours to have different
average energies. This energy difference leads to a phenomenon called spectral
stepwise swap which, as we will show below, is not present in our systems
(see [236, 90, 59] and references therein).

• As we have discussed above, in XRFs and BdHNe neutrinos and anti-neutrinos
are emitted in equal number. Due to this fact, kinematical decoherence occurs
(up to a number difference of 30% this statement is valid; see Sec. 2.4 for
further details). Instead, SN neutrino and anti-neutrino fluxes differ such
that Fνe > Fν̄e > Fνx = Fν̄x . It has been argued that this difference between
neutrinos and anti-neutrinos is enough to dampen kinematical decoherence, so
that bipolar oscillations are a feature present in SN neutrinos (see, e.g., [88]).

In the next section, we will use the results presented here to determine the
neutrino flavour evolution in the accretion zone.

2.3 Neutrino Oscillations
In recent years the picture of neutrino oscillations in dense media, based only on
MSW effects, has undergone a change of paradigm by the insight that the refractive
effects of neutrinos on themselves due to the neutrino SIP are crucial [206, 215, 234,
216, 81, 279, 112, 90, 82, 237, 88, 89, 50, 77, 80, 60, 59, 280, 83, 312].
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As we discussed in Sec. 2.2, in our physical system of interest neutrinos are
mainly created by electron-positron pair annihilation and so the number of neutrinos
is equal to the number of anti-neutrinos. Such a fact creates an interesting and
unique physical situation, different from, for example, SN neutrinos for which
traditional models predict a predominance of electron neutrinos mainly due to the
deleptonization caused by the URCA process [88].

The neutrino SIP decays with the radial distance from the neutron star faster
than the matter potential. This is a direct consequence of the usual 1/r2 flux dilution
and the collinearity effects due to the neutrino velocity dependence of the potential.
Consequently, we identify three different regions along the neutrino trajectory in
which the oscillations are dominated by intrinsically different neutrino phenomenology.
Fig. 2.3 illustrates the typical situation of the physical system we are analyzing.
Just after the neutrino creation in the regions of the accretion zone very close to
the surface of the NS, neutrinos undergo kinematic decoherence along the same
length scale of a single cycle of the so-called bipolar oscillations. Bipolar oscillations
imply very fast flavour conversion between neutrino pairs νeν̄e ↔ νµν̄µ ↔ ντ ν̄τ and,
amazingly, the oscillation length in this region can be so small as of the order tens
of meters.

Note that kinematic decoherence is just the averaging over flavour neutrino states
process resulting from quick flavour conversion which oscillation length depends on
the neutrino energy. It does not imply quantum decoherence and, thus, neutrinos
are yet able to quantum oscillate if appropriate conditions are satisfied. In fact, as
it can be observed from Figs. 2.4 and 2.5 below, bipolar oscillations preserve the
characteristic oscillation pattern, differently from quantum decoherence which would
lead to a monotonous dumping figure.

Kinematic decoherence is relevant when three conditions are met: (i) The SIP
dominates over the vacuum potential. (ii) The matter potential does not fulfill
the MSW condition. (iii) There is a low asymmetry between the neutrino and
anti-neutrino fluxes. We will see that our system satisfies all three conditions.

As the SIP becomes small and the matter potential becomes important, oscilla-
tions are suppressed and we do not expect significant changes in the neutrino flavour
content along this region. This situation changes radically when the matter potential
is so small that it is comparable with neutrino vacuum frequencies ∆m2/2p, where
∆m2 is the neutrino squared mass difference and p is the norm of the neutrino
momentum p. In this region, the neutrino SIP is negligible and the usual MSW
resonances can occur. Therefore, we can expect a change in the neutrino spectrum.

2.3.1 Equations of Oscillation

To derive the equation of neutrino oscillations we take Eq. (1.22) as a starting
point. Let us first present the relevant equations for neutrinos. Due to the similarity
between Hp and H̄p, the corresponding equations for anti-neutrinos can be obtained
in an analogous manner. In the two-flavour approximation, ρ in Eq. (1.22) can be
written in terms of Pauli matrices and the polarization vector Pp as:

ρp =
(
ρee ρex
ρxe ρxx

)
p

= 1
2 (fp1 + Pp · ~σ) , (2.18)



2.3 Neutrino Oscillations 45

where fp = Tr[ρp] = fνe(p) + fνx(p) is the sum of the distribution functions for νe
and νx. Note that the z component of the polarization vector obeys

Pzp = fνe(p)− fνx(p). (2.19)

Hence, this component tracks the fractional flavour composition of the system
and appropriately normalizing ρp allows to define a survival and mixing probability

Pνe↔νe = 1
2
(
1 + Pzp

)
, (2.20a)

Pνe↔νx = 1
2
(
1− Pzp

)
. (2.20b)

On the other hand, the Hamiltonian can be written as a sum of three interaction
terms:

H = Hvac + Hm + Hνν . (2.21)

where H is the two-flavour Hamiltonian. The first term is the Hamiltonian in
vacuum [234]:

Hvac = ωp
2

(
− cos 2θ sin 2θ
sin 2θ cos 2θ

)
= ωp

2 B · ~σ (2.22)

where ωp = ∆m2/2p, B = (sin 2θ, 0,− cos 2θ) and θ is the smallest neutrino mixing
angle in vacuum.

The other two terms in Eqs. (1.21) are special since they make the evolution
equations non-linear. Even though they are very similar, we are considering that the
electrons during the accretion form an isotropic gas; hence, the vector vq in the first
integral is distributed uniformly on the unit sphere and the factor vq · vp averages
to zero. After integrating the matter Hamiltonian is given by:

Hm = λ

2

(
1 0
0 −1

)
= λ

2 L · ~σ (2.23)

where λ =
√

2GF (ne− − ne+) is the charged current matter potential and L =
(0, 0, 1).

Such simplification cannot be made with the final term. Since neutrinos are
responsible for the energy loss of the infalling material during accretion, they must be
escaping the accretion zone and the net neutrino and anti-neutrino flux is non-zero.In
this case the factor vq · vp cannot be averaged to zero. At any rate, we can still use
Eq. (2.18) and obtain [215, 326, 176]:

Hνν =
√

2GF

[∫
(1− vq · vp)

(
Pq − P̄q

) d3q
(2π)3

]
· ~σ (2.24)

Introducing every Hamiltonian term in Eqs. (1.22), and using the commutation
relations of the Pauli matrices, we find the equations of oscillation for neutrinos and
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anti-neutrinos for each momentum mode p:

Ṗp =
[
ωpB +λL +

√
2GF

∫
(1− vq · vp)

(
Pq − P̄q

) d3q
(2π)3

]
× Pp (2.25a)

˙̄Pp =
[
−ωpB +λL +

√
2GF

∫
(1− vq · vp)

(
Pq − P̄q

) d3q
(2π)3

]
× P̄p. (2.25b)

Solving the above equations would yield the polarization vectors as a function
of time. However, in our specific physical system, both the matter potential λ and
the neutrino potential vary with the radial distance from the NS surface as well as
the instant t of the physical process which can be characterized by the accretion
rate Ṁ . As we will see later, the time dependence can be ignored. This means that
Eqs. (2.25) must be written in a way that makes explicit the spatial dependence,
i.e. in terms of the vector r. For an isotropic and homogeneous neutrino gas or a
collimated ray of neutrinos the expression dt = dr would be good enough, but for
radiating extended sources the situation is more complicated. In Eqs. (1.22) we
must replace the matrices of occupation numbers by the space dependent Wigner
functions ρp,r,t (and ρ̄p,r,t) and the total time derivative by the Liouville operator
[49, 290]

ρ̇p,r,t =

Explicit Time︷ ︸︸ ︷
∂ρp,r,t
∂t

+
Drift︷ ︸︸ ︷

vp · ∇r ρp,r,t +
External Forces︷ ︸︸ ︷

ṗ · ∇p ρp,r,t (2.26)

We will ignore the third term of the Liouville operator since we won’t consider the
gravitational deflection of neutrinos. For peak accretion rates Ṁ ≈ 10−8–10−2 M�/s
the characteristic accretion time is ∆tacc = M/Ṁ ≈ M�/Ṁ ≈ 108–102 s. The
distances traveled by a neutrino in these times are r ≈ 3× 1012–3× 1018 cm. These
distances are much larger than the typical binary separation a. As a consequence, we
can consider the neutrino evolution to be a stationary process. This fact allows us
to neglect the first term in Eq. (2.26). Putting together these results, the equations
become:

ivp · ∇r ρp,r = [Hp,r, ρp,r] (2.27a)
ivp · ∇r ρ̄p,r = [H̄p,r, ρ̄p,r], (2.27b)

where Hp,r and H̄p,r are the same as (1.21) but the matrices of densities (as well as
the polarization vectors) depend on the position r. Note, however, that the electrons
in the accretion zone still form an isotropic gas and Eq. (2.23) is still valid and the
matter Hamiltonian depends on r through ne−(r)− ne+(r). The first two terms in
the Hamiltonian remain virtually unchanged. On the other hand, projecting the
eqautions of oscillation onto the radial distance from the NS and using the axial
symmetry of the system, the integral in the neutrino-neutrino interaction term can
be written as

√
2GF

(2π)2

∫ (
1− vϑ′rvϑr

) (
ρq,ϑ′,r− ρ̄q,ϑ′,r

)
q2dq|d cosϑ′r|. (2.28)
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Since the farther from the NS the interacting neutrinos approach a perfect
collinearity, the projected velocities vϑr become decreasing functions of the position.
In this particular geometry the diagonal elements of the matrix of densities are
written as a product of independent distributions over each variable p, ϑ, φ, where
the φ dependence has been integrated out. The one over p is the normalized Fermi-
Dirac distribution and the one over ϑ is assumed uniform due to symmetry. The r
dependence is obtained through the geometrical flux dilution. Knowing this, the
diagonal elements of matrices of densities at the NS surface are

(ρp,RNS)ee = (ρ̄p,RNS)ee = fνe(p) (2.29a)
(ρp,RNS)xx = (ρ̄p,RNS)xx = fνx(p) (2.29b)

where the functions fνi are given by Eqs. (2.16).

2.3.2 Single-Angle Approximation

The integro-differential Eqs. (2.25) and (2.27) are usually numerically solved for the
momentum p and the scalar vq · vp. Such simulation are quite time-consuming and
the result is frequently too complicated to allow for a clear interpretation of the
underlying physics. For this reason, the analytic approximation called the single-
angle limit is made. Such approximation consists in imposing a self-maintained
coherence in the neutrino system, i.e. it is assumed that the flavour evolution of all
neutrinos emitted from an extended source is the same as the flavour evolution of
the neutrinos emitted from the source along a particular path. Under this premise,
the propagation angle between the test neutrino and the background neutrinos is
fixed. In expression (2.28) this is equivalent to dropping the ϑ′ dependence of ρ and
replacing the projected velocity vϑr either by an appropriate average at each r as
in [59] or by a representative angle (usually 0 or π/4). We will follow the former
approach and apply the bulb model described in [79]. Within this model it is shown
that the projected velocity at a distance r from the neutrino emission zone is

vr =

√
1−

(
RNS
r

)2 (
1− v2

RNS

)
. (2.30)

where vRNS is the projected velocity at the NS surface. By redefining the matrices
of density with a change of variable u = 1− v2

RNS
in the integral (2.28)

ρp,u,r
p2

2 (2π)2 → ρp,u,r, (2.31)

and using Eq. (2.18), we can write the full equations of motion
∂

∂r
Pp,r=

[
ωp,rB +λrL + µr

∫ ∞
0

(
Pq,r− P̄q,r

)
dq

]
×Pp,r (2.32a)

∂

∂r
P̄p,r=

[
−ωp,rB +λrL + µr

∫ ∞
0

(
Pq,r− P̄q,r

)
dq

]
×P̄p,r (2.32b)

where we have replaced vr by it’s average value

〈vr〉 = 1
2

1 +

√
1−

(
RNS
r

)2
 . (2.33)
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Figure 2.3. Interaction potentials as functions of the radial distance from the NS center
for selected accretion rates Ṁ (see Table 2.1). Each plot runs from the NS surface to
the Bondi-Hoyle surface. µr stands for the self-interaction neutrino potential, λr is the
matter potential and ωH and ωL are the higher and lower resonances corresponding to
the atmospheric and solar neutrino scales, respectively, defined in Eq. (2.52). Outside
the Bondi-Hoyle region the neutrino and electron densities depend on the direction of
their path relative to the SN and the particular ejecta density profile.

All the interaction potentials now depend on r and each effective potential
strength is parametrized as follows [59]

ωp,r = ∆m2

2p〈vr〉
, (2.34)

λr=
√

2GF (ne−(r)− ne+(r)) 1
〈vr〉

, (2.35)

µr=
√

2GF
2

 ∑
i∈{e,x}

nCνiν̄i

(RNS
r

)2
(

1− 〈vr〉2

〈vr〉

)
. (2.36)

It is worth mentioning that all the effective potential strengths are affected by
the geometry of the extended source through the projected velocity on the right
side of Eqs. (2.27). For the neutrino-neutrino interaction potential, we have chosen
the total neutrino number density as parametrization. This factor comes from the
freedom to re-normalize the polarization vectors in the EoM. A different choice
has been made in [88]. Of the other two r dependent factors, one comes from the
geometrical flux dilution and the other accounts for collinearity in the single-angle
approximation. Over all µr decays as 1/r4.
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Figure 2.4. Neutrino flavour evolution for inverted hierarchy. Electron neutrino survival
probability is shown as a function of the radial distance from the NS surface. The curves
for the electron anti-neutrino match the ones for electron neutrinos.
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Figure 2.5. Electron neutrino and anti-neutrino flavour evolution for normal hierarchy.The
survival probability is shown as a function of the radial distance from the NS surface.
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In Fig. 2.3 the behavior of the effective potentials within the single-angle formalism
is shown for Ṁ = 10−2M� s−1, 10−4M� s−1, 10−6M� s−1 and 10−8M� s−1. In
all cases, the neutrino energy is the corresponding average reported in Table 2.1.
Since the oscillatory dynamics of the neutrino flavours are determined by the value
of the potentials, and the value of the potentials depends on the data in Table
2.1, it is important to establish how sensible is this information to the model we
have adopted. In particular, to the pre-SN envelope density profile index m. The
reported accretion rates can be seen as different states in the evolution of a binary
system or as peak accretion rates of different binary systems. For a given accretion
rate, the temperature and density conditions on the neutron star surface are fixed.
This, in turn, fixes the potentials involved in the equations of flavour evolution and
the initial neutrino and anti-neutrino flavour content. To see the consequences of
changing the index m we can estimate the peak accretion rates for new values using
Eqs. (2.2). Since we are only interested in type Ic supernovae, we shall restrict
these values to the ones reported in Table 1 of [24] (that is m = 2.771, 2.946 and
2.801), and in each case, we consider the smallest binary separation such that there
is no Roche-Lobe overflow. For these parameters, we find peak accretion rates
Ṁpeak ∼ 10−2–10−4M� s−1 with peak times at tpeak ≈ 7–35 min. Because these
accretion rates are still within the range in Table 2.1, the results contained in Sec. 2.4
apply also to these cases with different value of the m-index.

The profiles for the electron and positron number densities were adopted from
the simulations presented in [24]. Due to the dynamics of the infalling matter,
close to the NS, the behavior of ne−(r) − ne+(r) is similar to µr. At the shock
radius, the electron density’s derivative presents a discontinuity and its behavior
changes allowing for three distinct regions inside the Bondi-Hoyle radius. The matter
potential is always higher than the neutrino potential yet, in most cases, both are
higher than the vacuum potential, so we expect neutrino collective effects (neutrino
oscillations) and MSW resonances to play a role in the neutrino flavour evolution
inside the Bondi-Hoyle radius. Outside the capture region, as long as the neutrinos
are not directed towards the SN, they will be subjected to vacuum oscillations.

2.4 Single-Angle Solutions and Multi-Angle Effects

The full dynamics of neutrino oscillations is a rather complex interplay between the
three potentials discussed in Sec. 2.3.1, yet the neutrino-anti-neutrino symmetry
allows us to generalize our single-angle calculations for certain accretion rates using
some numerical and algebraic results obtained in [125, 90, 88] and references therein.
Specifically, we know that if µr � ωr, as long as the MSW condition λr ' ωr is
not met, collective effects should dominate the neutrino evolution even if λr � µr.
On the other hand, if µr . ωr, the neutrino evolution is driven by the relative
values between the matter and vacuum potentials. With this in mind, we identify
two different ranges of values for the accretion rate: Ṁ & 5 × 10−5M� s−1 and
Ṁ . 5× 10−5M� s−1.
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2.4.1 High Accretion Rates

For accretion rates Ṁ & 5× 10−5M� s−1 the potentials obey the following hierarchy

λr & µr � ωr, (2.37)

hence, we expect strong effects of neutrino self-interactions. In order to appreciate
the interesting physical processes which happen with the neutrinos along their
trajectory in the accretion zone, we begin this analysis with a simplified approach,
using a monochromatic spectrum with the same energy for both neutrinos and
anti-neutrinos. Let us introduce the following definitions

D = Pr − P̄r (2.38)

Q = Pr + P̄r −
ωr
µr

B. (2.39)

The role of the matter potential is to logarithmically extend the period of the
bipolar oscillations so we can ignore it for now. Also, we will restrict our analysis
to a small enough region at RNS + ∆rν so that we can consider d

dr (ωr/µr) ≈ 0
(adiabatic approximation). Then, By summing and subtracting Eqs. (2.32) and
using definitions (2.38) and (2.39), we obtain

d

dr
Q = µD×Q (2.40)

d

dr
D = ωB×Q. (2.41)

We are now able to build a very useful analogy. The equations above are
analogous to the equations of motion of a simple mechanical pendulum with a
vector position given by Q, precessing around an angular momentum D, subjected
to a force ωµB with a moment of inertia proportional to the inverse of µ. With
Eqs. (2.12) and (2.19) the initial conditions for the polarization vectors are

P(RNS) = P̄(RNS) = (0, 0, 0.4) (2.42)

We can easily show that |Q(RNS)| = |P(RNS) + P̄(RNS)|+O(ω/µ) ≈ 0.8. Calcu-
lating d

dr (Q ·Q) it can be checked that this value is conserved.
The analogous angular momentum is D(RNS) = P(RNS)− P̄(RNS) = 0. Thus,

the pendulum moves initially in a plane defined by B and the z-axis, i.e., the plane
xz. Then, it is possible to define an angle ϕ between Q and the z-axis such that

Q = |Q| (sinϕ, 0, cosϕ) . (2.43)

Note that the only non-zero component of D is y-component and from (2.40) and
(2.41) we find

dϕ

dr
= µ|D| (2.44)

and
d|D|
dr

= −ω|Q| cos(2θ + ϕ). (2.45)
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The above equations can be equivalently written as

d2ϕ

dr2 = −k2 sin(2θ + ϕ), (2.46)

where we have introduced the inverse characteristic distance k by

k2 = ωµ|Q|, (2.47)

which is related to the anharmonic oscillations described by the non-linear Eq. (2.44)
and Eq. (2.45). The logarithmic correction to the oscillation length due to matter
effects is [125]

τṀ = −k−1 ln
[
θ

k

(k2 + λ2)1/2

(
1 + ω

|Q|µ

)]
. (2.48)

The initial conditions (2.42) imply

ϕ (RNS) = arcsin
(

ω

|Q|µ sin 2θ
)
. (2.49)

To investigate the physical meaning of the above equation, let us assume for a
moment that 2θ is a small angle. In this case ϕ (RNS) is also a small angle. If k2 > 0,
which is true for the normal hierarchy ∆m2 > 0, we expect small oscillations around
the initial position since the system begins in a stable position of the potential
associated with Eqs. (2.44) and (2.45). No strong flavour oscillations are expected.
On the contrary, for the inverted hierarchy ∆m2 < 0, k2 < 0 and the initial ϕ(RNS)
indicates that the system begins in an unstable position and we expect very large
anharmonic oscillations. Pz (as well as P̄z) oscillates between two different maxima
passing through a minimum −Pz (−P̄z) several times. This behavior implies total
flavour conversion: all electronic neutrinos (anti-neutrinos) are converted into non-
electronic neutrinos (anti-neutrinos) and vice-versa. This has been called bipolar
oscillations in the literature [83].

