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Abstract. Swarm robotics consists in using a large number of coordinated 

autonomous robots, or agents, to accomplish one or more tasks, using local and/or 

global rules. Individual and collective objectives can be designed for each robot of the 

swarm. Generally, the agents' interactions exhibit a high degree of complexity that 

makes it impossible to skip nonlinearities in the model. In this paper, is implemented 

both a collective interaction using a modified Vicsek model where each agent follows 

a local group velocity and the individual interaction concerning internal and external 

obstacle avoidance. The proposed strategies are tested for the migration of a unicycle 

robot swarm in an unknown environment, where the effectiveness and the migration 

time are analyzed. To this aim, a new optimal control method for nonlinear dynamical 

systems and cost functions, named Feedback Local Optimality Principle - FLOP, is 

applied.  
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1 Introduction  

Swarm robotics is aimed at using the coordination of many robots. It is generally 

inspired by the observation of the natural world, such as a flock of birds, ant colonies, 

school of fishes. The study of collective animal behavior is still a source of inspiration 

for scientists and engineers, who, by imitating biological processes, seek solutions to 

complex problems. 

Among many, the study and analysis of the migration and transport of swarm of 

robots are of interest. Through the study of stigmergy [1], it is possible to identify the 

interaction processes that give rise to intelligent cooperative systems, capable of per-

forming complicated collective operations. 

In nature, agents follow very simple rules, and even without the need for centralized 

control, global behavior emerges, unknown to the individual agents, who can find effi-

cient methods of transport and migration. One of the first efficient collective transport 

is given by the Vicsek particle model in which each agent follows a collective group 

velocity [2, 3]. This model is widely used to imitate the movement of shoals of fish and 

swarms of birds that manage to move in a coordinated way, following environmental 
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stimuli. Based on this model, many studies have been developed concerning the coor-

dinated collective transport of robots [3-6]. In particular, the generalization of the 

Vicsek model to robot movement concerns two types of models: (i) a first class does 

not involve anti-collision rules allowing for collisions between robots [5] and (ii) a sec-

ond class uses sophisticated sensors and communication hardware that make the swarm 

collision-free [6].  

In this paper the used communication template presents simplifications with respect 

to a fully all-to-all connected system, balancing short-range and long-range transmis-

sion of information within the swarm. This gives the possibility to equip the robots with 

exteroceptive sensors present on the market in such a way as to analyze the state of the 

agents around them and implement the actions provided by the control strategy. Fur-

thermore, appropriate control logics introduce effective anti-collision rules between 

agents. For this reason, a method of analyzing information from neighbouring agents is 

proposed, which combines the most significant aspects of the simplified analysis of the 

first neighbours only and the complete global analysis. The proposed navigation system 

of a swarm of robots is divided into two main categories: collective exploration and 

coordinated motion. Here, unicycle robots [7] move in an unknown environment and 

navigates without internal collisions with other agents, trying to migrate from a start to 

a target zone using the information provided by the neighbors' agents to reduce the 

migration time. These different tasks are achieved by using innovative feedback con-

trols developed by authors, named Feedback Local Optimality Principle - FLOP and 

Variational Feedback Controls – VFC [8-10]. The FLOP method controls linear and 

nonlinear dynamical systems, through the introduction of a nonlinear penalty in the cost 

function. This permits to apply simultaneously the collective exploration and the coor-

dinated motion strategies. The environment is made by lowlands and hills, as the case, 

for example, of sand dunes. Robots are subjected to attractive and repulsive forces de-

pendent on the terrain orography. The distributed control uses only local velocity infor-

mation to drive the members of the swarm in a small region where the signal velocity 

is captured. The agents follow a nonlinear control strategy where each of them is track-

ing a target velocity resulting in a directional averaging operation. This process is mim-

icking the behavior of ant colonies in which the information travels with pheromones 

permitting to move around obstacles of various types together with a high migration 

speed. 

This paper intends to show the ability of the FLOP method to control a large popu-

lation of cooperative agents to complete the exploration within an unknown scenario. 

