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For X a hyperkähler manifold of Kummer type, let J3(X) be the intermediate Jacobian

associated to H3(X). We prove that H2(X) can be embedded into H2(J3(X)). We show that

there exists a natural smooth quadric Q(X) in the projectivization of H3(X), such that

Gauss–Manin parallel transport identifies the set of projectivizations of H2,1(Y), for Y

a deformation of X, with an open subset of a linear section of Q+(X), one component

of the variety of maximal linear subspaces of Q(X). We give a new proof of a result of

Mongardi restricting the action of monodromy on H2(X). Lastly, we show that if X is

projective, then J3(X) is an abelian fourfold of Weil type.

1 Introduction

1.1 Background and motivation

Let X be a hyperkähler manifold, that is (for us) a simply connected compact Kähler

manifold carrying a holomorphic symplectic form whose cohomology class spans

H2,0(X). The Kuga–Satake construction [5, 12] associates to X a compact complex torus

KS(X) and an inclusion of Hodge structures H2(X) ⊂ H1(KS(X)) ⊗ H1(KS(X)∨). The

definition of KS(X) is transcendental: one constructs a weight 1 H.S. out of the weight 2

H.S. on H2(X). If X is projective with ample line bundle L, the Kuga–Satake construction
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2 K.G. O’Grady

applied to the primitive cohomology H2(X)pr produces an abelian variety KS(X, L) and

an injective homomorphism of H.S.’s

H2(X)pr ⊂ H1(KS(X, L))⊗ H1(KS(X, L)). (1.1.1)

One might wonder whether it is possible to relate the geometry of X and that of KS(X)

or of KS(X, L). A famous instance of such a relation is provided by Deligne’s proof of

the Weil conjectures for (projective) K3 surfaces starting from the validity of the Weil

conjectures for abelian varieties [5]. In this respect we notice that if X is projective,

the Hodge conjecture predicts the existence of a Kuga–Satake algebraic cycle on X ×
KS(X, L)× KS(X, L) realizing the homomorphism of H.S.’s in (1.1.1).

There are very few families of hyperkähler manifolds for which one has a

geometric description of the corresponding Kuga–Satake varieties and a proof of

existence of a Kuga–Satake algebraic cycle: Kummer surfaces [18] and K3 surfaces

obtained as minimal desingularization of the double cover of a plane ramified over

6 lines [21].

The present paper grew out of the desire to understand the Kuga–Satake torus

associated to hyperkähler manifolds of Kummer type, that is deformations of the 2n-

dimensional generalized Kummer manifold associated to an abelian surface (for n � 2).

Among known examples of hyperkähler manifolds, those of Kummer type are

distinguished by the fact that they have non-zero odd cohomology. Let X be such

a manifold. Then b3(X) = 8, and hence there is an associated four dimensional

intermediate Jacobian J3(X). Most of our paper is actually concerned with J3(X). Our

starting point is the proof that there is an analogue of the key cohomological property

of the Kuga–Satake torus (see (1.1.1)) valid with J3(X) replacing the Kuga–Satake torus.

From this, it follows that if X is projective with polarization L, then KS(X, L) is isogenous

to J3(X)4. Thus, J3(X) is a smaller dimensional version of the Kuga–Satake torus.

Moreover, it is easier to relate geometrically X to J3(X) than it is to relate it to KS(X) (or

KS(X, L)), for example via the Abel–Jacobi map.

We will give an explicit recipe that produces the weight 1 H.S. on J3(X) in terms

of the weight 2 H.S. on H2(X).

One fact that we discovered is that if X is projective, then J3(X) is an abelian

fourfold of Weil type. More precisely, as (X, L) varies in a complete family of polarized

hyperkählers of Kummer type with fixed discrete invariants, the corresponding polar-

ized intermediate Jacobians J3(X) sweep out a complete family of polarized abelian

fourfolds of Weil type with fixed discrete invariants. Notice that the number of moduli
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Tori and Hyperkählers of Kummer Type 3

for both families is equal to 4. This result suggests that we will be able to describe

explicitly locally complete families of projective hyperkählers of Kummer type starting

from the locally complete families of abelian fourfolds of Weil type, which are known

[22]. In this respect, we notice that several locally complete families of projective

hyperkählers have been explicitly described, but the varieties in those families are all of

K3[n] type (deformations of the Hilbert scheme of length n subschemes of a K3 surface).

There is a series of papers related to the present work. The 1st one is [27].

Following the proof of Theorem 9.2 of that paper, one shows that the Kuga–Satake

KS(X, L) of a polarized HK of Kummer type (X, L) is the 4th power of an abelian fourfold

of Weil type. Since KS(X, L) is isogenous to J3(X)4, it follows that J3(X) is of Weil type.

However, we would like to stress that we have precise results on the integral Hodge

structure on J3(X), not only up to isogeny. Another paper related to this work is [13].

Lastly, the recent preprint [15] is strictly related to our work.

1.2 Main results

Let X be a hyperkähler manifold of dimension at least 4, deformation equivalent to

a generalized Kummer variety (following established terminology, we say that X is of

Kummer type). Then b3(X) = 8, see [9], and of course H3,0(X) = 0. Thus,

J3(X) = H3(X)/
(
H2,1(X)+ H3(X;Z)

)
(1.2.1)

is a four dimensional compact complex torus. If X is projective and L is an ample

line bundle on X, then J3(X) is an abelian fourfold (all of H3(X) is primitive because

H1(X) = 0), and we let �L be the polarization defined by L.

Recall that, given an HK manifold X, there is a class q∨
X ∈ H2,2

Q
(X) that corre-

sponds to the Beauville–Bogomolov–Fujiki (BBF) quadratic form of X (see Subsection 2.2

for details). Now assume that X is of Kummer type, of dimension 2n. Then qX :=
2(n + 1)q∨

X is an integral class (see Definition 2.4). Let

φ :
2∧

H3(X) −→ H2(X)∨ (1.2.2)

be the composition of the map

∧2 H3(X) −→ H4n−2(X)

γ ∧ γ ′ 
→ γ � γ ′ � qn−2
X

and the map H4n−2(X) → H2(X)∨ defined by cup product followed by integration.
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4 K.G. O’Grady

Theorem 1.1. Let X be an HK manifold of Kummer type of dimension 2n.

(1) The map φ is surjective, and hence its transpose defines an inclusion of

integral Hodge structures

H2(X) ⊂
2∧

H1(J3(X)). (1.2.3)

(2) The set

Q(X) := {
[γ ] ∈ P(H3(X)) | φ(γ ∧ H3(X)) �= H2(X)∨

}
(1.2.4)

is a smooth quadric hypersurface in P(H3(X)).

(3) The projectivization of H2,1(X) is a maximal linear subspace of Q(X).

If X is an HK manifold of Kummer type, let Q+(X) be the irreducible component

of the variety parametrizing maximal dimensional linear subspaces of Q(X) containing

P(H2,1(X)) (this definition makes sense by Theorem 1.1). We recall that

ε : Q+(X) ↪→ P(S+(X)), (1.2.5)

where S+(X) is one of the two spinor representations of O(Q(X)). Recall also that S+(X)
is 8 dimensional. Since H3(X) has an integral structure, so does S+(X). There is a

unimodular integral quadratic form q+
X on S+(X) (unique up to multiplication by ±1)

such that Q+(X) is the set of zeroes of q+
X . Moreover, if π : X → B is a family of HK

manifolds of Kummer type, the flat connection on R3π∗Z induces a flat connection on

the fibration S+(π) → B with fiber S+(π−1(b)) over b. Next, we make following.

Key observation 1.2. Let φ be the map in (1.2.2). Then φ
(∧2 H2,1(X)

)
is equal the one-

dimensional subspace AnnF1H2(X).

In fact, φ
(∧2 H2,1(X)

)
is contained in AnnF1H2(X) because φ is a morphism of

Hodge structures, and equality follows from surjectivity of φ. Notice that Item (3) of

Theorem 1.1 follows from the Key observation 1.2.

The result below is motivated by the Key observation 1.2.
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Tori and Hyperkählers of Kummer Type 5

Theorem 1.3. Let X be an HK manifold of Kummer type of dimension 2n, and let S+(X)
be the spinor representation of O(Q(X)) such that we have the embedding in (1.2.5). There

exists a monodromy invariant codimension 1 subspace T+(X) ⊂ S+(X) defined over Z

such that the following hold:

(1) Given a 4 dimensional vector subspace 	 ⊂ H3(X), the subspace φ
(∧2

	
)

has

dimension 1 if and only if P(	) = ε([σ ]) for a point [σ ] ∈ P(T+(X)) ∩ Q+(X),
where ε is the embedding in (1.2.5). If this is the case, then φ

(∧2
	
) = [σ ]

(this makes sense because of the description of S+(X) in Subsection 3.6).

(2) There exist an isomorphism i : H2(X)∨ ∼−→ T+(X) defined over Q, invariant

up to sign under monodromy, and a choice of “sign” for q+
X , such that the

pull-back via i of q+
X is equal to the dual of the BBF quadratic form.

Item (1) of Theorem 1.3 amounts to an explicit description of the weight 1 Hodge

structure on H1(J3(X)) in terms of the weight 2 Hodge structure on H2(X).

The result below was first proved by Mongardi by other methods. We will show

that it is a simple consequence of Theorem 1.3.

Corollary 1.4 (Mongardi [17]). Let X be an HK of Kummer type. Let ρ ∈ O(H2X;Z), qX)

be a monodormy operator. Then either ρ acts trivially on the discriminant group

H2(X;Z)∨/H2(X;Z) (here H2(X;Z) is embedded into H2(X;Z)∨ by the BBF quadratic form)

and it has determinant 1 or it acts as multiplication by −1 on the discriminant group

and it has determinant −1.

Below is our last main result.

Theorem 1.5. Let X be a hyperkähler variety of Kummer type, of dimension 2n, and

let L be an ample line bundle on X. Then (J3(X),�L) is of Weil type, with an inclusion

Q
√−2(n + 1)qX(L) ⊂ End

(
J3(X),�L

)
Q

,

where qX(L) is the value of the BBF quadratic form on c1(L). By varying (X, L), one gets

a complete (up to isogeny) family of four dimensional abelian varieties of Weil type

with associated field Q[
√−2(n + 1)qX(L)] and trivial determinant (i.e., the discriminant

of the associated hermitian form is the norm of a non-zero element of the field

Q[
√−2(n + 1)qX(L)], see Subsection 5.1). Moreover, the Kuga–Satake variety KS(X, L) is

isogenous to J3(X)4.

Remark 1.6. Underlying Theorem 1.5 is a (classical) isomorphism between the period

spaces for polarized HK’s of Kummer type and polarized abelian fourfolds of Weil type.
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6 K.G. O’Grady

In particular, we have an infinitesimal Torelli Theorem for polarized HK’s of Kummer

type in terms of the Hodge structure on H3. A careful study of the monodromy on the

integral H3 of HK’s of Kummer type should produce a Global Torelli Theorem in terms

of the Hodge structure on H3.

1.3 Organization of the paper

Most of Section 2 is devoted to the proof of results on the cohomology of HK’s of Kummer

type. After recalling the definition of generalized Kummers and establishing basic

notation, we compute the constants that enter into the formula for certain integrals on

an HK of Kummer type (see Proposition 2.3). In Subsection 2.3 we describe explicitly the

integral 3rd cohomolgy group of a generalized Kummer. In dimension 4 this was done

by Kapfer and Menet [11]. We extend their result to arbitrary dimension by adapting

arguments of Totaro [24]. In Subsection 2.4 we show that, by invariance under the

monodromy group of compact complex tori, the map φ in (1.2.2) for 2n-dimensional

HK’s of Kummer type has a “shape” that depends on an apriori unknown ϑ(qn−2) ∈ Z3.

In Subsections 2.5, 2.6 and 2.7 we compute the 1st two entries of ϑ(qn−2) (the 3rd entry

will be determined up to sign in Subsection 3.4). Most of the effort goes in a painful

computation of the cup product of certain cohomology classes on a generalized Kummer.

In order to do this we rely on the explicit description of the cohomology ring of Hilbert

schemes of smooth projective surfaces with trivial canonical bundle given by Lehn and

Sorger [14]. The last subsection of Section 2 contains the proof of Theorem 1.1.

In Section 3 we prove Theorem 1.3 and Corollary 1.4. Actually we discuss an

“abstract” map, which has the same shape as φ, depending on a choice of ϑ ∈ Z3 with no

vanishing entry. In such a set-up, we have a way of explicitly associating to a weight-2

H.S. of K3 type a weight-1 H.S. If the weight-2 H.S. is polarized, then the weight-1 H.S.

is also polarized.

In the short Section 4 we compute the elementary divisors of the natural

polarization of J3(X) for a polarized HK fourfold X.

Section 5 is devoted to the proof of Theorem 1.5. Actually we prove, more

generally, that the polarized weight-1 H.S.’s constructed in Section 3 (depending on a

ϑ ∈ Z3 with no vanishing entry) are of Weil type.

1.4 Conventions

We work over C: projective varieties will be complex projective varieties.

Throughout the present paper, A is an abelian surface.
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Tori and Hyperkählers of Kummer Type 7

Notation: in dealing with cohomology, we omit to mention the ring of coefficients when

we consider complex coefficients.

Let  be a lattice. The divisibility of a non-zero v ∈  is the positive generator

of (v,); we denote it by div(v).

Let n ∈ N+. The double factorial of n is equal to

n! ! := n · (n − 2) · . . . ·
(

n − 2
⌊

n − 1

2

⌋)
. (1.4.1)

It is convenient to set 0! ! := 1 and (−1)! ! := 1.

2 Generalized Kummers and their cohomology

2.1 Hilbert schemes parametrizing subschemes of finite length

Let S be a smooth projective surface. Let S[n] be the Hilbert scheme parametrizing length-

n subschemes of S, and let S(n) be the symmetric n-th power of S. Let [Z] ∈ S[n]. We let |Z|
be the cycle be associated to [Z], that is the image of the Hilbert–Chow map h̃n : S[n] →
S(n). Let �̃n(S) ⊂ S[n] be the prime divisor parametrizing non-reduced schemes. The

divisor class of �̃n(S) is divisible by 2. We let ξ̃n(S) ∈ H2(S[n];Z)/Tors be characterized by

2̃ξn(S) = c1

(
OS[n](�̃n(S))

)
. (2.1.1)

Let π : Sn → S(n) be the quotient map and pi : Sn → S be the i-th projection. Given

α ∈ Hm(S; R), let α(n) ∈ Hm(S(n); R) be characterized by the formula

π∗α(n) =
n∑

i=1

p∗
i α. (2.1.2)

(Here R is a commutative ring.) Let

Hm(S; R)
μ̃m−→ Hm

(
S[n]; R

)
α 
→ h̃

∗
nα

(n).
(2.1.3)

For n � 2, let

	n(S) := {
(W, Z) ∈ S[2] × S[n] | W ∈ �̃2 W ⊂ Z

}
. (2.1.4)
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8 K.G. O’Grady

Then 	n(S) is irreducible of dimension 2n − 1. Let p : 	n(S) → S be the map sending

(W, Z) to the support of W, and let q : 	n(S) → S[n] be the projection. We let

Hm−2(S; R)
ν̃m−→ Hm(S[n]; R)

β 
→ PD
(
q∗([	n(S)] ∩ p∗β

)
,

(2.1.5)

where PD means Poincaré dual.

2.2 Generalized Kummers

Let A be an abelian surface. Let σr : A(r) → A be the summation map (in the group A).

The n-th generalized Kummer variety is

Kn(A) := {
[Z] ∈ A[n+1] | σn+1(|Z|) = 0

}
.

Beauville [1] proved that Kn(A) is a hyperkähler variety of dimension 2n. Let

�n(A) := �̃n+1(A) ∩ Kn(A), ξn(A) := ξ̃n+1(A)|Kn(A) (2.2.1)

and

Hm(A; R)
μm−→ Hm

(
Kn(A); R

)
α 
→ μ̃m(α)|Kn(A).

Hm−2(A; R)
νm−→ Hm

(
Kn(A); R

)
β 
→ ν̃m(β)|Kn(A).

(2.2.2)

Now suppose that n � 2. We recall some well-known results on the cohomology of Kn(A)

(a reference is [3, pp. 6-12]). We have a direct sum decomposition

H2(Kn(A);Z) = μ2

(
H2(A;Z)

)⊕ Zξn(A). (2.2.3)

Moreover, the map μ2 for R = C is a homomorphisms of integral Hodge structures. The

BBF bilinear form (, ) is given by

(
μ2(α)+ xξn,μ2(β)+ yξn

) =
(∫

A
α ∧ β

)
− 2(n + 1)xy, α,β ∈ H2(A), x, y ∈ C, (2.2.4)

and the normalized Fujiki constant of Kn(A) equals n + 1, that is

∫
Kn(A)

α2n = (n + 1)(2n − 1)! ! (α,α)n ∀α ∈ H2(Kn(A);C). (2.2.5)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rnz166/5558149 by guest on 03 Septem

ber 2019



Tori and Hyperkählers of Kummer Type 9

Remark 2.1. Let W be a complex vector space, equipped with a bilinear symmetric

form (, ). Let us say that two permutations σ , τ ∈ S2r are ∼-equivalent if we have equality

of multilinear symmetric functions

(ασ(1),ασ(2)) · . . . · (ασ(2r−1),ασ(2r)) = (ατ(1),ατ(2)) · . . . · (ατ(2r−1),ατ(2r)). (2.2.6)

Let S̃2r be a set of representatives for ∼-equivalence classes, and let P : W2r → C be the

multilinear symmetric function defined by

P(α1, . . . ,α2r) :=
∑

σ∈S̃2r

(ασ(1),ασ(2)) · . . . · (ασ(2r−1),ασ(2r)). (2.2.7)

Then P is the polarization of the polynomial α 
→ (2r − 1)! ! (α,α)r, that is

P(α, . . . ,α) = (2r − 1)! ! (α,α)r. (2.2.8)

In particular, we have

∫
Kn(A)

α1 � . . . � α2n = (n + 1)
∑

σ∈S̃2n

(αi1 ,αi2) · . . . · (αi2n−1
,αi2n

). (2.2.9)

In fact, both the left- and the right-hand side of (2.2.9) are multilinear symmetric

functions H2(Kn(A))
2n → C, and by (2.2.5) and (2.2.8) they are equal when computed

on diagonal elements (α, . . . ,α).