We solved numerically Eqs. (2.32) for both normal and inverted hierarchies
using a monochromatic spectrum dominated by the average neutrino energy for
Ṁ = 10−2, 10−3, 10−4 and 5× 10−5M� s−1, and the respective values reported in
Table 2.1 with the initial conditions given by Eqs. (2.12) and (2.29). The behavior
of the electronic neutrino survival probability inside the accretion zone is shown in
Figs. 2.4 and 2.5 for inverted hierarchy and normal hierarchy, respectively. For the
inverted hierarchy, there is no difference between the neutrino and anti-neutrino
survival probabilities. This should be expected since for these values of r the matter
and self-interaction potentials are much larger than the vacuum potential, and there
is virtually no difference between Eqs. (2.32). Also, note that the anti-neutrino
flavour proportions discussed in Sec. 2.2.3 remain virtually unchanged for normal
hierarchy while the neutrino flavour proportions change drastically around the point
λr ∼ ωr. The characteristic oscillation length of the survival probability found on
these plots is

τ ≈ (0.05− 1) km (2.50)
which agree with the ones given by Eq. (2.48) calculated at the NS surface up to a
factor of order one. Such a small value of τ suggests extremely quick νeν̄e ↔ νxν̄x
oscillations.
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Clearly, the full equations of oscillation are highly non-linear so the solution
may not reflect the real neutrino flavour evolution. Concerning the single-angle
approximation, it is discussed in [125, 237, 90] that in the more realistic multi-angle
approach, kinematic decoherence happens. And in [88] the conditions for decoherence
as a function of the neutrino flavour asymmetry have been discussed. It is concluded
that if the symmetry of neutrinos and anti-neutrinos is broken beyond the limit
of O(25%), i.e., if the difference between emitted neutrinos and anti-neutrinos is
roughly larger than 25% of the total number of neutrinos in the medium, decoherence
becomes a sub-dominant effect.

As a direct consequence of the peculiar symmetric situation we are dealing with,
in which neutrinos and anti-neutrinos are produced in similar numbers, bipolar
oscillations happen and, as we have already discussed, they present very small
oscillation length as shown in Eq. (2.50). Note also that the bipolar oscillation length
depends on the neutrino energy. Therefore, the resulting process is equivalent to an
averaging over the neutrino energy spectrum and an equipartition among different
neutrino flavours is expected [237]. Although, for simplicity, we are dealing with the
two neutrino hypothesis, this behavior is easily extended to the more realistic three
neutrino situation. We assume, therefore, that at few kilometers from the emission
region neutrino flavour equipartition is a reality:

νe : νµ : ντ = 1 : 1 : 1. (2.51)

Note that the multi-angle approach keeps the order of the characteristic length τ
of Eq. (2.48) unchanged and kinematics decoherence happens within a few oscillation
cycles [279, 125, 237]. Therefore, we expect that neutrinos created in regions close
to the emission zone will be equally distributed among different flavours in less
than few kilometers after their creation. Once the neutrinos reach this maximally
mixed state, no further changes are expected up until the matter potential enters the
MSW resonance region. We emphasize that kinematics decoherence does not mean
quantum decoherence. Figs. 2.4 and 2.5 clearly show the typical oscillation pattern
which happens only if quantum coherence is still acting on the neutrino system.
Differently from quantum decoherence, which would reveals itself by a monotonous
dumping in the oscillation pattern, kinematics decoherence is just the result of
averaging over the neutrino energy spectrum resulting from quick flavour conversion
which oscillation length depends on the neutrino energy. Therefore, neutrinos are
yet able to quantum oscillate if appropriate conditions are satisfied. We discuss now
the consequences of the matter potential.

Matter Effects

After leaving the emisison region, beyond r ≈ RNS + ∆rν , where ∆rν is the width
defined in Eq. (2.6), the effective neutrino density quickly falls in a asymptotic
behavior µr ≈ 1/r4. The decay of λr is slower. Hence, very soon the neutrino
flavour evolution is determined by the matter potential. Matter suppresses neutrino
oscillations and we do not expect significant changes in the neutrino flavour content
along a large region. Nevertheless, the matter potential can be so small that there
will be a region along the neutrino trajectory in which it can be compared with the
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neutrino vacuum frequencies and the higher and lower resonant density conditions
will be satisfied, i.e.:

λ(rH) = ωH = ∆m2

2〈Eν〉
and λ(rL) = ωL = ∆m2

21
2〈Eν〉

, (2.52)

where ∆m2 and ∆m2
21 are, respectively, the squared-mass differences found in

atmospheric and solar neutrino observations. Table 1.1 shows the experimental
values of mixing angles and mass-squared differences taken from [217]. The definition
of ∆m2 used is: ∆m2 = m2

3 − (m2
2 +m2

1)/2. Thus, ∆m2 = ∆m2
31 −∆m2

21/2 > 0, if
m1 < m2 < m3, and ∆m2 = ∆m2

32 + ∆m2
21/2 < 0 for m3 < m1 < m2. When the

above resonance conditions are satisfied the MSW effects happen and the flavour
content of the flux of electronic neutrinos and anti-neutrinos will be again modified.
The final fluxes can be written as

Fνe(E) = Pνe→νe(E)F 0
νe(E) + [1− Pνe→νe(E)]F 0

νx(E) (2.53a)
Fν̄e(E) = Pν̄e→ν̄e(E)F 0

ν̄e(E) + [1− Pν̄e→ν̄e(E)]F 0
ν̄x(E) (2.53b)

where F 0
νe(E), F 0

νx(E), F 0
ν̄e(E) and F 0

ν̄x(E) are the fluxes of electronic and non-
electronic neutrinos and anti-neutrinos after the bipolar oscillations of the emission
zone and Pνe→νe(E) and Pν̄e→ν̄e(E) are the survival probability of electronic neutrinos
and anti-neutrinos during the resonant regions.

In order to evaluate Fνe(E) and Fν̄e(E) after matter effects, we have to estimate
the survival probability at the resonant regions. There are several articles devoted to
this issue; for instance we can adopt the result in [94], namely, for normal hierarchy

Pνe→νe(E) = X sin2 θ12 (2.54a)
Pν̄e→ν̄e(E) = cos2 θ12 (2.54b)

and, for inverted hierarchy

Pνe→νe(E) = sin2 θ12 (2.55a)
Pν̄e→ν̄e(E) = X cos2 θ12 (2.55b)

The factor X, the conversion probability between neutrino physical eigenstates, is
given by [219, 94, 153]

X = exp(2rreskres cos 2θ13)− 1
exp(2rreskres)− 1 , (2.56)

where rres = rL or rres = rH , defined according to Eq. (2.52) and
1
kres

=
∣∣∣∣d lnλr
dx

∣∣∣∣
r=rres

. (2.57)

The factor X is related to how fast physical environment features relevant for
neutrino oscillations change, such as neutrino and matter densities.

For slow and adiabatic changes X → 0 while for fast and non-adiabatic, X → 1.
In our specific cases, the MSW resonances occur very far from the accretion zone
where the matter density varies very slow and therefore X → 0, as can be explicitly
calculated from Eq. (2.56). Consequently, it is straightforward to estimate the final
fluxes of electronic and non-electronic neutrinos and anti-neutrinos.
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Figure 2.6. Electron neutrino and anti-neutrino flavour evolution for inverted hierarchy
and Ṁ = 10−6M� s−1. The survival probability is shown as a function of the radial
distance from the NS surface.

2.4.2 Low Accretion Rates

For accretion rates Ṁ < 5 ×10−5M� s−1, either the matter potential is close
enough to the vacuum potential and the MSW condition is satisfied, or both the
self-interaction and matter potentials are so low that the flavour oscillations are only
due to the vacuum potential. In both cases, bipolar oscillations are not present. In
Fig. (2.6) we show the survival probability for Ṁ = 10−6M� s−1 as an example. We
can see that neutrinos and anti-neutrinos follow different dynamics. In particular,
for anti-neutrinos there are two decreases. The first one, around r ≈ (1–2)RNS, is
due to bipolar oscillations which are rapidly damped by the matter potential as
discussed in Sec. 2.4.1. The second one happens around r ≈ (10–20)RNS. It can be
seen from the bottom left panel of Fig. 2.3 (that one for Ṁ = 10−6M� s−1), that
around r ≈ (1–2) × 107 cm (or, equivalently, r ≈ (10–20)RNS) the higher MSW
resonance occurs (λr ∼ ωrH ). For inverted hierarchy, such resonance will affect
anti-neutrinos depleting its number, as can be seen from Eq. (2.53). Without bipolar
oscillations, it is not possible to guarantee that decoherence will be complete and
Eq. (2.51) is no longer valid. The only way to know the exact flavour proportions is
to solve the full Eqs. (2.25).
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2.5 Neutrino Emission Spectra
Using the the calculations of last section we can draw a comparison between the
creation spectra of neutrinos and anti-neutrinos at the NS surface (F cν , ncν), initial
spectra after kinematic decoherence (F 0

ν , n
0
ν) and emission spectra after the MSW

resonances (Fν , nν). Table 2.2 contains a summary of the flavour content inside the
Bondi-Hoyle radius. With these fractions and Eqs. (2.16) it is possible to reproduce
the spectrum for each flavour and for accretion rates M ≥ 5×10−5M� s−1.

The specific cases for Ṁ = 10−2M� s−1 are shown in Fig. 2.7. In such figures, the
left column corresponds to normal hierarchy and the right corresponds to inverted
hierarchy. The first two rows show the number fluxes after each process studied.
The last row shows the relative fluxes Fν/FCν between the creation and emission
fluxes. For the sake of clarity, we have normalized the curves to the total neutrino
number at the NS surface

n = 2
∑

i∈{e,x}
nνi . (2.58)

so that each one is a normalized Fermi-Dirac distribution multiplied by the appro-
priate flavour content fraction. To reproduce any other case, it is enough to use
Eqs. (2.16) with the appropriate temperature.

At this point two comments have to be made about our results:

• As we mentioned before, the fractions in Table 2.2 were obtained by assuming
a monochromatic spectrum and using the single-angle approximation. This
would imply that the spectrum dependent phenomenon called the spectral
stepwise swap of flavours is not present in our analysis even though it has been
shown that it can also appear in multi-angle simulations [90]. Nevertheless,
we know from our calculations in Sec. 2.2.3 that neutrinos and anti-neutrinos
of all flavours are created with the exact same spectrum up to a multiplicative
constant. Hence, following [238, 239], by solving the equation∫ ∞

Ec
(nνe − nνx) dE =

∫ ∞
0

(nν̄e − nν̄x) dE, (2.59)

we find that the critical (split) energy is Ec = 0. This means that the resulting
spectrum should still be unimodal and the spectral swap in our system could
be approximated by a multiplicative constant that is taken into account in the
decoherence analysis of Sec. 2.4.

• The fluxes of electronic neutrinos and anti-neutrinos shown in these figures and
in Eqs. (2.53) represent fluxes at different positions up to a geometrical 1/r2

factor, r being the distance from the NS radius. Also, since we are considering
the fluxes before and after each oscillatory process, the values of r are restricted
to r = RNS for FCν , τṀ < r < rH for F 0

ν , and r > rL for Fν . To calculate
the number flux at a detector, for example, much higher values of r have to
be considered and it is necessary to study vacuum oscillations in more detail.
Such calculations will be presented elsewhere.

From Fig. 2.7 one can observe that the dominance of electronic neutrinos and
anti-neutrinos found at their creation at the bottom of the accretion zone is promptly
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erased by kinematic decoherence in such a way that the content of the neutrinos and
anti-neutrinos entering the MSW resonant region is dominated by non-electronic
flavours. After the adiabatic transitions provoked by MSW transitions, electronic
neutrinos and anti-neutrinos dominate again the emission spectrum except for non-
electronic anti-neutrinos in the normal hierarchy. Although no energy spectrum
distortion is expected, the flavour content of neutrinos and anti-neutrinos produced
near the NS surface escape to the outer space in completely different spectra when
compared with the ones in which they were created, as shown in the last row of
Fig. 2.7.

2.6 Concluding Remarks and Perspectives

We can now proceed to draw the conclusions and some astrophysical consequences
of this work:

1. The main neutrino production channel in XRFs and BdHNe in the hypercritical
accretion process is pair annihilation: e−e+→ νν̄. This mechanism produces
an initial equal number of neutrino and anti-neutrino and an initial 7/3 relative
fraction between electronic and other flavours. These features lead to a different
neutrino phenomenology with respect to the typical core-collapse SN neutrinos
produced via the URCA process.

2. The neutrino density is higher than both the electron density and the vacuum
oscillation frequencies for the inner layers of the accretion zone and the SIP
dictates the flavour evolution along this region, as it is illustrated by Fig. 2.3.
This particular system leads to very fast pair conversions νeν̄e↔ νµ,τ ν̄µ,τ
induced by bipolar oscillations with oscillation length as small as O(0.05–1) km.
However, due to the characteristics of the main neutrino production process,
neutrinos and anti-neutrinos have very similar fluxes inside the neutrino
emission zone and kinematic decoherence dominates the evolution of the
polarization vectors.

3. The kinematic decoherence induces a fast flux equipartition among the dif-
ferent flavours that then enters the matter dominated regions in which MSW
resonances take place.

4. Therefore, the neutrino flavour content emerging from the Bondi-Hoyle surface
to the outer space is different from the original one at the bottom of the
accretion zone. As shown in Table 2.2, The initial 70% and 30% distribution
of electronic and non-electronic neutrinos becomes 55% and 45% or 62% and
38% for normal or inverted hierarchy, respectively. Since the ν ↔ ν̄ oscillations
are negligible [224, 227, 314] the total neutrino to anti-neutrino ratio is kept
constant.

We have shown that such a rich neutrino phenomenology is uniquely present in the
hypercritical accretion process in XRFs and BdHNe. This deserves the appropriate
attention since it paves the way for a new arena of neutrino astrophysics besides SN
neutrinos. There are a number of issues which have still to be investigated:
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Figure 2.7. Several neutrino and anti-neutrino number fluxes for different neutrino flavours
are presented for Ṁ = 10−2M�/s. Each column corresponds to a neutrino mass
hierarchy: normal hierarchy on the left and inverted hierarchy on the right. The first
two rows show the number fluxes after each process studied. FCν , F 0

ν and Fν are the
creation flux at the bottom accretion zone due to e+e− pair annihilation, the flux after
the region with dominant neutrino-neutrino potential and the final emission flux after
the region with dominant neutrino-matter potential, respectively. The last row shows
the relative fluxes Fν/FCν between the creation and emission fluxes.
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1. We have made some assumptions which, albeit being a first approximation to
a more detailed picture, have allowed us to set the main framework to analyse
the neutrino oscillations phenomenology in these systems. We have shown in
[25] that the SN ejecta carry enough angular momentum to form a disk-like
structure around the NS before being accreted. However, the knowledge of the
specific properties of such possible disk-like structure surrounding the neutron
star is still pending of more accurate numerical simulations at such distance
scales. For instance, it is not clear yet if such a structure could be modeled via
thin-disk or thick-disk models. We have adopted a simplified model assuming
isotropic accretion and the structure of the NS accretion region used in [24]
which accounts for the general physical properties of the system. In order
to solve the hydrodynamic equations, the neutrino-emission region features,
and the neutrino flavour-oscillation equations, we have assumed: spherically
symmetric accretion onto a non-rotating NS, a quasi-steady-state evolution
parametrized by the mass accretion rate, a polytropic equation of state, and
subsonic velocities inside the shock radius. The matter is described by a
perfect gas made of ions, electrons, positrons and radiation with electron and
positron obeying a Fermi-Dirac distribution. The electron fraction was fixed
and equal to 0.5. We considered pair annihilation, photo-neutrino process,
plasmon decay and bremsstrahlung to calculate neutrino emissivities. Under
the above conditions we have found that the pair annihilation dominates the
neutrino emission for the accretion rates involved in XRFs and BdHNe (see [24]
for further details). The photons are trapped within the infalling material
and the neutrinos are transparent, taking away most of the energy from the
accretion. We are currently working on the relaxation of some of the above
assumptions, e.g. the assumption of spherical symmetry to introduce a disk-like
accretion picture, and the results will be presented elsewhere. In this line it
is worth mentioning that some works have been done in this direction (see,
e.g., [324, 325]), although in a Newtonian framework, for complete dissociated
matter, and within the thin-disk approximation. In these models, disk heights
H are found to obey the relation H/r ∼ 0.1 near the neutron star surface which
suggests that the results might be similar to the ones of a spherical accretion
as the ones we have adopted. We are currently working on a generalization
including general relativistic effects in axial symmetry to account for the fast
rotation that the NS acquires during the accretion process. This was already
implemented for the computation of the accretion rates at the Bondi-Hoyle
radius position in [24], but it still needs to be implemented in the computation
of the matter and neutrino density-temperature structure near the NS surface.
In addition, the description of the equation of state of the infalling matter
can be further improved by taking into account beta and nuclear statistical
equilibrium.

In forthcoming works we will relax the assumptions made not only on the
binary system parameters but also make more detailed calculations on the
neutrino oscillations including general relativistic and multi-angle effects. This
paper, besides presenting a comprehensive non-relativistic account of flavour
transformations in spherical accretion, serves as a primer that has allowed
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us to identify key theoretical and numerical features involved in the study of
neutrino oscillations in the IGC scenario of GRBs. From this understanding,
we can infer that neutrino oscillations might be markedly different in a disk-like
accretion process. First, depending on the value of the neutron-star mass, the
inner disk radius may be located at an rinner > RNS beyond the NS surface
(see, e.g., [266, 54]), hence the neutrino emission must be located at a distance
r ≥ rinner. On the other hand, depending on the accretion rate, the density near
the inner radius can be higher than in the present case and move the condition
for neutrino cooling farther from the inner disk radius, at r > rinner. Both of
these conditions would change the geometric set up of the neutrino emission.
Furthermore, possible larger values of T and ρ may change the mechanisms
involved in neutrino production. For example, electron-positron pair capture,
namely p+ e− → n+ νe, n+ e+ → p+ ν̄e and n→ p+ e−+ ν̄e, may become as
efficient as the electron-positron pair annihilation. This, besides changing the
intensity of the neutrino emission, would change the initial neutrino-flavour
configuration.

