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1 Introduction

In the recent years the central question of flavour physics beyond the Standard Model

(SM) has been the following: “How is it possible to reconcile TeV-scale new physics (NP)

(as suggested e.g. by naturalness) with the absence of indirect signals in flavour changing

neutral currents (FCNC)?”. One possible answer was given by the principle of Minimal

Flavour Violation [1], which allowed for exciting NP at ATLAS and CMS while predicting

less room for serendipity at LHCb. Somewhat unexpectedly, we are faced with the fact

that experimental data seem to rather suggest the opposite situation. In fact, a coherent

pattern of SM deviations in semileptonic B-decays, which goes under the widely accepted

name of “flavour anomalies”, keeps building up since 2012 [2–13]. Were these anomalies

due to NP, they would certainly imply a shift of paradigm in flavour physics.

A unified explanation of the whole set of anomalous data minimally requires: i) a

NP contribution in b → sµµ neutral currents that interferes destructively with the SM

and ii) a NP contribution in charged currents that enhances the decay rates of b → cτν

transitions. Despite many models being proposed so far for the combined explanation of

the anomalies (see [14–54] for an incomplete list), it is fair to say that the majority of

these works suffer from various issues: neglect of key observables (both at low energy and

high-pT ), missing UV completion, breakdown of the perturbative expansion, unnatural and

tuned values of the parameters, etc. The difficulties in constructing a viable and coherent

NP interpretation of the flavour anomalies (both in charged and neutral currents) are due

to the simultaneous presence of the following aspects of the phenomenological situation:

1. the NP contribution in b → cτν needs to be very large, since it must compete with

a SM tree-level process;

2. there is an absence of NP signals in direct searches at the LHC;

3. there are very severe constraints from flavour observables in pure hadronic channels,

most notably in ∆F = 2 transitions;

4. there are very severe constraints from flavour observables in pure leptonic channels,

most notably in processes violating lepton universality and lepton flavour.

Since the first point clearly contrasts with the remaining ones, finding a coherent NP

framework to explain all these facts remains a non-trivial challenge. However, the points

above are also suggesting in a (qualitative) way their own solutions. Indeed a viable NP

scenario should:
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1. contain a leptoquark with large flavour violating couplings in order to trigger the

anomalous semileptonic decays in charged currents;

2. only introduce new states that are heavy enough to escape direct detection;

3. have a protecting flavour symmetry in the purely quark sector, such as a U(2) acting

on the first two families of quarks;

4. have a protecting flavour symmetry in the purely lepton sector, such as U(1)e ×
U(1)µ ×U(1)τ .

Does a model with such properties exist? In this paper we are going to present a phe-

nomenological attempt to answer this question, by exploring a specific limit of the “4321

model” introduced in ref. [37]. Here, 4321 stands for the gauge structure of the model,

which is invariant under the local group SU(4)× SU(3)′ × SU(2)L ×U(1)′. The symmetry

breaking down to the SM delivers a TeV-scale vector leptoquark, Uµ ∼ (3,1, 1/3), with the

most favourable quantum numbers in order to mediate the flavour anomalies, as inferred

from recent simplified-model analyses [35, 52].

While the aspects that we are going to discuss will be exemplified in the context of

the 4321 model (the detailed phenomenological analysis of this model is in fact one of

the main goals of this paper), we believe that the mechanism presented here should be a

welcome ingredient for any extension aiming at a consistent description of the whole set

of anomalies. This ingredient is nothing but a generalisation of the well-known Cabibbo

mixing [55] to the leptoquark sector. The up- and down-quark sectors in the SM, when

taken in isolation, preserve their own U(1)3 family symmetry. It is only the simultaneous

presence of up and down Yukawa matrices that provides a flavour violating misalignment

of the size of the Cabibbo angle. Our proposal follows in close analogy: quarks and leptons

in isolation preserve their own original symmetries, while flavour violation is a product of

the collective breaking coming from the two sectors. The misalignment between the second

and third family of quark and lepton doublets, θLQ, is the generalisation of the Cabibbo

angle, θC . As a consequence, tree-level neutral currents are (practically) absent and all the

