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Simple Riemann waves (RWs), solutions of the Inviscid Burgers’ Equation (IBE), are of fundamental 

importance to study shock formation in different physical frameworks beyond hydrodynamics [1]. Recently, RW 

signatures in time domain have been reported in the context of nonlinear optical fibres [2-4]. Nevertheless, only 

limited control was demonstrated on the propagation of these peculiar optical pulses [5]. Here, we describe a 

method to control the nonlinear dynamics of their spatial counterpart, i.e., Riemann beams (RBs). Such RBs can 

be theoretically generated with arbitrary trajectories, by properly engineering an external potential and the 

application of an initial phase profile on the beam. In particular, we study shifted RBs, whose transversal shock 

position can be controlled, even in the absence of any external potential. Figures 1 (a,b) illustrate the dynamical 

control achievable for two different cases of RBs. During propagation, a pre-chirped Gaussian beam maintains a 

constant peak intensity, and undergoes a progressive steepening of its trailing edge up to a near-vertical front at z 

=10 mm (shock distance). Figure 1(a) shows a shifted Gaussian RB, generated by the inclusion of a linear phase 

shift α. In Fig. 1(b), the external potential function and the initial phase are designed to guide the Gaussian RB 

along a sinusoidal path T(z) – as detailed in caption. Numerical simulations with the nonlinear Schrodinger 

equation (NLSE) of nonlinear beam evolution show a good agreement with IBE predictions. Experimentally, we 

report the first observation of shifted RBs, obtained by injecting an input Gaussian RB into a 1cm-long cuvette 

filled with m-cresol/nylon thermal solution as shown in the setup of Fig. 1(c). The experimental results illustrated 

in Fig. 1(d) are in a good agreement with analytical predictions. Our work open up new possibilities for the control 

and tailoring of nonlinear beams as well as the study of spatial RWs dynamics in general. 

 
Fig. 1 NLSE simulations demonstrating the controlled propagation of Gaussian RBs over 2 cm of m-cresol/nylon thermal 

solution (a) without (shifted RB: α = -6×105) and (b) with (sinusoidal RB: T(z) = 3.4×10-4sin(400z) and α = -4×105) the 

contribution of an external potential. The input RB is tailored to exhibit the formation of a shock formation at z =10 mm 
(Parameters: Gaussian beam with 82 W/m2 peak intensity and 240 µm waist propagating in an m-cresol/nylon solution: 

n0=1.54, n2 = −1.6 × 10−5 W/cm2 at λ=532 nm). Numerical results are compared with the characteristic lines obtained 

analytically from the IBE (white lines). (c) Experimental setup employed to generate shifted RBs. (d) Transverse intensity 
patterns showing the formation of the shifted RB in a 10 mm-long nonlinear m-cresol/nylon thermal solution. 
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