2. Having obtained the flux as well as the total number of neutrinos and anti-
neutrinos of each flavour that leave the binary system during the hypercritical
accretion process in XRFs and BdHNe, it raises naturally the question of the
possibility for such neutrinos to be detected in current neutrino observatories.
For instance, detectors such as Hyper-Kamiokande are more sensitive to the
inverse beta decay events produced in the detector, i.e. ν̄e+p→ e+ +n (see [3]
for more details), consequently, the ν̄e are the most plausible neutrinos to be
detected. [170] have pointed out that for a total energy in ν̄e of 1052 erg and
〈Eν̄e〉 ∼ 20 MeV, the Hyper-Kamiokande neutrino-horizon is of the order of
1 Mpc. In the more energetic case of BdHNe we have typically 〈Eν,ν̄〉 ∼ 20 MeV
(see Table 2.1) and a total energy carried out ν̄e of the order of the gravitational
energy gain by accretion, i.e. Eg ∼ 1052–1053 erg. Therefore we expect the
BdHN neutrino-horizon distance to be also of the order of 1 Mpc. These
order-of-magnitude estimates need to be confirmed by detailed calculations,
including the vacuum oscillations experienced by the neutrinos during their
travel to the detector, which we are going to present elsewhere.

3. If we adopt the local BdHNe rate ∼ 1 Gpc−3 yr−1 [266] and the data reported
above at face value, it seems that the direct detection of this neutrino signal
is very unlikely. However, the physics of neutrino oscillations may have
consequences on the powering mechanisms of GRBs such as the electron-
positron pair production by neutrino-pair annihilation. The energy deposition
rate of this process depends on the local energy-momentum distribution of
(anti)neutrinos which, as we have discussed, is affected by the flavour oscillation
dynamics. This phenomenon may lead to measurable effects on the GRB
emission.

4. An IGC binary leading either to an XRF or to a BdHN is a unique neutrino-
physics laboratory in which there are at least three neutrino emission channels
at the early stages of the GRB-emission process: i) the neutrinos emitted
in the explosion of the COcore as SN; ii) the neutrinos studied in this work
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created in the hypercritical accretion process triggered by the above SN onto
the NS companion, and iii) the neutrinos from fallback accretion onto the νNS
created at the center of the SN explosion. It remains to establish the precise
neutrino time sequence as well as the precise relative neutrino emissivities
from all these events. This is relevant to establish both the time delays in the
neutrino signals as well as their fluxes which will become a unique signature of
GRB neutrinos following the IGC paradigm.

5. As discussed in [266], there are two cases in which there is the possibility to have
hypercritical accretion onto a BH. First, in BdHNe there could be still some
SN material around the newly-born BH which can create a new hypercritical
accretion process [24]. Second, a ∼ 10 M� BH could be already formed before
the SN explosion, namely the GRB could be produced in a COcore-BH binary
progenitor. The conditions of temperature and density in the vicinity of
these BHs might be very different to the ones analysed here and, therefore,
the neutrino emission and its associated phenomenology. We have recalled
in the introduction that such an accretion process onto the BH can explain
the observed 0.1–100 GeV emission in BdHNe [261, 264, 265, 266, 10]. The
interaction of such an ultra-relativistic expanding emitter with the interstellar
medium could be a possible source of high-energy (e.g. TeV-PeV) neutrinos,
following a mechanisms similar to the one introduced in the traditional collapsar-
fireball model of long GRBs (see [8, 162] and references therein).

6. Although the symmetry between the neutrino and anti-neutrino number densi-
ties has allowed us to generalize the results obtained within the single-angle and
monochromatic spectrum approximations, to successfully answer the question
of detectability, full-scale numerical solutions will be considered in the future
to obtain a precise picture of the neutrino-emission spectrum. In particular, it
would be possible to obtain an r-dependent neutrino spectrum without the
restrictions discussed in Sec. 2.5.

7. For low accretion rates (Ṁ . 5× 10−5M� s−1) the matter and self-interaction
potentials in Eqs. (2.32) decrease and the general picture described in Fig. 2.3
changes. The resonance region could be located around closer to the NS surface,
anticipating the MSW condition λr ∼ ωr and interfering with the kinematic
decoherence. This changes the neutrino flavour evolution and, of course, the
emission spectrum. Hence, the signature neutrino-emission spectrum associated
with the least luminous XRFs might be different from the ones reported here.
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Chapter 3

Neutrino Oscillations in NCADs
around Kerr BHs

3.1 Introduction

Neutrino flavour oscillations are now an experimental fact [65] and, in recent years,
its study based only on MSW effects [308, 192] has been transformed by the insight
that refractive effects of neutrinos on themselves due to the neutrino SIP are essential.
Their behaviour in vacuum, matter or by neutrino self-interactions have been studied
in the context of early universe evolution [18, 87, 278, 157, 158, 156, 184, 171, 75,
309, 2, 148], solar and atmospheric neutrino anomalies [13, 14, 91, 64, 117, 177,
73, 128, 304], and core-collapse SN [234, 216, 81, 279, 112, 78, 90, 82, 237, 88, 89,
50, 80, 77, 60, 59, 280, 83, 312, 33, 152, 305, 194, 131, 321] and references therein.
We are here interested in astrophysical situations when neutrino self-interactions
becomes more relevant than the matter potential. This implies systems in which a
high density of neutrinos is present and in fact most of the literature on neutrino
self-interaction dominance are concentrated on supernova neutrinos. It has been
there shown how collective effects, such as synchronized and bipolar oscillations,
change the flavour content of the emitted neutrinos when compared with the original
content deep inside the exploding star.

This chapter aims to explore the problem of neutrino flavour oscillations in the
case of long GRBs within the BdHN scenario. The GRB progenitor is a binary
system composed of a COcore and a companion neutron star (NS) [255, 263, 133, 246,
105, 261]. The COcore explodes as SN ejecting matter that produces a hypercritical
accretion (i.e. highly super-Eddington) process onto the NS companion. The NS
reaches the critical mass for gravitational collapse, hence forming a rotating BH.
The emission of neutrinos is a crucial ingredient since they act as the main cooling
process that allows the accretion onto the NS to proceed at very high rates of up to
1 M� s−1 [105, 103, 25, 24, 26].

In [27] and Chapter 2, we studied the neutrino flavour oscillations in the aforemen-
tioned hypercritical accretion process onto the NS, all the way to BH formation. We
showed that, the density of neutrinos on top the NS, in the accreting “atmosphere”,
is such that neutrino self-interactions dominate the flavour evolution leading to
collective effects. The latter induce in this system quick flavour conversions with a
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short oscillation length as small as (0.05–1) km. Far from the NS surface the neutrino
density decrease and so the matter potential and MSW resonances dominate the
flavour oscillations. The main result has been that the neutrino flavour content
emerging on top of the accretion zone was completely different compared to the one
created at the bottom of it.

In the BdHN scenario, part of the SN ejecta keeps bound to the newborn Kerr
BH, forming an accretion disk onto it. In this context, the study of accretion
disks and their nuances related to neutrinos is of paramount importance to shed
light on this aspect of the GRB central engine. In most cases, the mass that is
exchanged in close binaries has enough angular momentum so that it cannot fall
radially. As a consequence, the gas will start rotating around the star or BH
forming a disk. However, the magneto-hydrodynamics that describe the behaviour
of accretion disks are too complex to be solved analytically and full numerical
analysis are time-consuming and costly. To bypass this difficulty, different models
make approximations that allow casting the physics of an accretion disk as a two-
or even one-dimensional problem. These approximations can be pigeonholed into
four categories: symmetry, temporal evolution, viscosity and dynamics. Almost all
analytic models are axially symmetric. This is a sensible assumption for any physical
systems that rotates. Similarly, most models are time-independent although this is
a more complicated matter. A disk can evolve in time in several ways. For example,
the accretion rate Ṁ depends on the external source of material which need not be
constant and, at the same time, the infalling material increases the mass and angular
momentum of the central object, constantly changing the gravitational potential.
Additionally, strong winds and outflows can continually change the mass of the disk.
Nonetheless, Ṁ (x, t) = Ṁ = constant is assumed. Viscosity is another problematic
approximation. For the gas to spiral down, its angular momentum needs to be
reduced by shear stresses. These come from the turbulence driven by differential
rotation and the electromagnetic properties of the disk [16, 127, 17, 15] but, again,
to avoid magneto-hydrodynamical calculations, the turbulence accounted for using a
phenomenological viscosity α = constant, such that the kinematical viscosity takes
the form ν ≈ αHcs, where cs is the local isothermal sound speed of the gas and
H is the height of the disk measured from the plane of rotation (or half-thickness).
This idea was first put forward by [282] and even though there is disagreement
about the value and behaviour of the viscosity constant, and it has been criticized as
inadequate [147, 218, 146, 159], several thriving models use this prescription. Finally,
the assumptions concerning the dynamics of the disk are related to what terms are
dominant in the energy conservation equation and the Navier-Stokes equation that
describe the fluid (apart from the ones related to symmetry and time independence).
In particular, it amounts to deciding what cooling mechanisms are important,
what external potentials should be considered and what are the characteristics
of the internal forces in the fluid. The specific tuning of these terms breeds one
of the known models: thin disks, slim disks, advection-dominated accretion flows
(ADAFs), thick disks, neutrino-cooled accretion disks (also called neutrino-dominated
accretion flows NDAFs), convection-dominated accretion flows (CDAFs), luminous
hot accretion flows (LHAFs), advection-dominated inflow-outflow solutions (ADIOS)
and magnetized tori. The options are numerous and each model is full of subtleties
making accretion flows around a given object an extremely rich area of research.
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Figure 3.1. Schematic representation of the physical system. Due to conditions of high
temperature and density, neutrinos are produced in copious amounts inside the disk.
Since they have a very low cross-section, neutrinos are free to escape but not before
experiencing collective effects due to the several oscillation potentials. The energy
deposition rate of the process ν + ν̄ → e− + e+ depends on the local distribution of
electronic and non-electronic (anti)-neutrinos which is affected by the flavour oscillation
dynamics.

For useful reviews and important articles with a wide range of subjects related to
accretion disks see [232, 161, 4, 178, 96, 37, 201, 140, 233, 199, 6, 320, 36, 164, 169]
and references therein.

NCADs are of special interest for GRBs. They are hyperaccreting slim disks,
optically thick to radiation that can reach high densities ρ ≈ 1010–1013 g cm−3

and high temperatures T ≈ 1010–1011 K around the inner edge. Under these
conditions, the main cooling mechanism is neutrino emission since copious amounts
of (mainly electron) neutrinos and anti-neutrinos are created by electron-positron
pair annihilation, URCA and nucleon-nucleon bremsstrahlung processes, and later
emitted from the disk surface. These νν̄ pairs might then annihilate above the disk
producing an e−e+ dominated outflow. NCADs were proposed as a feasible central
engine for GRBs in [228] and have been studied extensively since [203, 154, 70, 155,
167, 123, 51, 142, 135, 143, 172, 316]. In [70] and later in [51], it was found that
the inner regions of the disk can be optically thick to νeν̄e trapping them inside
the disk, hinting that NCADs may be unable to power GRBs. Yet, the system
involves neutrinos propagating through dense media and, consequently, an analysis
of neutrino oscillations, missing in the above literature, must be performed. Fig. 3.1
represents the standard situation of the physical system of interest. The dominance
of the SIP induces collective effects or decoherence. In either case, the neutrino
flavour content of the disk changes. Some recent articles are starting to recognize
their role in accretion disks and spherical accretion [175, 97, 299, 27, 313]. The
energy deposition rate above and accretion disk by neutrino-pair annihilation as a
powering mechanism of GRBs in NCADs can be affected by neutrino oscillation in
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two ways. The neutrino spectrum emitted at the disk surface depends not only on
the disk temperature and density but also the neutrino flavour transformations inside
the disk. Also, once the neutrinos are emitted they undergo flavour transformations
before being annihilated. Our main objective is to analyse the consequences of
neutrino flavour oscillations in NCADs.

The chapter is organized as follows. In Sec. 3.2 we outline the features of NCADs
making emphasis on the assumptions needed to derive the equations. In Sec. 3.3
we discuss the general details of the equation that drive the evolution of neutrino
oscillations and use the information of the previous section to build a simple model
that adds this dynamic to NCADs. In Sec. 3.4 we give some details on the initial
conditions needed to solve the equations of accretion disks and neutrino oscillations.
In Sec. 3.5 we discuss the main results of our calculations and analyse in detail the
neutrino oscillation phenomenology in accretion disks. Finally, we present in Sec. 3.6
the conclusions of this work.

3.2 Hydrodynamics

3.2.1 Velocities and Averaging

To describe the spacetime around a Kerr BH of mass M we use the metric gµν in
Boyer-Lindquist coordinates, with spacelike signature, and with a dimensionless spin
parameter a = J/M2 so that the line element is

ds2 =
(
gtt − ω2gφφ

)
dt2 + gφφ (dφ− ω dt)2

+ grr dr
2 + gθθ dθ

2, (3.1)

in coordinates (t, r, θ, φ). The covariant components (g)µν of the metric are

gtt = −
(

1− 2M r

Σ

)
, grr = Σ

∆ , gθθ = Σ,

gφφ =
(
r2 +M2a2 + 2M3a2r

Σ sin2 θ

)
sin2 θ,

gtφ = −2M2 a r

Σ sin2 θ, (3.2)

and its determinant is
g = −Σ2 sin2 θ, (3.3)

with the well known functions Σ = r2 + M2a2 cos2 θ and ∆ = r2 − 2Mr + M2a2.
We denote the coordinate frame by CF. Note that these coordinates can be used
by an observer on an asymptotic rest frame. The angular velocity of the locally
non-rotating frame (LNRF) is

ω = − gtφ
gφφ

= 2 aM2

(r3 +M2a2r + 2M3a2) , (3.4)

and in Eq. (3.2) it can be seen explicitly that if an observer has a an angular velocity
dφ/dt = ω it would not measure any differences between the ±φ directions. The



3.2 Hydrodynamics 67

LNRF is defined by orthonormality and the coordinate change φLNRF = φ̃ = φ− ω t
[19, 21]. We assume that the disk lies on the equatorial plane of the BH (θ = π/2)
. This way we represent the average movement of the fluid by geodesic circular
orbits with angular velocity Ω = dφ/dt = uφ/ut plus a radial velocity so that the
local rest frame (LRF) of the fluid is obtained by performing, first, an azimuthal
Lorentz boost with velocity βφ̂ to a corotating frame (CRF) [114], and then a radial
Lorentz boost with velocity β r̃. Clearly, the metric on the LNRF, CRF and LRF is
diag(−1, 1, 1, 1). The expression for the angular velocity of circular orbits is obtained
by setting ṙ = r̈ = 0 in the r-component of the geodesic equation

Ω± = ±
√
M(

r3/2 ±M3/2a
) , (3.5)

where (+) is for prograde orbits and (−) is for retrograde orbits. We will limit our
calculations to prograde movement with 0 ≤ a ≤ 1 but extension to retrograde orbits
is straightforward. Finally, we can get the components of the 4-velocity of the fluid
by transforming uLRF = (1, 0, 0, 0) back to the CF

uµ=

 γr̃γφ̂√
ω2gφφ− gtt

,
γr̃β

r̃

√
grr

, 0,
γr̃γφ̂Ω√
ω2gφφ− gtt

 , (3.6)

leaving β r̃ to be determined by the conservation laws. In Eq. (3.6) we have replaced
βφ̂ with Eq. (A.3). A discussion on the explicit form of the transformations and
some miscellaneous results are given in Appendix A. We will also assume that the
disk is in a steady-state. This statement requires some analysis. There are two main
ways in which it can be false:

I. As matter falls into the BH, its values M and a change [20, 298], effectively
changing the spacetime around it. For the spacetime to remain the same we require
Ω−1 � tacc = ∆M0/Ṁacc, where ∆M0 is the total mass of the disk and Ṁacc is the
accretion rate. The characteristic accretion time must be bigger than the dynamical
time of the disk so that flow changes due to flow dynamics are more important than
flow changes due to spacetime changes. Equivalent versions of this condition that
appear throughout disk accretion articles are tdym � tvisc and

βr � βφ < 1, (3.7)

where it is understood that the accretion rate obeys Ṁacc ≈ ∆M0/tacc. To put
this numbers into perspective, consider a solar mass BH (M = 1M�) and a disk
with mass between ∆M0 = (1− 10)M�. For accretion rates up to Ṁacc = 1M�/s
the characteristic accretion time is tacc . (1− 10) s, while Ω−1 ∼ (10−5 − 10−1) s
between r = rISCO and r = 2000M�. Consequently, a wide range of astrophysical
system satisfy this condition and it is equivalent to claiming that both ∂t and ∂φ
are Killing fields.

II. At any point inside the disk, any field ψ(t, r, θ, φ) that reports a property
of the gas may variate in time due to the turbulent motion of the flow. So, to
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assume that any field is time-independent and smooth enough in r for its flow to be
described by Eq. (3.6) means replacing such field by its average over an appropriate
spacetime volume. The same process allows to choose a natural set of variables that
split the hydrodynamics into r-component equations and θ-component equations.
The averaging process has been explained in [207, 211, 114]. We include the analysis
here and try to explain it in a self-consistent manner. The turbulent motion is
characterized by the eddies. The azimuthal extension of the largest eddies can
be 2π, like waves crashing around an island, but their linear measure cannot be
larger than the thickness of the disk, and, as measured by an observer on the CRF,
their velocity is of the order of β r̃ so that their period along the r component is
∆t̃ ≈ (Thickness)/β r̃, e.g. [163, §33]. If we denote by H the average half-thickness
of the disk as measured by this observer at r over the time ∆t̃, then the appropriate
volume V is composed by the points (t, r, θ, φ) such that t ∈ [t∗ −∆t/2, t∗ + ∆t/2],
θ ∈ [θmin, θmax] and φ ∈ [0, 2π), where we have transformed ∆t̃ and ∆r̃ back to the
CF using Eqs. (A.4) as approximations. The values θmin and θmax correspond to the
upper and lower faces of the disk, respectively. Then, the average takes the form

ψ (t, r, θ, φ) 7→ ψ (r, θ) = 〈ψ (t, r, θ, φ)〉 =
∫ t∗+∆t/2
t∗−∆t/2

∫ 2π
0 ψ (r, t, θ, φ)

√
−g

grrgθθ
dtdφ∫ t∗+∆t/2

t∗−∆t/2
∫ 2π

0

√
−g

grrgθθ
dtdφ

.