relevant flavour violating interactions only involve the exchange of the leptoquark. The

individual (assumed) larger symmetries in the quark and lepton sectors guarantee enough

flavour protection from low-energy indirect probes, while a sizeable θLQ allows for large

effects in the desired b → cτν transitions at tree level. Crucially, a large 3-2 leptoquark

transition allows the scale of NP to be raised and relaxes in turn the bounds from LHC

direct searches. This approach differs from those scenarios in which the NP is aligned along

the third generation and the 3-2 transitions are obtained via an O(Vcb) rotation. In the

latter case, the flavour suppression in the NP amplitude has to be compensated either by a

lower value of the NP scale or by large couplings arising from non-perturbative dynamics.

In both cases, one is faced with very serious challenges both from precisely measured Z-pole

observables and τ decays [56, 57] and direct searches (see e.g. [58, 59]).

The connection between low- and high-energy phenomenology in the 4321 model goes

even further. In fact, the large flavour breaking between second and third generation in
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the leptoquark sector is responsible for ∆F = 2 quark transitions at the one-loop level,

for which a GIM-like mechanism is at work: a sufficient suppression of Bs and D mixing

is guaranteed by the lightness of the lepton partners present in the radiative amplitudes.

We hence obtain upper bounds on heavy lepton partners from indirect searches and lower

bounds from direct searches at the LHC. Remarkably, in a large part of the parameter

space this mass window is very narrow: low-energy probes are suggesting a clear target for

direct searches at high-pT . The role of the heavy lepton partners in the 4321 model recall

in a sense the charm prediction from kaon meson mixing in the SM [60, 61].

The paper is structured as follows: in section 2 we introduce the main elements of

the 4321 model and in section 3 we discuss the leptoquark Cabibbo mechanism making

use of symmetry arguments and analogies with the SM. In section 4 we collect the main

observables relevant for the low-energy phenomenology, including the flavour anomalies

and the relevant constraints from indirect searches. In section 5 we present the status of

direct searches, and show that a large breaking in the 3-2 sector is needed to lift the NP

scale in order to escape direct detection. In section 6 we summarize our main predictions

and conclude. A thorough discussion of several theoretical aspects of the 4321 model is

deferred to appendix A.

2 The 4321 model

In this section we summarise the main features of the 4321 model presented in [37] (see

also [62]). Further details are provided in appendix A. The goal of the model’s construction

is to generate a coupling of the vector leptoquark U ∼ (3,1, 2/3) mainly to left-handed SM

fermions. This allows i) to match with the model-independent fits to B-anomalies [35, 52]

and ii) to tame strong constraints from chirality-enhanced meson decays into lepton pairs

(for an updated analysis see ref. [63]). To this end we consider the gauge group G4321 ≡
SU(4)× SU(3)′ × SU(2)L ×U(1)′, which extends the SM group G321 ≡ SU(3)c × SU(2)L ×
U(1)Y by means of an extra SU(4) factor. The embedding of colour and hypercharge

into G4321 is defined as SU(3)c = (SU(3)4 × SU(3)′)diag and Y =
√

2/3T 15 + Y ′, with

SU(3)4 ⊂ SU(4) and T 15 being one of the generators of SU(4).1 Apart from the SM

gauge fields, the gauge boson spectrum comprises three new massive vectors belonging to

G4321/G321 and transforming under G321 as U ∼ (3,1, 2/3), g′ ∼ (8,1, 0) and Z ′ ∼ (1,1, 0).

Their definition in terms of the G4321 gauge fields, as well as their masses, are given in

appendix A.4.

An important point to be stressed is that the three massive vectors are connected by

gauge symmetry breaking and it is not possible to parametrically decouple the g′ (hereafter

called “coloron”) and the Z ′ from the leptoquark mass scale. In appendix A.5 we show

that this feature persists also in non-minimal scalar sectors responsible for G4321 breaking.

Moreover, the peculiar embedding of the SM into G4321 allows for suppressed coupling of

the Z ′ and coloron to light quarks (cf. section A.7). That is not the case in more standard

Pati Salam [64] embeddings such as in [38], where the Z ′ has unsuppressed O(gs) couplings

to valence quarks.

