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1. Introduction

Precision flavour physics is a particularly powerful tool for exploring the limits of the Stan-
dard Model (SM) of particle physics and in searching for inconsistencies which would signal the
existence of new physics. An important component of this endeavour is the over-determination
of the elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix from a wide range of weak
processes. The precision in extracting CKM matrix elements is generally limited by our ability to
quantify hadronic effects and the main goal of large-scale simulations using the lattice formulation
of QCD is the ab-initio evaluation of the non-perturbative QCD effects in physical processes. The
recent, very impressive, improvement in lattice computations has led to a precision approaching
O(1%) for a number of quantities (see e.g. Ref. [2] and references therein) and therefore in order
to make further progress electromagnetic effects (and other isospin-breaking contributions) have to
be considered. The question of how to include electromagnetic effects in the hadron spectrum and
in the determination of quark masses in ab-initio lattice calculations was addressed for the first time
in [3]. Much theoretical and algorithmic progress has been made following this pioneering work,
particularly in recent years, leading to remarkably accurate determinations of the charged-neutral
mass splittings of light pseudoscalar mesons and light baryons (see Refs. [4, 5, 6, 7, 8, 9] for recent
papers on the subject and Refs. [10, 11] for reviews of these results and a discussion of the different
approaches used to perform QED+QCD lattice calculations of the spectrum).

In the spectrum calculations, two main approaches have been pursued. The direct one consists
in adding the electromagnetic interaction to the quark action [3, 4, 5, 7, 8, 9]. A different method,
developed in Ref. [6], is based on a combined expansion of the lattice path integral in powers of
the light quark mass difference (md−mu) and the electromagnetic coupling α . This method relies
on the observation that isospin breaking effects, including those associated with QED interactions,
are tiny because very small factors, (md −mu)/ΛQCD and α , multiply sizable matrix elements of
hadronic operators. An advantage of this method with respect to the standard approach is that, by
working at fixed order in a perturbative expansion, one is able to factorize the small coefficients
and to get relatively large numerical signals. For the same reason, one does not need to perform
simulations at unphysical values of the electric charge, thus avoiding extrapolations of the lattice
data with respect to α .

In the computation of the hadron spectrum there is a very significant simplification in that there
are no infrared divergences. In Ref. [1] we have proposed a strategy to include electromagnetic ef-
fects in processes for which infrared divergences are present but which cancel in the standard way
between diagrams containing different numbers of real and virtual photons [12]. The presence of
infrared divergences in intermediate steps of the calculation requires the development of new meth-
ods. Indeed, in order to cancel the infrared divergences and obtain results for physical quantities,
radiative corrections from virtual and real photons must be combined. We stress that it is not suf-
ficient simply to add the electromagnetic interaction to the quark action because amplitudes with
different numbers of real photons must be evaluated separately, before being combined in the in-
clusive rate for a given process. In Ref. [1] for the first time we introduced and discussed a strategy
to compute electromagnetic radiative corrections to leptonic decays of pseudoscalar mesons which
can then be used to determine the corresponding CKM matrix elements. Although we present the
explicit discussion for this specific set of processes, the method is more general and can readily be
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extended to generic processes including, for example, to semileptonic decays.
In this talk we illustrate this strategy and present first numerical results of an exploratory

calculation. These results are encouraging and make us confident that the calculation is feasible
and can achieve the required precision.

2. The general strategy

We now focus on the leptonic decay of the charged pseudoscalar meson P+. Let Γ0 be the
partial width for the decay P+ → `+ν` where the charged lepton ` is an electron or a muon (or
possibly a τ) and ν` is the corresponding neutrino. The subscript 0 indicates that there are no
photons in the final state. In the absence of electromagnetism, the non-perturbative QCD effects
are contained in a single number, the decay constant fP, defined by

〈0 | q̄1γ
µ

γ
5 q2 |P+(p)〉= ipµ fP , (2.1)

where P+ is composed of the valence quarks q̄1 and q2, and the axial current in (2.1) is composed
of the corresponding quark fields. There have been very many lattice calculations of the decay con-
stants fπ , fK , fD(s) and fB(s) [2], some of which are approaching O(1%) precision. As noted above,
in order to determine the corresponding CKM matrix elements at this level of precision isospin
breaking effects, including electromagnetic corrections, must be considered. It will become clear
in the following, and has been stressed in [13, 14], that it is not possible to give a physical definition
of the decay constant fP in the presence of electromagnetism, because of the contributions from
diagrams in which the photon is emitted by the hadron and absorbed by the charged lepton. Thus
the physical width is not just given in terms of the matrix element of the axial current and can only
be obtained by a full calculation of the electromagnetic corrections at a given order.

The calculation of electromagnetic effects leads to an immediate difficulty: Γ0 contains in-
frared divergences and by itself is therefore unphysical. The well-known solution to this problem
is to include the contributions from real photons. We therefore define Γ1(∆E) to be the partial
width for the decay P+→ `+ν` γ where the energy of the photon in the rest frame of P+ is inte-
grated from 0 to ∆E. The sum Γ0 +Γ1(∆E) is free from infrared divergences (although, of course,
it does depend on the energy cut-off ∆E). We restrict the discussion to O(α) corrections, where α

is the electromagnetic fine-structure constant, and hence only consider a single photon.
The previous paragraph reminds us that the determination of the CKM matrix elements Vq1q2

at O(α) (i.e. at O(1%) or better) from leptonic decays requires the evaluation of amplitudes with a
real photon. The main goal of this talk is to illustrate how such a calculation might be performed
with non-perturbative accuracy. There are a number of technicalities which will be explained in the
following sections, but here we present a general outline of the proposed method. We start with the
experimental observable Γ(∆E), the partial width for P+→ `+ν`(γ). The final state consists either
of `+ν` or of `+ν`γ where the energy of the photon in the centre-of-mass frame is smaller than ∆E:

Γ(∆E) = Γ0 +Γ1(∆E) . (2.2)