(3.8)
The steady-state condition is achieved by requiring that the Lie derivative

of the averaged quantity along the Killing field ∂t vanishes: L∂t〈ψ〉 = 0. Note
that the thickness measurement performed by the observer already has an error
∼M2a2H3/6r4 since it extends the Lorentz frame beyond the local neighbourhood
but, if we assume that the disk is thin (H/r � 1), and we do, this error remains
small. At the same time, we can take all metric components evaluated at the equator
and use Eq. (3.6) as the representative average velocity. Under these conditions, we
have θmax−θmin ≈ 2H/r and the term

√
−g/grr in Eq. (3.8) cancels out. It becomes

clear that an extra θ integral is what separates the radial and polar variables. In
other words, the r-component variables are the vertically integrated fields

ψ (r, θ) 7→ ψ (r) =
∫ θmax

θmin
ψ (r, θ)√gθθdθ. (3.9)

The vertical equations of motion can be obtained by setting up Newtonian
(with relativistic corrections) equations for the field ψ (r, θ) at each value of r (see,
e.g., [207, 5, 7, 169]).

3.2.2 Conservation Laws

The equations of evolution of the fluid are contained in the conservation laws
∇µTµν = 0 and ∇µ(ρuµ) = 0. The most general stress-energy tensor for a Navier-
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Stokes viscous fluid with heat transfer is [196, 191]

T =
Ideal Fluid︷ ︸︸ ︷

(ρ+ U + P )u⊗ u+ Pg

+
Viscous Stress︷ ︸︸ ︷

(−2ησ − ζ (∇ · u)P ) +
Heat flux︷ ︸︸ ︷

q ⊗ u+ u⊗ q, (3.10)

where ρ, P , U , ζ, η, q, P and σ are the rest-mass energy density, pressure, internal
energy density, dynamic viscosity, bulk viscosity, heat-flux 4-vector, projection tensor
and shear tensor, respectively, and thermodynamic quantities are measured on the
LRF. We do not consider electromagnetic contributions and ignore the causality
problems associated with the equations derived from this stress-energy tensor since
we are not interested in phenomena close to the horizon [114]. Before deriving
the equations of motion and to add a simple model of neutrino oscillations to the
dynamics of disk accretion we must make some extra assumption. We will assume
that the θ integral in Eq. (3.8) can be approximated by∫ θmax

θmin
ψ
√
gθθdθ ≈ ψr (θmax − θmin) ≈ 2Hψ, (3.11)

for any field ψ. Also, we use Stokes’ hypothesis (ζ = 0). Since we are treating the
disk as a thin differentially rotating fluid, we will assume that, on average, the only
non-zero component of the shearing stress on the CRF is σr̃φ̃ (there are torques only
on the φ direction), and qθ̃ is the only non-zero component of the energy flux (on
average the flux is vertical). By uµσµν = 0 and Eq. (A.7) we have

σrφ =
γ3
φ̂

2
gφφ√

ω2gφφ − gtt
∂rΩ , σrt = −Ωσrφ. (3.12)

Finally, the turbulent viscosity is estimated to be ∼ l∆u where l is the size of the
turbulent eddies and ∆u is the average velocity difference between points in the disk
separated by a distance l. By the same arguments in [163, §33] and in Sec. 3.2.2, l
can be at most equal to 2H and ∆u can be at most equal to the isothermal sound
speed cs =

√
∂P/∂ρ or else the flow would develop shocks [96]. The particular form

of cs can be calculated from Eq. (3.16). This way we get

η = Πνturb = 2αΠHcs, (3.13)

with α ≤ 1 and Π = ρ+ U + P . In a nutshell, this is the popular α-prescription put
forward by [282]. As we mentioned at the end of Sec. 3.2.1, on the CRF for a fixed
value of r, the polar equation takes the form of Euler’s equation for a fluid at rest
where the acceleration is given by the tidal gravitational acceleration, that is, the θ
component of the fluid’s path-lines relative acceleration in the θ direction.

1
r
∂θP ≈ ρr cos θ

[
R
(
u,∂θ̃,u

)
· ∂θ̃

]
θ=π/2

, (3.14)

with R the Riemann curvature tensor. With uµ̃ ≈ (1, 0, 0, 0), Eq. (3.11), Eq. (A.8)
and assuming that there is no significant compression of the fluid under the action
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of the tidal force, integration of this equation yields the relation up to second order
in π/2− θ

P = 1
2ρR

θ̃
t̃θ̃t̃

∣∣∣
θ=π/2

(
H2 − r2

(
π

2 − θ
)2
)
, (3.15)

where we used the condition P = 0 at the disk’s surface. Hence, the average pressure
inside the disk is (cf. [7, 169, 51])

P = 1
3ρH

2R θ̃
t̃θ̃t̃

∣∣∣
θ=π/2

. (3.16)

The equation of mass conservation is obtained by directly inserting into Eq. (B.5)
the averaged density and integrating vertically

0 = ∂r (2rHρur)
⇒ 2Hrρur = constant

⇒ 2Hrρur = −Ṁ2π , (3.17)

where the term 2Hrρur is identified as the average inward mass flux through a
cylindrical surface of radius r per unit azimuthal angle and thus must be equal to
the accretion rate divided by 2π. The same process applied to Eq. (B.4) yields the
energy conservation equation

ur
[
∂r (HU)− U + P

ρ
∂r (Hρ)

]
= 2ηHσrφσrφ −Hε, (3.18)

where factors proportional to H/r were ignored and we assume Π ≈ ρ to integrate
the second term on the left hand side. ε is the average energy density measured on
the LRF (see the discussion around Eq. (B.7)). The first term on the right hand side
is the viscous heating rate Fheat and the second term is the cooling rate Fcool. The
last constitutive equation is obtained by replacing the density in Eq. (3.17) using
Eq. (B.12)

ur = −
4αHcsσrφ
Mf (x, x∗) . (3.19)

3.2.3 Equations of State

We consider that the main contribution to the rest-mass energy density of the disk
is made up of neutrons, protons and ions. This way ρ = ρB = nBmB with baryon
number density nB and baryon mass mB equal to the atomic unit mass. The disk’s
baryonic mass obeys Maxwell-Boltzmann statistics and its precise composition is
determined by the Nuclear Statistical Equilibrium (NSE). We denote the mass
fraction of an ion i by Xi = ρi/ρB (if i = p or n then we are referring to proton or
neutrons) and it can be calculated by the Saha equation [55, 47]

Xi = AimB

ρ
Gi

(
TAimB

2π

)3/2
exp

Zi
(
µp + µCp

)
+Niµn − µCi +Bi

T

 . (3.20a)
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With constraints
∑
i

Xi = 1,
∑
i

ZiYi = Ye. (3.20b)

In these equations T , Ai, Ni, Zi, Ye, Yi, Gi, µi and Bi are the temperature, atomic
number, neutron number, proton number, electron fraction (electron abundance per
baryon), ion abundance per baryon, nuclear partition function, chemical potential
(including the nuclear rest-mass energy) and ion binding energy. The µCi are the
Coulomb corrections for the NSE state in a dense plasma (see Appendix C). The
binding energy data for a large collection of nuclei can be found in [182] and the
temperature-dependent partition functions are found in [241, 240]. Even though we
take into account Coulomb corrections in NSE we assume that the baryonic mass
can be described by an ideal gas1 and

PB =
∑
i

Pi = nBT
∑
i

Xi

Ai
, UB = 3

2PB. (3.21)

The disk also contains photons, electrons, positrons, neutrinos and anti-neutrinos.
As it is usual in neutrino oscillations analysis, we distinguish only between electron
(anti)-neutrinos νe, (ν̄e) and x (anti)-neutrinos νx(ν̄x), where x = µ + τ is the
superposition of muon neutrinos and tau neutrinos. Photons obey the usual relations

Pγ = π2T 4

45 , Uγ = 3Pγ , (3.22)

while, for electrons and positrons we have

ne± =
√

2
π2 ξ

3/2
[
F1/2,0 (ξ, ηe±) + ξF3/2,0 (ξ, ηe±)

]
, (3.23a)

Ue± =
√

2
π2 ξ

5/2
[
F3/2,0 (ξ, ηe±) + ξF5/2,0 (ξ, ηe±)

]
, (3.23b)

Pe± = 2
√

2
3π2 ξ

5/2
[
F3/2,0 (ξ, ηe±) + ξ

2F5/2,0 (ξ, ηe±)
]
, (3.23c)

with ξ = T/me and written in terms of the generalized Fermi functions (see
Appx. D.1). In these equations ηe± = (µe± −me) /T is the electron (positron)
degeneracy parameter without rest-mass contributions (not to be confused with η
in Sec. (3.2.2)). Since electrons and positrons are in equilibrium with photons due
to the pair creation and annihilation processes (e−+ e+→ 2γ) we know that their
chemical potentials are related by µe+ = −µe− , which implies ηe+ = −ηe− − 2/ξ.
From the charge neutrality condition and we obtain

nBYe = ne− − ne+ . (3.24)

For neutrinos, the story is more complicated. In the absence of oscillations and
if the disk is hot and dense enough for neutrinos to be trapped within it and in

1Since bulk viscosity effects appear as a consequence of correlations between ion velocities due
to Coulomb interactions and of large relaxation times to reach local equilibrium, the NSE and ideal
gas assumptions imply that imposing Stokes’ hypothesis becomes de rigueur [303, 191, 40]
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thermal equilibrium, nν , Uν , Pν can be calculated with Fermi-Dirac statistics using
the same temperature T

ntrappedν(ν̄) = T 3

π2F2,0
(
ην(ν̄)

)
, (3.25a)

U trapped
ν(ν̄) = T 4

π2F3,0
(
ην(ν̄)

)
, (3.25b)

P trapped
ν(ν̄) =

U trapped
ν(ν̄)

3 , (3.25c)

where it is understood that F(η) = F(y=0, η) with ην(ν̄) = µν(ν̄)/T and the ultra-
relativistic approximation mν � 1 for any neutrino flavour is used. If thermal
equilibrium is has not been achieved, Eq. (3.25) cannot be used. Nevertheless, at any
point in the disk and for a given value of T and ρ, (anti)-neutrinos are being created
through several processes. The processes we take into account are pair annihilation
e−+e+→ν+ ν̄, electron or positron capture by nucleons p+e−→ n+νe or n+e+→
p + ν̄e, electron capture by ions A + e−→ A′ + νe, plasmon decay γ̃→ ν + ν̄ and
nucleon-nucleon bremsstrahlung n1 + n2 → n3 + n4 + ν + ν̄. The emission rates can
be found in Appendix D. The chemical equilibrium for these processes determines
the values of ην(ν̄). In particular,

ηνe = ηe− + ln
(
Xp

Xn

)
+ 1− Q

ξ
, (3.26a)

ην̄e = −ηνe , (3.26b)
ηνx = ην̄x = 0, (3.26c)

satisfy all equations. Here, Q = (mn −mp)/me ≈ 2.531. Once the (anti)-neutrino
number and energy emission rates (Ri, Qi) are calculated for each process i, the
(anti)-neutrino thermodynamic quantities are given by

nfreeν(ν̄) = H
∑
i

Ni,ν(ν̄), (3.27a)

U free
ν(ν̄) = H

∑
i

Qi,ν(ν̄), (3.27b)

P free
ν(ν̄) =

U free
ν(ν̄)
3 , (3.27c)

Remember we are using Planck units so in these expressions there should be an
H/c instead of just an H. The transition for each (anti)-neutrino flavour between
both regimes occurs when Eq. (3.25b) and Eq. (3.27b) are equal and it can be
simulated by defining the parameter

wν(ν̄) =
U free
ν(ν̄)

U free
ν(ν̄) + U trapped

ν(ν̄)
. (3.28)

With this equation, the (anti)-neutrino average energy can be defined as

〈Eν(ν̄)〉 =
(
1− wν(ν̄)

) U free
ν(ν̄)

nfreeν(ν̄)
+ wν(ν̄)

U trapped
ν(ν̄)

ntrappedν(ν̄)
. (3.29)
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and the approximated number and energy density are

nν(ν̄) =

n
free
ν(ν̄), if wν(ν̄) < 1/2.
ntrappedν(ν̄) , if wν(ν̄) ≥ 1/2.

(3.30a)

Uν(ν̄) =

U
free
ν(ν̄), if wν(ν̄) < 1/2.

U trapped
ν(ν̄) , if wν(ν̄) ≥ 1/2.

(3.30b)

Pν(ν̄) =
Uν(ν̄)

3 . (3.30c)

Note that both Eq. (3.27c) and (3.30c) are approximations since they are derived
from equilibrium distributions, but they help make the transition smooth. Besides,
the neutrino pressure before thermal equilibrium is negligible. This method was
presented in [51] where it was used only for electron (anti)-neutrinos. The total (anti)-
neutrino number and energy flux through one the disk’s faces can be approximated
with

ṅνj(ν̄j) =
∑

j∈{e,x}

nνj(ν̄j)

1 + τνj(ν̄j)
, (3.31a)

Fνj(ν̄j) =
∑

j∈{e,x}

Uνj(ν̄j)

1 + τνj(ν̄j)
. (3.31b)

Here, τνi is the total optical depth for the (anti)-neutrino νi (ν̄i). Collecting all
the expressions we write the total internal energy and total pressure

U =
∑

j∈{e,x}

(
Uνj + Uν̄j

)
+ UB + Ue− + Ue+ + Uγ , (3.32a)

P =
∑

j∈{e,x}

(
Pνj + Pν̄j

)
+ PB + Pe− + Pe+ + Pγ . (3.32b)

The (anti)-neutrino energy flux through the disk faces contributes to the cooling
term in the energy conservation equation but it is not the only one. Another
important energy sink is photodisintegration of ions. To calculate it we proceed
as follows. The energy spent to knocking off a nucleon of an ion i is equal to
the binding energy per nucleon Bi/Ai. Now, consider a fluid element of volume
V whose moving walls are attached to the fluid so that no baryons flow in or
out. The total energy of photodisintegration contained within this volume is the
sum over i of (energy per nucleon of ion i)×(# of freed nucleons of ion i inside
V ). This can be written as

∑
i(Bi/Ai)nf,iV , or, alternatively, nBV

∑
i(Bi/Ai)Xf,i.

If we approximate Bi/Ai by the average binding energy per nucleon B̄ (which
is a good approximation save for a couple of light ions) the expression becomes
nBV B̄

∑
iXf,i = nBV B̄Xf = nBV B̄(Xp +Xn). The rate of change of this energy

as measured by an observer on the LRF with proper time λ is

d

dλ

[
nBV B̄ (Xp +Xn)

]
= nBV B̄

d

dλ
(Xp +Xn) . (3.33)
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The derivative of nBV vanishes by baryon conservation. Transforming back
to CF and taking the average we find the energy density per unit time used in
disintegration of ions

εions = nBB̄u
rH∂r (Xp +Xn) . (3.34)

The average energy density measured on the LRF ε appearing in Eq. (3.18) is

ε = εions + 1
H

∑
i∈{e,x}

(Fνi + Fν̄i) . (3.35)

Finally, a similar argument allows us to obtain the equation of lepton number con-
servation. For any lepton `, the total lepton number density is

∑
`∈{e,µ,τ} (n` − n¯̀ + nν` − nν̄`).

So, with Eq. (3.24), calculating the rate of change as before, using Gauss’ theorem
and taking the average we get

urH

nB∂rYe + ∂r
∑

`∈{e,x}
(nν`− nν̄`)

 =
∑

`∈{e,x}
(ṅν̄`− ṅν`) , (3.36)

where the right hand side represents the flux of lepton number through the disk’s
surface.

3.3 Neutrino Oscillations
To study the flavour evolution of neutrinos within a particular system, a Hamiltonian
governing neutrino oscillation must be set up. The relative strength of the potentials
appearing in such Hamiltonian depends on four elements: geometry, mass content,
neutrino content and neutrino mass hierarchy. Geometry refers to the nature of
net neutrino fluxes and possible gravitational effects. Mass and neutrino content
refers to the distribution of leptons of each flavour (e, µ, τ) present in the medium.
Finally, mass hierarchy refers to the relative values of the masses m1,m2,m3 for
each neutrino mass eigenstates (see Table 1.1). We dedicate this section to a detailed
derivation of the equations of flavour evolution for a neutrino dominated accretion
disk. To maintain consistency with traditional literature of neutrino oscillations we
will reuse some symbols appearing in previews sections. To avoid confusion we point
out that the symbols in this section are independent of previews sections unless we
explicitly draw a comparison.

3.3.1 Equations of Oscillation

To derive the equations of oscillations we repeat the procedure used in Sec. 2.3.1.
However, since the system studied here has a different geometry from spherical
accretion, the arguments and the resulting equations will be different. Consider
an observer on the LRF (which is almost identical to the CRF due to Eq. (3.7)
at a point r. In its spatial local frame, the unit vectors x̂, ŷ, ẑ are parallel to the
unit vectors r̂, θ̂, φ̂ of the CF, respectively. Solving Eq. (1.22) in this coordinate
system would yield matrices ρ, ρ̄ as functions of time t. However, in our specific
physical system, both the matter density and the neutrino density vary with the
radial distance from the BH. This means that the equations of oscillations must be
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written in a way that makes explicit the spatial dependence, i.e. in terms of the
coordinates x, y, z. For a collimated ray of neutrinos, the expression dt = dr would
be good enough, but for radiating extended sources or neutrino gases the situation
is more complicated.

In Eq. (1.22) we must replace the matrices of occupation numbers by the space-
dependent Wigner functions ρp,x,t (and ρ̄p,x,t) and the total time derivative by the
Liouville operator [49, 290]

ρ̇p,x,t =

Explicit Time︷ ︸︸ ︷
∂ρp,x,t
∂t

+
Drift︷ ︸︸ ︷

vp · ∇x ρp,x,t +
External Forces︷ ︸︸ ︷

ṗ · ∇p ρp,x,t (3.37)

In this context, x represents a vector in the LRF. In the most general case, finding
ρp,x,t and ρ̄p,x,t means solving a 7D neutrino transport problem in the variables
x, y, z, px, py, pz, t. Since our objective is to construct a simple model of neutrino
oscillations inside the disk, to obtain the specific form of Eq. (1.22) we must simplify
the equations by imposing on it conditions that are consistent with the assumptions
made in Sec. 3.2.

• Due to axial symmetry, the neutrino density is constant along the z direction.
Moreover, since neutrinos follow geodesics, we can set ṗz ≈ ṗφ = 0.

• Within the thin disk approximation (as represented by Eq. (3.11)) the neutrino
and matter densities are constant along the y direction and the momentum
change due to curvature along this direction can be neglected, that is, ṗy ≈ 0.