The FLOP logic has the advantage of operating in pure feedback, ensuring a local 

minimum result. The present method, although does not reach the global minimum of 

the cost function, exhibits large computational advantages when compared to predictive 

control strategies.  This has been already tested in complex systems like autonomous 

drive terrestrian and marine vehicles [8, 11]. 
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2 Resume of FLOP theory 

Feedback Local Optimality Principle, or FLOP [8, 9], is based on the variational ap-
proach aimed at the minimization or maximization of a given functional 𝐽. The Lagran-
gian multiplier technique is used to include in the optimization process a differential 
constraint. In fact, the two pillars of the variational approach are the cost function 
𝐸(𝒙, 𝒖), the base to build the cost functional  𝐽, and the dynamical evolution of the sys-
tem represented by the differential nonlinear equation 𝒙̇ = 𝒇(𝒙, 𝒖) , with 𝒙, 𝒖 the input 
and the control vectors, respectively. The constrained optimization is introduced by the 
Lagrangian multiplier 𝝀  as follows: 

𝐽 = ∫ℒ(𝒙̇, 𝒙, 𝒖, 𝝀) 𝑑𝑡

𝑇

0

 

ℒ(𝒙̇, 𝒙, 𝒖, 𝝀) = 𝐸(𝒙, 𝒖) + 𝝀𝑇(𝒙̇ − 𝒇(𝒙, 𝒖)) 

(1) 

Where the optimization is performed over the entire time interval [0, T]. The FLOP 

method introduces a different optimality criterion, switching from a global to a local 

principle. With this aim, the original functional is split into 𝑁 sub-integrals: 

𝐽 = ∑𝐽𝑖 =∑∫ ℒ(𝒙̇, 𝒙, 𝒖, 𝝀)𝑑𝑡
𝑈𝐵𝑖

𝐿𝐵𝑖

𝑁

𝑖=1

𝑁

𝑖=1

 (2) 

The general optimization problem expressed by eq. (1) requires to find the minimum 

cost function 𝐽∗. FLOP, splitting the general problem in sub intervals, finds a local min-

imum result 𝐽∗̅ where the following inequality is true: 

𝐽∗ ≤ 𝐽∗̅ =∑min 𝐽𝑖

𝑁

𝑖=1

 (3) 

Equations (1), when subjected to the local optimality criterion, and using the first order 
Euler discretization technique, produces a set of three equations:  

{
  
 

  
 

   

𝜕𝐸

𝜕𝒙
|
𝐿𝐵𝑖

− (𝝀𝑇
𝜕𝒇

𝜕𝒙
)|
𝐿𝐵𝑖

+
𝝀𝐿𝐵𝑖
∆𝜏

= 0

𝜕𝐸

𝜕𝒖
|
𝐿𝐵𝑖

− (𝝀𝑇
𝜕𝒇

𝜕𝒖
)|
𝐿𝐵𝑖

= 0

𝒙𝑈𝐵𝑖 − 𝒙𝐿𝐵𝑖
∆𝜏

= 𝒇(𝒙𝐿𝐵𝑖 , 𝒖𝐿𝐵𝑖)

∀  𝑖 ∈ [1, 𝑁] (4) 

The continuous counterpart of equation (4) leads to an augmented form to the 
Pontryagin’s formulation:  
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{
 
 

 
 

   

𝜕𝐸

𝜕𝒙
− 𝝀𝑇

𝜕𝒇

𝜕𝒙
− 𝝀̇ = 0

𝜕𝐸

𝜕𝒖
− 𝝀𝑇

𝜕𝒇

𝜕𝒖
= 0

𝒙̇ = 𝒇(𝒙, 𝒖, 𝑡)

𝝀̇ = 𝑮𝝀 

∀  𝑡 ∈ [0, 𝑇] (5) 

Equation (5) represents the basis of the FLOP solution technique. Matrix 𝑮, it is assumed  

𝑮 = −(
𝑁

𝑇
) 𝑰 = −

1

∆𝜏
𝑰 and its form is related to the size of the 𝑁 sub-intervals. The FLOP 

method introduces the hypothesis of affine system dynamics, i.e. 𝒇 = 𝝓(𝒙) + 𝑩𝒖 is lin-
ear in the control vector 𝒖, but it can be nonlinear in the state vector 𝒙. The remarkable 
result is, in this case, an explicit feedback control u(x) is determined in the form:  