In principle at least, Γ1(∆E) can be evaluated in lattice simulations by computing the ampli-
tudes for a range of photon momenta and using the results to perform the integral over phase space.
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Such calculations would be very challenging. Since the computations are necessarily performed
in finite volumes the available momenta are discrete, so that it would be necessary to choose the
volumes appropriately and compute several correlation functions. We choose instead to make use
of the fact that a very soft photon couples to a charged hadron as if to an elementary particle; it does
not resolve the structure of the hadron. We therefore propose to choose ∆E to be sufficiently small
that the pointlike approximation can be used to calculate Γ1(∆E) in perturbation theory, treating
P+ as an elementary particle. On the other hand, ∆E must be sufficiently large that Γ(∆E) can be
measured experimentally. We imagine setting ∆E = O(10-20MeV) which satisfies both require-
ments. From Refs. [15, 16] we learn that resolutions on the energy of the photon in the rest frame
of the decaying particle of this order are experimentally accessible. In Ref. [1] we presented a
discussion of the uncertainties induced by treating the meson as elementary as a function of ∆E.
This discussion is based on the phenomenological analyses performed in Refs. [17, 18, 19] based
on the use of chiral perturbation theory at O(p4). By analyzing separately the contribution corre-
sponding to the approximation of a point-like pion (also frequently called inner bremsstrahlung)
from the structure dependent part and the interference of the two, this analysis shows that for the
decays π → `νγ and K→ `νγ the interference contributions are always negligible. The structure-
dependent contributions can be sizeable, because they are chirally enhanced with respect to the
point-like contribution. This happens in particular for the real decay K→ eνeγ . On the other hand,
for Eγ < 20 MeV both structure dependent and interference contributions can be safely neglected
with respect to the point-like contributions, for all leptonic decays of pions and kaons. These results
are shown, quantitatively, in Fig. 1.

It is necessary to ensure that the cancellation of infrared divergences occurs with good numer-
ical precision leading to an accurate result for Γ(∆E). Since Γ0 is to be calculated in a Monte-Carlo
simulation and Γ1(∆E) in perturbation theory using the pointlike approximation, this requires an
intermediate step. We propose to rewrite Eq. (2.2) in the form

Γ(∆E) = lim
V→∞

(Γ0−Γ
pt
0 )+ lim

V→∞
(Γ

pt
0 +Γ1(∆E)) , (2.3)

where V is the volume of the lattice. Γ
pt
0 is an unphysical quantity; it is the perturbatively calculated

amplitude at O(α) for the decay P+→ `+ν` with the P+ treated as an elementary particle. In Γ
pt
0

the finite-volume sum over the momenta of the photon is performed over the full range. The
contributions from small momenta to Γ0 and Γ

pt
0 are the same and thus the infrared divergences

cancel in the first term on the right-hand side of Eq. (2.3). Moreover, the infrared divergences in Γ0

and Γ
pt
0 are both equal and opposite to that in Γ1(∆E). The infrared divergences therefore cancel

separately in each of the two terms on the right-hand side of Eq. (2.3) and indeed we treat each of
these terms separately. Γ

pt
0 +Γ1(∆E) is calculated in perturbation theory directly in infinite volume.

The QCD effects in Γ0 are calculated stochastically in a lattice simulation and the virtual photon is
included explicitly (in the Feynman gauge). For each photon momentum this is combined with Γ

pt
0

and the difference is summed over the momenta and then the infinite-volume limit is taken. This
completes the sketch of the proposed method, and in the remainder of this talk we explain the many
technical issues which must be addressed.

It will be helpful in the following to define ∆Γ0(L) in terms of the first term on the right-hand
side of Eq. (2.3):

∆Γ0(L) = Γ0(L)−Γ
pt
0 (L) , (2.4)

4



P
o
S
(
C
D
1
5
)
0
2
3

QED corrections to hadronic processes: a strategy for lattice QCD V. Lubicz

R1
A(ΔE) = Γ1

A(ΔE)
Γ0

α ,pt + Γ1
pt (ΔE)

  ,   A = { SD, INT }
SD	  =	  structure	  dependent	  
INT	  =	  interference	  

π → µν(γ )

K → eν(γ ) K → µν(γ )

π → eν(γ )

ΔE = 20 MeV

Figure 1: Ratios between the structure-dependent (SD) and interference (INT) contributions to the decay
rates to the O(α) point-like (pt) one, for the decays π → `νγ and K→ `νγ . The estimates are obtained by
using phenomenological determinations of the relevant form factors based on chiral perturbation theory at
O(p4).

where we have made the dependence on the volume explicit, V = L3 and L is the length of the
lattice in any spacial direction (for simplicity we assume that this length is the same in all three
directions). In analogy to Eq. (2.2) we also define the perturbative quantity

Γ
pt(∆E) = Γ

pt
0 +Γ1(∆E) . (2.5)

We note that, since the sum of all the terms in Eq. (2.3) is gauge invariant as is the perturbative
rate Γpt(∆E), the combination ∆Γ0(L) is also gauge invariant, although each of the two terms is
not.

In this talk we now discuss, in turn, the effective weak Hamiltonian and its renormalisation
in the presence of electromagnetism, the structure of the calculation and the correlation functions
which need to be calculated on the lattice, the evaluation in perturbation theory at one loop of the
second term on the right-hand side of Eq. (2.3), Γpt(∆E). We finally put all the elements of the
calculation together, present the results of a preliminary numerical investigation and conclude with
a summary and presenting some future perspectives.

In the remainder of the talk, to be specific we choose P+ = π+ but the discussion generalizes
trivially to other pseudoscalar mesons with the obvious changes of flavour labels. The method does
not require P+ to be a light psuedo-Goldstone Boson nor on the use of chiral perturbation theory.