• In the LRF, the normalized radial momentum of a neutrino can be written as
px = ± r√

r2−2Mr+M2a2 . Hence, the typical scale of the change of momentum

with radius is ∆rpx,eff =
∣∣∣d ln px

dr

∣∣∣−1
= r(r2−2Mr+M2a2)

M(Ma2−r) , which obeys ∆rpx,eff >
rs for r > 2rin. This means that we can assume ṗx ≈ 0 up to regions very
close to the inner edge of the disk.

• We define an effective distance ∆rρ,eff =
∣∣∣d ln(YenB)

dr

∣∣∣−1
. For all the systems we

evaluated we found that is comparable to the height of the disk (∆rρ,eff ∼
2− 5)rs. This means that at any point of the disk we can calculate neutrino
oscillations in a small regions assuming that both the electron density and
neutrino densities are constant.

• We neglect energy and momentum transport between different regions of
the disk by neutrinos that are recaptured by the disk due to curvature. This
assumption is reasonable except for regions very close to the BH but is consistent
with the thin disk model (see, e.g., [211]). We also assume that the neutrino
content of neighbouring regions of the disk (different values of r) do not affect
each other. As a consequence of the results discussed above, we assume that at
any point inside the disk and at any instant of time an observer can describe
both the charged leptons and neutrinos as isotropic gases around small enough
regions of the disk. This assumption is considerably restrictive but we will
generalize it in Sec. 3.5.
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The purpose of these approximations is twofold. (1) We can reduce the problem
considerably since they allow us to add the neutrino oscillations dynamics of the disk
by simply studying the behaviour of neutrinos at each point of the disk using the
constant values of density and temperature at that point. As we will see in Sec. 3.5,
this corresponds to a transient state of the disk since, very fast, neighbouring regions
of the disk start interacting. (2) Also, the approximations allow us to simplify the
equations of oscillation considering that all but the first term in Eq. (3.37) vanish,
leaving only a time derivative. In addition, both terms of the form vq,t · vp,t in
Eq. (1.21) average to zero so that ρp,x,t = ρp,t and ρ̄p,x,t = ρ̄p,t.

We are now in a position to derive the simplified equations of oscillation for this
particular model. Let us first present the relevant equations for neutrinos. Due to
the similarity between Hp,t and H̄p,t, the corresponding equations for anti-neutrinos
can be obtained analogously. For simplicity, we will drop the suffix t since the time
dependence is now obvious. In the two-flavour approximation, ρp is a 2×2 Hermitian
matrix and can be expanded in terms of the Pauli matrices σi and a polarization
vector Pp = (Px,Py,Pz) in the neutrino flavour space, such that

ρp =
(
ρee ρex
ρxe ρxx

)
= 1

2 (fp1 + Pp · ~σ) , (3.38)

where fp = Tr[ρp] = fνe(p) + fνx(p) is the sum of the distribution functions for νe
and νx. Note that the z component of the polarization vector obeys

Pzp = fνe(p)− fνx(p). (3.39)

Hence, this component tracks the fractional flavour composition of the system.
Appropriately normalizing ρp allows to define a survival and mixing probability

Pp,νe→νe = 1
2
(
1 + Pzp

)
, (3.40a)

Pp,νe→νx = 1
2
(
1− Pzp

)
. (3.40b)

The Hamiltonian can be written as a sum of three interaction terms:

H = Hvac + Hm + Hνν . (3.41)

The first term is the Hamiltonian in vacuum [234]:

Hvac = ωp
2

(
− cos 2θ sin 2θ
sin 2θ cos 2θ

)
= ωp

2 B · ~σ, (3.42)

where ωp = ∆m2/2p, B = (sin 2θ, 0,− cos 2θ) and θ is the smallest neutrino mixing
angle in vacuum. The other two terms in Eqs. (1.21) are special since they make the
evolution equations non-linear. Since we are considering that the electrons inside
the form an isotropic gas, the vector vq in the first integral is distributed uniformly
on the unit sphere and the factor vq · vp averages to zero. After integrating the
matter Hamiltonian is given by

Hm = λ

2

(
1 0
0 −1

)
= λ

2 L · ~σ, (3.43)
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where λ =
√

2GF (ne− − ne+) is the charged current matter potential and L =
(0, 0, 1). Similarly, the same product disappears in the last term and after integrating
we get

Hνν =
√

2GF
[
P− P̄

]
· ~σ. (3.44)

Clearly, P =
∫

Pp dp/(2π)3. Introducing every Hamiltonian term in Eqs. (1.22),
and using the commutation relations of the Pauli matrices, we find the equations of
oscillation for neutrinos and anti-neutrinos for each momentum mode p

Ṗp =
[
ωpB + λL +

√
2GF

(
P− P̄

)]
× Pp, (3.45a)

˙̄Pp =
[
−ωpB + λL +

√
2GF

(
P− P̄

)]
× P̄p, (3.45b)

where we have assumed that the total neutrino distribution remains constant ḟp = 0.
In this form, it is clear how the polarization vectors can be normalized. Performing
the transformation Pp/fp 7→ Pp and P̄p/f̄p 7→ P̄p and, multiplying and dividing the
last term by the total neutrino density Eqs. (3.45) can be written as

Ṗp = [ωpB + λL + µD]× Pp, (3.46a)
˙̄Pp = [−ωpB + λL + µD]× P̄p (3.46b)

D = 1
nνe+ nνx

∫ (
fqPq − f̄qP̄q

) dq
(2π)3 . (3.46c)

This is the traditional form of the equations in terms of the vacuum, matter and
self-interaction potentials ωp, λ and µ with

µ =
√

2GF
∑

i∈{e,x}
nνi . (3.47)

Different normalization schemes are possible (see, e.g., [125, 88, 61, 194]). By
assuming that we can solve the equations of oscillation with constant potentials λ and
µ simplifies the problem even further. Following [81], with the vector transformation
(a rotation around the z axis of flavour space)

Rz =

 cos (λt) sin (λt) 0
− sin (λt) cos (λt) 0

0 0 1

 (3.48)

Eq. (3.46) become

Ṗp = [ωpB + µD]× Pp, (3.49a)
˙̄Pp = [−ωpB + µD]× P̄p, (3.49b)

eliminating the λ potential but making B time dependent. Defining the vector
Sp = Pp + P̄p and, adding and subtracting Eq. (3.49a) and Eq. (3.49b) we get

Ṡp = ωpB×Dp + µD× Sp ≈ µD× Sp, (3.50a)
Ḋp = ωpB× Sp + µD×Dp ≈ µD×Dp (3.50b)
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The last approximation is true if we assume that the SIP is larger than the
vacuum potential ωp/µ� 1. We will show later that this is the case for thin disks
(see Fig. 3.5). The first equation implies that all the vectors Sp and their integral S
evolve in the same way, suggesting the relation Sp =

(
fp + f̄p

)
S. By replacing in

Eq. (3.50b) and integrating

Ṡ = µD× S (3.51a)
Ḋ = 〈ω〉B× S. (3.51b)

where 〈ω〉 =
∫
ωp
(
fp + f̄p

)
dp/(2π)3 is the average vacuum oscillation potential.

The fact that in our model the equations of oscillations can be written in this
way has an important consequence. Usually, as it is done in supernovae neutrino
oscillations, to solve Eq. (3.46) we would need the neutrino distributions throughout
the disk. If neutrinos are trapped, their distribution is given by Eq. (3.25). If
neutrinos are free, their temperature is not the same as the disk’s temperature.
Nonetheless, we can approximate the neutrino distribution in this regime by a
Fermi-Dirac distribution with the same chemical potential as defined by Eq. (3.26)
but with an effective temperature T eff

ν . This temperature can be obtained by solving
the equation 〈Eν〉 = U

(
T eff
ν , ην

)
/n
(
T eff
ν , ην

)
which gives

T eff
νx,ν̄x = 〈Eνx,ν̄x〉

180 ζ(3)
7π4 (3.52a)

T eff
νe,ν̄e = 〈Eνe,ν̄e〉3

Li3 (− exp (ηνe,ν̄e))
Li4 (− exp (ηνe,ν̄e))

(3.52b)

where ζ(3) is Apéry’s constant (ζ is the Riemann zeta function) and Lis(z) is
Jonquière’s function. For convenience and considering the range of values that
the degeneracy parameter reaches (see Sec. 3.6), we approximate the effective
temperature of electron neutrinos and anti-neutrinos with the expressions

T eff
νe = 〈Eνe〉3

(
aη2

νe + bηνe + c
)

(3.53a)

T eff
ν̄e = 〈Eν̄e〉3 . (3.53b)

with constants a = 0.0024, b = −0.085, c = 0.97. However, Eq. (3.51) allow us to
consider just one momentum mode, and the rest of the spectrum behaves in the
same way.

3.4 Initial Conditions and Integration
In the absence of oscillations, we can use Eqs. (3.18), (3.16) and (3.36) to solve for
the set of functions ηe−(r), ξ (r), Ye (r) using as input parameters the accretion rate
Ṁ , the dimensionless spin parameter a, the viscosity parameter α and the BH mass
M . From [51, 169] we learn that neutrino dominated disks require accretion between
0.01 M� s−1 and 1 M� s−1 (this accretion rate range vary depending on the value
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of α). For accretion rates smaller than the above lower value the neutrino cooling is
not efficient and, for rates larger than the upper value, the neutrinos are trapped
within the flow. We also limit ourselves to the above accretion rate range since it is
consistent with the one expected to occur in a BdHN (see, e.g., [105, 24, 26]).

We also know that high spin parameter, high accretion rate and low viscosity
parameter produces disks with higher density and higher temperature. This can
be explained using the fact that several variables of the disk, like pressure, density
and height are proportional to a positive power of the quotient Ṁ/α. To avoid this
semi-degeneracy in the system, reduce the parameter space and considering that we
want to study the dynamics of neutrino oscillations inside the disk, we fix the BH
mass at M = 3M�, the viscosity parameter at α = 0.01 and the spin parameter at
a = 0.95 while changing the accretion rate.

Eqs. (3.18) and (3.36) are first order ordinary differential equations and since we
perform the integration from an external (far away) radius rout up to the innermost
stable circular orbit rin we must provide two boundary conditions at rout. Following
the induced gravitational collapse (IGC) paradigm of gamma-ray bursts (GRBs)
associated with type Ib/c supernovae we assume that at the external edge of the disk,
the infalling matter is composed mainly by the ions present in the material ejected
from an explosion of a carbon-oxygen core, that is, mainly oxygen and electrons.
This fixes the electron fraction Ye (rout) = 0.5. The second boundary condition can
be obtained by the relation (Tη +mB)√gtt = constant [300, 150, 151], with η the
degeneracy parameter of the fluid. If we require the potentials to vanishes at infinity
and invoking Euler’s theorem we arrive at the relation in the weak field limit

M

rout
= ρ+ U + P − TS

ρ

∣∣∣∣
r=rout

. (3.54)

For a classical gas composed of ions and electrons this relation becomes

M

rout
.
U

ρ

∣∣∣∣
r=rout

. (3.55)

Eq. (3.55) can be used with Eq. (3.16) and Eq. (3.32) to solve for ηe−(rout),
ξ (rout). The value of rout is chosen to be at most the circularization radius of the
accreting material as described in [25, 24]. We can estimate this radius by solving
for r in the expression of the angular momentum per unit mass for a equatorial
circular orbits. So using Eq. (3.6) we need to solve

uφ = M
x2 − 2x+ a2

x3/2
√
x3 − 3x+ 2a

∼ 9× 1013 cm2 s−1, (3.56)

where x =
√
r/M which yields rout ∼ 1800rs. Finally, for the initial conditions to

be accepted, they are evaluated by the gravitational instability condition [208]√
R θ̃

t̃θ̃t̃

∣∣∣
θ=π/2

Ω ≥ 2
√

3πρ (3.57)

Integration of the equations proceeds as follows, with the initial conditions we
solve Eq. (3.36) to obtain the electron fraction in the next integration point. With
the new value of the electron fraction we solve the differential-algebraic system of
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Eqs. (3.18) and (3.16) at this new point. This process continues until the innermost
stable circular orbit rin is reached.

To add the dynamics of neutrino oscillations we proceed same as before but at
each point of integration, once the values of Ye, η and ξ are found, we solve Eq. (3.46)
for the average momentum mode to obtain the survival probabilities as a function
of time. We then calculate the new neutrino and anti-neutrino distributions with
the conservation of total number density and the relations

nnewνe (t) = Pνe→νe (t)nνe + [1− Pνe→νe(t)]nνx (3.58a)
nnewνx (t) = Pνx→νx (t)nνx + [1− Pνx→νx(t)]nνe . (3.58b)

Since the disk is assumed to be in a steady-state, we then perform a time average
of Eq. (3.58) as discussed in Sec. 3.2. With the new distributions, we can calculate
the new neutrino and anti-neutrino average energies and use them to re-integrate
the disk equations.

Neutrino emission within neutrino-cooled disks is dominated by electron and
positron capture which only produces electron (anti)-neutrinos. The second most
important process is electron-positron annihilation but it is several orders of mag-
nitude smaller. In Fig. 3.2 we show the total number emissivity for these two
processes for an accretion rate of Ṁ = 0.1M� s −1. Other cases behave similarly.
Moreover, although the degeneracy parameter suppresses the positron density, a
high degeneracy limit does not occur in the disk and the degeneracy is kept low at
values between ∼ (0.2–3), as shown in Fig. 3.3. The reason for this is the effect of
high degeneracy on neutrino cooling. Higher degeneracy leads to a lower density of
positrons which suppresses the neutrino production and emission, which in turn leads
to a lower cooling rate, higher temperature, lower degeneracy and higher positron
density. This equilibrium leads, via the lepton number conservation Eq. (3.36), to a
balance between electronic and non-electronic neutrino densities within the inner
regions of the disk. Given this fact, to solve the equations of oscillations, we can
approximate the initial conditions of the polarization vectors with

P = P̄ ≈ (0, 0, 1). (3.59)

3.5 Results and Analysis

In Fig. 3.3 and Fig. 3.4 we present the main features of accretion disks for the
parameters M = 3M�, α = 0.01, a = 0.95, and three different accretion rates
Ṁ = 1M� s−1, Ṁ = 0.1M� s−1 and Ṁ = 0.01M� s−1. It exhibits the usual
characteristics of thin accretions disks. High accretion rate disks have higher density,
temperature and electron degeneracy. Also, for high accretion rates, the cooling due
to photodisintegration and neutrino emission kicks in at larger radii. For all cases,
as the disk heats up, the number of free nucleons starts to increase enabling the
photodisintegration cooling at r ∼ (100–300)rs. Only the disintegration of alpha
particles is important and the nucleon content of the infalling matter is of little
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Figure 3.2. Total number emissivity for electron and positron capture (p+ e−→ n+ νe,
n+ e+→ p+ ν̄e) and electron-positron annihilation (e−+ e+→ ν + ν̄) for accretion disks
with Ṁ = 0.1M� s−1 between the inner radius and the ignition radius.

consequence for the dynamics of the disk. When the disk reaches temperatures ∼ 1.3
MeV, the electron capture switches on, the neutrino emission becomes significant and
the physics of the disk is dictated by the energy equilibrium between Fheat and Fν .
The radius at which neutrino cooling becomes significant (called ignition radius ring)
is defined by the condition Fν ∼ Fheat/2. For the low accretion rate Ṁ = 0.01M�
s−1, the photodisintegration cooling finishes before the neutrino cooling becomes
significant, this leads to fast heating of the disk. Then the increase in temperature
triggers a strong neutrino emission that carries away the excess heat generating
a sharp spike in Fν surpassing Fheat by a factor of ∼ 3.5. This behaviour is also
present in the systems studied in [51], but there it appears for fixed accretion rates
and high viscosity (α = 0.1). This demonstrates the semi-degeneracy mentioned in
Sec. 3.5. The evolution of the fluid can be tracked accurately through the degeneracy
parameter. At the outer radius, ηe− starts to decrease as the temperature of the
fluid rises. Once neutrino cooling becomes significant, it starts to increase until
the disk reaches the local balance between heating and cooling. At this point, ηe−
stops rising and is maintained (approximately) at a constant value. Very close
to rin, the zero torque condition of the disk becomes important and the viscous
heating is reduced drastically. This is reflected in a sharp decrease in the fluid’s
temperature and increase in the degeneracy parameter. For the high accretion rate
and additional effect has to be taken into account. Due to high νe optical depth,
neutrino cooling is less efficient, leading to an increase in temperature and a second
dip in the degeneracy parameter. This dip is not observed in low accretion rates
because τνe does not reach significant values.

With the information in Fig. 3.3 we can obtain the oscillation potentials which
we plot in Fig. 3.5. Since the physics of the disk for r < rign is independent of the
initial conditions at the external radius and for r > rign the neutrino emission is
negligible, the impact of neutrino oscillations is important only inside rign. We can
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Figure 3.3. Properties of accretion disks in the absence of oscillations with M = 3M�,
α = 0.01, a = 0.95 for accretion rates Ṁ = 1M� s−1, Ṁ = 0.1M� s−1 and Ṁ = 0.01M�
s−1, respectively.
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Figure 3.5. Oscillation potentials as functions of r with M = 3M�, α = 0.01, a = 0.95
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The vertical line represents the position of the ignition radius.

see that the discussion at the end of Sec. 3.3.1 is justified since for rin < r < rign the
potentials obey the relation

〈ω〉 � µ� λ. (3.60)

Generally, the full dynamics of neutrino oscillations is a rather complex interplay
between the three potentials, yet it is possible to understand the neutrino response
in the disk using some numerical and algebraic results obtained in [125, 90, 88]
and references therein. Specifically, we know that if µ� 〈ω〉, as long as the MSW
condition λ ' 〈ω〉 is not met (precisely our case), collective effects should dominate
the neutrino evolution even if λ� µ. On the other hand, if µ . 〈ω〉, the neutrino
evolution is driven by the relative values between the matter and vacuum potentials
(not our case). With Eq. (3.51) we can build a very useful analogy. These equations
are analogous to the equations of motion of a simple mechanical pendulum with a
vector position given by S, precessing around with angular momentum D, subjected
to a gravitational force 〈ω〉µB with mass µ−1. Using Eq. (3.59) obtains the expression
|S| = S ≈ 2 +O(〈ω〉/µ). Calculating ∂t(S · S) it can be checked that this value is
conserved up to fluctuations of order 〈ω〉/µ. The analogous angular momentum is
D = P− P̄ = 0. Thus, the pendulum moves initially in a plane defined by B and
the z-axis, i.e., the plane xz. Then, it is possible to define an angle ϕ between S
and the z-axis such that

S = S (sinϕ, 0, cosϕ) . (3.61)

Note that the only non-zero component of D is y-component. From Eq. (3.51) we
find

ϕ̇ = µD (3.62a)
Ḋ = −〈ω〉S cos(ϕ+ 2θ). (3.62b)

The above equations can be equivalently written as

ϕ̈ = −k2 sin(2θ + ϕ), (3.63)

where we have introduced the inverse characteristic time k by

k2 = 〈ω〉µS, (3.64)
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which is related to the anharmonic oscillations of the pendulum. The role of the
matter potential λ is to logarithmically extend the oscillation length by the relation
[125]

τ = −k−1 ln
[

k

θ (k2 + λ2)1/2

(
1 + 〈ω〉

Sµ

)]
. (3.65)

The total oscillation time can then be approximated by the period of an harmonic
pendulum plus the logarithmic extension

tosc = 2π
k

+ τ. (3.66)

The initial conditions of Eq. (3.59) imply

ϕ (t = 0) = arcsin
(〈ω〉
Sµ

sin 2θ
)
. (3.67)

so that ϕ is a small angle. The potential energy for a simple pendulum is

V (ϕ) = k2 [1− cos (ϕ+ 2θ)] ≈ k2 (ϕ+ 2θ)2 . (3.68)

If k2 > 0, which is true for the normal hierarchy ∆m2 > 0, we expect small
oscillations around the initial position since the system begins in a stable position of
the potential. The magnitude of flavour conversions is of the order ∼ 〈ω〉/Sµ� 1.
We stress that normal hierarchy does not mean an absence of oscillations but rather
imperceptible oscillations in Pz. No strong flavour oscillations are expected. On the
contrary, for the inverted hierarchy ∆m2 < 0, k2 < 0 and the initial ϕ indicates
that the system begins in an unstable position and we expect very large anharmonic
oscillations. Pz (as well as P̄z) oscillates between two different maxima passing
through a minimum −Pz (−P̄z) several times. This implies total flavour conversion:
all electronic neutrinos (anti-neutrinos) are converted into non-electronic neutrinos
(anti-neutrinos) and vice-versa. This has been called bipolar oscillations in the
literature [83]. If the initial condition are not symmetric as in Eq. (3.59), the
asymmetry is measured by a constant ς = P̄z/Pz if P̄z < Pz or ς = Pz/P̄z if P̄z > Pz
so that 0 < ς < 1. Bipolar oscillations are present in an asymmetric system as long
as the relation

µ

|〈ω〉|
< 4 1 + ς

(1− ς)2 . (3.69)

is obeyed [125]. If this condition is not met, instead of bipolar oscillation we get
synchronised oscillations. Since we are considering constant potentials, synchronised
oscillations is equivalent to the normal hierarchy case. From Fig. 3.5 we can conclude
that in the normal hierarchy case, neutrino oscillations have no effects on neutrino-
cooled disks under the assumptions we have made. On the other hand, in the
inverted hierarchy case, we expect extremely fast flavour conversions with periods of
order tosc ∼ (10−9 − 10−5) s for high accretion rates and tosc ∼ (10−8 − 10−5) s for
low accretion rates, between the respective rin and rign.