Now let X be a 2n-dimensional hyperkähler manifold of Kummer type. The

bilinear form (, ) defines an isomorphism H2(X)
∼→ H2(X)∨. The inverse H2(X)∨ ∼→ H2(X)

defines an element in Sym2H2(X), whose image by the cup-product map Sym2H2(X) →
H4(X) is a class in H2,2

Q
(X) that we denote by q∨

X , or q∨ if there is no danger of misunder-

standing. An explicit expression for q∨
Kn(A)

is obtained as follows. Let e1, f1, e2, f2, e3, f3

be a standard basis of H2(A;Z), that is

∫
A

e2
i = 0,

∫
A

ei � fi = 1, 〈ei, fi〉 is orthogonal to 〈ej, fj〉 if i �= j. (2.2.10)
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10 K.G. O’Grady

(Notice that each 〈ei, fi〉 is a hyperbolic plane.) Then

q∨
Kn(A) = 2

3∑
i=1

μ2(ei) � μ2( fi)− 1

2(n + 1)
ξ2

n. (2.2.11)

Before proving a result on powers of q∨
Kn(A)

, we need an identity whose proof was kindly

provided by Ruggero Bandiera.

Lemma 2.2 (Ruggero Bandiera). Let k and � ≤ n be natural numbers. Then

�∑
i=0

(
�

i

)
(2i + 2k)! !

(2k)! !

(2n − 2i − 1)! !

(2n − 2�− 1)! !
= (2n + 2k + 1))! !

(2n − 2�+ 2k + 1)! !
. (2.2.12)

Proof. For fixed natural numbers k, � the left- and right-hand sides of (2.2.12) are

polynomials in n (of degree �), that we denote pk
� and qk

� , respectively. In particular,

pk
� (x) and qk

� (x) makes sense for any x, not only for x an integer greater than �. One

proves that pk
� = qk

� by induction on � arguing as follows. First, pk
0 = qk

0 because they are

both equal to the constant polynomial 1. A straightforward computation shows that

pk
� (n + 1)− pk

� (n) = 2�pk
�−1(n), qk

� (n + 1)− qk
� (n) = 2�qk

�−1(n), � � 1,

and hence by the inductive hypothesis the difference operators of pk
� and of qk

� are equal.

Since

pk
� (n)

(
2�− 1

2

)
= qk

� (n)
(

2�− 1

2

)
,

it follows that pk
� = qk

� . �

Proposition 2.3. Let X be a 2n-dimensional hyperkähler manifold of Kummer type.

Then, for all γ ∈ H2(X)∫
[X]

(q∨)� � γ 2n−2� = (n + 1)
(2n + 5)! !

(2n + 5 − 2�)! !
(2n − 2�− 1)! ! q(γ )n−�.

Proof. By a theorem of Fujiki (see Remark 4.12 in [8], or 1.11 in [10]), there exists a

rational number C�
n (independent of X) such that

∫
[X]

(q∨)� � γ 2n−2� = C�
n · q(γ )n−� ∀ γ ∈ H2(X). (2.2.13)
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Tori and Hyperkählers of Kummer Type 11

In order to determine C�
n, it suffices to compute the left-hand side of (2.2.13) for one X

and one γ ∈ H2(X) such that q(γ ) �= 0. We will do the computation for X = Kn(A) and

γ = ξn. Let

σn :=
3∑

i=1

μ2(ei) � μ2(fi) ∈ H2,2
Z

(Kn(A)).

Thus,

(q∨
Kn(A))

� =
(

2σn − 1

2(n + 1)
ξ2

n

)�
=

�∑
i=0

(
�

i

)
2i
(

− 1

2(n + 1)

)�−i

σ i
n � ξ

2(�−i)
n .

A straightforward computation shows that

∫
Kn(A)

σ i
n � ξ2n−2i

n = (n + 1)
1

2
i! (i + 2)(i + 1)(−2(n + 1))n−i(2n − 2i − 1)! ! .

With some manipulations, it follows that

∫
Kn(A)

(q∨
Kn(A))

� � ξ2n−2�
n = (n + 1)q(ξn)

n−� ·
�∑

i=0

�!

(�− i)!
(i + 2)(i + 1)2i−1(2n − 2i − 1)! ! .

Thus, it remains to show that

�∑
i=0

�!

(�− i)!
(i + 2)(i + 1)2i−1(2n − 2i − 1)! ! = (2n + 5)! !

(2n + 5 − 2�)! !
(2n − 2�− 1)! ! .

The above equality follows at once from the case k = 2 of Lemma 2.2.

Definition 2.4. If X is a 2n-dimensional hyperkähler manifold of Kummer type, let

qX := 2(n + 1)q∨
X .

The point of the above definition is that q ∈ H2,2
Z

(Kn(A)) (by (2.2.11)).

2.3 On the integral cohomology of generalized Kummers

We will prove the following two results.

Proposition 2.5 (Contained in [11] for n = 2.). Let β ∈ H1(A;Z). Then ν3(β) is divisible

by 2 in H3(Kn(A);Z).
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12 K.G. O’Grady

Remark 2.6. Let β ∈ H1(A;Z). By Proposition 2.5, there is a well-defined ν3(β)/2 ∈
H3(Kn(A);Z)/Tors

Theorem 2.7 (Proposition 6.2 in [11] for n = 2.). The map

H3(A)⊕ H1(A)(−1)
F−→ H3(Kn(A))/Tors

(α,β) 
→ μ3(α)+ ν3(β)/2
(2.3.1)

is an isomorphism of integral Hodge structures.

We recall that A(r) is naturally stratified, with strata indexed by partitions of

r. The stratification of A(r) defines a stratification of A[r] via pull back by the Hilbert–

Chow map. Let λ = (λ1, . . . , λs) be a partition of r, where λ1 � λ2 � . . . � λs. The stratum

A[r]
λ is equal to the set of Z such that |Z| = λ1a1+ . . .+λsas, where the points a1, . . . , as ∈ A

are pairwise distinct. Each stratum is irreducible, and

dim A[r]
λ = r + s. (2.3.2)

Since {A[r]
λ }λ∈Pr

is a stratification, the dimension formula (2.3.2) shows that

Ur := A[r]
(1,...,1) � A[r]

(2,1,...,1), Vr := A[r]
(1,...,1) � A[r]

(2,1,...,1) � A[r]
(3,1,...,1) � A[r]

(2,2,1,...,1) (2.3.3)

are open dense subsets of A[r]. Notice that Vr ⊃ Ur.

Lemma 2.8. The restriction map H3(A[r];Z) → H3(Ur;Z) is an isomorphism.

Proof. The complement of Vr ⊂ A[r] has codimension 3; it follows by a standard

argument that the map H3(A[r];Z) → H3(Vr;Z) is an isomorphism. Thus, it suffices to

prove that the map H3(Vr,Z) → H3(Ur,Z) is an isomorphism. If r ≤ 2, then Vr = Ur, and

there is nothing to prove. Assume that r � 3. We have the exact sequence

H3(Vr, Ur;Z) −→ H3(Vr;Z) −→ H3(Ur;Z) −→ H4(Vr, Ur;Z)
ρr−→ H4(Vr;Z)

By excision and Thom’s isomorphism, H3(Vr, Ur;Z) = 0, and

H4(Vr, Ur;Z) ∼=
⎧⎨⎩Z if r = 3,

Z2 if r � 4,
Imρr =

⎧⎨⎩〈[A[r]
(3,1,...,1)]〉, if r = 3,

〈[A[r]
(3,1,...,1)], [A[r]

(2,2,1,...,1)]〉, if r � 4,
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Tori and Hyperkählers of Kummer Type 13

where [A[r]
(3,1,...,1)] and [A[r]

(2,2,1,...,1)] are the fundamental classes of A[r]
(3,1,...,1) and A[r]

(2,2,1,...,1)

respectively. In order to finish the proof it suffices to show that ρr is injective, that is

that [A[r]
(3,1,...,1)], [A[r]

(2,2,1,...,1)] are independent over Z (if r = 3 this is to be interpreted as

stating that [A[r]
(3,1,...,1)] is not a torsion class). We may assume that A = E × F, where E, F

are elliptic curves. Given q ∈ F, we let iq : E ↪→ E × F be defined by iq(e) := (e, q). Let

D ⊂ E(3) be a generic very ample divisor. Then D meets the curve {3p | p ∈ E} in a finite

non-empty set. Ket x1, . . . , xr−3 be pairwise distinct points of A \ iq(E). Let � ⊂ A[r] be

defined by

� := {
iq(Z) � {x1, . . . , xr−3} | Z ∈ D

}
.

If r � 4, let q1, q2 ∈ F be distinct, and let y1, . . . , yr−4 be pairwise distinct points of

A \ iq1
(E) \ iq2

(E). Let φ : E → P1 be a degree 2 map. We let DE ⊂ E(2) be the g1
2 defined by

φ, that is DE := {φ∗(p) | p ∈ P1}. Let � ⊂ A[r] be defined by

� := {
iq1

(W) � iq2
(Z) � {y1, . . . , yr−4} | W, Z ∈ DE

}
.

Both � and � are projective and have pure dimension 2. Thus, we may evaluate the

classes [A[r]
(2,2,1,...,1)] and [A[r]

(3,1,...,1)] on � and �. Notice that � meets A[r]
(3,1,...,1) in a finite

non-empy set, and that � meets A[r]
(2,2,...,1) in a finite non-empty set, and it does not

meet A[r]
(3,1,...,1). It follows that the 2 × 2 matrix describing the evaluation of the classes

[A[r]
(3,1,...,1)], [A[r]

(2,2,1,...,1)] on � and � is non-degenerate. (If r = 3, this is to be interpreted

as stating that the evaluation of the class [A[r]
(3,1,...,1)] on � is non-zero). This proves that

ρr is injective. �

Proof of Proposition 2.5. It suffices to prove that ν̃3(β) ∈ H3(A[n+1];Z) is divisible by 2.

Let Un+1 ⊂ A[n+1] be the open dense subset defined in (2.3.3); by Lemma 2.8 it suffices to

prove that ν̃3(β)|Un+1
is divisible by 2 in H3(Un+1;Z). Let β ∈ H1(A;F2) be the reduction

modulo 2 of β; thus, ν̃3(β) is the reduction modulo 2 of ν̃3(β). We must show that

ν̃3(β)|Un+1
= 0. (2.3.4)

A piece of the long exact sequence of cohomology with F2 coefficients for the couple

(Un+1, A[n+1]
(1,1,...,1)) reads

H2(A[n+1]
(1,1,...,1);F2

) ∂−→ H3(Un+1, A[n+1]
(1,1,...,1);F2

) π−→ H3(Un+1;F2

) −→ H3(A[n+1]
(1,1,...,1);F2

)
(2.3.5)
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14 K.G. O’Grady

Thom’s isomorphism gives an identification

H3(Un+1, A[n+1]
(1,1,...,1);F2

) ∼= H1(A[n+1]
(2,1,...,1);F2

)
. (2.3.6)

Let τ : A[n+1]
(2,1,...,1) → A be the composition of A[n+1]

(2,1,...,1) → A × A(n−1) (the restriction of

Hilbert–Chow) and the projection A × A(n−1) → A. Then

π
(
τ ∗(β)

) = ν̃3(β)|Un+1
. (2.3.7)

(The above equation makes sense by (2.3.6)). By Lemma 3.1 in [24] (Totaro’s Lemma is

stated for n = 1, but the same proof gives the statement in general), τ ∗(β) ∈ Im(∂), and

hence (2.3.4) holds. �

Proof of Theorem 2.7. The map in (2.3.1) is a morphism of Hodge structures, integral

by Proposition 2.5, hence we are left with the task of proving that it defines an

isomorphism between H3(A;Z) ⊕ H1(A;Z) and H3(Kn(A);Z)/Tors. We proceed as in the

proof of Proposition 6.2 in [11].

Let {η1, η2, η3, η4} be an oriented basis of H1(A;Z), that is such that η1 � . . . � η4

is the orientation class. Let {η∨
1 , . . . , η∨

4 } be the dual basis. The isomorphism

H3(A)
∼−→ H1(A)∨

α 
→ (
β 
→ ∫

A α � β
) (2.3.8)

allows us to view each η∨
i as an element of H3(A;Z). Let �1, . . . ,�4 ⊂ A be generic smooth

oriented 1-manifolds representing the Poincaré duals of η∨
1 , . . . , η∨

4 , and let �1, . . . ,�4 ⊂
A be generic smooth oriented 2-manifolds representing the Poincaré duals of η4 �

η1, η1 � η2, η2 � η3, η3 � η4. Choose generic distinct points x1, . . . , xn−2, y1, . . . , yn−2 ∈ A.

Let 	1, . . . ,	4,�1, . . . ,�4 ⊂ Kn(A) be the smooth oriented 3 manifolds

	i := {
(Z0 � {x1, . . . , xn−2}) ∈ Kn(A) | Z0 ∩�i �= ∅, Z0 ∩�i �= ∅},

�j := {
(Z0 � {y1, . . . , yn−2}) ∈ Kn(A) | |Z0| = 2p + q, p ∈ �j

}
.

A straightforward computation shows that the 8 × 8 matrix whose entries are the

evaluations of the classes μ3(η
∨
1 ), . . . ,μ3(η

∨
4 ), ν3(η1/2), . . . , ν3(η4/2) on the 3-homology

classes represented by �1, . . . ,�4,�1, . . . ,�4 is a matrix
(

C ∗
04,4 D

)
, where C, D are diagonal

matrices with entries ±1 on the diagonals. This proves that the image of H3(A;Z) ⊕
H1(A;Z) under the map in (2.3.1) is a rank 8 saturated subgroup of H3(Kn(A);Z)/Tors.

By Göttsche [9] the rank of the latter is 8, and hence Theorem 2.7 follows. �
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Tori and Hyperkählers of Kummer Type 15

2.4 Structure of φ for X a generalized Kummer

Let X be an HK of Kummer type, of dimension 2n. Let UX ∈ H2n−4,2n−4
Z

(X) be an integral

Hodge class which remains of Hodge type for all deformations of X. Thus, UX might be

qn−2, where q is as in Definition 2.4, or a weight 4n − 8 poynomial in the Chern classes

of X. We let

φ(UX) :
2∧

H3(X) −→ H2(X)∨ (2.4.1)

be the composition of the map∧2 H3(X) −→ H4n−2(X)

γ ∧ γ ′ 
→ γ � γ ′ � UX

and the map H4n−2(X) → H2(X)∨ defined by cup product. Then φ(UX) is a morphism of

Hodge structures, flat for the Gauss–Manin connnection.

Now let A be an abelian surface, and let U = UKn(A). By Proposition 2.5 have the

isomorphism F : H3(A)⊕ H1(A)
∼−→ H3(Kn(A)). We let

∧2
(H3(A)⊕ H1(A))

�(U)−→ H2(Kn(A))
∨

(α,β) ∧ (α′,β ′) 
→ φ(U)(F(α,β) ∧ F(α′,β ′))

We will describe the general structure of �(U).

Notation 2.9. Let H2(Kn(A))
∨ = H2(A)∨ ⊕ Cξ∨

n be the direct sum decomposition dual

to (2.2.3) (tensored with C). (Note: ξ∨
n takes the value 1 on ξn.)

The codomain of �(U) is identified with H2(A)∨ ⊕ Cξ∨
n . On the other hand H2(A)

is naturally identified with
∧2 H1(A), hence H2(A)∨ is naturally identified with∧2 H1(A)∨. Let λ be the inverse of the isomorphism in (2.3.8). We have the isomorphism∧2

λ :
∧2 H1(A)∨ ∼→ ∧2 H3(A), hence we may write

�(U) :
2∧(

H3(A)⊕ H1(A)
) −→

2∧
H3(A)⊕ Cξ∨

n . (2.4.2)

Definition 2.10. Let ι :
∧2 H1(A)

∼−→ ∧2 H3(A) be the composition

2∧
H1(A)

∼−→
2∧

H1(A)∨
∧2 λ−→

2∧
H3(A), (2.4.3)

where the 1st map is defined by wedge-product
∧2 H1(A)×∧2 H1(A) −→ C.
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16 K.G. O’Grady

Proposition 2.11. There exists ϑ(U) = (ϑ1(U),ϑ2(U),ϑ3(U)) ∈ Z3 such that

�(U)((α,β) ∧ (α′,β ′)) = ϑ1(U)α ∧ α′ + ϑ2(U)ι(β ∧ β ′)+ ϑ3(U)(〈α,β ′〉 − 〈α′,β〉))ξ∨
n (2.4.4)

for all (α,β), (α′,β ′) ∈ H3(A)⊕ H1(A), where 〈α′,β〉, 〈β ′,α〉 make sense by (2.3.8).

Proof. Let �i(U) be �(U) restricted to the i-th summand of the decomposition

2∧
(H3(A)⊕ H1(A)) =

2∧
H3(A)⊕

2∧
H1(A)⊕ H3(A)⊗ H1(A).

Each �i(U) is equivariant for the natural action of the monodromy group of 2D compact

complex tori on domain and codomain. This makes sense because the generalized

Kummer Kn(T) is well defined for an arbitrary 2D compact complex torus. Since the

images of the monodromy group in H1(A;Z) and H3(A;Z) are the full integral special

linear groups, each of the maps �i(U) is equivariant for the natural actions of the groups

SL(H1(A)) and SL(H3(A)). It follows that there exist ϑ1(U),ϑ2(U),ϑ3(U) ∈ C such that

�1(U) = (ϑ1(U)Id, 0), �2(U) = (ϑ2(U)ι, 0), and �3(U)((α, 0) ∧ (0,β ′)) = ϑ3(U)〈α,β ′〉ξ∨
n . Since

�(U) is integral, one gets that each ϑi(U) is an integer. �

Definition 2.12. Let X be an HK manifold of Kummer type of dimension 2n. Deforming

X to Kn(A), we may set unambiguously ϑ(qn−2
X ) := ϑ(qn−2

Kn(A)
), where ϑ(qn−2

Kn(A)
) is the triple

of integers defined in Proposition 2.11.