3. Matching the effective local four-quark operator(s) onto the standard model

At lowest order in electromagnetic (and strong) perturbation theory the process ud̄ → `+ν`

5
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u

d

ℓ+

νℓ

W ⇒
u

d

ℓ+

νℓ

Figure 2: Tree-level diagram for the process ud̄ → `+ν` (left-hand diagram). In the effective theory the
interaction is replaced by a local four-fermion operator (right-hand diagram).

proceeds by an s-channel W exchange, see the left-hand diagram in Fig. 2. Since the energy-
momentum exchanges in this process are much smaller than MW , it is standard practice to rewrite
the amplitude in terms of a four-fermion local interaction:

LW =−4GF√
2

V ∗ud
(
d̄LγµuL

)(
ν̄`Lγ

µ`L
)
, (3.1)

where the subscript L represents left, ψL = (1−γ5)
2 ψ , and GF is the Fermi constant. In performing

lattice computations this replacement is necessary, since the lattice spacing a is much greater than
1/MW , where MW is the mass of the W -Boson. When including the O(α) corrections, the ultra-
violet contributions to the matrix element of the local operator are different to those in the Standard
Model and in this section we discuss the matching factors which must be introduced to determine
the O(α) corrections to the π+ → `+ν` decay from lattice computations of correlation functions
containing the local operator in (3.1). Since the pion decay width is written in terms of GF , it is
necessary to start by revisiting the determination of the Fermi constant at O(α).

3.1 Determination of the Fermi constant, GF

GF is conventionally taken from the measured value of the muon lifetime using the expres-
sion [20, 21]

1
τµ

=
G2

Fm5
µ

192π3

[
1− 8m2

e

m2
µ

][
1+

α

2π

(
25
4
−π

2
)]

, (3.2)

leading to the value GF = 1.16634×10−5 GeV−2. (For an extension of Eq. (3.2) to O(α2) and the
inclusion of higher powers of ρ ≡ (me/mµ)

2 see Sec. 10.2 of [22].)
Eq. (3.2) can be viewed as the definition of GF . When calculating the Standard Model correc-

tions to the muon lifetime many of the contributions are absorbed into GF and the remaining terms
on the right-hand side of (3.2) come from the diagrams in Fig. 3. Specifically in these diagrams
the factor 1/k2 in the Feynman-gauge photon propagator is replaced by 1/k2×M2

W/(M2
W − k2),

where k is the momentum in the propagator; this is called the W -regularisation of ultra-violet di-
vergences. These diagrams are evaluated in the effective theory with the local four-fermion operator
(ν̄µγµ(1− γ5)µ)(ēγµ(1− γ5)νe).

An explanation of the reasoning behind the introduction of the W-regularisation is given
in [23]. The Feynman-gauge photon propagator is rewritten as two terms:

1
k2 =

1
k2−M2

W
+

M2
W

M2
W − k2

1
k2 (3.3)
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µ e

ν̄e

νµ

µ e

ν̄e

νµ

µ e

ν̄e

νµ

Figure 3: Diagrams contributing to the O(α) corrections to muon decay; see Eq. (3.2). The curly line
represents the photon.

W
µ e

ν̄e

νµ

Figure 4: Photon-W box diagrams contributing to the O(α) corrections to muon decay in the Standard
Model. The curly line represents the photon.

and the ultra-violet divergent contributions come from the first term and are absorbed in the def-
inition of GF . In addition, the Standard-Model γ-W box diagram in Fig. 4 is ultra-violet conver-
gent and is equal to the corresponding diagram in the effective theory (i.e. the third diagram in
Fig. 3) with the W-regularisation, up to negligible corrections of O(q2/M2

W ), where q is the four-
momentum of the electron and its neutrino. Other electroweak corrections not explicitly mentioned
above are all absorbed into GF .

3.2 W -regularisation and Weak Decays of Hadrons

It is a particularly helpful feature that most of the terms which are absorbed into the definition
of GF are common to other processes, including the leptonic decays of pseudoscalar mesons [24,
25]. There are however, some short-distance contributions which do depend on the electric charges
of the individual fields in the four-fermion operators and these lead to a correction factor of (1+
2α

π
log MZ

MW
) to Γ0 [24]. This is a tiny correction (' 0.06%), but one which nevertheless can readily

be included explicitly.
The conclusion of the above discussion is that the evaluation of the amplitude for the process

π+→ `+ν up to O(α) can be performed in the effective theory with the effective Hamiltonian

Heff =
GF√

2
V ∗ud

(
1+

α

π
log

MZ

MW

)
(d̄γ

µ(1− γ
5)u)(ν̄`γµ(1− γ

5)`) , (3.4)

and with the Feynman-gauge photon propagator in the W-regularisation. The value of GF is ob-
tained from the muon lifetime as discussed around Eq. (3.2).

Of course we are not able to implement the W-regularisation directly in present day lattice
simulations in which the inverse lattice spacing is much smaller than MW . The relation between the
operator in eq. (3.4) in the lattice and W regularisations can be computed in perturbation theory.
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Thus for example, with the Wilson action for both the gluons and fermions:

OW−reg
1 =

(
1+

α

4π

(
2loga2M2

W −15.539
))

Obare
1 +

α

4π

(
0.536Obare

2

+1.607Obare
3 −3.214Obare

4 −0.804Obare
5
)
, (3.5)

where

O1 = (d̄γ
µ(1− γ

5)u)(ν̄`γµ(1− γ
5)`) O2 = (d̄γ

µ(1+ γ
5)u)(ν̄`γµ(1− γ

5)`)

O3 = (d̄(1− γ
5)u)(ν̄`(1+ γ

5)`) O4 = (d̄(1+ γ
5)u)(ν̄`(1+ γ

5)`) (3.6)

O5 = (d̄σ
µν(1+ γ

5)u)(ν̄`σµν(1+ γ
5)`) .

The superscript “bare" indicates that these are bare operators in the lattice theory and the presence
of 5 operators on the right-hand side of Eq. (3.5) is a consequence of the breaking of chiral sym-
metry in the Wilson theory. Using lattice actions with good chiral symmetry, such as domain wall
fermions with a sufficiently large fifth dimension, only Obare

1 would appear on the right-hand side
of Eq.(3.5). The coefficients multiplying the operators depend of course on the lattice action being
used. Eq. (3.5) is valid up to corrections of O(αs(a)α) .