For the purpose of illustration we solve the equations of oscillations for the
Ṁ = 0.1M� s−1 case at r = 10rs. The electronic (anti)-neutrino survival probability
at this point is shown in Fig. 3.6 for inverted hierarchy and normal hierarchy,
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Figure 3.6. Survival provability for electron neutrinos and anti-neutrinos for the accretion
disk with Ṁ = 0.1M� s−1 at r = 10rs. The left plot corresponds to inverted hierarchy
and the right plot corresponds to normal hierarchy.

respectively. On both plots, there is no difference between the neutrino and anti-
neutrino survival probabilities. This should be expected since for this values of r the
matter and self-interaction potentials are much larger than the vacuum potential,
and there is virtually no difference between Eq. (3.46a) and Eq. (3.46b). Also, as
mentioned before, note that the (anti)-neutrino flavour proportions remain virtually
unchanged for normal hierarchy while the neutrino flavour proportions change
drastically. The characteristic oscillation time of the survival probability in inverted
hierarchy found on the plot is

tosc ≈ 8.4× 10−7 s, (3.70)

which agree with the ones given by Eq. (3.66) up to a factor of order one. Such
a small value suggests extremely quick νeν̄e → νxν̄x oscillations. A similar effect
occurs for regions of the disk inside the ignition radius for all three accretion rates.
In this example, the time average of the survival probabilities yield the values
〈Pνe→νe〉 = 〈Pν̄e→ν̄e〉 = 0.92. With this number, Eq. (3.58), and Eq. (3.53), the
(anti)-neutrino spectrum for both flavours can be constructed. But, more importantly,
this means that the local observer at that point in the disk measures, on average,
an electron (anti)-neutrino loss of around 8% which is represented by an excess of
non-electronic (anti)-neutrinos.

In Sec. 3.3.1 we proposed to calculate neutrino oscillations assuming that small
neighbouring regions of the disk are independent and that neutrinos can be viewed
as isotropic gases in those regions. However, this cannot be considered a steady-state
of the disk. To see this consider Fig. 3.4. The maximum value of the neutrino optical
depth is of the order of 103 for the highest accretion rate, meaning that the time
that takes neutrinos to travel a distance of one Schwarzschild inside the disk radius
obeys

trs � Max (τν) rs ≈ 10−2 s. (3.71)

which is lower than the accretion time of the disk as discussed in Sec. 3.2 but higher
than the oscillation time. Different sections of the disk are not independent since
they, very quickly, share (anti)-neutrinos created with a non-vanishing momentum
along the radial direction. Furthermore, the oscillation pattern between neighbouring
regions of the disk is not identical. In Fig. 3.7 we show the survival probability
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Figure 3.7. Survival provability for electron neutrinos and anti-neutrinos for the accretion
disk with Ṁ = 0.1M� s−1 at r = 9rs, 10rs, 11rs, 12rs.

as a function of time for different (but close) values of r for Ṁ = 0.1M� s−1.
The superposition between neutrinos with different oscillation histories has several
consequences: (1) It breaks the isotropy of the gas because close to the BH, neutrinos
are more energetic and their density is higher producing a radially directed net
flux, meaning that the factor vq,t · vp,t does not average to zero. This implies that
realistic equations of oscillations include a multi-angle term and a radially decaying
neutrino flux similar to the situation in SN neutrinos. (2) It constantly changes
the neutrino content ant any value of r independently of the neutrino collective
evolution given by the values of the oscillation potentials at that point. This picture
plus the asymmetry that electron and non-electron neutrinos experience through the
matter environment (electron (anti)-neutrinos can interact through n+ νe→ p+ e−

and p+ ν̄e→ n+ e+), suggests that the disk achieves complete flavour equipartition
(decoherence). We can identify two competing causes, namely, quantum decoherence
and kinematic decoherence.

Quantum decoherence is the product of collisions among the neutrinos or with a
thermal background medium can be understood as follows [236]. From Appx. D.2
we know that different (anti)-neutrino flavours posses different cross-sections and
scattering rates Γνi,ν̄i . In particular, we have Γνx ≈ Γν̄x < Γν̄e < Γνe . An initial
electron (anti)-neutrino created at a point r will begin to oscillate into νx(ν̄x). The
probability of finding it in one of the two flavours evolves as previously discussed.
However, in each interaction n+νe→ p+ e−, the electron neutrino component of the
superposition is absorbed, while the νx component remains unaffected. Thus, after
the interaction the two flavours can no longer interfere. This allows the remaining
νx oscillate and develop a new coherent νe component which is made incoherent in
the next interaction. The process will come into equilibrium only when there are
equal numbers of electronic and non-electronic neutrinos. That is, the continuous
emission and absorption of electronic (anti)-neutrinos generates a non-electronic
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(anti)-neutrinos with an average probability of 〈Pνe→νe〉 in each interaction and
once the densities of flavours are equal, the oscillation dynamic stops. An initial
system composed of νe, ν̄e turns into an equal mixture of νe, ν̄e and νx, ν̄x, reflected
as an exponential damping of oscillations. For the particular case in which non-
electronic neutrinos can be considered as sterile (do not interact with the medium),
the relaxation time of this process can be approximated as [126, 289]

tQ = 1
2lνν̄〈ω〉2 sin2 2θ

+ 2lνν̄λ2

〈ω〉2 sin2 2θ
(3.72)

where lνν̄ represents the (anti)-neutrino mean free path.
Kinematic decoherence is the result of a non-vanishing flux term such that at any

point, (anti)-neutrinos travelling in different directions, do not experience the same
SIP due to the multi-angle term in the integral of Eq. (1.21). Different trajectories
do not oscillate in the same way, leading to a de-phasing and a decay of the average
〈Pν→ν〉 and thus to the equipartition of the overall flavour content. The phenomenon
is similar to an ensemble of spins in an inhomogeneous magnetic field. In [237] it
is shown that for asymmetric νν̄ gas, even an infinitesimal anisotropy triggers an
exponential evolution towards equipartition, and in [88] it was shown that if the
symmetry between neutrinos and anti-neutrinos is not broken beyond the limit of
25%, kinematic decoherence is still the main effect of neutrino oscillations. As a direct
consequence of the νν̄ symmetry present within the ignition radius of accretion disks
(see Fig. 3.3), equipartition among different neutrino flavours is expected. This multi-
angle term keeps the order of the characteristic time tosc of Eq. (3.66), unchanged and
kinematic decoherence happens within a few oscillation cycles. The oscillation time
gets smaller closer to the BH due to the 1/µ1/2 dependence. Therefore, we expect that
neutrinos emitted within the ignition radius will be equally distributed among both
flavours in about few microseconds. Once the neutrinos reach this maximally mixed
state, no further changes are expected. We emphasize that kinematic decoherence
does not mean quantum decoherence. Figs. 3.6 and Fig. 3.7 clearly show the typical
oscillation pattern which happens only if quantum coherence is still acting on the
neutrino system. Kinematics decoherence, differently to quantum decoherence, is
just the result of averaging over the neutrino intensities resulting from quick flavour
conversion. Therefore, neutrinos are yet able to quantum oscillate if appropriate
conditions are satisfied.

Simple inspection of Eq. (3.66) and Eq. (3.72) with Fig. 3.4 yields tosc � tQ.
Clearly the equipartition time is dominated by kinematic decoherence. These
two effects are independent of the neutrino mass hierarchy and neutrino flavour
equipartition is achieved for both hierarchies. Within the disk dynamic, this is
equivalent to imposing the condition 〈Pνe→νe〉 = 〈Pν̄e→ν̄e〉 = 0.5.

Fig. 3.8 shows a comparison between disks with and without neutrino flavour
equipartition for the three accretion rates considered. The role of equipartition is
to increase the disk’s density, reduce the temperature and electron fraction, and
further stabilize the electron degeneracy for regions inside the ignition radius. The
effect is mild for low accretion rates and very pronounced for high accretion rates.
This result is in agreement with our understanding of the dynamics of the disk and
can be explained in the following way. In low accretion systems the neutrino optical
depth for all flavours is τνν̄ . 1 and the differences between the cooling fluxes, as
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Figure 3.8. Comparison between the main variables describing thin disks with and without
neutrino flavour equipartition for each accretion rate considered. Together with Fig. 3.3,
these plots completely describe the profile of a disk under flavour equipartition.

given by Eq. (3.31) are small. Hence, when the initial (mainly electron flavour)
is redistributed among both flavours, the total neutrino cooling remains virtually
unchanged and the disk evolves as if equipartition had never occurred save the new
emission flavour content. On the other hand, when accretion rates are high, the
optical depth obeys τνx ≈ τν̄x . τν̄e < τν ∼ 103. The νe cooling is heavily suppressed
while the others are less so. When flavours are redistributed, the new νx particles
a free to escape, enhancing the total cooling and reducing the temperature. As
the temperature decreases, so do the electron and positron densities leading to a
lower electron fraction. The net impact of flavour equipartition is to make the disk
evolution less sensitive to νe opacity and, thus, increase the total cooling efficiency.
As a consequence, once the fluid reaches a balance between F+ and Fν , this state
is kept without being affected by high optical depths and ηe− stays at a constant
value until the fluid reaches the zero torque condition close to rin. Note that for
every case, inside the ignition radius, we have τν̄e ≈ τνx = τν̄x so that equipartition
enhances, mainly, neutrino cooling Fν (and not anti-neutrino cooling Fν̄). The
quotient between neutrino cooling with and without equipartition can be estimated
with

F eq
ν

Fν
≈ 1

2

(
1 + 〈Eνx〉
〈Eνe〉

1 + τνe
1 + τνx

)
. (3.73)

This relation exhibits the right limits. From Fig. 3.3 we see that 〈Eνe〉 ≈ 〈Eνx〉.
Hence, If 1� τνe > τνx , then F eq

ν = Fν and the equipartition is unnoticeable. But
if 1 < τνx < τνe then F eq

ν /Fν > 1. In our simulations, this fraction reaches values of
1.9 for Ṁ = 1M� s−1 to 2.5 for Ṁ = 0.01M� s−1.
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The disk variables at each point do not change beyond a factor of order 5 in
the most obvious case. However, these changes can be important for cumulative
quantities, e.g. the total neutrino luminosity and the total energy deposition rate
into electron-positron pairs due to neutrino anti-neutrino annihilation. To see this
we perform a Newtonian calculation of these luminosities following [136, 253, 228,
244, 141, 316, 169], and references therein. The neutrino luminosity is calculated by
integrating the neutrino cooling flux throughout both faces of the disk

Lνi = 4π
∫ rout

rin
CcapFνirdr. (3.74)
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The factor 0 < Ccap < 1 is a function of the radius (called capture function in
[298]) that accounts for the proportion of neutrinos that are re-captured by the BH
and, thus, do not contribute to the total luminosity. For a BH with M = 3M�
and a = 0.95, the numerical value of the capture function as a function of the
dimensionless distance x = r/rs is well fitted by

Ccap (x) =
(

1 + 0.3348
x3/2

)−1
, (3.75)

with a relative error smaller than 0.02%. To calculate the energy deposition rate,
the disk is modeled as a grid of cells in the equatorial plane. Each cell k has a
specific value of differential neutrino luminosity ∆`kνi = F kνirk∆rk∆φk and average
neutrino energy 〈Eνi〉k. If a neutrino of flavour i is emitted from the cell k and an
anti-neutrino is emitted from the cell k′, and, before interacting at a point r above
the disk, each travels a distance rk and rk′ , then, their contribution to the energy
deposition rate at r is (see Appx. D.3 for details)

∆Qνiν̄ikk′ = A1,i
∆`kνi
r2
k

∆`k′ν̄i
r2
k′

(
〈Eνi〉k + 〈Eν̄i〉k

′)(1− rk · rk′
rkrk′

)2

+A2,i
∆`kνi
r2
k

∆`k′ν̄i
r2
k′

(
〈Eνi〉k + 〈Eν̄i〉k

′

〈Eνi〉k〈Eν̄i〉k
′

)(
1− rk · rk′

rkrk′

)
. (3.76)

The total neutrino annihilation luminosity is simply the sum over all pairs of
cells integrated in space

Lνiν̄i = 4π
∫
A

∑
k,k′

∆Qνiν̄ikk′d
3r, (3.77)

where A is the entire space above (or below) the disk.
In Table 3.1 we show the neutrino luminosities and the neutrino annihilation

luminosities for disks with and without neutrino collective effects. In each case,
flavour equipartition induces a loss in Lνe by a factor of ∼3, and a loss in Lν̄e
luminosity by a factor of ∼2. At the same time, Lνx and Lν̄e are increased by a
factor ∼10. This translates into a reduction of the energy deposition rate due to
electron neutrino annihilation by a factor of ∼7 while the energy deposition rate
due to non-electronic neutrinos goes from being negligible to be of the same order of
the electronic energy deposition rate. The net effect is to reduce the total energy
deposition rate of neutrino annihilation by a factor of ∼ (3−5) for the accretion rates
considered. In particular we obtain a for a factor 3.03 and 3.66 for Ṁ = 1 M� s−1

and Ṁ = 0.01 M� s−1, respectively and a factor 4.73 for Ṁ = 0.1 M� s−1. The
highest value correspond to and intermediate value of the accretion rate because,
for this case, there is a νe cooling suppression (τνe > 1) and the quotient τνe/τνx is
maximal. By Eq. (3.73), the difference between the respective cooling terms is also
maximal. In Fig. 3.9 we show the energy deposition rate per unit volume around
the BH for each flavour with accretion rates Ṁ = 1 M� s−1 and Ṁ = 0.1 M� s−1.
There we can see the drastic enhancement of the non-electronic neutrino energy
deposition rate and the reduction of the electronic deposition rate. Due to the double
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peak in the neutrino density for Ṁ = 0.01 M� s−1 case (see Fig. 3.3), the deposition
rate per unit volume also shows two peaks. One at rs < r < 2rs and the other at
10 rs < r < 11 rs. Even so, the behaviour is similar to the other cases.
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Figure 3.9. Comparison of the neutrino annihilation luminosity per unit volume ∆Qνiν̄i =∑
k,k′ ∆Qνiν̄ikk′ between disk without (left column) and with (right column) flavour

equipartition.
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3.6 Concluding Remarks and Perspectives

The generation of a seed, energetic e−e+ plasma seems to be a general prerequisite of
GRB theoretical models for the explanation of the prompt gamma-ray emission. The
e−e+ pair annihilation produce photons leading to an opaque pair-photon plasma
that self-accelerates, expanding to ultra-relativistic Lorentz factors of the order of
102–103 (see, e.g., [231, 259, 260]). The reaching of transparency of MeV-photons at
large Lorentz factor and corresponding large radii is requested to solve the so-called
compactness problem posed by the observed non-thermal spectrum in the prompt
emission [283, 223, 188]. There is a vast literature on this subject and we refer the
reader to [221, 222, 186, 187, 29, 162], and references therein, for further details.

Neutrino-cooled accretion disks onto rotating BHs have been proposed as a
possible way of producing the above-mentioned e−e+ plasma. The reason is that
such disks emit a large amount of neutrino and antineutrinos that can undergo pair
annihilation near the BH [228, 203, 154, 70, 155, 167, 123, 51, 142, 135, 143, 172, 316].
The viability of this scenario clearly depends on the energy deposition rate of neutrino-
antineutrinos into e−e+ and so on the local (anti)-neutrino density and energy.

We have here shown that, inside these hyperaccreting disks, a rich neutrino
oscillations phenomenology is present due to the high neutrino density. Consequently,
the neutrino/antineutrino emission and the corresponding pair annihilation process
around the BH leading to electron-positron pairs, are affected by neutrino flavour
conversion. Using the thin disk and α-viscosity approximations, we have built a
simple stationary model of general relativistic neutrino-cooled accretion disks around
a Kerr BH, that takes into account not only a wide range of neutrino emission
processes and nucleosynthesis but also the dynamics of flavour oscillations. The
main assumption relies on considering the neutrino oscillation behaviour within
small neighbouring regions of the disk as independent from each other. This,
albeit being a first approximation to a more detailed picture, has allowed us to set
the main framework to analyse the neutrino oscillations phenomenology in inside
neutrino-cooled disks.