2.5 The cohomology ring of A[m].

Let S be a smooth projective surface with torsion canonical class. Lehn and Sorger

[14] have identified the cohomology ring of S[m] with a ring functorially associated to

H(S), the cohomology ring of S. In the present subsection we recall the construction

for an abelian surface A—there is one simplification, because the Euler characteristic

vanishes. Throughout this subsection we will adhere to the notation of [14] (with the

exception that they consider rational cohomology). Accordingly, we shift the grading of

H(A) by 2:

deg Hp(A) := p − 2, (2.5.1)
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Tori and Hyperkählers of Kummer Type 17

2.5.1 The ring H(A)[m]

Let I be a finite set. One sets

H(A)⊗I := H(AI). (2.5.2)

Suppose that I has cardinality r. Let [r] := {1, 2, . . . , r}. A choice of bijection f : [r]
∼→ I

defines an isomorphism H(A)⊗r ∼→ H(A)⊗I . We define a grading of H(A)⊗I according to

(2.5.1), that is

deg Hp1(A)⊗ . . .⊗ Hpr (A) = p1 + . . .+ pr − 2r. (2.5.3)

The degree of a homogeneous element α ∈ H(A)⊗I is denoted |α|. One defines

H(A)⊗ . . .⊗ H(A)︸ ︷︷ ︸
r

Tr−→ C

α1 ⊗ . . .⊗ αr 
→ (− ∫A α1

) · . . . · (− ∫A αr

)
(notice the minus signs). Given a finite set I of cardinality r, we may define TI : H(A)⊗I →
C by choosing a bijection [r]

∼−→ I, and TI is clearly independent of the bijection. Notice

that TI is a non-degenerate bilinear form.

Let I, J be finite sets, and let f : I → J be a surjection; by taking the cup-product

map H(A)f
−1(j) → H(A) for every j ∈ J (see p. 307 of [14]), one defines a map

f ∗ : H(A)⊗I → H(A)⊗J . (2.5.4)

Let

f∗ : H(A)⊗J → H(A)⊗I (2.5.5)

be the adjoint of f ∗ with respect to the non-degenerate bilinear forms TJ and TI . In

particular, let �r : H(A)⊗r → H(A) be the multiplication map. Then �r,∗ : H(A) → H(A)⊗r

is the adjoint of the multiplication map:

T(�r,∗(α) · β1 ⊗ . . .⊗ βr) = −
∫

A
α � β1 � . . . � βr. (2.5.6)

Next, let

H(A){Sm} :=
⊕
π∈Sm

H(A)⊗〈π〉\[m] · π . (2.5.7)

Here 〈π〉\[m] is the set of orbits in [m] of the subgroup of Sm spanned by π . If ζ ∈
H(A)⊗〈π〉\[m] is homogeneous, the degree of ζπ is defined to be |ζ |.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rnz166/5558149 by guest on 03 Septem

ber 2019



18 K.G. O’Grady

One defines a multiplication on H(A){Sm} proceeding as follows (see Proposition

2.13 of [14]). Let π , ρ ∈ Sm. The graph defect g(π , ρ) : 〈π , ρ〉\[m] → N is the function (see

Lemma 2.7 in [14]) defined by

g(π , ρ)(B) = 1

2

(|B| + 2 − |〈π〉\B| − |〈ρ〉\B| − |〈πρ〉\B|).
The surjections 〈π〉\[m] −→ 〈π , ρ〉\[m] and 〈ρ〉\[m] −→ 〈π , ρ〉\[m] define maps

f π ,〈π ,ρ〉 : H(A)⊗〈π〉\[m] → H(A)⊗〈π ,ρ〉\[m], f ρ,〈π ,ρ〉 : H(A)⊗〈ρ〉\[m] → H(A)⊗〈π ,ρ〉\[m]

(see (2.5.4)), and the surjection 〈πρ〉\[m] −→ 〈π , ρ〉\[m] defines

f〈π ,ρ〉,〈πρ〉 : H(A)⊗〈π ,ρ〉\[m] → H(A)⊗〈πρ〉\[m],

as in (2.5.5). One defines μπ ,ρ : H(A)⊗〈π〉\[m] ⊗ H(A)⊗〈ρ〉\[m] → H(A)⊗〈πρ〉\[m] by setting

μπ ,ρ(a ⊗ b) :=
⎧⎨⎩f〈π ,ρ〉,〈πρ〉( f π ,〈π ,ρ〉(a) · f ρ,〈π ,ρ〉(b)) if g(π , ρ) = 0,

0 otherwise.

The multiplication on H(A){Sm} is defined by setting

ζπ · ξρ := μπ ,ρ(ζ , ξ)πρ.

The group Sm acts on H(A){Sm}, see p. 310 of [14], and one sets

H(A)[m] = (
H(A){Sm})Sm . (2.5.8)

The restriction of multiplication to H(A)[m] is graded commutative and homogeneous of

degree 2m, see Proposition 2.13 and Proposition 2.15 of [14]. Let

∞⊕
m=0

H(A)[m] 	−→
∞⊕

m=0

H
(
A[m]) =: H (2.5.9)

be the isomorphism of vector spaces defined on p. 318 of [14].

Theorem 2.13 (Lehn-Sorger [14]). The map in (2.5.9) is an isomorphism of graded

commutative rings, provided we define deg Hp(A[m]) := p − 2m.
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Tori and Hyperkählers of Kummer Type 19

2.5.2 Product of certain elements of H(A){Sm}
Let τ ∈ Sm. We define a total ordering � on the orbit set 〈τ 〉\[m] by setting I � J

if min(I) ≤ min(J). Thus, letting p be the cardinality of 〈τ 〉\[m], we have a preferred

isomorphism

H(A)⊗p ∼→ H(A)⊗〈τ 〉\[m]. (2.5.10)

Definition 2.14. Keep notation as above, and let β1, . . . ,βp ∈ H(A). We may view

β1 ⊗ . . . ⊗ βp as an element of H(A)⊗〈τ 〉\[m] because of (2.5.10). This understood, we let

β1 ⊗ . . .⊗ βpτ be the corresponding element of H(A){Sm}.

Given α ∈ H(A) and 1 ≤ i ≤ m, we let

p∗
i (α) := 1 ⊗ . . .⊗ 1 ⊗ α

i
⊗ 1 ⊗ . . . ⊗ 1 ∈ H(A)⊗m. (2.5.11)

Definition 2.15. Let ξ ∈ H(A). For 1 ≤ i < j ≤ (m + 1), let �ij
∗ (ξ) ∈ H(A)⊗m be the image

of �2,∗(ξ) under the homomorphism H(A)⊗2 → H(A)⊗m mapping a ⊗ b to p∗
i (a) · p∗

j (b).

Similarly, for 1 ≤ h < k < l ≤ m, let �hkl∗ (ξ) ∈ H(A)⊗m be the image of �3,∗(ξ) under the

homomorphism H(A)⊗3 → H(A)⊗m mapping a ⊗ b ⊗ c to p∗
h(a) · p∗

k(b) · p∗
l (c).

Let 1 ≤ i < j ≤ m and 1 ≤ h < k ≤ m. Then (cf. Example 2.17 in [14]):

(
p∗

i (β)(ij)
) · (p∗

h(β
′)(hk)

) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�

ij
∗ (β � β ′)Id if {i, j} = {h, k},

p∗
min{i,j,h,k}(β � β ′)(ij) · (hk) if |{i, j} ∩ {h, k}| = 1,

zijhk(β,β ′)(ij) · (hk) if {i, j} ∩ {h, k} = ∅,

(2.5.12)

where

zijhk(β,β ′) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p∗

i β · p∗
hβ

′ if i < h < j or h < i < k,

p∗
i β · p∗

h−1β
′ if i < j < h,

p∗
i−1β · p∗

hβ
′ if h < k < i.

(2.5.13)

Let 1 ≤ i < j < k ≤ m. Then (cf. Example 2.17 in [14]):

(
p∗

i (β)(ijk)
) · (p∗

i (β
′)(kji)

) = �
ijk
∗ (β � β ′)Id. (2.5.14)
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20 K.G. O’Grady

Lastly, let 1 ≤ i < j ≤ m and 1 ≤ h < k ≤ m. Let β,β ′, γ , γ ′ ∈ H(A), with γ and β ′

homogeneous. Then

(
p∗

i (β)(ij)
) · (p∗

h(β
′)(hk)

) · (p∗
i (γ )(ij)

) · (p∗
h(γ

′)(hk)
) = (−1)|β ′|·|γ |�ij

∗ (β � γ ) ·�hk∗ (β ′ � γ ′)Id.

(2.5.15)

2.5.3 Cohomology classes and Grojnowski-Nakajima operators

We describe elements of H(A)[m] that correspond to classes in H(A[m]) that are relevant

for our computations. In order to avoid misunderstandings, we let μ̃[m]
r : Hr(A) →

Hr(A[m]) be the map that was previously denoted by μ̃r (we add the superscript

[m]), and similarly we let ν̃[m]
r : Hr−2(A) → Hr(A[m]) be the map that was previously

denoted by ν̃r.

Notice that
∑m

i=1 p∗
i (α)Id ∈ H(A)[m].

Proposition 2.16. Keep notation as above, and let α ∈ Hr(A). Then

	

(
m∑

i=1

p∗
i (α)Id

)
= μ̃[m]

r (α). (2.5.16)

Proof. Given � ∈ N and γ ∈ H(A), let p−�(γ ) : H → H be the Grojnowski–Nakajima

operator, see p. 315 in [14]. Let 1 ∈ H0(A[0]) be the function {∅} → C with value 1 (the

vacuum). By definition of 	, the proposition follows from the easily verified equality

p−1(1) · . . . · p−1(1)︸ ︷︷ ︸
m−1

·p−1(α) · 1 = (m − 1)! μ̃[m]
r (α).

For β ∈ H(A), let

cm(β) :=
∑

1≤i<j≤m

p∗
i (β)(ij). (2.5.17)

(This is the only place where our notation differs from that of [14], our cm(1) is denoted

−εm,2, see p. 319 op. cit.) Notice that cm(β) ∈ H(A)[m].

Proposition 2.17. Let β ∈ Hr−2(A), and keep notation as above. Then

	(cm(β)) = 1

2
ν̃[m]

r (β). (2.5.18)
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Tori and Hyperkählers of Kummer Type 21

Proof. By definition of 	, the proposition follows from the equality

p−1(1) · . . . · p−1(1)︸ ︷︷ ︸
m−2

·p−2(β) · 1 = (m − 2)! ν̃[m]
r (β)

Let β,β ′ ∈ H(A). The following formula (which holds by (2.5.12)) will be handy:

cm(β) · cm(β ′) =
∑

1≤i<j≤m

�
ij
∗ (β � β ′)Id + +

∑
{h,k,l}⊂{1,...,m}

|{h,k,l}|=3

p∗
min{h,k,l}(β ∪ β ′)(hkl)

+
∑

1≤i<j≤m
1≤h<k≤m

{i,j}∩{h,k}=∅

zijhk(β,β ′)(ij)(hk). (2.5.19)

(Note: in the 2nd summation every order 3 cyclic permutation appears 3 times.)

Let ηA[m] ∈ H4m(S[m]) be the fundamental class; it follows directly from the

definition of 	 (see the definition of � on p. 311 of [14]) that

	
(
η⊗m

A Id
) = 1

m!
ηA[m] . (2.5.20)

2.6 Computation of ϑ1
(
qn−2

X
)

Let X be a 2n-dimensional hyperkähler manifold of Kummer type, and let ϑ(qn−2
X ) be as

in Definition 2.12.

Proposition 2.18. Let X be a 2n-dimensional hyperkähler manifold of Kummer type,

where n � 2. Then

ϑ1

(
qn−2

X

) = −2n−2(n + 1)n−2 (2n + 3)! !

7! !
. (2.6.1)

We notice that, in order to prove Theorem 1.1, it suffices to know that ϑ1(q
n−2
X )

and ϑ2(q
n−2
X ) are non-zero (but we do not know how to establish non-vanishing of

ϑi(q
n−2
X ) without actually computing it), while in the proof of Theorem 1.3 we need to

know that ϑ2(q
n−2
X )/ϑ1(q

n−2
X ) = n + 1.

The proof of Proposition 2.18 is given at the end of the subsection. We start

by going through some preliminary results. Let H(Kn(A))(2) ⊂ H(Kn(A)) be the graded

C-algebra generated by H2(Kn(A)). By a Theorem of Verbitsky [2, 25], the restriction

of the Poincaré pairing to H(Kn(A))(2) is perfect, and the kernel of the natural map

SymH2(Kn(A)) → H(Kn(A))(2) is generated by all elements αn+1, where q(α) = 0. Now
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22 K.G. O’Grady

suppose that p ≤ n. Then the map SympH2(Kn(A)) → H(Kn(A))
2p
(2) is an isomorphism,

and hence we have a direct sum decomposition

H2p(Kn(A)) = SympH2(Kn(A))⊕
(
H(Kn(A))

⊥
(2)

)2p
,

where orthogonality is with respect to the Poincaré pairing. Let

�p : H2p(Kn(A)) −→ SympH2(Kn(A))

be the projection. Let ι be as in Definition 2.10.

Lemma 2.19. Let n � 3. There exist Ci(n), Di(n) ∈ Q for i ∈ {1, 2, 3} such that for all

α,α′ ∈ H3(A) and β,β ′ ∈ H1(A),

�3

(
μ3(α) � μ3(α

′)
) = C1(n)q

∨ � μ2

(
ι−1(α ∧ α′)

)+ D1(n)μ2

(
ι−1(α ∧ α′)

)
� ξ2

n,

�3

(
ν3(β) � ν3(β

′)
) = C2(n)q

∨ � μ2(β � β ′)+ D2(n)μ2(β � β ′) � ξ2
n,

�3

(
μ3(α) � ν3(β)

) = C3(n)
(∫

A
α � β

)
q∨ � ξn + D3(n)

(∫
A
α � β

)
ξ3

n.

Proof. Let �1 :
∧2 H3(A) → Sym3H2(Kn(A)), �2 :

∧2 H1(A) → Sym3H2(Kn(A)), and

�3 : H3(A)⊗ H1(A) → Sym3H2(Kn(A)) be the linear maps which have values �3(μ3(α) �

μ3(α
′)), �3(ν3(β) � ν3(β

′)) and �3(μ3(α) � ν3(β)) on decomposable vectors α ∧ α′, β ∧ β ′

and α ⊗ β, respectively. Because of (2.2.3), we write the codomain of �i as

Sym3H2(A)⊕
(
Sym2H2(A)⊗ Cξn

)
⊕
(
H2(A)⊗ Cξ2

n

)
⊕ Cξ3

n. (2.6.2)

The map �i is equivariant for the action of the monodromy group of 2D compact

complex tori on domain and codomain. Since the monodromy group is SLH3(A;Z), �i

is equivariant for the action of SLH3(A). The domains of �1 and �2 are irreducible

representations of SLH3(A). Decomposing each summand of (2.6.2) into a direct sum of

irreducible SLH3(A) representations, one gets the 1st two equations. The decomposition

into irreducible summands of the domain of �3 is End0(H
3(A))⊕ CIdH3(A). Of these two

representations, only the trivial one appears in the decomposition of (2.6.2), and the

third equation follows.
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Tori and Hyperkählers of Kummer Type 23

Throughout the present subsection we let {η1, . . . , η4} be an oriented basis of

H1(A), that is such that η := η1 � . . . � η4 is the fundamental class of A.

Proposition 2.20. Let α,α′ ∈ H3(A), and γ ∈ H2(A). If n � 2, then

∫
Kn(A)

μ3(α) � μ3(α
′) � μ2(γ )

2n−3 = −(2n−3)! !
(∫

A
ι−1(α ∧ α′) � γ

)
·
(∫

A
γ 2
)n−2

. (2.6.3)

Proof. The required computation is done on An+1 by the following argument. Let

σn+1 : A(n+1) → A, σ̂n+1 : An+1 → A

be the summation maps, and let

Wn+1(A) := σ−1
n+1(0), Ŵn+1(A) := σ̂−1

n+1(0). (2.6.4)

The restriction of the Hilbert–Chow map to Kn(A) is a map hn : Kn(A) → Wn+1(A) of

degree 1 and, for λ ∈ Hk(A), the class μk(λ) is equal to h∗
n(λ

(n+1)|Wn+1(A)). Hence, the

computation may be done on Wn+1(A). The natural map Ŵn+1(A) → Wn+1(A) has degree

(n+1)!, and therefore the computation may be done on Ŵn+1(A). Lastly, we may compute

on An+1, because the relevant classes on Ŵn+1(A) are the restrictions of classes on An+1.

Let pi : An+1 → A be the i-th projection. Then

ω :=
n+1∑
a=1

p∗
a(η1) ∪

n+1∑
b=1

p∗
b(η2) ∪

n+1∑
c=1

p∗
c(η3) ∪

n+1∑
d=1

p∗
d(η4) (2.6.5)

is the Poincaré dual of Ŵn+1(A). Thus, (2.6.3) is equivalent to the following equality:

∫
An+1

(
n+1∑
r=1

p∗
rα

)
�

(
n+1∑
s=1

p∗
sα

′
)
�

(
n+1∑
t=1

p∗
t γ

)2n−3

� ω

= −(n + 1)! ·(2n − 3)! !
(∫

A
ι−1(α ∧ α′) � γ

)
·
(∫

A
γ � γ

)n−2

. (2.6.6)

By Lemma 2.19, it suffices to prove that (2.6.6) holds for

α = η1 � η2 � η3, α′ = η1 � η2 � η4. (2.6.7)
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24 K.G. O’Grady

Notice that

ι−1(α ∧ α′) = η1 � η2. (2.6.8)

The integrand in the left-hand side of (2.6.6) is the sum of monomials given by products

of the addends of the factors. Each non-vanishing monomial is equal to

p∗
r(α � η4) � p∗

s(α
′ � η3) � p∗

t1
(γ 2) � . . . � p∗

tn−2
(γ 2) � p∗

tn−1
(γ � η1 � η2), (2.6.9)

where {r, s, t1, . . . , tn−1} = {1, . . . , n + 1}.
By (2.6.8), the integral over An+1 of the class in (2.6.9) equals

−
(∫

A
ι−1(α ∧ α′) � γ

)
·
(∫

A
γ 2
)n−2

.