Having formulated the problem of calculating Γ0 in terms of the evaluation of correlation
functions involving the effective Hamiltonian in Eq. (3.4) we are now in a position to discuss how
the calculations of the amplitudes for the processes π+→ `+ν and π+→ `+νγ are to be performed.

4. Calculation of ∆Γ0(L)

In this section we describe the lattice calculation of ∆Γ0(L) at O(α), i.e. the first term on the
right-hand side of Eq. (2.3). Before entering into the details however, we add some comments on
the structure of the different terms appearing in Eq. (2.3).

Since we add and subtract the same perturbative quantity Γ
pt
0 , we find it convenient to choose

this to be the virtual decay rate for a point-like pion computed in the W-regularisation. In this way
we obtain the important advantage that the difference of the first two terms (∆Γ0(L)) and the sum of
the last two terms (Γpt(∆E)) on the r.h.s. of Eq. (2.3) are separately ultraviolet and infrared finite.

Let
√

Z` be the contribution to the decay amplitude from the electromagnetic wave-function
renormalisation of the final state lepton (see the diagram in Fig. 6(d)). An important simplifying
feature of this calculation is that Z` cancels in the difference Γ0− Γ

pt
0 . This is because in any

scheme and using the same value of the decay constant fπ , the contribution from the diagram in
Fig. 6(d) computed non-perturbatively or perturbatively with the point-like approximation are the
same. Thus we only need to calculate Z` directly in infinite volume and include it in the second
term on the right-hand side of Eq. (2.3).

Let us now briefly recall the calculation of Γ0 at O(α0), i.e. without electromagnetism.

4.1 Calculation of Γ0 at O(α0)

Without electromagnetic corrections we need to compute the correlation function sketched in
Fig. 5, which is a completely standard calculation. Since the leptonic terms are factorized from the
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νℓ

ℓ+u

d

π+

Figure 5: Correlation function used to calculate the amplitude for the leptonic decay of the pion in pure
QCD. The two black filled circles represent the local current-current operator (d̄γ

µ

L u)(ν̄`γµ`); the circles are
displaced for convenience.

hadronic ones, the amplitude is simply given by

ūν` α(pν`
)(M0)αβ v`β (p`) =

GF√
2

V ∗ud 〈0 | d̄γ
ν
γ

5 u |π+(pπ)〉
[
ūν`

(pν`
)γν(1− γ

5)v`(p`)
]

=
iGF fπ√

2
V ∗ud pν

π

[
ūν`

(pν`
)γν(1− γ

5)v`(p`)
]
. (4.1)

Here u,d in the matrix element represent the quark fields with the corresponding flavour quantum
numbers and uν`

and v` the spinors of the leptons defined by the subscript. The hadronic matrix
element, and hence the decay constant fπ , are obtained in the standard way by computing the
correlation function

C0(t)≡∑
~x
〈0 |
(

d̄(~0,0)γ4
γ

5 u(~0,0)
)

φ
†(~x,−t) |0〉 ' Zφ

0
2m0

π

e−m0
π t A0 , (4.2)

where φ † is an interpolating operator which can create the pion out of the vacuum, Zφ

0 ≡〈π+(~0)|φ †(0,~0) |0〉
and A0≡〈0 | d̄γ4γ5 u |π+(~0)〉0. We have chosen to place the weak current at the origin and to create
the pion at negative time −t, where t and T − t are sufficiently large to suppress the contributions
from heavier states and from the backward propagating pions (this latter condition may be conve-
nient but is not necessary). The subscript or superscript 0 here denotes the fact that the calculation
is performed at O(α0), i.e. in the absence of electromagnetism. Zφ

0 is obtained from the two-point
correlation function of two φ operators:

Cφφ

0 (t)≡∑
~x
〈0 |T{φ(~0,0)φ

†(~x,−t)}|0〉 ' (Zφ

0 )
2

2m0
π

e−m0
π t . (4.3)

For convenience we take φ to be a local operator (e.g. at (~x,−t) in Eq. (4.2)), but this is not
necessary for our discussion. Any interpolating operator for the pion on the chosen time slice
would do equally well.

Having determined A0 and hence the amplitude ūν` α(pν`
)(M0)αβ v`β (p`), the O(α0) contri-

bution to the decay width is readily obtained

Γ
tree
0 (π+→ `+ν`) =

G2
F |Vud |2 f 2

π

8π
mπ m2

`

(
1− m2

`

m2
π

)2

. (4.4)

In this equation we use the label tree to denote the absence of electromagnetic effects since the
subscript 0 here indicates that there are no photons in the final state.
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νℓ

ℓ+u

d

π+

(a)

νℓ

ℓ+u

d

π+

(b)

νℓ

ℓ+u

d

π+

(c)

νℓ

ℓ+u

d

π+

(d)

νℓ

ℓ+u

d

π+

(e)

νℓ

ℓ+u

d

π+

(f)

Figure 6: Connected diagrams contributing at O(α) contribution to the amplitude for the decay π+→ `+νl .

νℓ

ℓ+u

d

π+

q

(a)

νℓ

ℓ+u

d

π+

q

(b)

νℓ

ℓ+u

d

π+

q

(c)

νℓ

ℓ+u

d

π+

q

(d)

νℓ

ℓ+u

d

π+

q1 q2

(e)

Figure 7: Disconnected diagrams contributing at O(α) contribution to the amplitude for the decay π+ →
`+νl . The curly line represents the photon and a sum over quark flavours q, q1 and q2 is to be performed.