1For a complete list of SU(4) generators see appendix A.10.
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Field SU(4) SU(3)′ SU(2)L U(1)′ U(1)B′ U(1)L′

q′iL 1 3 2 1/6 1/3 0

u′iR 1 3 1 2/3 1/3 0

d′iR 1 3 1 −1/3 1/3 0

`′iL 1 1 2 −1/2 0 1

e′iR 1 1 1 −1 0 1

Ψi
L 4 1 2 0 1/4 1/4

Ψi
R 4 1 2 0 1/4 1/4

H 1 1 2 1/2 0 0

Ω1 4 1 1 −1/2 −1/4 3/4

Ω3 4 3 1 1/6 1/12 −1/4

Ω15 15 1 1 0 0 0

Table 1. Field content of the 4321 model. The index i = 1, 2, 3 runs over generations, while U(1)B′

and U(1)L′ are accidental global symmetries (see text for further clarifications). Particles added to

the SM matter content are shown on a grey background.

The matter content of the model is summarised in table 1, where we have emphasised

with a grey background the states added on top of the SM-like fields. The new gauge bosons

receive a TeV-scale mass induced by the vacuum expectation value (VEV) of three scalar

multiplets: Ω1 ∼
(
4,1,1,−1/2

)
, Ω3 ∼

(
4,3,1, 1/6

)
and Ω15 ∼ (15,1,1, 0), responsible for

the breaking of G4321 → G321. While only Ω3 would suffice for the breaking, the role of the

other fields is of phenomenological nature as discussed below. By means of a suitable scalar

potential (analysed in appendix A.1) it is possible to achieve a VEV configuration ensuring

the proper G4321 → G321 breaking. After removing the linear combinations corresponding

to the would-be Goldstone bosons (GB), the massive scalar spectrum featuring the radial

modes is detailed in appendix A.2. The final breaking of G321 is obtained via the Higgs

doublet field transforming as H ∼ (1,1,2, 1/2).

The would-be SM fermion fields, denoted with a prime, are singlets of SU(4) and are

charged under the SU(3)′ × SU(2)L × U(1)′ subgroup with SM-like charges. Like in the

SM, they come in three copies of flavour. Being SU(4) singlets, they do not couple to the

vector leptoquark directly. In order to induce the required leptoquark interactions to SM

fermions, we introduce three vector-like heavy fermions that mix with the SM-like fermions

once Ω1,3 acquire a VEV (cf. also figure 1). The vector-like fermions transform under G4321

as ΨL,R = (Q′L,R, L
′
L,R)T ∼ (4,1,2, 0), with Q′L,R ∼ (3,2, 1/6) and L′L,R ∼ (1,2,−1/2)

when decomposed under G321. The vector-like masses of Q′ and L′ are split by the VEV of

Ω15. The mixing among the left-handed SM-like and vector-like fermions is described by

the Yukawa Lagrangian LY = LSM−like + Lmix, with

LSM−like = −q′L YdHd′R − q′L Yu H̃u′R − `
′
L YeHe

′
R + h.c. , (2.1)

Lmix = −q′L λq ΩT
3 ΨR − `′L λ` ΩT

1 ΨR −ΨL (M + λ15 Ω15) ΨR + h.c. . (2.2)

Here, H̃ = iσ2H
∗ and Yu,d,e, λq,`,15, M are 3× 3 flavour matrices. The flavour structure of

the 4321 model will be discussed in detail in section 3.
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The full Lagrangian (including also the scalar potential in eq. (A.1)) is invariant under

the accidental global symmetries U(1)B′ and U(1)L′ , whose action on the matter fields is

displayed in the last two columns of table 1.2 The VEVs of Ω3 and Ω1 break spontaneously

both the gauge and the global symmetries, leaving unbroken two new global U(1)s: B =