Since (n + 1)! (2n − 3)! ! such integrals appear, the proposition follows. �

Proposition 2.21. Let α,α′ ∈ H3(A), and γ ∈ H2(A). If n � 3, then

∫
Kn(A)

μ3(α) � μ3(α
′) � μ2(γ )

2n−5 � ξ2
n

= 2(n + 1) · (2n − 5)! !
(∫

A
ι−1(α ∧ α′) � γ

)
·
(∫

A
γ 2
)n−3

. (2.6.10)

Proof. Let Q be the number such that

cn+1(1)
2 ·
(

n+1∑
i=1

p∗
i (α)Id

)
·
(

n+1∑
i=1

p∗
i (α

′)Id
)

·
(

n+1∑
i=1

p∗
i (γ )Id

)2n−5

·
4∏

s=1

(
p∗

1(ηs)Id + . . .+ p∗
n+1(ηs)Id

) = Qη⊗(n+1). (2.6.11)

By the results recalled in Subsection 2.5, the integral in the left-hand side of (2.6.10)

is equal to Q/(n + 1)!. Now consider Equation (19) for β = β ′ = 1, and plug it into the

left-hand side of (2.6.11): the terms in the right-hand side of (19) that involve non-trivial

permutations will give zero when multiplied by the other factors, hence we get that the

left-hand side of (2.6.11) is equal to the sum, for 1 ≤ i < j ≤ (n + 1), of the products

obtained by substituting cn+1(1)
2 with �

ij
∗ (1)Id in the left-hand side of (2.6.11). Since

there are n(n + 1)/2 such terms, and each contributes (by symmetry) the same amount
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Tori and Hyperkählers of Kummer Type 25

to Q, it follows that

∫
Kn(A)

μ3(α) � μ3(α
′) � μ2(γ )

2n−5 � ξ2
n = 1

(n − 1)! ·2
∫

An+1

�n,(n+1)∗ (1) �

(
n+1∑
i=1

p∗
i (α)

)

�

(
n+1∑
i=1

p∗
i (α

′)
)
�

(
n+1∑
i=1

p∗
i (γ )

)2n−5

�

4∏
s=1

(
p∗

1(ηs)+ . . . + p∗
n+1(ηs)

)
. (2.6.12)

Notice that −�n,(n+1)∗ (1) is the Poincaré dual of

{
a ∈ An+1 | an = an+1

} ∼−→ An

a 
→ (a1, . . . , an).
(2.6.13)

Letting ν be the cohomology class on An given by

ν := (
p∗

1(γ )+ . . . + p∗
n−1(γ )+ 2p∗

n(γ )
)2n−5

�

4∏
s=1

(
p∗

1(ηs)+ . . . + p∗
n−1(ηs)+ 2p∗

n(ηs)
)

,

(2.6.14)

it follows that the integral in the right-hand side of (12) is equal to

−
∫

An

(
p∗

1(α)+ . . .+ p∗
n−1(α)+ 2p∗

n(α)
)
�
(
p∗

1(α
′)+ . . .+ p∗

n−1(α
′)+ 2p∗

n(α
′)
)
� ν. (2.6.15)

The integrand in (2.6.15) equals

∑
i�=j

1≤i,j≤(n−1)

p∗
i (α) � p∗

j (α
′) � ν + 2

n−1∑
i=1

p∗
i (α) � p∗

n(α
′) � ν + 2

n−1∑
j=1

p∗
n(α) � p∗

j (α
′) � ν.

(2.6.16)

Since ν is Sn−1-invariant, it follows that the integral in (2.6.15) equals

(n − 1)(n − 2)
∫

An
p∗

1(α) � p∗
2(α

′) � ν + 2(n − 1)
∫

An
p∗

1(α) � p∗
n(α

′) � ν

+ 2(n − 1)
∫

An
p∗

n(α) � p∗
1(α

′) � ν. (2.6.17)
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26 K.G. O’Grady

By Lemma 2.19, it suffices to prove that (2.6.10) holds for α,α′ as in (2.6.7). Expanding ν

as a sum of monomials, one gets that

p∗
1(α) � p∗

2(α
′) � ν =

n−1∑
i=3

4(n − 3)! (2n − 5)! ! p∗
1(α � η4) � p∗

2(α
′ � η3) � p∗

3(γ
2) � . . .

� p∗
i−1(γ

2) � p∗
i (γ � η1 � η2) � p∗

i+1(γ
2) � . . . � p∗

n(γ
2)

+ 8(n − 3)! (2n − 5)! ! p∗
1(α � η4) � p∗

2(α
′ � η3) � p∗

3(γ
2) � . . .

� p∗
n−1(γ

2) � p∗
n(γ � η1 � η2). (2.6.18)

Thus, recalling (2.6.8), Equation (18) gives

∫
An

p∗
1(α) � p∗

2(α
′) � ν = −4(n − 1)(n − 3)! (2n − 5)! !

⎛⎝ ∫
A

γ � ι−1(α ∧ α′)

⎞⎠⎛⎝∫
A

γ 2

⎞⎠n−3

.

(2.6.19)

Similarly (see [20]), one gets that

∫
An

p∗
1(α) � p∗

n(α
′) � ν =

∫
An

p∗
n(α) � p∗

1(α
′) � ν

= − 2(n − 2)! (2n − 5)! !

⎛⎝∫
A

γ � ι−1(α ∧ α′)

⎞⎠⎛⎝∫
A

γ 2

⎞⎠n−3

.

(2.6.20)

By (2.6.17), the integral in the right-hand side of (12) is equal to

4(n + 1)(n − 1)! (2n − 5)! !

⎛⎝∫
A

γ � ι−1(α ∧ α′)

⎞⎠⎛⎝∫
A

γ 2

⎞⎠n−3

.

�

Corollary 2.22. Let n � 3. Then (notation as in Lemma 2.19)

C1(n) = − 1

(n + 1)(2n + 5)
, D1(n) = 0.
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Tori and Hyperkählers of Kummer Type 27

Proof. By Lemma 2.19, we have

∫
Kn(A)

μ3(α) � μ3(α
′) � μ2(γ )

2n−3 = C1(n)
∫

Kn(A)

q∨ � μ2(ι
−1(α ∧ α′)) � μ2(γ )

2n−3+

+ D1(n)
∫

Kn(A)

μ2(ι
−1(α ∧ α′)) � ξ2

n � μ2(γ )
2n−3, (2.6.21)

and

∫
Kn(A)

μ3(α) � μ3(α
′) � μ2(γ )

2n−5 � ξ2
n = C1(n)

∫
Kn(A)

q∨ � μ2(ι
−1(α ∧ α′))

� μ2(γ )
2n−5 � ξ2

n + +D1(n)
∫

Kn(A)

μ2(ι
−1(α ∧ α′)) � μ2(γ )

2n−5 � ξ4
n. (2.6.22)

Each of the integrals appearing in the right-hand side of the above equations may be

computed by invoking the case � = 1 of Proposition 2.3 or Equation (2.2.5) (see also

Remark 2.1). By Proposition 2.20 and Proposition 2.21, it follows that C1(n) and D1(n)

are the solutions of the system of linear equations

−(2n − 3)! ! = (n + 1)(2n + 5) · (2n − 3)! ! C1(n)− 2(n + 1)2 · (2n − 3)! ! D1(n),

2(n+1)·(2n−5)!! = −2(n + 1)2(2n + 5) · (2n − 5)! ! C1(n)+ 12(n + 1)3 · (2n − 5)! ! D1(n).
(2.6.23)

Solving for C1(n) and D1(n) one gets the formulae of the proposition. �

Proof of Proposition 2.18. We must prove that if α,α′ ∈ H3(A) and γ ∈ H2(A), then∫
Kn(A)

μ3(α) � μ3(α
′) � qn−2 � μ2(γ ) = −2n−2(n + 1)n−2 (2n + 3)! !

7! !

∫
A

ι−1(α ∧ α′) � γ .

(2.6.24)

If n = 2, Equation (2.6.24) follows directly from (2.6.3). If n � 3, first recall that

qX = 2(n + 1)q∨
X by Definition 2.4. Next, one applies Lemma 2.19. In fact, one assigns to

C1(n) and D1(n) the values given by Corollary 2.22, and then one applies (2.2.5) (see also

Remark 2.1) and Proposition 2.3 in order to carry out the required computations. �

2.7 Computation of ϑ2(q
n−2)

We will prove the following result.
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28 K.G. O’Grady

Proposition 2.23. Let X be a 2n-dimensional hyperkähler manifold of Kummer type,

where n � 2. Then

ϑ2

(
qn−2

X

) = −2n−2(n + 1)n−1 (2n + 3)! !

7! !
. (2.7.1)

The proof of Proposition 2.23 will be given at the end of this subsection.

Throughout the subsection, {η1, . . . , η4} is an oriented basis of H1(A), that is η := η1 �

. . . � η4 is the fundamental class of A.

Proposition 2.24. Let β,β ′ ∈ H1(A) and γ ∈ H2(A). If n � 2, then

∫
Kn(A)

ν3(β) � ν3(β
′) � μ2(γ )

2n−3 = −4(n + 1)(2n − 3)! !
(∫

A
β � β ′ � γ

)
·
(∫

A
γ 2
)n−2

.

(2.7.2)

Proof. Let M be the integer such that

cn+1(β) · cn+1(β
′) ·
(

n+1∑
i=1

p∗
i (γ )Id

)2n−3

·
4∏

s=1

⎛⎝ n+1∑
j=1

p∗
j (ηs)Id

⎞⎠ = Mη⊗(n+1)Id. (2.7.3)

By Proposition 2.16, Proposition 2.17 and (2.5.20), we have

∫
Kn(A)

ν3(β) � ν3(β
′) � μ2(γ )

2n−3 = 4M

(n + 1)!
. (2.7.4)

Let us compute M. By (19)

M =
∑

1≤h<k≤(n+1)

∫
An+1

�hk∗ (β � β ′) �
(

n+1∑
i=1

p∗
i (γ )

)2n−3

�

4∏
s=1

⎛⎝ n+1∑
j=1

p∗
j (ηs)

⎞⎠

= n(n + 1)

2

∫
An+1

�12∗ (β � β ′) �
(

n+1∑
i=1

p∗
i (γ )

)2n−3

�

4∏
s=1

⎛⎝n+1∑
j=1

p∗
j (ηs)

⎞⎠ . (2.7.5)

Since

�12∗ (β � β ′) = −p∗
1(β � β ′) � P.D. {a ∈ An+1 | a1 = a2},
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Tori and Hyperkählers of Kummer Type 29

(here P.D. stands for “Poincaré dual”), it follows that∫
Kn(A)

ν3(β) � ν3(β
′) � μ2(γ )

2n−3 = − 2

(n − 1)!

∫
An

p∗
1(β � β ′) � (2p∗

1(γ )+ p∗
2(γ )+ . . .

+ p∗
n(γ ))

2n−3 �

4∏
s=1

(2p∗
1(ηs)+ p∗

2(ηs)+ . . . + p∗
n(ηs)).

(2.7.6)

By Lemma 2.19 it suffices to prove that (2.7.2) holds for

β = η1, β ′ = η2. (2.7.7)

The integrand in the right-hand side of (6) is equal to

2(n − 2)! (2n − 3)! !

[
n∑

i=2

p∗
1(β � β ′ � γ) � p∗

2(γ
2) � . . . � p∗

i−1(γ
2) � p∗

i+1(γ
2) � . . .

� p∗
n(γ

2) � p∗
i (η)+

n∑
i=2

2p∗
1(β � β ′) � p∗

2(γ
2) � . . . � p∗

i−1(γ
2)

� p∗
i (γ � η1 � η2) � p∗

i+1(γ
2) � . . . � p∗

n(γ
2) � p∗

1(η3 � η4)

+
∑

2≤i<j≤n

2p∗
1(β � β ′ � γ) � p∗

2(γ
2) � . . . � p∗

i−1(γ
2) � p∗

i (γ )

� p∗
i+1(γ

2) � . . . � p∗
j−1(γ

2) � p∗
j (γ ) � p∗

j+1(γ
2) � . . .

� p∗
n(γ

2) � νij

]
, (2.7.8)

(do not overlook the square brackets!) where

νij :=
∑

1≤a<b≤4
1≤c<d≤4

{a,b,c,d}={1,...,4}

(−1)a+b−1p∗
i (ηa � ηb) � p∗

j (ηc � ηd). (2.7.9)

Thus,∫
An

p∗
1(β � β ′) � (2p∗

1(γ )+ p∗
2(γ )+ . . .+ p∗

n(γ ))
2n−3 �

4∏
s=1

(2p∗
1(ηs)+ p∗

2(ηs)+ . . .+ p∗
n(ηs))

= 2(n + 1)(n − 1)! (2n − 3)! !
(∫

A
β � β ′ � γ

)
·
(∫

A
γ � γ

)n−2

,

and the proposition follows from (6). �
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30 K.G. O’Grady

Proposition 2.25. Let β,β ′ ∈ H1(A), and γ ∈ H2(A). If n � 3, then∫
Kn(A)

ν3(β) � ν3(β
′) � μ2(γ )

2n−5 � ξ2
n = 8(n+1)2(2n−5)! !

(∫
A
β � β ′ � γ

)
·
(∫

A
γ 2
)n−3

.

(2.7.10)

Proof. Let P be the integer such that

cn+1(β) · cn+1(β
′) · cn+1(1) · cn+1(1) ·

(
n+1∑
i=1

p∗
i (γ )Id

)2n−5

·
4∏

s=1

⎛⎝n+1∑
j=1

p∗
j (ηs)Id

⎞⎠ = Pη⊗(n+1)Id.

(2.7.11)

By Proposition 2.16, Proposition 2.17 and (2.5.20), we have∫
Kn(A)

ν3(β) � ν3(β
′) � μ2(γ )

2n−5 � ξ2
n = 4P

(n + 1)!
. (2.7.12)

Let us compute P. By (19) and the formulae in Subsubsection 2.5.2, we have

cn+1(β) · cn+1(β
′) · cn+1(1) · cn+1(1) =

∑
1≤a<b≤(n+1)
1≤c<d≤(n+1)

�ab∗ (β � β ′) ·�cd∗ (1)Id

+ 18

⎛⎝ ∑
1≤h<k<l≤(n+1)

�hkl∗ (β � β ′)Id

⎞⎠+ 2

⎛⎜⎜⎜⎜⎜⎝
∑

1≤r<s≤(n+1)
1≤t<u≤(n+1)
{r,s}∩{t,u}=∅

�rs∗ (β) ·�tu∗ (β ′)Id

⎞⎟⎟⎟⎟⎟⎠+ R,

where the remainder R is a sum of terms involving non-trivial permutations.

Let τ :=
(∑n+1

i=1 p∗
i (γ )Id

)2n−5 ·∏4
s=1

(∑n+1
j=1 p∗

j (ηs)Id
)
, where pi is projection to the

i-th factor. Since τ is Sn+1-invariant,

P = (n + 1)n(n − 1)

⎛⎜⎝ ∫
An+1

�12∗ (β � β ′) � �13∗ (1) � τ

⎞⎟⎠
+ 1

4
(n + 1)n(n − 1)(n − 2)

⎛⎜⎝ ∫
An+1

�12∗ (β � β ′) � �34∗ (1) � τ

⎞⎟⎠
+ 3(n + 1)n(n − 1)

⎛⎜⎝ ∫
An+1

�123∗ (β � β ′) � τ

⎞⎟⎠
+ 1

2
(n + 1)n(n − 1)(n − 2)

⎛⎜⎝ ∫
An+1

�12∗ (β) � �34∗ (β ′) � τ

⎞⎟⎠ . (2.7.13)

(Notice that �ab∗ (β � β ′) ·�ab∗ (1) = 0 for dimension reasons.)
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Tori and Hyperkählers of Kummer Type 31

Next, notice that �r,∗(1) is the Poincaré dual of the small diagonal in Ar

multiplied by (−1)r+1. Moreover, if γ ∈ H(A) then �r,∗(γ ) = p∗
1(γ ) � �r,∗(1). It follows

that the integrals in (13) are equal to integrals over the subset {(x, x, x, y1, . . . , yn−2} ⊂
An+1, or the subset {(x, x, y, y, z1, . . . , zn−3} ⊂ An+1. More precisely, let τ3 and τ2,2 be the

cohomology classes on An−1 given by

τ3 :=
(

3p∗
1(γ )+

n−1∑
i=2

p∗
i (γ )

)2n−5

�

4∏
s=1

⎛⎝3p∗
1(ηs)+

n−1∑
j=2

p∗
j (ηs)

⎞⎠ ,

τ2,2 :=
(

2p∗
1(γ )+ 2p∗

2(γ )+
n−1∑
i=3

p∗
i (γ )

)2n−5

�

4∏
s=1

⎛⎝2p∗
1(ηs)+ 2p∗

2(ηs)+
n−1∑
j=3

p∗
j (ηs)

⎞⎠ .

Then (13) reads

P = (n + 1)n(n − 1)

⎛⎜⎝ ∫
An−1

p∗
1(β � β ′) � τ3

⎞⎟⎠

+ 1

4
(n + 1)n(n − 1)(n − 2)

⎛⎜⎝ ∫
An−1

p∗
1(β � β ′) � τ2,2

⎞⎟⎠

+ 3(n + 1)n(n − 1)

⎛⎜⎝ ∫
An−1

p∗
1(β � β ′) � τ3

⎞⎟⎠

+ 1

2
(n + 1)n(n − 1)(n − 2)

⎛⎜⎝ ∫
An−1

p∗
1(β) � p∗

2(β
′) � τ2,2

⎞⎟⎠ . (2.7.14)

By Lemma 2.19, it suffices to prove that (2.7.10) holds for

β = η1, β ′ = η2. (2.7.15)

Straightforward computations (see [20]) give that

∫
An−1

p∗
1(β � β ′) � τ3 = 3(n + 1)(n − 2)! (2n − 5)! !

(∫
A
β � β ′ � γ

)
·
(∫

A
γ � γ

)n−3

.

(2.7.16)
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32 K.G. O’Grady

∫
An−1

p∗
1(β � β ′) � τ2,2 = 8(n+1)(n−1)(n−3)! (2n−5)! !

(∫
A
β � β ′ � γ

)
·
(∫

A
γ � γ

)n−3

.

(2.7.17)∫
An−1

p∗
1(β) � p∗

2(β
′) � τ2,2 = −16(n+1)(n−3)! (2n−5)! !

(∫
A
β � β ′ � γ

)
·
(∫

A
γ � γ

)n−3

.

(2.7.18)

Thus, P = 2(n + 1)! (n + 1)2(2n − 5)! ! by (14), (2.7.16), (2.7.17), and (2.7.18), and the

proposition follows from (2.7.12). �

Corollary 2.26. Let n � 3. Then (notation as in Lemma 2.19)

C2(n) = − 4

(2n + 5)
, D2(n) = 0.

Proof. By Propositions 2.20, 2.21, 2.24, and 2.25 we have∫
Kn(A)

ν3(β) � ν3(β
′) � μ2(γ )

2n−3 = 4(n+1)
∫

Kn(A)
μ3(α)�μ3(α

′)�μ2(γ )
2n−3,

∫
Kn(A)

ν3(β) � ν3(β
′) � μ2(γ )

2n−5 � ξ2
n = 4(n+1)

∫
Kn(A)

μ3(α)�μ3(α
′)�μ2(γ )

2n−5�ξ2
n .