𝐽 = ∫
1

2
𝒖𝑇𝑹𝒖 + 𝑔(𝒙) + 𝝀𝑇(𝒙̇ − (𝝓(𝒙) + 𝑩𝒖)) 𝑑𝑡

𝑇

0

 

𝒙̇ = 𝝓(𝒙) + 𝑩𝒖 

𝒖 = 𝑹−𝑇𝑩𝑇 [𝛁𝒙𝝓(𝒙)
𝑇 −

𝑰

Δ𝜏
]
−𝟏

𝛁𝐱𝑔(𝒙) 

(6) 

where none special assumption is required about the function 𝑔(𝒙).  

3 System dynamics and cost function 

The single agent, represented on the left of Fig. 1, is intended as a unicycle model [7], 

and its dynamic is expressed as: 

[
 
 
 
 
𝑋̇
𝑌̇
𝜓
𝑣̇
𝜔̇

̇

]
 
 
 
 

= 𝑴−1

[
 
 
 
 

𝑣 cos(𝜓)

𝑣 sin(𝜓)
𝜔

𝑓𝑇 − 𝑐𝑙𝑣 − ∇𝑋ℎ(𝑋, 𝑌) sin(𝜓) + ∇𝑌ℎ(𝑋, 𝑌) cos(𝜓)

𝑓𝑀 − 𝑐𝑟𝜔 ]
 
 
 
 

 (7) 

where 𝑴 = 𝑑𝑖𝑎𝑔[1; 1; 1;𝑚; 𝐼]. The 𝑋, 𝑌, 𝜓, 𝑣, 𝜔,𝑚, 𝐼, 𝑐𝑙, 𝑐𝑟 and  ℎ(𝑋, 𝑌) are the spa-

tial coordinates of each agent, the heading orientation, the longitudinal speed, the rota-

tional speed, the mass, the rotational inertia, the two-speed resistance coefficients (lon-

gitudinal and rotational) and the potential function representing the unknown environ-

ment respectively. In this example, the robots are controlled by the thrust force 𝑓𝑇 and 

the yaw moment  𝑓𝑀. The ∇𝑋ℎ(𝑋, 𝑌), ∇𝑌ℎ(𝑋, 𝑌) represents the external gravity force. 

Moreover, defining the vector state as 𝒙 = [𝒙𝟏, … , 𝒙𝑵], the control vector 𝒖 =
[𝒖𝟏, … , 𝒖𝑵] for the 𝑁 −robots system, and considering for the 𝑖-𝑡ℎ robot 𝒙𝒊 =
[𝑋𝑖; 𝑌𝑖; 𝜓𝑖 ; 𝑣𝑖; 𝜔𝑖] and 𝒖𝒊 = [𝑓𝑇𝑖; 𝑓𝑀𝑖] is simple to organize the full nonlinear dynamic 

system as:  
𝒙̇ = 𝝓(𝒙) + 𝑩𝒖 (8) 

The cost function is expressed as:  
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𝐸(𝒙, 𝒖) =
1

2
𝒖𝑇𝑹𝒖 + 𝑔(𝒙) (9) 

where  𝑔(𝒙) = 𝑔𝐶𝐸(𝒙) + 𝑔𝐶𝑀(𝒙), and these two terms represent the collective explo-

ration and the cooperative motion task respectively. The collective exploration task re-

gards every single agent: every agent has the information to migrate to one zone to 

another by having an assigned target location 𝒙𝑻 and must avoid all other agents 

through an internal avoidance rule. The coordinated motion strategy has the aim to in-

crease the performance of the migration of the swarm, by giving to each agent some 

information of the velocities of its surrounding agents, as illustrated later.  