4.2 Calculation at O(α)

We now consider the one-photon exchange contributions to the decay π+ → `+ν` and show
the corresponding six connected diagrams in Fig. 6 and the disconnected diagrams in Fig. 7. By
“disconnected" here we mean that there is a sea-quark loop connected, as usual, to the remainder
of the diagram by a photon and/or gluons (the presence of the gluons is implicit in the diagrams).
The photon propagator in these diagrams in the Feynman gauge and in infinite (Euclidean) volume
is given by

δµν∆(x1,x2) = δµν

∫ d4k
(2π)4

eik·(x1−x2)

k2 . (4.5)

In a finite volume the momentum integration is replaced by a summation over the momenta

10
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which are allowed by the boundary conditions. For periodic boundary conditions, we can neglect
the contributions from the zero-mode k = 0 since a very soft photon does not resolve the structure
of the pion and its effects cancel in Γ0−Γ

pt
0 in Eq. (2.3). For this reason in the following Γ0 and

Γ
pt
0 are evaluated separately but using the following expression for the photon propagator in finite

volume:

δµν∆(x1,x2) = δµν

1
L4 ∑

k= 2π

L n;k 6=0

eik·(x1−x2)

4∑ρ sin2 kρ

2

, (4.6)

where all quantities are in lattice units and the expression corresponds to the simplest lattice dis-
cretisation. k, n, x1 and x2 are four component vectors and for illustration we have taken the
temporal and spatial extents of the lattice to be the same (L).

For other quantities, the presence of zero momentum excitations of the photon field is a subtle
issue that has to be handled with some care. In the case of the hadron spectrum the problem
has been studied in [26] and, more recently in [4, 5], where it has been shown, at O(α), that the
quenching of zero momentum modes corresponds in the infinite-volume limit to the removal of
sets of measure zero from the functional integral and that finite volume effects are different for the
different prescriptions.

We now divide the discussion of the diagrams in Fig. 6 and Fig. 7 into three classes: those
in which the photon is attached at both ends to the quarks (diagrams 6(a)-6(c) and 7(a), (b), (d)
and (e)), those in which the photon propagates between one of the quarks and the outgoing lepton
(diagrams 6(e), 6(f) and 7(c)) and finally diagram 6(d) which corresponds to the mass and wave-
function normalisation of the charged lepton. We have already observed that the wave function
renormalisation of the lepton cancels in the difference Γ0−Γ

pt
0 in Eq. (2.3), so we now turn to the

remaining diagrams.

• The evaluation of diagrams Fig. 6(a)-(c) and Fig. 7(a),(b) and (d): We start by considering the
connected diagrams 6(a)-(c). For these diagrams, the leptonic contribution to the amplitude is
contained in the factor

[
ūν`

(pν`
)γν(1−γ5)v`(p`)

]
and we need to compute the Euclidean hadronic

correlation function

C1(t) =−
1
2

∫
d3~xd 4x1 d 4x2 〈0|T

{
Jν

W (0) jµ(x1) jµ(x2)φ
†(~x,−t)

}
|0〉 ∆(x1,x2) . (4.7)

where T represents time-ordering, Jν
W is the V –A current d̄γν(1− γ5)u and we take −t < 0. jµ

is the hadronic component of the electromagnetic current and we find it convenient to include the
charges of the quarks Q f in the definition of j:

jµ(x) = ∑
f

Q f f̄ (x)γµ f (x) , (4.8)

where the sum is over all quark flavours f . The factor of 1/2 is the standard combinatorial one.
The computations are performed in Euclidean space and in a finite-volume with the photon

propagator ∆ given in Eq. (4.6) (or the corresponding expression for other lattice discretisations).
The absence of the zero mode in the photon propagator implies a gap between mπ and the ener-
gies of the other eigenstates. Provided one can separate the contributions of these heavier states
from that of the pion, one can perform the continuation of the correlation function in Eq. (4.7) from

11
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Minkowski to Euclidean space without encountering any singularities. From the correlation func-
tion C1(t) we obtain the electromagnetic shift in the mass of the pion and also a contribution to the
physical decay amplitude, as we now explain. For sufficiently large t the correlation function is
dominated by the ground state, i.e. the pion, and we have

C0(t)+C1(t)'
e−mπ t

2mπ

Zφ 〈0 |J0
W (0) |π+〉 , (4.9)

where the electromagnetic terms are included in all factors (up to O(α)). Writing mπ = m0
π +δmπ ,

where δmπ is the O(α) mass shift,

e−mπ t ' e−m0
π t (1−δmπ t) (4.10)

so that C1(t) is of the schematic form

C1(t) =C0(t)(c1 t + c2) . (4.11)

By determining c1 we obtain the electromagnetic mass shift, δmπ = −c1, and from c2 we obtain
the electromagnetic correction to Zφ 〈0 |JW (0) |π+〉/2mπ . Note that δmπ is gauge invariant and
infrared finite, whereas the coefficient c2 obtained from these diagrams is neither.

In order to obtain the contribution to the π → `ν` decay amplitude A we need to remove
the factor (e−mπ t/2mπ)Zφ on the right-hand side of Eq. (4.9), including the O(α) corrections to
this factor. Having determined c1, we are in a position to subtract the corrections present in mπ .
The O(α) corrections to Zφ are determined in the standard way, by performing the corresponding
calculation to C1(t) but with the axial current A replaced by φ :

Cφφ

1 (t) = −1
2

∫
d3~xd4x1 d4x2 〈0|T

{
φ(~0,0) jµ(x1) jµ(x2)φ

†(~x, t)
}
|0〉∆(x1,x2) (4.12)

= Cφφ

0 (t)(c1t + cφφ

2 ) . (4.13)

We finally obtain

Zφ = Zφ

0

(
1+

1
2

(
cφφ

2 −
c1

m0
π

))
, (4.14)

and the O(α) contribution to the amplitude from these three diagrams is

δA = A0

(
c2−

cφφ

2
2
− c1

2m0
π

)
. (4.15)

For these three diagrams the O(α) term can be simply considered as a correction to fπ . Note
however, that such an “ fπ" would not be a physical quantity as it contains infrared divergences.