Thus, going through the proof of Corollary 2.22 one gets that C2(n) and D2(n) satisfy the

system of linear equations obtained from (2.6.23) by multiplying the left-hand terms by

4(n + 1) and replacing C1(n) D1(n) by C2(n), D2(n), respectively. Hence, C2(n) = 4(n +
1)C1(n) and D2(n) = 4(n + 1)D1(n). Hence, the result follows from corollary 2.22. �

Proof of Proposition 2.23. We must prove that ϑ2(q
n−2) = (n + 1)ϑ1(q

n−2). This holds

because C2(n) = 4(n + 1)C1(n) and D2(n) = 4(n + 1)D1(n). (Recall that F(0,β) = ν(β)/2,

where F is the isomorphism in (2.3.1).) �

2.8 Proof of the 1st main result

We prove Theorem 1.1.

Let us prove Item (1), that is surjectivity of φ. Since ϑ1(q
n−2
X ) and ϑ2(q

n−2
X ) are

non-zero, the map φ is non-zero. Let X0 be very general. Then there is no non-trivial

sub Hodge structure of H2(X0)
∨, and hence φ is surjective. Since φ is flat for the Gauss-

Manin connection, it follows that φ is surjective for every X.

Before going to Item (2), we note the following.
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Tori and Hyperkählers of Kummer Type 33

Lemma 2.27. Let X be an HK of Kummer type, of dimension 2n. Then ϑ3(q
n−2
X ) is non-

zero.

Proof. We may assume that X = Kn(A). Since φ is surjective, it follows that ϑ3(q
n−2
X ) is

non-zero. �

Remark 2.28. We will compute ϑ3(q
n−2
X ) up to sign, see corollary 3.7.

In proving Item (2), we may assume that X is a generalized Kummer Kn(A),

Identify H3(A;Z) ⊕ H1(A;Z) with H3(Kn(A);Z) via Theorem 2.7, see (2.3.1). Identify

H1(A;Z) with H3(A;Z)∨ via (2.3.8). Given these identifications, we define the following

integral unimodular quadratic form:

H3(Kn(A))/Tors
qKn(A)−→ C

(α,β) 
→ 2β(α)
(2.8.19)

Let γ ∈ H3(Kn(A)). Then, since the components of ϑ(qn−2) are non-zero,

dimφ(γ ∧ H3(Kn(A)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if γ = 0,

4 if γ �= 0 and qKn(A)(γ ) = 0,

7 if qKn(A)(γ ) �= 0.

(2.8.20)

Item (2) of Theorem 1.1 follows.

Lastly, we prove Item (3). Let 0 �= γ ∈ H2,1(X). Then φ(γ ∧ H2,1(X)) ⊂
Ann(F1H2(X)), and hence dimφ(γ ∧ H3(X)) ≤ 5. Thus, [γ ] ∈ Q(X).

3 Reconstructing H3(X) from H2(X)

3.1 Summary

In the present section we will prove Theorem 1.3. We assume that we are given an

abstract version of the map in (2.4.4), that is a linear map

2∧
(VC ⊕ V∨

C)
�ϑ−→

2∧
VC ⊕ C, (3.1.1)

depending on a choice of ϑ := (ϑ1,ϑ2,ϑ3) ∈ Z3, where V is a free Z-module of rank

4. Assuming that all the components of ϑ are non-zero, we determine for which 4D
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34 K.G. O’Grady

subspaces 	 of the domain the image �ϑ(
∧2

	) is one-dimensional. The motivation

is the Key observation 1.2. Next, we equip the codomain of �ϑ with a non-degenerate

quadratic form modelled on the BBF of generalized Kummers, and we get a correspond-

ing open subset of a quadric, call it D , parametrizing weight 2 Hodge structure of K3

type. We show that for 	 as above, �ϑ(
∧2

	) is an element of D , and that conversely

every element of D comes from a unique 	. Thus, associated to each point of D there is

an integral effective weight 1 Hodge structure, and hence a compact complex torus. In

the last subsection we prove Theorem 1.3.

3.2 Set up

Keeping notation as above, let vol :
∧4 V

∼−→ Z be a volume form. Let (, ) be the bilinear

symmetric non-degenerate form on
∧2 V defined by (α,β) := vol(α ∧ β). We extend

bilinearly (, ) to
∧2 VC, where VC := V ⊗Z C, and we denote it by the same symbol. Let

ι :
2∧

V∨
C

∼−→
2∧

VC (3.2.1)

be the isomorphism defined by (, ).

We define the map �ϑ in (3.1.1) to be the one induced by the bilinear antisym-

metric map

(VC ⊕ V∨
C
)× (VC ⊕ V∨

C
) −→ ∧2 VC ⊕ C

((v, g), (w, h)) 
→ (ϑ1v ∧ w + ϑ2ι(g ∧ h),ϑ3(g(w)− h(v)))
(3.2.2)

Remark 3.1. Let X be an HK manifold of Kummer type of dimension 2n. By

Proposition 2.11, there exist isomorphisms H3(X;Z) ∼= V⊕V∨ and H2(X;Z)∨ ∼= (
∧2 V⊕Z),

such that φ (see (1.2.2)) gets identified with �
ϑ(qn−2

X )
.

Notation 3.2. Keeping notation as above, we let ζ := (0, 1) ∈ (
∧2 VC ⊕ C).

3.3 A result in linear algebra

Let f : VC → V∨
C

be a linear map. We let ωf ∈ ∧2 V∨
C

be the antisymmetric form defined

by f , that is

ωf (v, w) = 1

2
(〈 f (w), v〉 − 〈 f (v), w〉) , (3.3.1)

where 〈, 〉 denotes the natural pairing between V∨
C

and VC.
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Tori and Hyperkählers of Kummer Type 35

We let f = f+ + f− be the decomposition into the sum of a symmetric and an

antisymmetric linear map. Notice that ωf− = ωf .

Now assume that f is antisymmetric. The Pfaffian of f is the Pfaffian of (any)

matrix associated to f by the choice of a basis {v1, . . . , v4} of VC of volume 1, and the dual

basis {v∨
1 , . . . , v∨

4 } of V∨
C

. We denote the Pfaffian of f by Pf(f ). If ωf = ∑
1≤i<j≤4 aijv

∨
i ∧ v∨

j ,

then

Pf(f ) = a12a34 − a13a24 + a14a23. (3.3.2)

Proposition 3.3. Keep notation as above, and assume that ϑ1, ϑ2 and ϑ3 are non-

zero. Let 	 ⊂ (VC ⊕ V∨
C
) be a vector subspace of dimension 4. Then �ϑ(

∧2
	) is a one-

dimensional subspace of
∧2 V ⊕ C if and only if one of the following holds:

(1) There exists an antisymmetric non-degenerate linear map f : VC → V∨
C

such

that

ϑ1 = ϑ2 · Pf( f ), (3.3.3)

and

	 := {(v, f (v)) | v ∈ VC}. (3.3.4)

If this is the case, then

�ϑ

(
2∧
	

)
= span{ϑ2ι(ωf )− 2ϑ3ζ }. (3.3.5)

(2) 	 = U ⊕ U⊥, where U ⊂ VC is a 2D subspace, and U⊥ ⊂ V∨
C

is the annihilator

of U. If this is the case, then

�ϑ

(
2∧
	

)
=

2∧
U = ι

(
2∧

U⊥
)

. (3.3.6)

Proof. Suppose that (3.3.4) holds. Then decomposable elements of
∧2

	 are given by

(v, f (v)) ∧ (w, f (w) for v, w ∈ VC, and

�ϑ ((v, f (v)) ∧ (w, f (w)) = ϑ1v ∧ w + ϑ2ι(f (v) ∧ f (w))− 2ϑ3ωf (v, w)ζ . (3.3.7)

It follows that

if f− �= 0, then �ϑ(

2∧
	) contains a vector α + sζ where α ∈

2∧
VC and s �= 0. (3.3.8)
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36 K.G. O’Grady

Now, we do a case-by-case analysis - always assuming that (3.3.4) holds.

(1) f− is non-degenerate. Let v, w, a, b ∈ VC; then

Pf(f−)vol(v∧w∧a∧b) = ωf (v, w)·ωf (a, b)−ωf (v, a)·ωf (w, b)+ωf (v, b)·ωf (w, a),

that is

Pf( f−)v ∧ w = ι
(
ωf (v, w) · ωf − f−(v) ∧ f−(w)

)
.

By hypothesis Pf( f−) �= 0, hence

v ∧ w = Pf(f−)−1ι
(
ωf (v, w) · ωf − f−(v) ∧ f−(w)

)
. (3.3.9)

It follows that

�ϑ ((v, f (v)) ∧ (w, f (w))) = ϑ1 · Pf(f−)−1ωf (v, w)ι(ωf )+ ϑ2ι(f+(v) ∧ f+(w)

+ f+(v) ∧ f−(w)+ f−(v) ∧ f+(w))

+ (ϑ2 − ϑ1 · Pf(f−)−1)ι(f−(v) ∧ f−(w))

− 2ϑ3ωf (v, w)ζ . (3.3.10)

Next, we distinguish between the two subcases: f antisymmetric or f not

antisymmetric.

(a) f+ = 0. Equation (10) shows that if (3.3.4) and (3.3.3) hold, and f is

antisymmetric non-degenerate, then �ϑ(
∧2

	) is one-dimensional, given

by (3.3.5).

(a) Let us prove that if �ϑ(
∧2

	) is one-dimensional, (3.3.4) holds, and f

is antisymmetric non-degenerate, then (3.3.3) holds. Let v, w ∈ VC be

linearly independent, and such that ωf (v, w) = 0. Then the right-hand

side of (10) is equal to

(ϑ2 − ϑ1 · Pf( f−)−1)ι( f−(v) ∧ f−(w)).

Since f−(v) ∧ f−(w) is not zero (recall that f− is non-degenerate by

hypothesis), the above vector and the vector in (3.3.8) are linearly

dependent only if ϑ2 − ϑ1 · Pf(f−)−1 = 0, that is (3.3.3) holds.
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(b) f+ �= 0. Assume that �ϑ(
∧2

	) is one-dimensional; we will reach a

contradiction. Let v, w ∈ VC be such that ωf (v, w) = 0. By (10), �ϑ(
∧2

	)

contains the vector

ϑ2ι((f+(v) ∧ f+(w)+ f+(v) ∧ f−(w)+ f−(v) ∧ f+(w))

+ (ϑ2 − ϑ1 · Pf(f−)−1)f−(v) ∧ f−(w). (3.3.11)

By (3.3.8), we get that the vector in (3.3.11) is zero. Multiplying the vector

in (3.3.11) by f−(v), we get (recall that by hypothesis ϑ2 �= 0)

f+(v) ∧ f−(v) ∧ f (w) = 0. (3.3.12)

We claim that this is a contradiction, that is that there exist v, w ∈ VC

such that ωf (v, w) = 0, and f+(v), f−(v), f (w) are linearly independent.

In fact, since f− is non-degenerate and f+ is non-zero, f+(v), f−(v) are

linearly independent for generic v. Now suppose first that f is non-

degenerate. Let v be such that f+(v), f−(v) are linearly independent. Let

v⊥ ⊂ VC be the orthogonal to v with respect to ωf . Then v⊥ is 3D, and

hence so is f (v⊥). Thus, there exists u ∈ f (v⊥)\span{f+(v), f−(v)}. Letting

w := f −1(u), we get that ωf (v, w) = 0, and f+(v), f−(v), f (w) are linearly

independent.

(b) One argues similarly if rkf ∈ {2, 3} (since f− = (f − f t)/2 is non-

degenerate, rkf � 2). More precisely, if rkf = 3, and ker f is generated

by v0, we repeat the argument above, with v a generic vector not in v⊥
0 .

If rkf = 2 we let v be a generic vector in VC. Then f−(v) /∈ Imf , the span

of f+(v) and f−(v) intersects Imf in a one-dimensional space, and v⊥

does not contain ker f . In particular f (v⊥) = Imf , and hence if w ∈ v⊥ is

generic, then f (w) is not contained in the span of f+(v), f−(v).
(2) rk(f−) = 2. Suppose that �ϑ(

∧2
	) is one-dimensional; we will reach a

contradiction. Let v, w ∈ VC be such that ωf (v, w) = 0; then �ϑ((v, f (v)) ∧
(w, f (w))) = 0 by (3.3.8). Let a, b ∈ VC; multiplying the 1st component of

�ϑ((v, f (v)) ∧ (w, f (w))) (as given in (3.2.2)) by a ∧ b, we get that

ϑ1vol(v ∧w ∧a∧b)+ϑ2(〈f (v), a〉 · 〈f (w), b〉− 〈f (v), b〉 · 〈f (w), a〉) = 0. (3.3.13)
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Now let v ∈ VC be a non-zero element of the (2D-) kernel of f−, that is such

that f (v) = f t(v). Then f −1Ann(v) has dimension at least 3, hence there exist

a, b ∈ f −1Ann(v) such that v, a, b are linearly independent. Complete {v, a, b}
to a basis {v, a, b, w} of VC. Then the left-hand side of (3.3.13) is non-zero.

In fact 〈f (v), a〉 = 〈f (a), v〉 = 0 because f (v) = f t(v) and a ∈ f −1Ann(v).

Similarly 〈f (v), b〉 = 0. Hence, the left-hand side of (3.3.13) is equal to

ϑ1vol(v ∧ w ∧ a ∧ b), which is non-zero because {v, a, b, w} is a basis of VC

(and ϑ1 �= 0). On the other hand ωf (v, w) = 0 because v is in the kernel of f−.

That is a contradiction, and hence �ϑ(
∧2

	) is not one-dimensional.

(3) f− = 0. Then f is symmetric, and hence we may diagonalize f . An explicit

computation shows that �ϑ(
∧2

	) is not one-dimensional.

Suppose that there does not exist a linear map f : VC → V∨
C

such that (3.3.4) holds.

Thus, 	 ∩ (VC, 0) is non-trivial. An easy case-by-case analysis shows that Item (2) holds.

Viceversa, it is clear that if Item (2) holds, then �ϑ(
∧2

	) is one-dimensional, given

by (3.3.6). �

3.4 From weight 2 to weight 1

Let m ∈ Q+. We let (, ) be the bilinear symmetric non-degenerate form on (
∧2 VC ⊕ C) ×

(
∧2 VC ⊕ C) defined by

(α + xζ ,β + yζ ) := vol(α ∧ β)− mxy. (3.4.1)

Example 3.4. Let A be an abelian surface. Let vol :
∧4 H1(A;Z)

∼−→ Z be defined by

the orientation of A, and let V = H1(A;Z). Then
∧2 V is identified with H2(A;Z). If we

let ζ = ξn, and m = 2(n + 1), the BBF quadratic form on H2(Kn(A)) is identified with

(3.4.1), see (2.2.4).

Example 3.5. Let A be an abelian surface. Let V = H3(A;Z) ∼= H1(A;Z)∨, where

the isomorphism is defined by (2.3.8). Let ζ = ξ∨
n , see Notation 2.9. Then we have an

isomorphism

2∧
VC ⊕ Cζ

∼−→ H2(Kn(A))
∨. (3.4.2)

Since the BBF bilinear symmetric form is non-degenerate, it defines a dual BBF rational

quadratic form on H2(Kn(A))
∨. If m = 1

2(n+1) , the dual BBF quadratic form is identified

with (3.4.1), see (2.2.4).
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Tori and Hyperkählers of Kummer Type 39

Complex conjugation defines a conjugation operator on
∧2 VC ⊕ C. Let

D :=
{

[σ ] ∈ P

(
2∧

VC ⊕ C

) ∣∣∣∣(σ , σ) = 0, (σ , σ) > 0

}
. (3.4.3)

Then D is a connected complex manifold of dimension 5. We recall that D parametrizes

integral weight 2 Hodge structures (
∧2 V ⊕ Z, Hp,q) of K3 type as follows. Given [σ ] ∈ D ,

we let

H2,0
[σ ] := [σ ], H1,1

[σ ] := {σ , σ }⊥, H0,2
[σ ] := [σ ]. (3.4.4)

Proposition 3.6. Suppose that ϑ1, ϑ2, and ϑ3 are non-zero. Let [σ ] ∈ D \ ζ⊥, and assume

that there exists an integral (effective) Hodge structure (V ⊕ V∨, Hp,q) of weight 1 such

that �ϑ is a morphism of Hodge structures. Then

ϑ1 · ϑ2 = 2mϑ2
3 . (3.4.5)

Proof. Since �ϑ is a morphism of Hodge structures, �ϑ(
∧2 H1,0

[σ ] (ϑ)) ⊂ H2,0
[σ ] , and we

have equality because �ϑ is surjective. Since H1,0
[σ ] (ϑ) is a 4D subspace of VC ⊕ V∨

C
,

and H2,0
[σ ] is one-dimensional, we may apply Proposition 3.3; we get that there exists

an antisymmetric non-degenerate map f : VC → V∨
C

such that

H2,0
[σ ] = �ϑ

(
2∧

H1,0

)
= span

{
ϑ2ι(ωf )− 2ϑ3ζ

}
.

Thus,

0 = (ϑ2ι(ωf )− 2ϑ3ζ ,ϑ2ι(ωf )− 2ϑ3ζ ) = ϑ2
2 vol(ι(ωf ) ∧ ι(ωf ))− 4mϑ2

3 . (3.4.6)

Let vol∨ :
∧4 V∨

C

∼−→ C be the volume form dual to vol. Since vol(ι(ωf )∧ι(ωf )) = vol∨(ωf ∧
ωf ) = 2Pf(f ), Equation (3.4.5) follows from (3.4.6) and (3.3.3). �

Corollary 3.7. Let X be a 2n-dimensional hyperkähler manifold of Kummer type, where

n � 2. Then

ϑ
(
qn−2

X

) = −2n−2(n + 1)n−2 (2n + 3)! !

7! !
(1, (n + 1), (−1)εn(n + 1)), (3.4.7)

for some εn ∈ {0, 1}.
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40 K.G. O’Grady

Proof. The values of ϑ1(q
n−2
X ) and ϑ2(q

n−2
X ) are given by Proposition 2.18 and

Proposition 2.23, respectively. It remains to compute ϑ3(q
n−2
X ) up to sign. By

Lemma 2.27, ϑ3(q
n−2
X ) is non-zero. By Example 3.5 and Proposition 3.6, we get that

(n + 1)ϑ1

(
qn−2

X

) · ϑ2

(
qn−2

X

) = ϑ3

(
qn−2

X

)2,

and hence ϑ3(q
n−2
X ) = ±2n−2(n + 1)n−1 (2n+3)!!