The collective exploration provides two effects:  

Rendezvous: all agents must reach the assigned location 𝒙𝑻. This task is here often 

referred also as Go to Target: 
𝑔𝑇(𝒙) = (𝒙 − 𝒙𝑻)

𝑇𝑸𝑻(𝒙 − 𝒙𝑻) (10) 

Internal Avoidance: each agent must not collide with any of the other agents, here writ-

ten as 𝑔𝐼𝐴(𝒙). The internal avoidance penalty function is written as the sum of two 

terms, one for the relative positions between agents 𝒑𝒊𝒋 = 𝒑𝒋 − 𝒑𝒊 and one for their 

respective velocities 𝒑̇𝒊𝒋 = 𝒑̇𝒋 − 𝒑̇𝒊 with 𝒑𝒊 = [𝑋𝑖 , 𝑌𝑖] the 𝑖-𝑡ℎ agent coordinates: 

𝑔𝐼𝐴(𝒙) = ∑ ∑ (
𝐾𝐼𝐴

√2𝜋|𝚺𝐼𝐴|
exp− [(𝒑𝒊𝒋)

𝑇
𝚺𝐼𝐴
−1(𝒑𝒊𝒋)] + 𝛾𝒑̇𝒊𝒋

𝑇𝑸𝑰𝑨𝒑̇𝒊𝒋)

𝑁𝑑𝑟𝑜𝑛𝑒𝑠

𝑗=1
𝑗≠𝑖

𝑁𝑑𝑟𝑜𝑛𝑒𝑠

𝑖=1

𝛾 =
1

2
(1 + tanh (−𝑘𝑝1(𝒑𝒊𝒋 ⋅ 𝒑̇𝒊𝒋)) tanh (−𝑘𝑝2(‖𝒑𝒊𝒋‖ − 𝐷𝐼𝐴)))

 (11) 

The first addend of the 𝑔𝐼𝐴 are a Gaussian function and its gradient is depicted in the 

right of Fig. 1, where the repulsive elastic force 𝐹𝑒𝑙 between agents is represented. The 

Gaussian parameters 𝚺𝐼𝐴, |𝚺𝐼𝐴|, 𝐾𝐼𝐴, i.e., the variance-covariance matrix, its determi-

nant, and a gain factor respectively are studied so that the maximum 𝐹𝑒𝑙 is high enough 

to avoid any kind of crash between agents. The second addend is a quadratic potential 

function of the relative speed 𝒑̇𝒊𝒋.  

Fig. 1. Schematic representation of the unicycle model and internal avoidance strategy  

 

Its gradient represents a dissipation force 𝐹𝑑 that is activated and deactivated as a func-

tion of gamma. In particular, (see example in Fig. 1), the dissipation force is turned on 

when two agents find themselves at a distance closer than 𝐷𝐼𝐴 and have a relative speed 



6 

that identifies a collision given by the sign of the scalar product of 𝒑𝒊𝒋 ∙ 𝒑̇𝒊𝒋. Tuning 

positive parameters 𝑘𝑝1, 𝑘𝑝2 permit to obtain a smooth slope for 𝛾.  

The cooperative motion here introduced provides an adding term, which expresses  

the ability of every single drone to go to the area near him with the highest average 

speed in the direction of the target and its cost function is written by 𝒔𝑖 = [𝜓𝑖 , 𝑣𝑖 , 𝜔𝑖] 
as:  

𝑔𝐶𝑀(𝒙) = ∑ (𝒔𝒊 − 𝒔𝒊
∗)𝑇𝑸𝐶𝑀(𝒔𝒊 − 𝒔𝒊

∗)

𝑁𝑑𝑟𝑜𝑛𝑒𝑠

𝑖=1

 (12) 

where 𝒔𝒊
∗ is determined by the strategy proposed below. The 𝑖-𝑡ℎ agent can observe a 

portion of the surrounding environment, called 𝒮𝑖.  𝒮𝑖 is assumed as a sector of the circle 

of radius 𝑅𝑚𝑎𝑥, centered at the agent position, and delimited by the two lines associated 

with the angles 𝛼0 and 𝛼𝐸𝑁𝐷 measured with respect to the x-axis of the 𝑖-𝑡ℎ agent. 𝒮𝑖 is 
further divided into 𝑁𝑍𝑜𝑛𝑒𝑠 sub-sectors or zones, named 𝑍𝑘 ( 𝑘 = 1,𝑁𝑧𝑜𝑛𝑒𝑠), so that 

each zone is a sector of angle 𝛼̂ =
𝛼𝐸𝑁𝐷−𝛼0

𝑁𝑧𝑜𝑛𝑒𝑠
.  In 𝒮𝑖 , the agent searches for all the agents 

currently within 𝑍𝑘, the number of which is denoted by 𝐽𝑘. For each agent j therein, its 

velocity component in the direction of the target 𝑣𝑗𝑘,𝑇 is observed. Here, the chosen 

direction of the target is along the 𝑌 direction. If 𝑟𝑖𝑗𝑘  is the distance of the j-th agent 

within 𝑍𝑘 from the 𝑖 − 𝑡ℎ observer agent, the weighing numbers are defined: 