The treatment of the disconnected diagrams in Figs. 7(a), (b), (d) and (e) follows in exactly
the same way. These diagrams contribute to the electromagnetic corrections to both the pion mass
and the decay amplitude in an analogous way to the discussion of the connected diagrams above.
It is standard and straightforward to write down the corresponding correlation functions in terms
of quark propagators. We do not discuss here the different possibilities for generating the nec-
essary quark propagators to evaluate the diagrams; for example we can imagine using sequential
propagators or some techniques to generate all-to-all quark propagators.
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x2

kl

kγ

pℓ

Figure 8: Zoom of the lepton-photon vertex at x2 from the diagrams in Fig. 6(e) and (f).

• The evaluation of diagrams Fig. 6(e)-(f): For these diagrams the leptonic and hadronic contribu-
tions do not factorise and indeed the contribution cannot be written simply in terms of the parameter
fπ . We start by considering the Minkowski space quantity

ūν` α(pν`
)(M̄1)αβ v`β (p`) = −

∫
d 4x1 d 4x2 〈0|T ( jµ(x1)Jν

W (0)) |π〉 (4.16)

× iDM(x1,x2)
{

ūν`
(pν`

)γν(1− γ
5)(iSM(x2))γ

µv`(p`)
}

eip`·x2 ,

where iSM and iDM are the lepton and (Feynman gauge) photon propagators respectively in Minkowski
space (more precisely the photon propagator with Lorentz indices (ρ,σ) is iDMgρσ , but the Lorentz
indices have been contracted with the electromagnetic currents in (4.16)). In order to demonstrate
that we can obtain the O(α) corrections to the decay amplitude from a Euclidean space correlation
function, we use the reduction formula to rewrite the expression in Eq. (4.16) as

ūν` α(pν`
)(M̄1)αβ v`β (p`) = i lim

k0→mπ

(k0
2−m2

π)
∫

d4x1 d4x2 d4xe−ik0x0

〈0|T ( jµ(x1)Jν
W (0)π(x))|0〉 iDM(x1,x2)

[
ūν`

(pν`
)γν(1− γ

5)(iSM(x2))γ
µv`(p`)

]
eip`·x2 , (4.17)

where π(x) is the field which creates a pion with amplitude 1. On the other hand the Euclidean
space correlation function which we propose to compute is

C̄1(t)αβ = −
∫

d3~xd4x1 d4x2 〈0|T
{

Jν
W (0) jµ(x1)φ

†(~x,−t)
}
|0〉 ∆(x1,x2)

×
(
γν(1− γ

5)S(0,x2)γµ

)
αβ

eE` t2e−i~p`·~x2 . (4.18)

Here S and ∆ are Euclidean propagators, and α,β are spinor indices. As for C0(t) and C1(t),
provided that the pion is the lightest hadronic state then for large t, C̄1(t) is dominated by the
matrix element with a single pion in the initial state.

In view of the factor eE` t2 on the right-hand side of Eq. (4.18), the new feature in the evaluation
of the diagrams in Fig. 6 (e) and (f) is that we need to ensure that the t2 integration converges as
|t2| → ∞. For t2 < 0 the convergence of the integral is improved by the presence of the exponential

factor and so we limit the discussion to the case t2 → ∞. E` =
√

m2
` +~p 2

` is the energy of the
outgoing charged lepton with three-momentum ~p`. To determine the t2 → ∞ behaviour, consider
the lepton-photon vertex at x2 from the diagrams in Fig. 6(e) and (f), redrawn in Fig. 8. k` and kγ

are the four-momentum variables in the Fourier transform of the propagators S(x2) and ∆(x1,x2)

respectively in Eqs. (4.16) - (4.18). The t2 integration is indeed convergent as we now show explic-
itly.
1. The integration over ~x2 implies three-momentum conservation at this vertex so that in the sum

13



P
o
S
(
C
D
1
5
)
0
2
3

QED corrections to hadronic processes: a strategy for lattice QCD V. Lubicz

over the momenta~k`+~kγ = ~pl , where p` is the momentum of the outgoing charged lepton.
2. The integrations over the energies k4` and k4γ lead to the exponential factor e−(ω`+ωγ )t2 , where

ω` =
√
~k2
` +m2

` , ωγ =
√
~k2

γ +m2
γ , and mγ is the mass of the photon introduced as an infra-red cut-

off. The large t2 behaviour is therefore given by the factor e−(ω`+ωγ−E`)t2 .
3. A simple kinematical exercise shows that in the sum over~kγ (with~k` = ~p`−~kγ ), the minimum
value of ω`+ωγ is given by

(ω`+ωγ)min =
√

(m`+mγ)2 +~p 2
` . (4.19)

4. Thus for non-zero mγ , the exponent in e−(ω`+ωγ−E`)t2 for large t2 is negative for every term in the
summation over kγ and the integral over t2 is convergent so that the continuation from Minkowski
to Euclidean space can be performed.
5. We note that the integration over t2 is also convergent if we set mγ = 0 but remove the~k = 0
mode in finite volume. In this case ω`+ωγ > El +[1− (p`/E`)]|~kmin|.

In summary the t2 integration is convergent because for every term in the sum over momenta
ω`+ωγ > El and so for sufficiently large t we can write

C̄1(t)αβ ' Zφ

0
e−m0

π t

2m0
π

(M̄1)αβ (4.20)

and the contribution from the diagrams of Fig. 6(e) and 6(f) is ūα(pν`
)(M̄1)αβ vβ (p`). This com-

pletes the demonstration that the Minkowski-space amplitude (4.17) is equal to the pion contribu-
tion to the Euclidean correlation function (4.18), up to a factor Zφ

0 which accounts for the normali-
sation of the pion field.

Again the evaluation of the correction to the amplitude from the disconnected diagram in
Fig. 7(c) follows in an analogous way.