B′ + 1√
6
T 15 and L = L′ −

√
3
2 T

15, which for the SM eigenstates correspond respectively

to ordinary baryon and lepton number. These symmetries protect proton stability, make

neutrinos massless and prevent the appearance of massless state related to the spontaneous

breaking of U(1)B′ and U(1)L′ . Non-zero neutrino masses can be achieved by introducing

an explicit breaking of U(1)L′ , e.g. via a d = 5 effective operator `′`′HH/Λ/L, where the

effective scale of lepton number violation, Λ/L, is well above the TeV scale. In contrast,

recent proposals which address the anomalies based on a non-minimal Pati-Salam extension

with gauged B − L broken at the TeV, such as e.g. [38, 50], generically predict too large

neutrino masses. The latter either require a strong fine-tuning in the Yukawa structure

or a very specific (untuned) realisation of the neutrino mass matrix by the inverse seesaw

mechanism [44, 65].

3 Cabibbo mechanism for leptoquarks

Our goal is to introduce the flavour structure required by the anomalies in the quark-lepton

transitions, while simultaneously suppressing the most dangerous quark-quark and lepton-

lepton flavour violating operators.3 This step can be neatly understood in terms of the

global symmetries of the Yukawa Lagrangian.

Let us first consider the Lmix → 0 limit. The surviving term in eq. (2.1) corresponds

to the SM Yukawa Lagrangian. Exploiting the U(3)5 invariance of the kinetic term of the

SM-like fields we choose, without loss of generality, a basis where Yd = Ŷd, Yu = V † Ŷu
and Ye = Ŷe (a hat denotes a diagonal matrix with positive eigenvalues and V is the

CKM matrix). For later convenience, we recall some well-known features of the SM quark

Yukawa sector. In the Yu → 0 limit, the term q′LŶdH̃dR leaves invariant the subgroup

U(1)d × U(1)s × U(1)b, thus implying the absence of flavour violation in the down sector.

Similarly, for Yd → 0 we are left with q′LV
† ŶuH̃uR in the up sector. Reabsorbing V into q′

bears no physical effects and the subgroup U(1)u ×U(1)c ×U(1)t is left unbroken. If both

Yu and Yd are present, the two U(1)3 are not independent any more due to the SU(2)L
gauge symmetry that forces the transformations of the left-handed down and up fields to

be the same. The intersection of the two subgroups yields4

(U(1)d ×U(1)s ×U(1)b) ∩ (U(1)u ×U(1)c ×U(1)t) ⊇

U(1)d+u ×U(1)s+c ×U(1)b+t
V 6=1−−−→ U(1)B , (3.1)

where the last step of breaking is due to the CKM mixing and U(1)B is the baryon number.

The consequences of this collective breaking are: i) No tree-level FCNC are generated.

2Note that these global symmetries are anomalous under SU(2)L ×U(1)′.
3For a partially related discussion in the context of the neutral current anomalies, see [66].
4Here U(1)d+u stands for the simultaneous transformation d → eiθd and u → eiθu, where eiθ is an

element of U(1)d+u. The generalisation to non-abelian factors, which is employed later on, follows in

analogy.
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These are forbidden by the two U(1)3 symmetries in isolation, either in the up or in the

down sector. ii) Flavour changing charged currents are generated by the misalignment

between the up and down sectors, which is parametrised by the CKM matrix V . In the

unitary gauge, the physical effects of flavour violation are fully encoded in the coupling of

the W boson to the up and down quark fields.

Let us consider now the pattern of global symmetries when Lmix 6= 0. The role of the

scalar representations Ωi in Lmix is the following:

• 〈Ω3〉 mixes the would-be SM state q′L with Q′L ⊂ ΨL. In this way the SM quark

doublet enters into the SU(4) representation ΨL and feels the leptoquark interaction.

• 〈Ω1〉 mixes the would-be SM state `′L with L′L ⊂ ΨL. In this way the SM lepton

doublet enters into the SU(4) representation ΨL and feels the leptoquark interaction.

• 〈Ω15〉 splits the bare masses of quark and lepton partners. We can hence effectively

trade M and λ15〈Ω15〉 for MQ and ML.