𝑤𝑖𝑗𝑘 = −𝑟𝑖𝑗𝑘 + 𝑅𝑚𝑎𝑥   (13) 

 

Fig. 2. Coordinated motion strategy for the 𝑖-𝑡ℎ agent 

The weighted velocity 𝑉𝑖𝑘,𝑇  is estimated by the i-th observer for the zone 𝑍𝑘as: 

𝑉𝑖𝑘,𝑇 =
∑ 𝑤𝑖𝑗𝑘𝑣𝑗𝑘,𝑇
𝐽𝑘
𝑗=1

∑ 𝑤𝑖𝑗𝑘
𝐽𝑘
𝑗=1

 (14) 

and the highest value within the sector is selected as:   

𝑉𝑖,𝑇 = max{𝑉𝑖𝑘,𝑇} ∀ 𝑘 ∈ [1, 𝑁𝑍𝑜𝑛𝑒𝑠] (15) 

Once the sector with the highest velocity is found, the agent steers its velocity in the 

direction of the bisector of the zone 𝑘∗ with the highest velocity.  
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In Fig. 2 the coordinated motion strategy is represented if the target is positioned along 

the vertical axes. In the case depicted in Fig. 2, the highest weighted velocity is in the 

zone 𝑍4, so 𝑘𝑖
∗ = 4. The angle of the desired maximum velocity 𝑣𝑚𝑎𝑥  is 𝜓𝑖

∗ = 𝛼0 +

(𝑘𝑖
∗ −

1

2
) 𝛼̂, so 𝒔𝒊

∗ in (12) becomes:  

𝒔𝒊
∗ = [𝜓𝑖

∗; 𝑣𝑚𝑎𝑥 ; 0] (16) 

4 FLOP application for coordinated motion strategy 

In this section, the benefits of the discussed strategy on the migration of robot swarm 

are discussed. Simulations are performed with and without the velocity-based strategy. 

Different simulations in the same environment (Fig. 3) are performed through the FLOP 

control: first, the number of robots 𝑁 is assigned. Then, many simulations are produced 

by varying the initial conditions of the swarm. The mean of the arrival time in the target 

area of the last entering agent is kept with and without using the velocity-based strategy. 

The simulations are then repeated for different numbers of agents, from 1 to 40, as 

shown on the left in Fig. 4. Finally, the Probability Density Function (PDF) of the arri-

val time for 𝑁 = 85 for 60 simulations is shown on the right of  Fig. 4. The arrival time 

and the success of the strategy is strongly dependent on the number of obstacles. The 

collective motion strategy is not expected to have more success in the individual strat-

egy in the case of a low number of obstacles. In Fig. 3 some screenshots for different 

𝑡𝑖 time windows of one simulation are shown.   

 

Fig. 3. Map of the environment  

 
 Fig. 4. Arrival time for 𝑁 = [1,40] (left); PDF of the arrival time of the last of 85 

agents in 60 simulations. (right) 

Agents in the initial positions  

Obstacles 

Target area 

ℎ(𝑋, 𝑌) 𝑋 

𝑌 

𝑡1 𝑡2 𝑡3 𝑡0 

Stigmergy coordinated motion 
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As can be seen in Fig.4, the proposed strategy provides a remarkable decrease in the 

arrival time with a lower variance for the last agent.  

5 Conclusions 

In this paper, the application of an innovative feedback control named Feedback Local 

Optimality Principle for the coordinated motion strategy of a robot swarm is presented. 

The strategy is based on the Vicsek model, but it changes some paradigms to add inter-

nal avoidance and to localize the interaction between agents of the swarm. The FLOP 

application to the proposed strategy gives promising results in terms of the total time 

of the migration. Further developments will be the subject of future investigations, as 

for example the correlation between the migration time and the number of obstacles in 

the environment.  
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