In Fig. 9 we present preliminary results of an exploratory numerical calculation of the diagrams
of Fig. 6(e)-(f). We used the gauge configurations produced by the ETM Collaboration with twisted
mass fermions and N f = 2 dynamical flavors [27]1. The results have been obtained by averaging
over 240 gauge field configurations, with 4 stochastic sources per configuration, on a 243× 48
lattice with lattice spacing of about 0.086 fm. The mass of the decaying pseudoscalar meson
(kaon or pion) is about 475 MeV. The largest contributions to the amplitude exhibit a statistical
precision at the level of 1% or better. This makes us very confident that the lattice calculation of
QED corrections to the leptonic decay, though challenging, is feasible and can reach the accuracy
required by phenomenology.

5. Calculation of Γpt(∆E)

In this section we describe the calculation of the second term of Eq. (2.3), Γpt(∆E) = Γ
pt
0 +

Γ1(∆E) at O(α).
The evaluation in perturbation theory of the total width Γpt = Γ

pt
0 +Γ

pt
1 in infinite volume, was

performed by Berman and Kinoshita in 1958/9 [20, 28], using the Pauli-Villars regulator for the

1We thank Francesco Sanfilippo and Silvano Simula for their collaboration in producing these numerical results.
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Figure 9: Preliminary lattice results for the contributions of the crossed diagrams of Fig. 6(e)-(f) to the decay
rate normalized with the decay rate at tree level.

ultraviolet divergences and a photon mass to regulate the infrared divergences in both Γ
pt
0 and Γ

pt
1 .

Γ
pt
1 is the rate for process π+→ `+ν` γ for a pointlike pion with the energy of the photon integrated

over the full kinematic range. We have added the label pt in Γ
pt
1 to remind us that the integration

includes contributions from regions of phase space in which the photon is not sufficiently soft for
the structure of the pion to be reliably neglected. We do not include this label when writing Γ1(∆E)
because we envisage that ∆E is sufficiently small so that the pointlike approximation reproduces
the full calculation.

In our calculation, Γ
pt
0 is evaluated in the W-regularisation, so that the ultra-violet divergences

are replaced by logarithms of MW . For convenience we write here the expression for Γpt(∆E) as

Γ
pt(∆E) = Γ

pt
0 +Γ1(∆E) = Γ

tree
0 +Γ

α,pt
0 +Γ1(∆E) . (5.1)

Γtree
0 has already been presented in Eq. (4.4). In the following we give separately the results of

the remaining contributions to Γpt(∆E) also using a photon mass mγ as the infrared regulator. We
neglect powers of mγ in all the results.

In the perturbative calculation we use the following Lagrangian for the interaction of a point-
like pion with the leptons:

Lπ−`−ν`
= iGF fπV ∗ud

{
(∂µ − ieAµ)π

} {
ψ̄ν`

1+ γ5

2
γ

µ
ψ`

}
+Hermitian conjugate . (5.2)
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and

Figure 10: One loop diagrams contributing to the wave-function renormalisation of a point-like pion.

Figure 11: Radiative corrections to the pion-lepton vertex. The diagrams represent O(α) contributions to
Γ

pt
0 . The left part of each diagram represents a contribution to the amplitude and the right part the tree-

level contribution to the hermitian conjugate of the amplitude. The corresponding diagrams containing the
radiative correction on the right-hand side of each diagram are also included.

The corresponding Feynman rules are:

π+

ℓ+

νℓ

= −iGFfπV
∗
ud p

µ
π

1+γ5

2
γµ

(5.3)

π+

ℓ+

νℓ

γ∗

= ieGFfπV
∗
ud g

µν 1+γ5

2
γµ

In addition we have used the standard Feynman rules of scalar electromagnetism for the interactions
of charged pions in an electromagnetic field.

• Wave function renormalisation of the lepton: As already observed, provided that one uses the
same value of the decay constant fπ , the contribution of the lepton wave function renormalisation
to Γ

α,pt
0 is the same for the point-like or composite case, the latter corresponding to the diagram in

Fig. 6(d). This contribution is given by

Γ
`
0 = Γ

tree
0 ×

α

4π
Z` , where Z` = log

(
m2
`

M2
W

)
−2 log

(
m2

γ

m2
`

)
− 9

2
. (5.4)

We start by giving the O(α) contributions to Γ
α,pt
0 . • Wave function renormalisation of the

pion: The contribution of the pion wave function renormalisation to Γ
α,pt
0 is obtained from the

diagrams in Fig. 10 and is given by

Γ
π
0 = Γ

tree
0 ×

α

4π
Zπ , where Zπ =−2log

(
m2

π

M2
W

)
−2log

(
m2

γ

m2
π

)
− 3

2
. (5.5)

These diagrams correspond to those in Fig. 6(a), Fig. 6(b) and Fig. 6(c) in the composite case.
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(a) (b) (c)

(d) (e) (f)

Figure 12: Diagrams contributing to Γ1(∆E). For diagrams (c), (d) and (e) the “conjugate" contributions in
which the photon vertices on the left and right of each diagram are interchanged are also to be included.

• π - ` Vertex: The remaining graphs contributing to Γ
α,pt
0 are the π - ` vertex corrections from the

diagrams shown in Fig. 11 and their complex conjugates. The contribution from these diagrams is

Γ
π−`
0 = Γ

tree
0 ×

α

4π

[
4log

(
m2

π

M2
W

)
−2

1+ r2
`

1− r2
`

log
(
r2
`

)
log

(
m2

γ

m2
π

)
+

1+ r2
`

1− r2
`

log2 (r2
`

)
+2

1−3r2
`

1− r2
`

log
(
r2
`

)
−1
]
, (5.6)

where r` = m`/mπ . These diagrams correspond to the diagrams Fig. 6(e) and Fig. 6(f) in the
composite pion case.