7!! . �

Remark 3.8. Let α ∈ H3(A) and β ∈ H1(A). A straightforward computation (similar

to the computations carried out to prove Propositions 2.21, 2.23, and 2.25, but much

simpler) gives that ∫
K2(A)

μ3(α) � ν3(β) � ξ2 = −6
∫

A
α � β. (3.4.8)

Thus, ϑ3(1) = −3. Equivalently ε2 = 1.

Theorem 3.9. Suppose that ϑ1, ϑ2, and ϑ3 are non-zero, and that (3.4.5) holds. Let

[σ ] ∈ D (see (3.4.3)). There exists a unique integral effective Hodge structure

(
V ⊕ V∨, Hp,q

[σ ] (ϑ)
)

(3.4.9)

of weight 1 (effective means that hp,q = 0 if p or q is negative) with the property that �ϑ

is a morphism of integral Hodge structures, and it is described as follows:

(1) If σ /∈ ζ⊥ (see Notation 3.2), rescale σ so that σ = ϑ2α−2ϑ3ζ , where α ∈ ∧2 VC.

Thus, α ∧ α �= 0 because σ is isotropic. Let f : VC → V∨
C

be the antisymmetric

non-degenerate map such that ι(ωf ) = α. Then

H1,0
[σ ] (ϑ) =

{
(v, f (v)) | v ∈ VC

}
, H0,1

[σ ] (ϑ) := H1,0
[σ ] (ϑ). (3.4.10)

(2) If σ ∈ ζ⊥, that is σ is a decomposable element of
∧2 VC, then

H1,0
[σ ] (ϑ) = U ⊕ U⊥, H0,1

[σ ] (ϑ) := H1,0
[σ ] (ϑ), (3.4.11)

where U ∈ Gr(2, VC) is the unique element such that
∧2 U = [σ ].

Proof. Suppose that there exists an effective integral weight 1 Hodge structure (3.4.9)

such that �ϑ is morphism of Hodge structures. Then �ϑ(
∧

H1,0
[σ ] (ϑ)) ⊂ H2,0

[σ ] , and we have
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Tori and Hyperkählers of Kummer Type 41

equality because �ϑ is surjective. Since H1,0
[σ ] (ϑ) is a 4D subspace of VC ⊕ V∨

C
, and H2,0

[σ ] is

one-dimensional, we may apply Proposition 3.3; we get that either (1) or (2) holds.

Next, we show that (3.4.9) does indeed define an effective integral weight

1 Hodge structure, and that �ϑ is morphism of Hodge structures. If σ ∈ ζ⊥, the

verification is straightforward. Thus, we assume that σ /∈ ζ⊥. The proof of Proposition

3.6 gives that (3.3.3) holds. Thus, by Proposition 3.3

�ϑ

(∧
H1,0

[σ ] (ϑ)
)

= H2,0
[σ ] . (3.4.12)

Since �ϑ is real, it follows that �ϑ(
∧

H0,1
[σ ] (ϑ)) = H0,2

[σ ] . Let us prove that

�ϑ

(
H1,0

[σ ] (ϑ) ∧ H0,1
[σ ] (ϑ)

)
⊂ H1,1

[σ ] . (3.4.13)

It suffices to prove that

(ϑ2ι(ωf )− 2ϑ3ζ )⊥�ϑ

(
H1,0

[σ ] (ϑ) ∧ H0,1
[σ ] (ϑ)

)
. (3.4.14)

Let (v, f (v)), (w, f (w)) ∈ H1,0
[σ ] (ϑ). Then

(
ϑ2ι(ωf )− 2ϑ3ζ ,�ϑ((v, f (v)) ∧ (w, f (w)))

)
= ϑ2

(
ϑ2vol∨(ωf ∧ f (v) ∧ f (w))− ϑ1ωf (v, w)

)
. (3.4.15)

The right-hand side vanishes because of the formula (proved by a straightforward

computation)

vol∨(ωf ∧ f (a) ∧ f (b)) = Pf(f )ωf (a, b). (3.4.16)

It remains to prove that

H1,0
[σ ] (ϑ) ∩ (VR ⊕ V∨

R) = {0}. (3.4.17)

Suppose the contrary. It follows that there exists a basis {v1, v2, v3, v4} of VR such that

ωf = v∨
1 ∧ v∨

2 + cv∨
3 ∧ v∨

4 . By (3.3.3), Pf(f ) is real, and hence c ∈ R. It follows that (σ , σ) =
(σ , σ) = 0, and that contradicts the hypothesis that [σ ] ∈ D . �

Example 3.10. Let Kn(A) be a generalized Kummer of dimension 2n. We adopt the

identifications of Example 3.5, and we set ϑ = ϑ(qn−2). Let 	 ⊂ (VC⊕V∨
C
) be the graph of

a non-degenerate linear map such that there exists an HK of Kummer type of dimension
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42 K.G. O’Grady

2n and a Gauss–Manin parallel transport operator H3(X)
∼−→ (VC ⊕ V∨

C
) sending H2,1(X)

to 	. By Key observation 1.2 and Proposition 3.3, f is skew-symmetric and

Pf(f ) = ϑ1(q
n−2)

ϑ2(q
n−2)

= 1

(n + 1)
. (3.4.18)

Conversely, let f be a generic skew-symmetric map as above, such that (3.4.18) holds,

and let 	 be the graph of f . Then by Theorem 3.9 there exists an HK of Kummer type

of dimension 2n and a Gauss–Manin parallel transport operator H3(X)
∼−→ (VC ⊕ V∨

C
)

sending H2,1(X) to 	.

3.5 The compact complex torus associated to a point of D

Definition 3.11. Keep notation and hypotheses as in Theorem 3.9. We let

J[σ ](ϑ) := (VC ⊕ V∨
C)/(H

1,0
[σ ] (ϑ)+ (V ⊕ V∨)). (3.5.1)

Thus, J[σ ](ϑ) is a compact complex torus of dimension 4.

Example 3.12. Set m = 1/2(n+1), and ϑ = ϑ(qn−2
X ), where X is an HK of Kummer type,

of dimension 2n. Going through the identifications in Example 3.5, we may identify

AnnF1(X) with a point [σ ] ∈ D . We recall that the integral cohomology H3(X;Z) is

identified with V ⊕ V∨, see Theorem 2.7. Thus, we have an isomorphism

J[σ ](ϑ)
∼−→ J3(X). (3.5.2)

For a very general [σ ] ∈ D the torus J[σ ](ϑ) is not projective. We will prove that

if there exists a rational class of positive square in the orthogonal σ⊥, then J[σ ](ϑ) is an

abelian variety.

Definition 3.13. Let h ∈ (
∧2 V ⊕ Z)∨ be non-zero. We let

Dh :=
{
[σ ] ∈ D | 〈h, σ 〉 = 0

}
,

where 〈, 〉 is the duality pairing.
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Tori and Hyperkählers of Kummer Type 43

Definition 3.14. Since the bilinear symmetric form defined in (3.4.1) is non-

degenerate, it defines a rational isomorphism

(
2∧

VC ⊕ C

)∨
∼−→
(

2∧
VC ⊕ C

)
, (3.5.3)

and hence also a rational bilinear symmetric form on (
∧2 VC ⊕ C)∨, that will be

denoted (, )∨.

Remark 3.15. Let h ∈ (
∧2 V ⊕ Z)∨ be a class of (strictly) positive square. Then Dh is

not connected, in fact it has two connected components, interchanged by conjugation.

Each connected component of Dh is a Type IV bounded symmetric domain.

Proposition 3.16. Let h ∈ (
∧2 V ⊕ Z)∨ be a class of strictly positive square. Let σ ∈ Dh.

Then

〈i�ϑ(α ∧ α), h〉 �= 0 ∀α ∈ H1,0
[σ ] (ϑ) \ {0}. (3.5.4)

Proof. First of all, notice that i�ϑ(α ∧ α) ∈ (
∧2 VR ⊕ R). Suppose that (3.5.4) does not

hold, and that α ∈ H1,0
[σ ] (ϑ) provides a counterexample, we will arrive at a contradiction.

Let � ∈ (
∧2 V ⊕ Q) be the class corresponding to h via the isomorphism in (3.5.3). The

restriction to (
∧2 VR⊕R) of the bilinear symmetric form (, ) has signature (3, 4). The real

subspace W ⊂ (
∧2 VR ⊕ R) spanned by � and {cσ + cσ | c ∈ C} is 3D and the restriction

of (, ) to W is positive definite because (�, �) > 0. Since �ϑ is a morphism of Hodge

structures, and since (3.5.4) does not hold, i�ϑ(α∧α) is orthogonal to W. It follows that

(i�ϑ(α ∧ α), i�ϑ(α ∧ α)) ≤ 0, with equality only if i�ϑ(α ∧ α) = 0. Let α = (v, g), where

v ∈ VC and g ∈ V∨
C

. By Theorem 3.9

g(v) = 0. (3.5.5)

We have

�ϑ(α ∧ α) = ϑ1v ∧ v + ϑ2ι(g ∧ g)+ 2ϑ3i Img(v)ζ . (3.5.6)

(In the above equation Img(v) is the imaginary part of g(v).) Thus,

(i�ϑ(α ∧ α), i�ϑ(α ∧ α)) = − vol((ϑ1v ∧ v + ϑ2ι(g ∧ g) ∧ (ϑ1v ∧ v + ϑ2ι(g ∧ g))

− 4mϑ2
3 (Img(v))2

= 2ϑ1ϑ2|g(v)|2 − 4mϑ2
3 (Img(v))2 = 2ϑ1ϑ2(|g(v)|2 − (Img(v))2).

(3.5.7)
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44 K.G. O’Grady

(The 2nd-to-last equality follows from (3.5.5), the last equality follows from (3.4.5).)

Since (i�ϑ(α ∧ α), i�ϑ(α ∧ α)) ≤ 0, with equality only if �ϑ(α ∧ α) = 0, it follows that

g(v) = 0, (3.5.8)

ϑ1v ∧ v + ϑ2ι(g ∧ g) = 0. (3.5.9)

By (3.4.17) one (at least) among v ∧ v and g ∧ g is non-zero. Since ϑ1 and ϑ2 are both

non-zero, it follows that

v ∧ v �= 0, g ∧ g �= 0. (3.5.10)

Either Item (1) or Item (2) of Theorem 3.9 holds. We deal separately with the two cases.

Suppose that Item (1) holds. There exists a basis {v1, . . . , v4} of VR such that

v = v1 + iv2 and vol(v1 ∧ . . . ∧ v4) = 1. Let A = (aij) be the matrix of f : VC → V∨
C

with

respect to the bases {v1, . . . , v4} and {v∨
1 , . . . , v∨

4 }. Thus, At = −A. The linear function g is

equal to f (v). Since 〈f (v), v〉 = 0, we have a12 = 0. Thus,

Pf( f ) = a14a23 − a13a24 = ϑ1

ϑ2
. (3.5.11)

(The 2nd equality follows from (3.3.3).) Next we notice that by (3.4.5), the inequality

(ϑ2ι(ωf )− 2ϑ3ζ ,ϑ2ι(ωf )− 2ϑ3ζ ) > 0 is equivalent to

(
ι(ωf ), ι(ωf )

)
>

2ϑ1

ϑ2
. (3.5.12)

We will write the above inequality in an equivalent form. Straightforward computations

give

∣∣∣∣∣ a13 − a13 a14 − a14

a23 − a23 a24 − a24

∣∣∣∣∣ = − Pf(f )− Pf(f )+ 2Re(a14a23 − a13a24)

= − 2ϑ1

ϑ2
+ 2Re(a14a23 − a13a24) = −2ϑ1

ϑ2
+
(
ι(ωf ), ι(ωf )

)
.

(3.5.13)
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Tori and Hyperkählers of Kummer Type 45

Let D be the real number such that

4D =
∣∣∣∣∣ a13 − a13 a14 − a14

a23 − a23 a24 − a24

∣∣∣∣∣
By (3.5.12) and (13), we have

D > 0. (3.5.14)

Straightforward computations give

v ∧ v = −2iv1 ∧ v2,

ι(f (v) ∧ f (v)) = 2i
(
Re(a14a23 − a13a24)+ Im(a13a14 + a23a24)

)
v1 ∧ v2.

Using (13), we get that (3.5.9) holds if and only if

2D + Im(a13a14 + a23a24) = 0. (3.5.15)

Now let

a13 = x1 + iy1, a14 = x2 + iy2, a23 = x3 + iy3, a24 = x4 + iy4, xk, yk ∈ R.

Writing (3.5.15) and the equation ImPf(f ) = 0 in terms of x1, . . . , x4, y1, . . . , y4, we get that

x1y2 − x2y1 = −x3y4 + x4y3 + 2D, (3.5.16)

x1y4 − x2y3 = x3y2 − x4y1. (3.5.17)

By Cramer’s formula

Dx1 = −x3y3y4 + x4y2
3 − x3y1y2 + x4y2

1 + 2Dy3, (3.5.18)

Dx2 = −x3y2
4 + x4y3y4 − x3y2

2 + x4y1y2 + 2Dy4. (3.5.19)

Writing out the equation RePf(f ) = ϑ1/ϑ2 in terms of x1, . . . , x4, y1, . . . , y4, multiplying it

by D, replacing Dx1 by the expression in the right-hand side of (3.5.18), and Dx2 by the
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46 K.G. O’Grady

expression in the right-hand side of (3.5.19), we get that

− (D − x3y4 + x4y3)
2 − (x3y2 − x4y1)

2 = D
ϑ1

ϑ2
. (3.5.20)

Since D and ϑ1/ϑ2 are strictly positive by (3.5.14) and (3.4.5), respectively, the above

equation is absurd. We have reached a contradiction if Item (1) of Theorem 3.9 holds.

Now suppose that Item (2) holds. By (3.4.17) both v ∧ v and g ∧ g are non-zero.

Complete v to a basis {v, w} of U. The inequality (σ , σ) > 0 translates into

vol(v ∧ w ∧ v ∧ w) > 0. (3.5.21)

Since g(v) = g(v) = 0, we have

ι(g ∧ g) = λv ∧ v, λ ∈ R∗. (3.5.22)

Moreover,

vol(λv ∧ v ∧ w ∧ w) = 〈g ∧ g, w ∧ w〉 = g(w) · g(w)− g(w) · g(w) = −|g(w)|2 < 0.

(Recall that g ∈ U⊥.) By (3.5.21) it follows that λ > 0. This contradicts (3.5.9) because ϑ1

and ϑ2 have the same sign by (3.4.5). �

Let h ∈ (
∧2 V ⊕ Z)∨. We define the following skew-symmetric bilinear form on

VC ⊕ V∨
C

:

〈α,β〉ϑ ,h := 〈h,�ϑ(α ∧ β)〉. (3.5.23)

Note that 〈, 〉 in the right-hand side of the above equation denotes the duality pairing.

Definition 3.17. Let h ∈ (
∧2 V ⊕ Z)∨. Let σ ∈ Dh. Restricting the skew-symmetric

bilinear form in (3.5.23) to H0,1
[σ ] (ϑ) × H1,0

[σ ] (ϑ), that is the product of the tangent space at

the origin of J[σ ](ϑ) and its complex conjugate, we get a translation invariant rational

(1, 1)-form on J[σ ](ϑ). We let

�[σ ](ϑ) ∈ H1,1
Q

(J[σ ](ϑ)) (3.5.24)

be the corresponding cohomology class.
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Tori and Hyperkählers of Kummer Type 47

Proposition 3.18. Let h ∈ (
∧2 V ⊕ Z)∨ be a class of positive square. For one of the

two connected components of Dh, call it D+
h , the following holds. Let [σ ] ∈ D+

h ; then the

cohomology class �[σ ](ϑ) is ample on J[σ ](ϑ).

Proof. Let D1
h , D2

h be the two connected components of Dh. The set V j of couples ([σ ],α)

where [σ ] ∈ D
j
h and 0 �= α ∈ H0,1

[σ ] (ϑ) is the complement of the zero section in a complex

vector bundle over the connected space D
j
h. Thus, V j is connected. By Proposition 3.16,

the real number

〈i�ϑ(α ∧ α), h〉 (3.5.25)

is either strictly positive for all ([σ ],α) ∈ V
j

h , or always strictly negative. Conjugation

([σ ],α) 
→ ([σ ],α) maps bijectively V 1 to V 2. Since conjugation changes sign to the

number in (3.5.25), the proposition follows. �

Example 3.19. Let us go back to Example 3.12, and assume that X is projective. Let

L be an ample line bundle on X. Referring to Example 3.5, c1(L) gets identified with an

element of h ∈ (
∧2 VZ ⊕ Zζ )∨ (see (3.4.2)) of positive square. By Remark 3.1, the bilinear

form (3.5.23) is identified, via the isomorphism in (3.5.2), with the bilinear form

H3(X)× H3(X) −→ C

(α,β) 
→ ∫
[X] α � β � qn−2

X � c1(L).
(3.5.26)

It follows that if n = 2, the isomorphism in (3.5.2) matches �[σ ](ϑ) and the polarization

�L of J3(X). Later on we will show that an analogous statement holds also for n > 2.

3.6 A rank 7 sub local system of the local system with fiber S+(X)

Let q be the integral unimodular bilinear symmetric form on VC ⊕ V∨
C

defined by

VC ⊕ V∨
C

q−→ C

(v, �) 
→ 2�(v)
(3.6.1)

(See (2.8.1).) Let Q := V(q) ⊂ P(VC ⊕ V∨
C
) be the zero locus of the quadratic form q.

One of the two spinor representations of O(q) may be identified with S+ := ∧ev VC =
C ⊕ ∧2 VC ⊕ ∧4 VC. We recall the identification of a specific quadric hypersurface in

P(S+) with one of the two irreducible components of the variety parametrizing 3D linear
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48 K.G. O’Grady

subspaces of Q, see §20.3 in [7]. Denote elements of
∧ev VC as follows:

α + η + β, α ∈ C, η ∈
2∧

VC, β ∈
4∧

VC. (3.6.2)

Let q+ be the integral unimodular bilinear symmetric form on
∧ev VC defined by

∧ev VC

q+
−→ C

α + η + β 
→ vol(η ∧ η − 2αβ)
(3.6.3)

Let Q+ ⊂ P(
∧ev VC) be the set of zeroes of q+.