In the absence of oscillations, a variety of neutrino-cooled accretion disks onto
Kerr BHs, without neutrino flavour oscillations, have been modelled in the literature
(see, e.g., [114, 228, 51, 316] and [169] for a recent review). The physical setting of
our disk model follows closely the ones considered in [51], but with some extensions
and differences in some aspects:

(i) The equation of vertical hydrostatic equilibrium, Eq. (3.16), can be derived
in several ways [207, 114, 7]. We followed a particular approach consistent with the
assumptions in [207], in which we took the vertical average of a hydrostatic Euler
equation in polar coordinates. The result is a an equation that leads to smaller
values of the disk pressure when compared with other models. It is expected that
the pressure at the centre of the disk is smaller than the average density multiplied
by the local tidal acceleration at the equatorial plane. Still, the choice between
the assortment of pressure relations is tantamount to a fine-tuning of the model.
Within the thin disk approximation, all these approaches are equivalent since they
all assume vertical equilibrium and neglect self-gravity.

(ii) Following the BdHN scenario for the explanation of GRBs associated with
Type Ic SNe (see Sec. 3.1), we considered a gas composed of 16O at the outermost
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radius of the disk and followed the evolution of the ion content using the Saha equation
to fix the local NSE. In [51], only 4He is present and, in [316], ions up to 56Fe are
introduced. The affinity between these cases implies that this particular model of
disk accretion is insensible to the initial mass fraction distribution. This is explained
by the fact that the average binding energy for most ions is very similar, hence any
cooling or heating due to a redistribution of nucleons, given by the NSE, is negligible
when compared to the energy consumed by direct photodisintegration of alpha
particles. Additionally, once most ions are dissociated, the main cooling mechanism
is neutrino emission that is similar for all models, modulo the supplementary neutrino
emission processes included in addition to electron and positron capture. However,
during our numerical calculations, we noticed that the inclusion of non-electron
neutrino emission processes can reduce the electron fraction by up to ∼ 8%. This
effect is observed again during the simulation of flavour equipartition alluding to the
need for detailed calculations of neutrino emissivities when establishing NSE state.
We obtain similar results to [51] (see Fig. 3.3), but by varying the accretion rate and
fixing the viscosity parameter. This suggests that a more natural differentiating set
of variables in the hydrodynamic equations of an α-viscosity disk is the combination
of the quotient Ṁ/α and either Ṁ or α. This result is already evident in, for
example, Fig. 11 and Fig. 12 of [51], but was not mentioned there.

Concerning neutrino oscillations, we showed that the conditions inside the
ignition radius, the oscillation potentials follow the relation 〈ω〉 � µ � λ, as it
is illustrated by Fig. 3.5. We also showed that the within this region the number
densities of electron neutrinos and anti-neutrinos are very similar. As a consequence
of this particular environment very fast pair conversions νeν̄e 
 νxν̄x, induced
by bipolar oscillations, are obtained for the inverted mass hierarchy case with
oscillation frequencies between 109 s−1 and 105 s−1. For the normal hierarchy case
no flavour changes are observed (see Fig. 3.6 and Fig. 3.7). Bearing in mind the
magnitude of these frequencies and the low neutrino travel times through the disk,
we conclude that an accretion disk under our main assumption cannot represent a
steady state. However, using numerical and algebraic results obtained in [237, 90, 88],
and references therein, we were able to generalize our model to a more realistic
picture of neutrino oscillations. The main consequence of the interaction between
neighbouring regions of the disk is the onset of kinematic decoherence in a timescale
of the order of the oscillation times. Kinematic decoherence induces fast flavour
equipartition among electronic and non-electronic neutrinos throughout the disk.
Therefore, the neutrino content emerging from the disk is very different from the one
that is usually assumed (see, e.g., [175, 170]). The comparison between disks with
and without flavour equipartition is summarized in Fig. 3.8 and Table 3.1. We found
that flavour equipartition, while leaving anti-neutrino cooling practically unchanged,
it enhances neutrino cooling by allowing the energy contained (and partially trapped
inside the disk due to high opacity) within the νe gas to escape in the form of νx,
rendering the disk insensible to the electron neutrino opacity. We give in Eq. (3.73) a
relation to estimate the change in Fν as a function of τνeτνx that describes correctly
the behaviour of the disk under flavour equipartition. The variation of the flavour
content in the emission flux implies a loss in Lνe and an increase in Lνx and Lν̄e .
As a consequence, the total energy deposition rate of the process ν + ν̄ → e− + e+

is reduced. We showed that this reduction can be as high 80% and is maximal



whenever the quotient τνe/τνx is also maximal and the condition τνe > 1 is obtained.
At this point we can identify several issues which have still to be investigated:
(1) Throughout the accretion disk literature, several fits to calculate the neutrino

and neutrino annihilation luminosity can be found (see, e.g., [169] and references
therein). However, all these fits were calculated without taking into account neutrino
oscillations. Since we have shown that oscillations directly impact luminosity, these
results need to be extended.

(2) Additionally, the calculations of the neutrino and neutrino annihilation
luminosities we have performed, ignore general relativistic effects and the possible
neutrino oscillations from the disk surface to the annihilation point. In [274], it has
been shown that general relativistic effects can enhance the neutrino annihilation
luminosity in a neutron star binary merger by a factor of 10. In [228], however, it is
argued that in BHs this effect has to be mild since the energy gained by falling into
the gravitational potential is lost by the electron-positron pairs when they climb
back up. Nonetheless, this argument ignores the bending of neutrino trajectories
and neutrino capture by te BH which can be significant for r . 10rs. In [35], the
increment is calculated to be no more than a factor of 2 and can be less depending
on the geometry of the emitting surface. But, as before, they assume a purely νeν̄e
emission and ignore oscillations after the emission. Simultaneously, the literature on
neutrino oscillation above accretion disks (see, e.g., [175]) do not take int account
oscillations inside the disk and assume only νeν̄e emission. A similar situation occurs
in works studying the effect of neutrino emission on r-process nucleosynthesis in
hot outflows (wind) ejected from the disk (see, e.g., [44]). It is still unclear how
the complete picture (oscillations inside the disk → oscillations above the disk +
relativistic effects) affect the final energy deposition. We are currently working on the
numerical calculation of the annihilation energy deposition rate using a ray tracing
code and including neutrino oscillations both inside the disk and after their emission
from the disk surface. These results will be the subject of a future publication.

This chapter serves as a primer that has allowed us to identify key theoretical
and numerical features involved in the study of neutrino oscillations in neutrino-
cooled accretion disks. The unique conditions inside the disk and its geometry lend
themselves to varied neutrino oscillations that can have an impact on a wide range of
astrophysical phenomena: from e−e+ plasma production above BHs in GRB models,
to r-process nucleosynthesis in disk winds and possible MeV neutrino detectability.
As such, this topic deserves appropriate attention since it paves the way for new
astrophysical scenarios for testing neutrino physics.
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Appendix A

Transformations and Christoffel
Symbols

For the sake of completeness, here we give the explicitly the transformation used
in Eq. (3.6) and the Christoffel symbols used during calculations. The coordinate
transformation matrices between the CF and the LNRF on the tangent vector space
is [21]

e µ
ν̂ =


1√

ω2gφφ−gtt
0 0 0

0 1√
grr

0 0
0 0 1√

gθθ
0

ω√
ω2gφφ−gtt

0 0 1√
gφφ

 (A.1a)

eν̂µ =


√
ω2gφφ − gtt 0 0 0

0 √
grr 0 0

0 0 √
gθθ 0

−ω√gφφ 0 0 √
gφφ

 (A.1b)

so that the basis vectors transform as ∂ν̂ = eµν̃∂µ, that is, with eT . For clarity,
coordinates on the LNRF have a caret (xµ̂), coordinates on the CRF have a tilde
(xµ̃) and coordinates on the LRF have two (x ˜̃µ). An observer on the LNRF sees
the fluid elements move with an azimuthal velocity βφ̂. This observer then can
perform a Lorentz boost L

βφ̂
to a new frame. On this new frame an observer sees

the fluid elements falling radially with velocity β r̃, so it can perform another Lorentz
boost Lβr̃ to the LRF. Finally, the transformation between the the LRF and the CF
coordinates xµ = e µ

ρ̂ (L
βφ̂

) ρ̂
α̃ (Lβr̃) α̃

˜̃ν x
˜̃ν = A µ

˜̃ν x
˜̃ν , where the components of A and
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A−1 are

A µ
˜̃ν =



γr̃γφ̂√
ω2gφφ−gtt

γφ̂γr̃β
r̃

√
ω2gφφ−gtt

0 γφ̂β
φ̂

√
ω2gφφ−gtt

γr̃βr̃√
grr

γr̃√
grr

0 0
0 0 1√

gθθ
0

γr̃

(
ωγφ̂√

ω2gφφ−gtt
+ γφ̂β

φ̂

√
gφφ

)
γr̃β

r̃

(
ωγφ̂√

ω2gφφ−gtt
+ γφ̂β

φ̂

√
gφφ

)
0 γφ̂√

gφφ
+ ωγφ̂β

φ̂

√
ω2gφφ−gtt


(A.2a)

A
˜̃ν
µ =


γr̃γφ̂

(√
ω2gφφ − gtt + βφ̂ω

√
gφφ
)

−γr̃β r̃
√
grr 0 −γr̃γφ̂β

φ̂√gφφ
−γφ̂γr̃β

r̃
(√

ω2gφφ − gtt + βφ̂ω
√
gφφ
)

γr̃
√
grr 0 γr̃γφ̂β

r̃βφ̂
√
gφφ

0 0 √
gθθ 0

−γφ̂
(
βφ̂
√
ω2gφφ − gtt + ω

√
gφφ
)

0 0 γφ̂
√
gφφ

 (A.2b)

Since Lorentz transformations do not commute, the transformation A raises the
question: what happens if we invert the order? In this case, we would not consider
a corotating frame but a cofalling frame on which observers see fluid elements, not
falling, but rotating. The new transformation velocities βr′ , βφ′ are subject to the
conditions βφ′ = γr′β

φ̂, βr′ = β r̃/γφ̂ and γr′γφ′ = γr̃γφ̂. Although both approaches
are valid, considering that the radial velocity is an unknown, the first approach
is clearly cleaner. To obtain the coordinate transformation between the CF and
the CRF A µ

ν̃ and Aν̃µ we can simply set β r̃ = 0 in Eqs. (A.2). With this we can
calculate

dφ̂

dt̂
= βφ̂ =

uµeφ̂µ

uνet̂ ν
=
√

gφφ
ω2gφφ − gtt

(Ω− ω) , (A.3)

dr̃ = √grrdr, dt̃ =
γφ̂√

ω2gφφ − gtt
dt = 1√

−gtt − 2Ωgtφ − Ω2gφφ
dt, dθ̃ = √gθθdθ.

(A.4)
The non-vanishing Christoffel symbols are

Γttr =M
(
r2 −M2a2 cos2 θ

) (
r2 +M2a2)

Σ2∆ , Γttθ = −M
3a2r sin 2θ

Σ2 ,

Γtrφ = −M
2a
(
3r4 +M2a2r2 +M2a2 cos2 θ

(
r2 −M2a2)) sin2 θ

Σ2∆ ,

Γtθφ = 2M4a3r cos θ sin3 θ

Σ2 , Γrtt = M∆
(
r2 −M2a2 cos2 θ

)
Σ3 ,

Γrtφ = −M
2a∆

(
r2 −M2a2 cos2 θ

)
sin2 θ

Σ3 , Γrrr = r

Σ + M − r
∆ ,

Γrrθ = − M2a2 sin θ
M2a2 cos θ + r2 tan θ , Γrθθ = −r∆Σ , Γrφφ =

(
MaΓrtφ − Γrθθ

)
sin2 θ,

Γθtt = −Γtθφ
csc2 θ

MaΣ , Γθtφ = M2ar
(
r2 +M2a2) sin 2θ

Σ3 , Γθrr = M2a2 sin θ cos θ
Σ∆ , Γθtθ = r

Σ ,

Γθθθ = Γrrθ, Γθφφ =
(

∆
Σ + 2Mr

(
r2 +M2a2)2

Σ3

)
sin θ cos θ, Γφtr = −M

2a
(
r2 −M2a2 cos2 θ

)
Σ2∆ ,

Γφtθ = −2M2ar cot θ
Σ2 , Γφrφ = r (Σ− 2Mr)

Σ∆ + MaΣ
∆2 Γrtφ, Γφθφ = cot θ − Γttθ. (A.5)

Using the connection coefficients and the metric, both evaluated at the equatorial
plane we can collect several equations for averaged quantities. The expansion of the
fluid world lines is

θ = ∇µuµ = 2
r
ur + ∂ru

r. (A.6)
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There are several ways to obtain an approximate version of the shear tensor (see,
e.g., [114, 198, 197]) but by far the simplest one is proposed by [207]. On the CRF
the fluid four-velocity can be approximated by uµ̃ = (1, 0, 0, 0) by Eq. (3.7). Both
the fluid four-acceleration aν = uµ∇µuν and expansion parameter, Eq. (A.6), vanish
so that the shear tensor reduces to 2σµ̃ν̃ = ∇µ̃uν̃ + ∇ν̃uµ̃. In particular, the r-φ
component is

σr̃φ̃ = −1
2
(
Γt̃
φ̃r̃

+ Γt̃
r̃φ̃

)
= −1

4
(
2c r̃
t̃φ̃

+ 2c φ̃
t̃r̃

)
= 1

2c
φ̃

r̃t̃
=
γ2
φ̂

2

√
gφφ√

ω2gφφ − gtt
√
grr

∂rΩ

(A.7)
where c α̃

µ̃ν̃ are the commutation coefficients for the CRF. Finally, of particular
interest is the θ̃ component of the Riemann curvature tensor

R θ̃
t̃θ̃t̃

∣∣∣
θ=π/2

= M

r3
r2 − 4aM3/2r1/2 + 3M2a2

r2 − 3Mr + 2aM3/2r1/2 , (A.8)

which gives a measurement of the relative acceleration in the θ̃ direction of nearly
equatorial geodesics.
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Appendix B

Stress-Energy Tensor

Here we present some equations related to the stress-energy that we used in this
paper. Eq. (3.10) for a zero bulk viscosity fluid in components is

Tµν = Πuµuν + Pδµν − 2ησµν + qµuν + qνu
µ. (B.1)

It’s covariant derivative is

0 = ∇µTµν = uµuν∂µΠ + Πθuν + Πaν + ∂νP − 2η∇µσµν
+ qµ∇µuν + uν∇µqµ + qνθ + uµ∇µqν

= uµ
[
uν

(
∂µΠ− Π

ρ
∂µρ

)
− qν

ρ
∂µρ

]
+ Πaν + ∂νP − 2η∇µσµν

+ qµ∇µuν + uν∇µqµ + uµ∇µqν , (B.2)

where baryon conservation is used ρθ = −uµ∂µρ. To get an equation of motion for
the fluid, we project perpendicular to uν

0 = P νβ∇µTµν = uµ
[
uβ

(
∂µΠ− Π

ρ
∂µρ

)
− qβ

ρ
∂µρ

]
+ Πaβ + ∂βP − 2η∇µσµβ

+ qµ∇µuβ + uβ∇µqµ + uµ∇µqβ − uµuβ
[
∂µΠ− Π

ρ
∂µρ

]
+ uνuβ∂νP − 2ηuνuβ∇µσµν − uβ∇µqµ + uνuβu

µ∇µqν
= −qβ

ρ
uµ∂µρ+ Πaβ + ∂βP − 2η∇µσµβ + qµ∇µuβ + uµ∇µqβ

+ uβu
ν∂νP − 2ηuνuβ∇µσµν + uνuβu

µ∇µqν
= −qβ

ρ
uµ∂µρ+ Πaβ + ∂βP − 2η∇µσµβ + qµ∇µuβ + uµ∇µqβ

+ uβ (uν∂νP + 2ησµνσµν − qνaν) , (B.3)

where the identities qµuµ = uµaµ = σµνuν = 0, uµuν = −1, σµνσµν = σµν∇µuν are
used. Combining the Eq. (B.2) and Eq. (B.3) we get

uµ
[
∂µU −

U + P

ρ
∂µρ

]
= 2ησµνσµν − qµaµ −∇µqµ. (B.4)
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With Eq. (A.6) we can obtain an equation for mass conservation

0 =∇µ (ρuµ) = uµ∂µρ+ ρθ = uµ∂µρ+ ρ

(2
r
ur + ∂ru

r
)

⇒ ∂r
(
r2ρur

)
+ r2uj∂jρ = 0, for j ∈ {t, θ, φ} . (B.5)

Finally, we reproduce the zero torque at the innermost stable circular orbit
condition that appears in [211]. Using the killing vector fields ∂φ, ∂t we can
calculate

0 =∇ · (T · ∂φ) = ∇µTµφ = 1√
−g

∂µ
(√
−gTµφ

)
≈ 1
r2∂r

(
ρuruφr

2 − 2ησrφr2
)

+ uφ∂θq
θ with Π ≈ ρ

⇒ ∂r
(
ρuruφr

2 − 2ησrφr2
)

= −r2uφ∂θq
θ

⇒ ∂r

(
Ṁ

2πuφ + 4rHησrφ

)
= 2Huφε after integrating

vertically and using Eq. (3.17)

Analogously for ∂t, ∂r

(
Ṁ

2πut − 4rHΩησrφ

)
= 2Hutε after integrating

vertically and using Eq. (3.12) (B.6)

The vertical integration of the divergence of the heat flux is as follows: Since,
on average, q = qθ∂θ, we have ∇µqµ = ∂θq

θ and by Eq. (A.2), qθ = rq
ˆ̂
θ. Vertically

integrating yields ∫ θmax

θmin
∂θq

θrdθ = r qθ
∣∣∣θmax

θmin
= 2q

˜̃θ = 2Hε, (B.7)

where q
˜̃θ is the averaged energy flux radiating out of a face of the disk, as measured

by an observer on the LRF, which we approximate as the half-thickness of the disk
H times the average energy density per unit proper time ε lost by the disk. With
the variable change z = 8πrHησrφ/Ṁ and y = 4πHε/Ṁ the equations reduce to

∂r (uφ + z) = yuφ, (B.8a)
∂r (ut − Ωz) = yut. (B.8b)

Using the relation ∂rut = −Ω∂ruφ [323, Eq. (10.7.29)] and ∂r (ut + Ωuφ) = uφ∂rΩ
we can combine the previous equations to obtain

z = −y (ut + Ωuφ)
∂rΩ

, (B.9a)

∂r
(
AB2

)
= B∂ruφ, (B.9b)
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with A = y/∂rΩ and B = ut + Ωuφ. To integrate these equations we use the zero
torque condition z(r = r∗) = 0 where r∗ is the radius of the innermost stable circular
orbit, which gives the relation

y = ∂rΩ
(ut + Ωuφ)2

∫ r

r∗
(ut + Ωuφ) ∂ruφdr = ∂rΩ

(ut + Ωuφ)2

(
utuφ|rr∗ − 2

∫ r

r∗
uφ∂rutdr

)
,

(B.10)
or, equivalently,

8πHrρνturbσrφ ≈ 8πHrΠνturbσrφ = − Ṁ

(ut + Ωuφ)

(
utuφ|rr∗ − 2

∫ r

r∗
uφ∂rutdr

)
.