Without loss of generality, we use the U(3)7 symmetry of the fermionic kinetic term to pick

up the following basis:

LSM−like = −q′LV †Ŷuu′R H̃ − q′LŶdd′RH − `
′
LŶee

′
RH + h.c. , (3.2)

Lmix = −q′LλqΨR Ω3 − `′Lλ`ΨR Ω1 −ΨL(M̂ + λ15Ω15)ΨR + h.c. , (3.3)

where λq, λ` and λ15 are matrices in flavour space. If the latter were generic, we would

expect large flavour violating effects both in quark and lepton processes. We are going to

argue that, assuming the following flavour structure:

λq = λ̂q ≡ diag (λq12, λ
q
12, λ

q
3) ,

λ` = λ̂`W
† ≡ diag

(
λ`1, λ

`
2, λ

`
3

) 1 0 0

0 cos θLQ − sin θLQ
0 sin θLQ cos θLQ

 ,

λ15 ∝ M̂ ∝ 1 ,

(3.4)

provides a good starting point to comply with flavour constraints. Later on we will comment

about the plausibility of our assumptions, but for the moment let us inspect the physical

consequences of eq. (3.4).

Mimicking the pure SM discussion, we examine the surviving global symmetries of

Lmix in either of the limits λ` → 0 or λq → 0. In the former case Lmix is invariant

under the action of the global symmetry group GQ ≡ U(2)q′+Ψ ×U(1)q′3+Ψ3
, with the non-

abelian factor acting on the first and second generation. Basically, we are promoting the

approximate U(2)q′ of the SM (emerging in the limit where only (Yu,d)33 6= 0) to be also a

symmetry of the NP. This guarantees in turn:

• the absence of tree-level FCNC for down quarks (note that Yd and λq are diagonal

in the same basis). Such a down alignment mechanism was already introduced in

ref. [37].
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• a strong suppression of tree-level FCNC for up quarks. This suppression is guaranteed

by the underlying U(2) symmetry and the physical effects are proportional to the

small breaking induced by the SM-like Yukawa Yu via the CKM. We will show in

section 4 that this protection is crucial in order to pass the bounds from D-D mixing.

We continue with the discussion of the lepton sector when λq → 0. In this limit Lmix has

a U(1)3 symmetry which is just the generalisation of the accidental symmetries of the SM

in the lepton sector. To show this let us reabsorb W in a redefinition of the field Ψ, via

Ψ̃ ≡W †Ψ. With such a redefinition Lmix reads

Lmix(λq → 0) = −`′Lλ̂`Ψ̃R Ω1 − Ψ̃L(M̂ + λ̂15Ω15)Ψ̃R + h.c. . (3.5)

Since everything is diagonal, the global symmetry is identified as GL = U(1)`′1+Ψ̃1
×

U(1)`′2+Ψ̃2
×U(1)`′3+Ψ̃3

. The limit λq → 0 thus implies:

• the absence of tree-level FCNC for (charged) leptons. Note indeed that there exists

a basis where Ye and λ` are simultaneously diagonal.

• that the W matrix is unphysical.

Let us consider now the case where both λq and λ` are simultaneously present in Lmix.

The symmetries in the quark (GQ) and lepton (GL) sectors are not independent due to the

presence of the underlying SU(4) gauge symmetry which locks together the transformations

of the Q and L fields. The intersection of the two groups yields

GQ ∩ GL ⊇ U(1)q′1+`′1+Ψ1
×U(1)q′2+`′2+Ψ2

×U(1)q′3+`′3+Ψ3

W 6=1−−−→ U(1)q′1+`′1+Ψ1
×U(1)q′+`′+Ψ , (3.6)

where the last step of breaking is a consequence of the specific structure of the W matrix

in eq. (3.2) featuring only 3-2 mixing. The unbroken groups correspond to the quantum

number of the first family of quarks and leptons, U(1)q′1+`′1+Ψ1
, and to the total fermion

number U(1)q′+`′+Ψ, namely the simultaneous re-phasing of all the fermion fields in Lmix.

The latter is nothing but 3B′+L′ (cf. table 1), which in combination with with T 15 yields

ordinary baryon and lepton number after G4321 breaking.