Given � ∈ V∨
C

and η ∈ ∧• VC, we let �(η) be the contraction of � and η. Given

[α + η + β] ∈ Q+, we let

Z[α+η+β] :=
{
[(v, �)] ∈ P(VC ⊕ V∨

C) | αv + �(η)+ η ∧ v + �(β) = 0
}
. (3.6.4)

In other words, Z[α+η+β] is the projectivization of the subspace of V ⊕ V∨ (embedded in

the Clifford algebra Cl(VC ⊕ V∨
C

, q)) of vectors, which kill the element (α + η + β) ∈ S+.

Lemma 3.20. Let [α+η+β] ∈ Q+, and suppose that η∧η �= 0. Then Z[α+η+β] is the graph

of a non-degenerate skew-symmetric map f : VC → V∨
C

such that

vol(β)ι(ωf ) = −η. (3.6.5)

Proof. A straightforward argument shows that

Z[α+η+β] =
{
[(v, �)] ∈ P(VC ⊕ V∨

C) | αv + �(η) = 0
}
. (3.6.6)

From (3.6.6) we get that Z[α+η+β] is the graph of a non-degenerate map f : VC → V∨
C

. Since

0 = �(αv + �(η)) = α�(v), the map f is skew-symmetric.

Lastly, we prove (3.6.5). We may choose a basis {v1, . . . , v4} of VC of volume 1 such

that η = v1 ∧ v2 + tv3 ∧ v4, for some t ∈ C∗. A computation gives that

ωf = −αv∨
1 ∧ v∨

2 − α

t
v∨

3 ∧ v∨
4 .

Equation (3.6.5) follows from the above equality. �

The (well-known) result below follows easily from Lemma 3.20.
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Tori and Hyperkählers of Kummer Type 49

Proposition 3.21. Let [α + η + β] ∈ Q+. Then Z[α+η+β] is a 3D linear subspace of Q,

and it is the graph of a non-degenerate skew-symmetric map f : VC → V∨
C

if and only

if η ∧ η �= 0. The map assigning Z[α+η+β] to [α + η + β] ∈ Q+ is an isomorphism between

Q+ and one of the two irreducible components of the variety parametrizing maximal

dimensional linear subspaces of Q.

Remark 3.22. Let U ⊂ VC be a 2D subspace. Let η be a generator of
∧2 U ⊂ ∧2 VC.

Then [0, η, 0] ∈ Q+, and Z[η] = P(U ⊕ U⊥).

The following definition makes sense by the Key observation 1.2, Proposition 3.3,

Lemma 3.20, and Remark 3.22.

Definition 3.23. Let X be an HK of Kummer type, of dimension 2n. Let T+(X) ⊂
S+(X) be the minimal vector subspace such that P(T+(X)) contains all x ∈ Q+(X)
parametrizing a 3D linear space P(	) ⊂ Q(X) for which there exist an HK Y of Kummer

type of dimension 2n, and a parallel transport operator g : H3(Y)
∼−→ H3(X) such that

g(H2,1(X)) = 	.

Remark 3.24. Let π : X → B be a family of HK’s of Kummer type. Let b0, b1 ∈ B and let

X0 := π−1(b0), X1 := π−1(b1). Let λ be an arc starting in b0 and ending in b1. By Definition

3.23 the induced isomorphism S+(λ) : S+(X0) → S+(X1) maps T+(X0) to T+(X1).

Proposition 3.25. Keeping notation as above, the following hold:

(1) Suppose that X = Kn(A). As usual, identify H3(A;Z) ⊕ H1(A;Z) with

H3(Kn(A);Z) via Theorem 2.7, and identify H1(A;Z) with H3(A;Z)∨ via (2.3.8).

Then

T+(Kn(A)) =
{
(α + η + β) ∈

ev∧
H3(A) | (n + 1)α − vol(β) = 0

}
. (3.6.7)

(2) If π : X → B is a family of HK’s of Kummer type, then there is a sub local

system of rank 7 of S+(π) with fiber T+(π−1(b)) over b ∈ B.

Proof. Let us prove Item (1). Suppose that Z[α+η+β] = P(	) where 	 ⊂ (VC ⊕ V∨
C
) is

as in Definition 3.23. By Proposition 3.3, either 	 is the graph of a non-degenerate

antisymmetric map f : VC → V∨
C

such that Pf(f ) = 1/(n + 1) (see Example 3.10 for the

last equality), or 	 = U ⊕ U⊥, where U ⊂ VC is a 2D subspace. In the 1st case, by (3.6.5)
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50 K.G. O’Grady

we have

1

(n + 1)
= Pf(f ) = 1

2
vol(ωf ∧ ωf ) = 1

2vol(β)2
vol(η ∧ η) = α

vol(β)
.

Thus, [α+η+β] belongs to the right-hand side of (3.6.7). In the 2nd case, the same holds

because α = β = 0. This proves that T+(Kn(A)) is contained in the right-hand side of

(3.6.7). On the other hand (see Example 3.10) there is a dense (in the Zariski topology)

open (in the classical topology) subset of P(T+(Kn(A)))∩Q+(Kn(A)) parametrizing 	’s as

in Definition 3.23. Item (1) follows.

As noticed in Remark 3.24, there is a sub local system of S+(π) with fiber

T+(π−1(b)) over b ∈ B. It has rank 7 by Item (1). �

3.7 Proof of the 2nd main result

Item (1) of Theorem 1.3 follows from Definition 3.23 and Item (2) of Proposition 3.25.

Next we proceed to prove Item (2) of Theorem 1.3. Assume first that X =
Kn(A). As usual identify H2(Kn(A))

∨ = ∧2 H3(A) ⊕ Cξ∨
n , see Example 3.5. With this

identification, S+(Kn(A)) = C⊕∧2 H3(A)⊕∧4 H3(A). Let τ ∈ ∧4 H3(A) be the element of

volume 1. We let ∧2 H3(A)⊕ Cξ∨
n

i
↪→ S+(Kn(A))

η + xξ∨
n 
→ (−1)εn x

2(n+1) + η + (−1)εn x
2 τ ,

(3.7.1)

where εn ∈ {0, 1} is as in corollary 3.7. By Item (1) of Proposition 3.25, the above

map defines an isomorphism between H2(Kn(A))
∨ and T+(Kn(A)). Let q+

Kn(A))
be the

quadratic form on S+(Kn(A)) defined by (3.6.3) with V = H3(A;Z). One checks easily

that the restriction of q+
Kn(A))

to H2(Kn(A))
∨ is the dual of the BBF. This proves Item (2)

of Theorem 1.3 for X = Kn(A).

In order to prove Item (2) of Theorem 1.3 for an arbitrary HK of Kummer type,

we first give the auxiliary result below.

Claim 3.26. The map i in (3.7.1) is equivariant up to sign for the action of monodromy.

Proof. Let π : X → B be a family of HK’s of Kummer type, with the fiber π−1(b0)

isomorphic to Kn(A). Let λ be a loop in B based at b0. Then λ defines a diffeomorphism

λ∗ : Kn(A) → Kn(A). Let H2(λ∗)t be the action of λ∗ on H2(Kn(A))
∨, and let S+(λ∗) be the

action of λ∗ on S+(Kn(A)). We must prove that

S+(λ∗) ◦ i = ±i ◦ H2(λ∗)t. (3.7.2)
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Tori and Hyperkählers of Kummer Type 51

First, S+(λ∗) maps T+(Kn(A)) to itself, see Remark 3.24. Next, let 	 ⊂ H3(Kn(A)) be

a 4D vector subspace such that φ(
∧2

	) has dimension 1. Then, S+(λ∗) ◦ i(φ(
∧2

	)) =
i ◦H2(λ∗)tφ(

∧2
	) by Item (2) (which has been proved for X = Kn(A)). The set of elements

of i(H2(Kn(A))
∨ ∩ Q+(Kn(A)) of the form φ(

∧2
	) for 	 as above is an open dense subset

of i(H2(Kn(A))
∨ ∩ Q+(Kn(A)). Equation (3.7.2) follows. �

Now we may define i : H2(X)∨ i
↪→ S+(X), for X an arbitrary HK of Kummer type,

acting by parallel transport on the map i in (3.7.1). The map is well-defined up to sign,

that is independent (up to sign) of the chosen path connecting Kn(A) to X (in a connected

family of HK’s in which both Kn(A) and X are fibers), because of Claim 3.26. Item (2) of

Theorem 1.3 for X follows from the corresponding statements for Kn(A).

Proof of Corollary 1.4. We may assume that X = Kn(A). Thus, we have the identifica-

tions of Proposition 3.25. Let π : X → B be a family of HK’s of Kummer type, with fiber

π−1(b0) isomorphic to Kn(A). Let λ be a loop in B based at b0, and let λ∗ : Kn(A) → Kn(A)

be the associated diffeomorphism. We have associated maps

H2(λ∗) ∈ O(H2(Kn(A);Z), qKn(A)), S+(λ∗) ∈ O(S+(Kn(A)), q+
Kn(A)

).

By (3.7.2) we have

H2(λ∗)t = ±i−1 ◦ S+(λ∗) ◦ i. (3.7.3)

Next, we notice that the map i in (3.7.1) embeds H2(Kn(A);Z) as a saturated sublattice

of S+(Kn(A))Z := Z ⊕ ∧2 V ⊕ ∧4 V. In fact, we have a chain of maps

H2(Kn(A);Z) ↪→ H2(Kn(A);Q)
∼−→ H2(Kn(A);Q)

∨ ↪→ S+(Kn(A)). (3.7.4)

(The 1st map is the natural embedding, the 2nd map is defined by the non-degenerate

BBF quadratic form, and the last map is defined by i.) The composition of the maps in

(3.7.4) is an isometric embedding

j : H2(Kn(A);Z) ↪→ S+(Kn(A))Z.

The image of j is described as follows. Let τ ∈ ∧4 H3(A;Z) be the element of volume 1.

Let

u := 1 − (n + 1)τ , w := 1 + (n + 1)τ . (3.7.5)

Then u, w ∈ S+(Kn(A))Z, Im(j) = u⊥ ∩ S+(Kn(A))Z, and w ∈ Im(j).
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52 K.G. O’Grady

Thus, we examine the restriction of S+(λ∗) to u⊥. In order to simplify notation,

we let ρ := S+(λ∗). Since ρ maps Im(j) to iself, we have ρ(u) = ±u. Next, we notice

that Detρ = 1, because by Item (3) of Theorem 1.1 monodromy does not exchange the

two irreducible components of the variety parametrizing maximal linear subspaces of

Q(Kn(A)). It follows that the determinant of H2(λ∗) equals 1 if ρ(u) = u, and it equals

(−1) if ρ(u) = −u.

Moreover the discriminant group of H2(Kn(A);Z) is generated by ξ∨
n , and is

isomorphic to Z/(2n + 2). Since i(ξ∨
n ) = w, we must prove that

ρ(w) =
⎧⎨⎩(1 + 2a(n + 1))w + 2(n + 1)y, a ∈ Z, y ∈ Im(j) if ρ(u) = u,

(−1 + 2a(n + 1))w + 2(n + 1)y, a ∈ Z, y ∈ Im(j) if ρ(u) = −u.
(3.7.6)

Suppose that ρ(u) = u. Then ρ(w) − u = ρ(w − u) = ρ(2(n + 1)τ ) = 2(n + 1)ρ(τ ). Since

ρ(τ)⊥u, we get that there exist a ∈ Z and y ∈ Im(j) such that ρ(τ) = aw + τ + y. Thus,

ρ(w) = u + 2(n + 1)τ + 2a(n + 1)w + 2(n + 1)y = (1 + 2a(n + 1))w + 2(n + 1)y. (3.7.7)

This proves (3.7.6) if ρ(u) = u. The proof in the case ρ(u) = −u is similar. �

4 Polarization Type of J3(X) for X of Dimension 4

If X is a polarized HK of Kummer type, then J3(X) is a 4D abelian variety, with a

polarization associated to the polarization of X. In the present subsection we compute

the discrete invariants (elementary divisors) of the polarization of J3(X), for X of

dimension 4.

4.1 Set up

Let X be an HK fourfold of Kummer type, and let L be an ample line bundle on X. The

skew-symmetric form

H3(X)× H3(X)
〈,〉−→ C

(α,β) 
→ ∫
X α � β � c1(L)

(4.1.1)

defines a polarization �L of J3(X) by the Hodge–Riemann bilinear relations. We may

assume that X is a generalized Kummer K2(A). We recall that (2.2.3) and the map F in
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Tori and Hyperkählers of Kummer Type 53

(2.3.1) give identifications

H2(K2(A);Z) =
2∧

H1(A;Z)⊕ Zξ2, (4.1.2)

H3(K2(A);Z) = H3(A;Z)⊕ H1(A;Z). (4.1.3)

We identify H1(A;Z) with H3(A;Z)∨ via (2.3.8), and we set V := H3(A;Z). Let {v1, . . . , v4}
be a basis of V such that vol(v1 ∧ v2 ∧ v3 ∧ v4) = 1. We may write

c1(L) = c
(
ev∨

1 ∧ v∨
2 + v∨

3 ∧ v∨
4

)+ sζ∨, (4.1.4)

where

c ∈ N+, s ∈ Z, gcd{c, s} = 1. (4.1.5)

Let (w, f ), (w′, f ′) ∈ (V ⊕ V∨). By corollary 3.7 and Remark 3.8 we have

〈(w, f ), (w′, f ′)〉 = 〈−w ∧ w′ − 3ι(f ∧ f ′)− 3(〈w, f ′〉 − 〈w′, f 〉)ζ , c(ev∨
1 ∧ v∨

2 + v∨
3 ∧ v∨

4 )+ sζ∨〉.

In the above equation, the angle brackets in the left-hand side denote the polarization

form in (4.1.1), those in the right-hand side denote the duality pairing. Let

α1 := (0, v∨
1 ), α2 := (v2, 0), α3 := (v4, 0), α4 := (0, v∨

3 ),

β1 := (0, −v∨
2 ), β2 := (v1, 0), β3 := (v3, 0), β4 := (0, −v∨

4 ). (4.1.6)

Then {α1, . . . ,β4} is a basis of V ⊕ V∨, and both the span of the αi’s and the span of the

βj’s are 〈, 〉ϑ ,h-isotropic subgroups of V ⊕ V∨. The intersection matrix between the αi’s

and the βj’s is equal to

(〈αi,βj〉ϑ ,h) =

⎛⎜⎜⎜⎜⎝
3c 3s 0 0

3s c · e 0 0

0 0 c 3s

0 0 3s 3c · e

⎞⎟⎟⎟⎟⎠ (4.1.7)

Let X be a 4 dimensional generalized Kummer. By Corollary 4.8 in [16] (the proof is

in [15]), non-zero elements α ∈ H2(X;Z) up to monodromy are classified by the value

qX(α) and by the divisibility div(α) (see Subsection 1.4 for the definition of div(α)). The

divisibility is an element of {1, 2, 3, 6}. Thus, we distinguish four cases.
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54 K.G. O’Grady

4.2 Divisibility 1

Suppose that

c1(L) = ev∨
1 ∧ v∨

2 + v∨
3 ∧ v∨

4 , (4.2.1)

that is c = 1 and s = 0 in the notation of (4.1.4). Then (c1(L), c1(L)) = 2e, and div(c1(L)) =
1. Let g := gcd{3, e}, and let x, y be integers such that 3x + ey = g. A basis of V ⊕ V∨ is

given by

{α3, xα1 + yα2, (eα1 − 3α2)/g, α4, β3, β1 + β2, (eyβ1 − 3xβ2)/g, β4}.

The matrix of 〈, 〉 in the above basis is equal to

(
0 �

−� 0

)
, where � is the 4 × 4 diagonal

matrix with entries 1, g, 3e/g, 3e.

4.3 Divisibility 2

Suppose that

c1(L) = 2
(
ev∨

1 ∧ v∨
2 + v∨

3 ∧ v∨
4

)+ ζ∨, (4.3.1)

that is c = 2 and s = 1 in the notation of (4.1.4). Then (c1(L), c1(L)) = 2(4e − 3), and

div(c1(L)) = 2. Let g := gcd{3, e} = gcd{3, 2e}, and let x, y ∈ Z be such that 3x + 2ey = g.

A basis of V ⊕ V∨ is given by

{α3, xα1 +yα2, (2eα1 −3α2)/g, (6e−3)α3 −α4, β4 −β3, β2, (gβ1 −(6x+3y)β2)/g, 3β3 −2β4}.

The matrix of 〈, 〉 in the above basis is equal to

(
0 �

−� 0

)
, where � is the 4 × 4 diagonal

matrix with entries 1, g, 3(4e − 3)/g, 3(4e − 3).

4.4 Divisibility 3

Suppose that

c1(L) = 3(ev∨
1 ∧ v∨

2 + v∨
3 ∧ v∨

4 )+ ζ∨, (4.4.1)

that is c = 3 and s = 1 in the notation of (4.1.4). Then (c1(L), c1(L)) = 6(3e − 1), and

div(c1(L)) = 3. A basis of V ⊕ V∨ is given by

{
α3, α1, α4 − α3, eα1 − α2, β3, β2, β4 − β3, β1 − 3β2

}
.
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Tori and Hyperkählers of Kummer Type 55

The matrix of 〈, 〉 in the above basis is equal to

(
0 �

−� 0

)
, where � is the 4 × 4 diagonal

matrix with entries 3, 3, 3(3e − 1), 3(3e − 1).

4.5 Divisibility 6

Suppose that

c1(L) = 6
(
ev∨

1 ∧ v∨
2 + v∨

3 ∧ v∨
4

)+ ζ∨, (4.5.1)

that is c = 6 and s = 1 in the notation of (4.1.4). Then (c1(L), c1(L)) = 6(12e − 1), and

div(c1(L)) = 6. A basis of V ⊕ V∨ is given by

{
α1, α3, 2α3 − α4, 2eα1 − α2, β2, β4, β3 − 6eβ4, β1 − 6β2

}
.

The matrix of 〈, 〉 in the above basis is equal to

(
0 �

−� 0

)
, where � is the 4 × 4 diagonal

matrix with entries 3, 3, 3(12e − 1), 3(12e − 1).

5 Weil Type

5.1 Abelian varieties of Weil type

We recall that a compact complex torus T of dimension 2g is of Weil type (see [30]) if

there exists an endomorphism ϕ : T → T such that the following hold:

(1) ϕ ◦ ϕ = −DIdT , where D is a strictly positive integer.

(2) The restriction of ϕ∗ to H1,0(T) decomposes as the direct sum of ±√−D

eigenspaces of the same dimension g.