(B.11)
Using Eq. (3.6), the approximation γr̃ ≈ 1 and the variable change r = xM2 the

integral can be easily evaluated by partial fractions

8πHrρνturbσrφ = ṀMf (x, x∗) , (B.12a)

f (x, x∗) = x3 + a

x3/2
√
x3 − 3x+ 2a

(
x− x∗ − 3

2a ln
(
x

x∗

)
+ 1

2

3∑
i=1

ax2
i − 2xi + a

x2
i − 1

ln
(
x− xi
x∗ − xi

))
,

(B.12b)
where x1, x2, x3 are the roots of the polynomial x3 − 3x+ 2a.
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Appendix C

Nuclear Statistical Equilibrium

The results in this section appear in [230]. We include them here since they are
necessary to solve Eq. (3.20). Neutrino dominated accretion disks reach densities
above ∼ 107 g cm−3 and temperatures above ∼ 5× 109 K. For these temperatures,
forward and reverse nuclear reactions are balanced and the abundances in the plasma
are determined by the condition µi = Ziµp +Niµn, that is, the Nuclear Statistical
Equilibrium. However, for densities above 106 g cm−3, the electron screening of
charged particle reactions can affect the nuclear reaction rates. For this reason, to
obtain an accurate NSE state it is necessary to include Coulomb corrections to the
ion chemical potential. The Coulomb correction to the i-th chemical potential is
given by

µCi
T

= K1

[
Γi
√

Γi +K2 −K2 ln
(√

Γi
K2

+
√

1 + Γi
K2

)]
+ 2K3

[√
Γi − arctan

√
Γi
]

+ Z1

[
Γi − Z2 ln

(
1 + Γi

Z1

)]
+ Z3

2 ln
(

1 + Γ2
i

Z4

)
(C.1)

The ion coupling parameter is written in terms of the electron coupling parameter
as Γi = ΓeZ5/3

i with

Γe = e2

T

(4πYenB
3

)1/3
. (C.2)

where e is the electron charge. The parameters Ki, Ci are given in Table (C.1).

Table C.1. Fitting constants in Eq. (C.1) [230].

K1 K2 K3 Z1 Z2 Z3 Z4

−0.907347 0.62849 0.278497 4.50× 10−3 170.0 −8.4× 10−5 3.70× 10−3
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Appendix D

Neutrino Interactions and
Cross-Sections

In this appendix we include the neutrino emission rates and neutrino cross-sections
used in the accretion disk model. These expressions have been covered in [71, 301,
39, 252, 317, 42, 41]. We also include the expression energy emission rate for νν̄
annihilation into electron-positron pairs. Whenever possible we write the rates in
terms of generalized Fermi functions

Fk,` (y, η) =
∞∫
`

xk
√

1 + xy/2
exp (x− η) + 1dx. (D.1)

since some numerical calculations were done following [12]. Before proceeding we
list some useful expressions and constants in Planck units that will be used. The
numerical values can be found in [292].

Mw ≈ 6.584× 10−18 ............................W boson mass (D.2a)
gw ≈ 0.653 ...........................................Weak coupling constant (D.2b)
ga ≈ 1.26 .............................................Axial-vector coupling constant (D.2c)

α∗ ≈ 1
137 .............................................Fine structure constant (D.2d)

sin2 θW ≈ 0.231 ...................................Weinberg angle (D.2e)
cos2 θc ≈ 0.947 .....................................Cabibbo angle (D.2f)

GF =
√

2g2
w

8M2
w

≈ 1.738× 1033 .................Fermi coupling constant (D.2g)

Cv,e = 2 sin2 θW + 1/2 ..........................Weak interaction vector constant for νe (D.2h)
Ca,e = 1/2 ............................................Weak interaction axial-vector constant for νe (D.2i)
Cv,x = CV,e − 1 ....................................Weak interaction vector constant for νx (D.2j)
Ca,x = CA,e − 1 ....................................Weak interaction axial-vector constant for νx (D.2k)

σ0 = 4G2
Fm

2
e

π
≈ 6.546× 1021 ................Weak interaction cross-section (D.2l)
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D.1 Neutrino Emissivities

• Pair annihilation e−+ e+→ ν + ν̄

This process generates neutrinos of all flavours but around 70% are electron
neutrinos [27]. This is due to the fact that the only charged leptons in the accretion
systems we study are electrons and positrons, so creation of electron neutrinos occurs
via either charged or neutral electroweak currents while creation of non-electronic
neutrinos can only occur through neutral currents. Using the electron or positron
four-momentum p = (E,p), the Dicus’ cross-section for a particular flavour i is [71]

σD,i = G2
F

12πEe−Ee+

[
C+,i

(
m4
e + 3m2

epe− ·pe+ + 2 (pe− ·pe+)2
)

+ 3C−,i
(
m4
e +m2

epe− ·pe+
)]
. (D.3)

The factors C±,i, are written in terms of the weak interaction vector and axial-
vector constants: C±,i = C2

v,i±C2
a,i [217]. Representing the Fermi-Dirac distribution

for electrons (positrons) as fe−(fe+) with ηe∓ the electron (positron) degeneracy
parameter including its rest mass. The number and energy emission rates can be
calculated by replacing Λ = 2 and Λ = Ee− + Ee+ in the integral [317]:

4
(2π)6

∫
ΛσDfe−fe+d3pe−d

3pe+ , (D.4)

giving the expressions

Rνi+ν̄i = G2
Fm

8
e

18π [C+,i (8U1V1 + 5U−1V−1 + 9U0V0 − 2U−1V1 − 2U1V−1)

+9C−,i (U−1V−1 + U0V0)] , (D.5a)

Qνi+ν̄i = G2
Fm

9
e

36π [C+,i (8 (U2V1 + U1V2) + 7 (U1V0 + U0V1) + 5 (U−1V0 + U0V−1)

−2 (U2V−1 + U−1V2)) + 9C−,i (U0 (V1 + V−1) + V0 (U1 + U−1))] . (D.5b)

The functions U,V can be written in terms of generalized Fermi functions

Uj =
√

2ξ3/2
j+1∑
k=0

(
j + 1
k

)
ξkFk+1/2,0 (ξ, ηe−) , (D.6a)

Vj =
√

2ξ3/2
j+1∑
k=0

(
j + 1
k

)
ξkFk+1/2,0 (ξ, ηe+) . (D.6b)

It is often useful to define the functions

εmi = 2G2
F (me)4

3 (2π)7

∫
fe−fe+ (Eme− + Eme+)σD,i d3pe−d3pe+ (D.7)
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For m = 0 and m = 1 Eq. (D.7) gives the neutrino and anti-neutrino number
emissivity (neutrino production rate), and the neutrino and anti-neutrino energy
emissivity (energy per unit volume per unit time) for a certain flavour i, respectively
(that is, Eq. (D.5)). Hence, not only we are able to calculate the total number and
energy emissivity, but we can also calculate the neutrino or anti-neutrino energy
moments with

〈Emνi(ν̄i)〉 = εmi
ε0
i

, for m ≥ 1. (D.8)

• Electron capture and positron capture p+ e−→ n+ νe, n+ e+→ p+ ν̄e and
A+ e−→ A′ + νe

Due to lepton number conservation this process generated only electron (anti)-
neutrinos. The number and energy emission rates for electron and positron capture
by nucleons are

Rνe = m5
eG

2
F cos2 θc√
2π3

(
1 + 3g2

A

)
∆npξ

3/2
[
ξ3F7/2,χ (ξ, ηe−)

+ (3− 2Q) ξ2F5/2,χ (ξ, ηe−) + (1− Q) (3− Q) ξF3/2,χ (ξ, ηe−)

+ (1− Q)2F1/2,χ (ξ, ηe−)
]
, (D.9a)

Qνe = m6
eG

2
F cos2 θc√
2π3

(
1 + 3g2

A

)
∆npξ

3/2
[
ξ4F9/2,χ (ξ, ηe−)

+ξ3 (4− 3Q)F7/2,χ (ξ, ηe−) + 3 (Q− 1) (Q− 2) ξ2F5/2,χ (ξ, ηe−)

+ (1− Q)2 (4− Q) ξF3/2,χ (ξ, ηe−) + (1− Q)3F1/2,χ (ξ, ηe−)
]
, (D.9b)

Rν̄e = m5
eG

2
F cos2 θc√
2π3

(
1 + 3g2

A

)
∆pnξ

3/2
[
ξ3F7/2,0 (ξ, ηe+)

+ (3 + 2Q) ξ2F5/2,0 (ξ, ηe+) + (1 + Q) (3 + Q) ξF3/2,0 (ξ, ηe+)

+ (1 + Q)2F1/2,0 (ξ, ηe+)
]
, (D.9c)

Qν̄e = m6
eG

2
F cos2 θc√
2π3

(
1 + 3g2

A

)
∆npξ

3/2
[
ξ4F9/2,0 (ξ, ηe+)

+ξ3 (4 + 3Q)F7/2,0 (ξ, ηe+) + 3 (Q + 1) (Q + 2) ξ2F5/2,0 (ξ, ηe+)

+ (1 + Q)2 (4 + Q) ξF3/2,0 (ξ, ηe+) + (1 + Q)3F1/2,0 (ξ, ηe+)
]
. (D.9d)

where ∆ij = (ni − nj) / (exp (ηi − ηj)− 1) , i, j ∈ {p, n} are the Fermion block-
ing factors in the nucleon phase spaces and Q = (mn−mp)me ≈ 2.531 is the nucleon
mass difference. The number and energy emission rates for electron capture by an
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ion i are

Rνe,i =
√

2m5
eG

2
F cos2 θc

7π3 g2
AniκZiκNiξ

3/2
[
ξ3F7/2,χ̄ (ξ, ηe−)

+ (3− 2Q) ξ2F5/2,χ̄ (ξ, ηe−) + (1− Q) (3− Q) ξF3/2,χ̄ (ξ, ηe−)

+ (1− Q)2F1/2,χ̄ (ξ, ηe−)
]
, (D.10a)

Qνe,i =
√

2m6
eG

2
F cos2 θc

7π3 g2
AniκZiκNiξ

3/2
[
ξ4F9/2,χ̄ (ξ, ηe−)

+ξ3 (4− 3Q)F7/2,χ̄ (ξ, ηe−) + 3 (Q− 1) (Q− 2) ξ2F5/2,χ̄ (ξ, ηe−)

+ (1− Q)2 (4− Q) ξF3/2,χ̄ (ξ, ηe−) + (1− Q)3F1/2,χ̄ (ξ, ηe−)
]
, (D.10b)

The low limits of integration in these expressions are given by χ = (Q− 1)/ξ and
χ̄ = (µn − µp + ∆)/T − 1/ξ where ∆ ≈ 2.457× 10−22 is the energy of the neutron
1f5/2 state above the ground state. The functions κZi , κNi are

κZi =


0 if Zi ≤ 20.
Zi − 20 if 20 < Zi ≤ 28.
8 if Zi > 28.

, κNi =


6 if Ni ≤ 34.
40−Ni if 34 < Ni ≤ 40.
0 if Ni > 40.

(D.11)

• Plasmon decay γ̃ → ν + ν̄

Rνe+ν̄e = Cv,eσ0T
8

96π3m2
eα
∗ γ̃

6 (γ̃ + 1) exp (−γ̃) , (D.12a)

Qνe+ν̄e = Cv,eσ0T
9

192π3m2
eα
∗ γ̃

6
(
γ̃2 + 2γ̃ + 2

)
exp (−γ̃) , (D.12b)

Rνx+ν̄x = Cv,xσ0T
8

48π3m2
eα
∗ γ̃

6 (γ̃ + 1) exp (−γ̃) , (D.12c)

Qνx+ν̄x = Cv,xσ0T
9

96π3m2
eα
∗ γ̃

6
(
γ̃2 + 2γ̃ + 2

)
exp (−γ̃) , (D.12d)

where γ̃ = γ̃0

√(
π2 + 3 (ηe− + 1/ξ)2

)
/3 and γ̃0 = 2

√
α∗

3π ≈ 5.565× 10−2.

• Nucleon-nucleon bremsstrahlung n1 + n2 → n3 + n4 + ν + ν̄

The nucleon-nucleon bremsstrahlung produces the same amount of neutrinos of
all three flavours. The number and energy emission rates can be approximated by
(see, e.g., [41])

Rνi+ν̄i =
(
2.59× 1013

)(
X2
p +X2

n + 28
3 XpXn

)
n2
Bξ

9/2, (D.13a)

Qνi+ν̄i =
(
4.71× 10−9

)(
X2
p +X2

n + 28
3 XpXn

)
n2
Bξ

10/2, (D.13b)
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D.2 Cross-Sections
We consider four interactions to describe the (anti)-neutrino total cross-section.

• Neutrino annihilation (ν + ν̄ → e−+ e+).

σνeν̄e = 4
3Kνeν̄eσ0

〈Eνe〉〈Eν̄e〉
m2
e

with Kνeν̄e = 1 + 4 sin2 θW + 8 sin4 θW
12 , (D.14a)

σνxν̄x = 4
3Kνxν̄xσ0

〈Eνx〉〈Eν̄x〉
m2
e

with Kνxν̄x = 1− 4 sin2 θW + 8 sin4 θW
12 , (D.14b)

• Electron (anti)-neutrino absorption by nucleons (νe+n→ e−+p and ν̄e+p→
e+ + n).

σνen = σ0

(
1 + 3g2

a

4

)(〈Eνe〉
me

+ Q
)2√√√√1− 1(

〈Eνe 〉
me

+ Q
)2 . (D.15a)

σν̄ep = 3.83× 1022
(
℘〈Eν̄e〉
me

− Q
)2√√√√1− 1(

℘〈Eν̄e 〉
me

− Q
)2

(
℘〈Eν̄e〉
me

)g(Eν̄e )
,

(D.15b)

g(Eν̄e) = −0.07056 + 0.02018 ln
(
℘〈Eν̄e〉
me

)
− 0.001953 ln3

(
℘〈Eν̄e〉
me

)
. (D.15c)

where ℘ = 0.511.

• (Anti)-neutrino scattering by baryons (ν +Ai → ν +Ai and ν̄ +Ai → ν̄ +Ai).

σp = σ0〈E〉2

4m2
e

(
4 sin4 θW − 2 sin2 θW + 1 + 3g2

a

4

)
(D.16a)

σn = σ0〈E〉2

4m2
e

1 + 3g2
a

4 . (D.16b)

σAi = σ0A
2
i 〈E〉2

16m2
e

[(
4 sin2 θW − 1

) Zi
Ai

+ 1− Zi
Ai

]
. (D.16c)

• (Anti)-neutrino scattering by electrons or positrons (ν + e± → ν + e± and
ν̄ + e± → ν̄ + e±).

σe = 3
8σ0ξ

〈E〉
me

(
1 + ηe + 1/ξ

4

)[
(Cv,i + n`Ca,i)2 + 1

3 (Cv,i − n`Ca,i)2
]
. (D.17)

Here, n` is the (anti)-neutrino lepton number (that is, 1 for neutrinos and −1
for anti-neutrinos, depending on the cross-section to be calculated), and, in the
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last four expressions, 〈E〉 is replaced by the average (anti)-neutrino energy of the
corresponding flavour. With these expressions, the total opacity for neutrinos or
anti-neutrinos is

κνi(ν̄i) =
∑
i σini
ρ

, (D.18)

where ni is the number density of the target particle associated with the process
corresponding to the cross-section σi. The (anti)-neutrino optical depth appearing
in Eq. (3.31) can then be approximated as

τνi(ν̄i) =
∫
κνi(ν̄i)ρdθ ≈ κνi(ν̄i)ρH. (D.19)

D.3 Neutrino–Anti-neutrino Pair Annihilation
Since the main interaction between νν̄ is the annihilation into e−e+, this process
above neutrino-cooled disks has been proposed as the origin of the energetic plasma
involved in the production of GRBs. Once the (anti)-neutrino energy emissivity
and average energies are calculated it is possible to calculate the energy deposition
rate of the process νi + ν̄i → e− + e+ for each flavour i. Ignoring Pauli blocking
effects in the phase spaces of electron and positrons, the local energy deposition
rate at a position r by νν̄ annihilation can be written in terms of the neutrino and
anti-neutrino distributions fνi = fνi (r, Eν) , fν̄i = fν̄i (r, Eν̄) as [136]

Qνiν̄i = A1,i

∫ ∞
0
dEνi

∫ ∞
0
dEν̄iE

3
νiE

3
ν̄i (Eνi + Eν̄i)

∫
S2
dΩνi

∫
S2
dΩν̄ifνifν̄i (1− cos θ)2

+A2,i

∫ ∞
0
dEνi

∫ ∞
0
dEν̄iE

2
νiE

2
ν̄i (Eνi + Eν̄i)

∫
S2
dΩνi

∫
S2
dΩν̄ifνifν̄i (1− cos θ)

(D.20)

where we have introduced the constants appearing in Eq. (3.76)

A1,i =
σ0
[
(Cv,i − Ca,i)2 + (Cv,i + Ca,i)2

]
12π2m2

e

A2,i =
σ0
[
2C2

v,i − C2
a,i

]
6π2m2

e

(D.21)

In Eq. (D.20), θ is the angle between the neutrino and anti-neutrino momentum
and dΩ is the differential solid angle of the incident (anti)-neutrino at r. The
integral can be re-written in terms of the total intensity (energy integrated intensity)
Iν =

∫
E3
νfνdEν as [253]

Qνiν̄i = A1,i

∫
S2
dΩνiIνi

∫
S2
dΩν̄iIν̄i (〈Eνi〉+ 〈Eν̄i〉) (1− cos θ)2

+A2,i

∫
S2
dΩνiIνi

∫
S2
dΩν̄iIν̄i

〈Eνi〉+ 〈Eν̄i〉
〈Eνi〉〈Eν̄i〉

(1− cos θ) (D.22)

The incident radiation intensity passing through the solid differential angle dΩ at
r is the intensity Ird,ν emitted from the point on the disk rd diluted by the inverse
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square distance rk = |r− rd| between both points. Finally, assuming that each point
rd on the disk’s surface acts as a half-isotropic radiator of (anti)-neutrinos, the total
flux emitted at rd is Frd,ν =

∫ π/2
0

∫ 2π
0 Ird,ν cos θ′ sin θ′dθ′dφ′ = πIrd,ν , with θ′, φ′ the

direction angles at rd. Collecting all obtains

Qνiν̄i = A1,i

∫
rd,νi∈disk

drd,νi
∫

rd,ν̄i∈disk

drd,ν̄i
Frd,νi
r2
k,νi

Frd,ν̄i
r2
k,ν̄i

(〈Eνi〉+ 〈Eν̄i〉) (1− cos θ)2

+A2,i

∫
rd,νi∈disk

drd,νi
∫

rd,ν̄i∈disk

drd,ν̄i
Frd,νi
r2
k,νi

Frd,ν̄i
r2
k,ν̄i

〈Eνi〉+ 〈Eν̄i〉
〈Eνi〉〈Eν̄i〉

(1− cos θ)

(D.23)
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