To simplify our analysis even more we can set the coupling λ`1 to zero, thus implying

a further enhancement of the symmetry: U(1)q′1+`′1+Ψ1
→ U(1)q′1+Ψ1

× U(1)`′1+Ψ1
which

forbids flavour violating transitions involving either down quark or electron fields. On

the other hand, we can still have a large mixing between the second and third family of

quarks and leptons, whose misalignment is parametrised by the matrix W . Such an effect

appears in the coupling of Uµ with quarks and leptons, in complete analogy with the flavour

violation involving the W± boson and the quark doublet in the SM. Working e.g. in the

basis ΨL = (Q′L, L
′
L)T = (QL,WLL)T , the interaction of Uµ with quarks and leptons can

be readily extracted from the covariant derivative:

iΨLγ
µDµΨL ⊃

g4√
2
UµQLγ

µ

 1 0 0

0 cos θLQ sin θLQ
0 − sin θLQ cos θLQ

LL . (3.7)
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In the same way that the Cabibbo angle θC represents the misalignment between the up

and down quarks of the first two families within an SU(2)L doublet, here θLQ represent the

misalignment between the quark and lepton fields of the second and third generation within

an SU(4) quadruplet. Note, however, that the states QL and LL have to be projected along

the light SM mass eigenstates, since the breaking induced by 〈Ω3〉 and 〈Ω1〉 redirects part

of the SM quark and lepton doublets into ΨL. The net effect is given by (cf. appendix A.7)

g4√
2
βijUµ q

i
Lγ

µ`jL , (3.8)

where β is a 3 × 3 matrix describing the flavour structure of the leptoquark interactions

with the light SM mass eigenstates:

β = diag(sq12 , sq12 , sq3)W diag(0, s`2 , s`3) =

 0 0 0

0 cθLQsq12s`2 sθLQsq12s`3
0 −sθLQsq3s`2 cθLQsq3s`3

 . (3.9)

The definitions of the mixing angles in terms of the fundamental parameters of the Yukawa

Lagrangian are given in appendix A.6.

A crucial aspect that breaks the analogy with the SM is however the following: while

the global symmetries in the Yukawa sector of the SM are accidental, in our phenomeno-

logical limit the symmetry groups GQ, GL and their relative orientation parametrised by

W have been assumed. This clearly calls for a UV understanding in terms of some flavour

dynamics above the scale of G4321 breaking. On the other hand, since the symmetries

that we imposed for phenomenological reasons are nothing but a generalisation of the ac-

cidental and approximate symmetries already present in the SM, the possibility to create

a link between the flavour structure of the SM and GQ,L is well motivated, and proposals

such as those in refs. [39, 50] might play a role in achieving this goal. It appears instead

more difficult to provide flavour dynamics responsible for the misalignment induced by W ,

since a large 3-2 misalignment points to flavour-breaking spurions beyond those of the SM

Yukawas. This notwithstanding, our phenomenological limit turns out to be robust against

higher-order effects and is not tuned. It also allows us to identify the most important ob-

servables and understand suppressions or enhancements directly in terms of the symmetries

of the fundamental Lagrangian. Another difference with respect to the SM is the presence

of radial modes contained in the scalar fields Ωi which can mediate flavour violation beyond

that induced by the massive vectors. It can be shown, however, (see section 4) that flavour

violating effects mediated by the radial modes are phenomenologically under control.

We conclude this section by summarizing the main features of the Cabibbo mechanism

for leptoquarks advocated above (cf. also table 2 for a SM analogy):

• We have found a mechanism that allows for large flavour violation in semi-leptonic

decays in the 3-2 sector, as required by the flavour anomalies.

• Tree-level FCNC involving down quarks and charged leptons are absent.

• Tree-level FCNC in the up sector are protected by the small U(2)q′ breaking of the

SM Yukawas.
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G321 G4321

θC θLQ

V W

Wµ Uµ

qL =

(
uL

V dL

)
ΨL =

(
QL

WLL

)
Yu, Yd λq, λ`

SU(2)L SU(4)

U(1)u ×U(1)c ×U(1)t U(2)q′+Ψ ×U(1)q′3+Ψ3

U(1)d ×U(1)s ×U(1)b U(1)`′1+Ψ̃1
×U(1)`′2+Ψ̃2

×U(1)`′3+Ψ̃3

U(1)B U(1)q′1+`′1+Ψ1
×U(1)q′+`′+Ψ

u→ d tree level Q→ L tree level

ui → uj loop level Qi → Qj loop level

di → dj loop level Li → Lj loop level

Table 2. Analogies between the SM and the 4321 model.