Such a torus T has a 2D space of classes in Hg,g
Z

(T), which are not in the ring generated

by H1,1
Z

(T) unless g = 1. Voisin [29] proved that they provide counterexamples to the

extension of the Hodge conjecture to compact Kähler manifolds. On the other hand, for

certain families of abelian varieties of Weil type it is known that the Weil classes are

algebraic [22]. As references for what follows, we recommend [26] and [23].

If A is an abelian variety of Weil type, with endomorphism ϕ, there exists a

polarization � such that ϕ∗� ≡ d�. If this is the case, one says that (A,ϕ,�) is a

polarized abelain variety of Weil type. Let us view the polarization � as a bilinear

alternating function E : H1(A;Q) × H1(A;Q) → Q. The endomorphism ϕ gives H1(A;Q)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rnz166/5558149 by guest on 03 Septem

ber 2019



56 K.G. O’Grady

the structure of a vector space over the quadratic field K := Q[
√−D]. One defines

H1(A;Q)× H1(A;Q)
H−→ K

(α,β) 
→ E(α,ϕ∗β)+ √−DE(α,β)
(5.1.1)

As is easily checked H is K linear in the 2nd entry, and H(β,α) = (α,β). Thus, H

is a non-degenerate Hermitian form on the K vector space H1(A;Q). The determinant

of the Hermitian matrix associated to H by a choice of K-basis of H1(A;Q) is well-

determined modulo multiplication by elements of Nm(K∗). Thus, we may associate to

H its determinant DetH ∈ Q∗/Nm(K∗). We denote DetH by Det�.

Given an imaginary quadratic field K, and an element of Q∗/Nm(K∗), one may

construct a complete up to isogeny irreducible family of 2g-dimensional polarized

abelian varieties of Weil type (A,ϕ,�) with associated field K, and assigned Det of

the polarization, of dimension g2. Complete up to isogeny means that every polarized

abelian variety of Weil type (A,ϕ,�) with the given field and determinant is isogenous

to one of the varieties in the family (of course the isogeny matches the endomorphisms

and the polarizations).

5.2 The abelian variety associated to a point of Dh is of Weil type

We suppose that ϑ = (ϑ1,ϑ2,ϑ3) ∈ Z3, with all entries non-zero. We suppose also that m

is a (strictly) positive rational number, and that Equation (3.4.5) holds. We will adopt the

notation of Section 3 without further notice. In particular (, )∨ is the bilinear symmetric

form on (
∧2 VC ⊕C)∨ dual to (, ) (see Definition 3.14), and 〈, 〉 denotes the natural perfect

pairing between (
∧2 VC ⊕ C)∨ and (

∧2 VC ⊕ C).

Theorem 5.1. Let h ∈ (
∧2 V ⊕ Z)∨ be a vector of positive square, and assume that

σ ∈ D+
h (see Proposition Proposition 3.1 for the definition of D+

h ). Let J[σ ](ϑ) be the

compact complex torus in Definition 3.11, and let �[σ ](ϑ) ∈ H1,1
Q

(J[σ ](ϑ) be the ample

class in Definition 3.17. Then (J[σ ](ϑ),�[σ ](ϑ)) is of Weil type, with an embedding

Q[
√

−m(h, h)∨] ⊂ End(J[σ ](ϑ),�[σ ](ϑ))Q. (5.2.1)

The determinant of the polarization �[σ ](ϑ) is 1. By varying σ ∈ D+
h , one gets a complete

(up to isogeny) family of 4 dimensional polarized abelian varieties of Weil type with

associated field Q[
√−m(h, h)∨], and Det ≡ 1.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rnz166/5558149 by guest on 03 Septem

ber 2019



Tori and Hyperkählers of Kummer Type 57

Before proving Theorem 5.1, we will go through a few elementary results. The

proof of the next lemma is a straightforward exercise.

Lemma 5.2. Let X = (xij) be a 4 × 4 invertible antisymmetric matrix with coefficients

in a field K. Then

X−1 = Pf(X)−1

⎛⎜⎜⎜⎜⎝
0 −x34 x24 −x23

x34 0 −x14 x13

−x24 x14 0 −x12

x23 −x13 x12 0

⎞⎟⎟⎟⎟⎠
Lemma 5.3. Let X, Y be 4 × 4 antisymmetric matrices over a field K (if charK = 2, a

matrix X = (xij) is antisymmetric if Xt = −X, and xii = 0 for all i). Then

(X · Y)2 − 1

2
Tr(X · Y)X · Y + Pf(X) · Pf(Y)14 = 0. (5.2.2)

(Note: 1
2Tr(X · Y) = −∑1≤i<j≤4 xijyij, hence it makes sense even if charK = 2.)

Proof. This is the content of the main result of [6], in the case of 4×4 matrices. In fact,

let p ∈ Z[xij, ykh][λ] be equal to Pf(X) · Pf(λX−1 − Y). In [6] it is proved that p(X · Y) = 0

(we replace λ by X · Y). Expanding Pf(X) · Pf(λX−1 − Y) (Lemma 5.2 will be handy), one

gets the lemma. �

Proof of Theorem 5.1. By the Theorem on elementary divisors, there exists a basis

B = {v1, . . . , v4} of V (of volume 1) such that

h = h0 + sζ∨, h0 = c(ev∨
1 ∧ v∨

2 + v∨
3 ∧ v∨

4 ), c, e ∈ N+, s ∈ Z. (5.2.3)

Let g : VC → V∨
C

be the antisymmetric map such that ωg = h0. Notice that g(VQ) = V∨
Q

.

For N, b ∈ Q, let

VC ⊕ V∨
C

�−→ VC ⊕ V∨
C

(v, �) 
→ (g−1(�)− bv, b�− Ng(v))
(5.2.4)

Then �(VQ ⊕ V∨
Q
) = VQ ⊕ V∨

Q
, and

� ◦� = −(N − b2)IdVC⊕V∨
C

. (5.2.5)
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58 K.G. O’Grady

The map � induces an endomorphism of J[σ ](ϑ) if

�
(
H1,0

[σ ]

)
⊂ H1,0

[σ ] . (5.2.6)

If [σ ] ∈ ζ⊥, then (5.2.6) holds for any choice of N, b. In fact, by Proposition 3.3,

there exists a 2D subspace U ⊂ VC such that H1,0
[σ ] (ϑ) = U ⊕ U⊥, and [σ ] = ∧2 U. Since

〈h0, σ 〉 = 0 (because [σ ] ∈ ζ⊥), and ωg = h0, the subspace U is isotropic for the symplectic

form ωg; it follows that g(U) = U⊥. This shows that �(u, 0) ⊂ H1,0
[σ ] (ϑ) for all u ∈ U.

Similarly, one checks tht �(0, �) ⊂ H1,0
[σ ] (ϑ) for all � ∈ U⊥. This proves that (5.2.6) holds if

[σ ] ∈ ζ⊥ and N, b are arbitrary.

Now let us assume that σ �∈ ζ⊥. By Theorem 3.9, we may assume that

σ = ϑ2ι(ωf )− 2ϑ3ζ , H1,0
[σ ] (ϑ) = {(v, f (v)) | v ∈ VC}, (5.2.7)

where f : VC → V∨
C

is an invertible antisymmetric map, and ωf ∈ ∧2 V∨ is the symplectic

form associated to f . In particular (5.2.6) holds if and only if

g−1 ◦ f ◦ g−1 ◦ f − 2b(g−1 ◦ f )+ NIdVC
= 0. (5.2.8)

There exist N, b ∈ Q such that (5.2.8) holds because of Lemma 5.3. In fact, let X, Y be

the matrices of g and f respectively (with respect to the bases B, B∨). Because of the

equality 〈h,ϑ2ι(ωf )− 2ϑ3ζ 〉 = 0, we have

Tr(X−1 · Y) = 2c−1e−1(y12 + ey34) = 2c−2e−1〈h0, ι(ωf )〉 = 4c−2e−1s
ϑ3

ϑ2
. (5.2.9)

Equation (5.2.9) is the key point: the trace on the left-hand side is rational because

[σ ] ∈ Dh. Next, we have

Pf(X−1) = c−2e−1, Pf(Y) = ϑ2

ϑ1
.

By Lemma 5.3 it follows that (5.2.8) holds if we set

N := c−2e−1ϑ1

ϑ2
, b := c−2e−1s

ϑ3

ϑ2
. (5.2.10)

We have proved that if N, b are as above, then � induces an endomorphism

ϕ : J[σ ](ϑ) → J[σ ](ϑ) (5.2.11)
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Tori and Hyperkählers of Kummer Type 59

such that ϕ ◦ ϕ = −(N − b2)Id. Using (3.4.5), we get that

N − b2 = c−4e−2ϑ
2
3

ϑ2
2

(2mc2e − s2) = c−4e−2ϑ
2
3

ϑ2
2

m(h, h)∨. (5.2.12)

Thus, ϕ defines an embedding Q[
√−m(h, h)∨] ⊂ End(J[σ ](ϑ))Q. In order to prove (5.2.1),

it remains to show that

〈�(α),�(β)〉ϑ ,h = (N − b2)〈α,β〉ϑ ,h. (5.2.13)

Let N, b be as in (5.2.10), and let

λ1 := b + i
√

N − b2, λ2 := b − i
√

N − b2.

Let E±i
√

N−b2 ⊂ VC ⊕ V∨
C

be the �-eigenspace with eigenvalue ±i
√

N − b2. An easy

computation gives that

E
i
√

N−b2 = {
(v, λ1g(v)) | v ∈ VC

}
, E−i

√
N−b2 = {

(v, λ2g(v)) | v ∈ VC

}
. (5.2.14)

We claim that

〈 , 〉ϑ ,h|E±i
√

N−b2
= 0, (5.2.15)

and that for v, w ∈ VC, we have

〈(v, λ1g(v)), (w, λ2g(w)〉ϑ ,h = ϑ1c−2e−1(h, h)∨ωg(v, w). (5.2.16)

In order to prove (5.2.15), let j, k ∈ {1, 2}, and let v, w ∈ VC. Then (keep in mind that

ωg = h0)

〈(v, λjg(v)), (w, λkg(w))〉ϑ ,h = ϑ1〈ωg, v ∧ w〉 + ϑ2λjλk〈ωg, ι(g(v) ∧ g(w)〉
− sϑ3(λj + λk)ωg(v, w). (5.2.17)

We have 〈ωg, v ∧ w〉 = ωg(v, w), and a simple argument shows that

〈ωg, ι(g(v) ∧ g(w))〉 = Pf(g)ωg(v, w) = c2eωg(v, w).
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Thus, (17) reads

〈(v, λjg(v)), (w, λkg(w))〉ϑ ,h = ωg(v, w)(ϑ2c2eλjλk − sϑ3(λj + λk)+ ϑ1). (5.2.18)

A minimal polynomial of λj is equal to x2 − 2bx + N. By (5.2.10) we get that Equations

(5.2.15) and (5.2.16) follow from (5.2.18). Equation (5.2.13) follows at once from (5.2.15)

and (5.2.16).

We must also prove that the ±i
√

N − b2-eigenspaces of the action of � on H1,0
[σ ] (ϑ)

have dimension 2. Since D+
h is irreducible, the dimensions of ±i

√
N − b2-eigenspaces are

independent of [σ ] ∈ D+
h . Hence, we may assume that [σ ] ∈ ζ⊥. Thus, there exists a 2D

subspace U ⊂ VC such that H1,0
[σ ] (ϑ) = U ⊕ U⊥. The statement about eigenspaces follows

at once from (5.2.14). This finishes the proof that (5.2.1) holds.

Next, we prove that Det�[σ ](ϑ) ≡ 1. Let H be the Hermitian form defined by

(5.1.1). We must compute the determinant of the Gram matrix of H relative to a basis

of VQ ⊕ V∨
Q

as vector space over Q[i
√

N − b2]. Let B = {v1, . . . , v4} be the basis of V

such that (5.2.3) holds. Then {(v1, 0), . . . , (v4, 0)} is a basis of VQ ⊕ V∨
Q

as vector space

over Q[i
√

N − b2]. A computation gives that the Gram matrix of H relative to the chosen

Q[i
√

N − b2]-basis is equal to

⎛⎜⎜⎜⎜⎝
0 iϑ1ce

√
N − b2 0 0

−iϑ1ce
√

N − b2 0 0 0

0 0 0 iϑ1c
√

N − b2

0 0 −iϑ1c
√

N − b2 0

⎞⎟⎟⎟⎟⎠ .

Thus, DetH ∈ Nm(Q[i
√

N − b2]).

It remains to show that, by varying σ ∈ Dh, one gets a complete (up to isogeny)

family of “polarized” tori of Weil type with fixed discrete invariants. Let (V ⊕ V∨, Hp,q)

be a weight 1 Hodge structure such that � induces a homomorphism of (VC⊕V∨
C
)/(H1,0+

V ⊕ V∨), that is such that �(H1,0) ⊂ H1,0, and such that the restriction of � to H1,0 has

eigenspaces of equal dimensions (i.e., of dimension 2). Then dim(H1,0 ∩ E±i
√

N−b2) = 2.

Moreover, since H1,0 is isotropic for 〈, 〉ϑ ,h, we have

H1,0 ∩ E−i
√

N−b2 = (H1,0 ∩ E
i
√

N−b2)
⊥.
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Tori and Hyperkählers of Kummer Type 61

(Recall that 〈, 〉ϑ ,h gives a perfect pairing between E
i
√

N−b2 and E−i
√

N−b2 .) Let π : (VC ⊕
V∨
C
) → VC be the projection. Let

W± := π
(
H1,0 ∩ E±i

√
N−b2

)
.

Then W± are 2D subspaces of VC, and by (5.2.16) they are orthogonal for the symplectic

form ωg. Thus, either W+ ∩ W− = {0}, or W+ = W−. In the former case H1,0 is the graph

of a non-degenerete skew-symmetric map f : VC → V∨
C

such that Pf(f ) = ϑ1/ϑ2, in the

latter case H1,0 = U ⊕ U⊥ for a 2D subspace (equal to W+ = W−) of VC. Hence, in both

cases H1,0 = H1,0
[σ ] (ϑ) for some [σ ] ∈ D . Since H1,0 is isotropic for 〈, 〉ϑ ,h, we have [σ ] ∈ Dh,

and actually [σ ] ∈ D+
h by the ampleness of �[σ ](ϑ). �

5.3 Proof of the 3rd main result

We prove Theorem 1.5. The isogeny between KS(X, L) and J3(X)4 follows from Item (1)

of Theorem 1.1, and results of van Geemen, Voisin, and Charles. In fact, assume that

the Hodge Tate group of the primitive Hodge structure c1(L)
⊥ ⊂ H2(X) is the special

orthogonal group of c1(L)
⊥ equipped with the BBF quadratic form. Then, by Theorem

9.2 in [27], KS(X, L) is isogenous to B4, where B is a simple abelian fourfold of Weil

Type. On the other hand, by Item (1) of Theorem 1.1, and by Proposition 6 of [28] (see

also [4]), there exists a non-trivial homomorphism J3(X) → B, which is an isomorphism

because B is simple. This proves that KS(X, L) is isogenous to J3(X)4 if the Hodge Tate

group of c1(L)
⊥ ⊂ H2(X) is the special orthogonal group of c1(L)

⊥. Since the very generic

polarized (X, L) as above has Hodge Tate group equal to the special orthogonal group, it

follows that KS(X, L) is isogenous to J3(X)4 for all (X, L).

Next, we prove the other statements of the theorem. There exists an isomorphism

ϕ : J[σ(X)](ϑ)
∼−→ J3(X),

where [σ(X)] = H2,0(X) is the period point of X, and ϑ = ϑ(qn−2
X ). If n = 2, then ϕ∗�L ≡

�[σ(X)](ϑ), and hence Theorem 1.5 follows from Theorem 5.1. Now let n > 2. Since the

definitions of ϕ∗�L and �[σ(X)](ϑ) are different (see Example 3.19), we argue as follows.

For a very generic X the Néron–Severi groups of J[σ(X)](ϑ) and of J3(X) have rank 1, and

hence there exists c ∈ Q+ such that ϕ∗�L ≡ c�[σ(X)](ϑ). Thus, Theorem 1.5 follows from

Theorem 5.1.
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62 K.G. O’Grady

Remark 5.4. The proof of Theorem 1.5 provides the following non-trivial statement.

Let X be an HK of Kummer type, of dimension 2n. Let γ ∈ H2(X;Q) be a class of positive

square. Then there exists cγ ∈ Q∗ such that for all α,β ∈ H3(X;Q)

∫
X
α � β � γ 2n−3 = cγ

∫
X
α � β � γ � (q∨

X)
n−2. (5.3.1)

5.4 An example

We work out one example in order to emphasize that our procedure is very explicit.

We assume that (X, L) is a polarized HK fourfold of Kummer type, and that qK(L) =
2 and c1(L) has divisibility 1. By Theorem 1.5 there exists an injection Q[

√−3] ⊂
End(J3(X),�L)Q. Since Det�L ≡ 1, it follows that J3(X) is isogenous to the Prym variety

of an étale cyclic triple cover C̃ → C, where C is a curve of genus 3 (possibly a stable

curve), that is examples considered by Schoen [22], see also Section 7 in [26]. We recall

that these abelian fourfolds are of Weil type, with an endomorphism which is a (non-

trivial) cube root of Id, and the determinant of the Weil polarization is 1.

By Remark 3.8, we may identify (J3(X), L) with (J[σ ](ϑ),�[σ ](ϑ)), where [σ ] is the

period point of X, ϑ = (−1, −3, −3) and h = v∨
1 ∧ v∨

2 + v∨
3 ∧ v∨

4 (we adopt the notation

introduced in the proof of Theorem 5.1). Thus, (in the notation introduced in the proof

of Theorem 5.1) N = 1/3 and b = 0. It follows that

VC ⊕ V∨
C

�0−→ VC ⊕ V∨
C

(v, �) 
→ (3g−1(�), −g(v))

defines an endomorphism of (J3(X), L) such that �0 ◦ �0 = −3Id. The endomorphism

of (VC ⊕ V∨
C
) defined by the cube root of Id given by � := −(Id + �0)/2 does not map

V ⊕ V∨ to itself, and hence does not descend to an endomorphism of (J3(X), L). On the

other hand � does descend to an endomorphism of

Y := J[σ ](ϑ)/{(v/2, g(v)/2) | v ∈ V}.

Now Y is one of the abelian fourfolds of Weil type considered by Schoen, and the

quotient map J[σ ](ϑ) → Y has a kernel isomorphic to F4
2.
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