By adding together the contributions from Eqs. (5.4) – (5.6), one obtains the complete O(α)

contribution to the rate Γ
pt
0 ,

Γ
α,pt
0 = Γ

tree
0 ×

α

4π

[
3log

(
m2

π

M2
W

)
−
(

4+2
1+ r2

`

1− r2
`

log
(
r2
`

))
log

(
m2

γ

m2
π

)
+

1+ r2
`

1− r2
`

log2 (r2
`

)
+

5−9r2
`

1− r2
`

log
(
r2
`

)
−7
]
, (5.7)

Next we give the result for Γ1(∆E). This rate receives the contribution from the emission and
absorption of a real photon from the pion, represented by diagram (a) in Fig. 12, from the charged
lepton, represented by the diagram (b) in Fig. 12, and finally from the emission of a real photon
from the pion and its absorption by the charged lepton, represented by the diagrams (c) – (f) in
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Fig. 12. The result is

Γ1(∆E) = Γ
tree
0 ×

α

4π

[(
4+2

1+ r2
`

1− r2
`

log
(
r2
`

))
log

(
m2

γ

m2
π

)
− 1+ r2

`

1− r2
`

log2 (r2
`

)
−2

1+ r2
`

1− r2
`

log(r2
` )

−4log(r2
E)−2

1+ r2
`

1− r2
`

log(r2
E) log(r2

` )−4
1+ r2

`

1− r2
`

Li2(1− r2
` )+4

+
3+ r2

E −6r2
` −4rE(1− r2

` )

(1− r2
` )

2 log(1− rE)+
rE(4− rE −4r2

` )

(1− r2
` )

2 log(r2
` )

−rE(−22+3rE +28r2
` )

2(1− r2
` )

2 −4
1+ r2

`

1− r2
`

Li2(rE)

]
, (5.8)

where rE = 2∆E/mπ .
We are finally in a position to combine the results in Eqs. (5.7) and (5.8) in order to obtain the

final expression for Γpt(∆E). As expected the infrared cutoff cancels and we find

Γ
pt(∆E) = Γ

tree
0 ×

(
1+

α

4π

{
3log

(
m2

π

M2
W

)
+

3−11r2
`

1− r2
`

log(r2
` )−4log(r2

E)

−2
1+ r2

`

1− r2
`

log(r2
E) log(r2

` )−4
1+ r2

`

1− r2
`

Li2(1− r2
` )−3

+
[3+ r2

E −6r2
` −4rE(1− r2

` )

(1− r2
` )

2 log(1− rE)+
rE(4− rE −4r2

` )

(1− r2
` )

2 log(r2
` )

−rE(−22+3rE +28r2
` )

2(1− r2
` )

2 −4
1+ r2

`

1− r2
`

Li2(rE)
] })

. (5.9)

Note that the terms in square brackets in eq. (5.9) vanish when rE goes to zero; in this limit Γpt(∆E)
is given by its eikonal approximation.

The total rate is readily computed by setting rE to its maximum value, namely rE = 1− r2
` ,

giving

Γ
pt = Γ

tree
0 ×

{
1+

α

4π

(
3log

(
m2

π

M2
W

)
−8log(1− r2

` )−
3r4

`

(1− r2
` )

2 log(r2
` ) (5.10)

−8
1+ r2

`

1− r2
`

Li2(1− r2
` )+

13−19r2
`

2(1− r2
` )

+
6−14r2

` −4(1+ r2
` ) log(1− r2

` )

1− r2
`

log(r2
` )

)}
.

The result in Eq. (5.10) agrees with the well known results in literature [20, 21], which provides an
important check of our calculation. We believe that the result in Eq. (5.9) is new.

6. Summary and Prospects

Lattice calculations of some hadronic quantities are already approaching (or even reaching)
O(1%) precision and we can confidently expect that the uncertainties will continue to be reduced
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in future simulations. At this level of precision, isospin-breaking effects, including electromagnetic
corrections, must be included in the determination of the relevant physical quantities. In this talk
we have presented a method to compute, for the first time, electromagnetic effects in hadronic
processes. For these quantities the presence of infrared divergences in the intermediate stages
of the calculation makes the procedure much more complicated than is the case for the hadronic
spectrum, for which calculations in several different approaches [4, 6, 5, 7, 8, 9] already exist. In
order to obtain physical decay widths (or cross sections) diagrams containing virtual photons must
be combined with those corresponding to the emission of real photons. Only in this way are the
infrared divergences cancelled. We stress that it is not sufficient simply to add the electromagnetic
interaction to the quark action because, for any given process, the contributions corresponding to
different numbers of real photons must be evaluated separately.

We have discussed in detail a specific case, namely the O(α) radiative corrections to the lep-
tonic decay of charged pseudoscalar mesons. The method can however, be extended to many other
processes, for example to semileptonic decays. The condition for the applicability of our strategy is
that there is a mass gap between the decaying particle and the intermediate states generated by the
emission of the photon, so that all of these states have higher energies than the mass of the initial
hadron (in the rest frame of the initial hadron).

In this talk, as in Ref. [1], we have limited the discussion to real photons with energies which
are much smaller than the QCD scale ΛQCD. This is not a limitation of our method and in the future
one can envisage numerical simulations of contributions to the inclusive width from the emission
of real photons with energies which do resolve the structure of the initial hadron. Such calculations
can be performed in Euclidean space under the same conditions as above, i.e. providing that there
is a mass gap.

In the calculation of electromagnetic corrections a general issue concerns finite-size effects.
In this respect, our method reduces to the calculation of infrared-finite, gauge-invariant quantities
for which we expect the finite-size corrections to be comparable to those encountered in the com-
putation of the spectrum. This expectation will be checked in forthcoming numerical studies and
studied theoretically in chiral perturbation theory.

Although the implementation of our method is challenging, it is within reach of present lattice
technology particularly as the relative precision necessary to make the results phenomenologically
interesting is not exceedingly high. Since the effects we are calculating are, in general, of O(1%),
calculating the electromagnetic corrections to a precision of 20% or so would already be more than
sufficient. As the techniques improve and computational resources increase, the determination of
both the QCD and QED effects will become even more precise. We now look forward to imple-
menting the method described in this talk in an actual numerical simulation. The results of an
exploratory calculation, which have been presented in this talk, are very promising.
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