• FCNC not protected by the U(2)q′ symmetry (both in up and down sectors) are

induced at one loop. While flavour changing processes involving electrons and down

quarks are forbidden, the leptoquark contributes at one loop to Bs and D mixing,

as well as lepton flavour violating (LFV) processes such as τ → µγ and other EW

observables. In section 4 we show that these bounds can be satisfied, also thanks to

an extra dynamical GIM-like suppression provided by the lepton partners running in

the loop. One-loop effects due to the exchange of the coloron, Z ′ and scalar radial

modes are also under control.

• We can now match the UV-complete 4321 model with the simplified-model analysis

performed in [35]. Most importantly, since the theory is fully calculable, we are also

able to provide precise predictions in ∆F = 2 and LFV observables.

All these aspects will be addressed in a quantitative way in the next section.

4 Low-energy phenomenology

The scope of this section is to discuss the main low-energy observables of the 4321 model,

together with the relevant constraints coming from electroweak precision tests and FCNC.

Let us start by outlining the main interactions of the new vectors with the SM fermions,

described in terms of mixing angles between the would-be SM fermions and their vector-

like partners. The flavour structure of our model, defined by our assumptions in eq. (3.4),

is such that (up to CKM rotations) each SM family mixes with only one fermion partner,

see figure 1 for illustration. The only non-trivial source of flavour breaking is found in

the W matrix, introduced in the previous section, which is responsible for a misalignment

between quarks and leptons in the leptoquark interactions. The resulting vector leptoquark

interactions with SM fermions closely follow those introduced in [35], which were shown
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Wij

Lj

Qi

qi

ℓj
〈Ω1〉

〈Ω3〉

U

Qi

Qi

qi

qi
〈Ω3〉

〈Ω3〉

g′, Z ′

Li

Li

ℓi

ℓi
〈Ω1〉

〈Ω1〉

Z ′

Figure 1. Interactions of the SM fermions with the heavy vectors induced by the fermion mixing.

to provide a successful explanation of the b→ s`` and R(D(∗)) anomalies. We write these

interactions in the mass basis in a similar fashion5

LU ⊃
g4√

2
Uµ
[
βij q

iγµ`j + h.c.
]
, (4.1)

with

β =

sq1 s`1 0 0

0 cθLQ sq2 s`2 sθLQ sq2 s`3
0 −sθLQ sq3 s`2 cθLQ sq3 s`3

 , qi =

(
V ∗ji u

j
L

diL

)
, `i =

(
νiL
eiL

)
. (4.2)

and V the CKM matrix. The interactions of these new gauge bosons with SM fermions

read

Lg′ ⊃ gs
g4

g3
g′aµ

[
κijq q

iγµT aqj + κiju u
i
Rγ

µT aujR + κijd d
i
Rγ

µT adjR

]
,

LZ′ ⊃
gY

2
√

6

g4

g1
Z ′µ

[
ξijq q

iγµqj + ξiju u
i
Rγ

µujR + ξijd d
i
Rγ

µdjR − 3 ξij` `
i
γµ`j − 3 ξije e

i
Rγ

µejR

]
,

(4.3)

with

κq ≈

s2
q1 0 0

0 s2
q2 0

0 0 s2
q3

− g2
3

g2
4

1 , κu ≈ κd ≈ −
g2

3

g2
4

1 ,

ξq ≈

s2
q1 0 0

0 s2
q2 0

0 0 s2
q3

− 2 g2
1

3 g2
4

1 , ξu ≈ ξd ≈ −
2 g2

1

3 g2
4

1 ,

ξ` ≈

s2
`1

0 0

0 s2
`2

0

0 0 s2
`3

− 2 g2
1

3 g2
4

1 , ξe ≈ −
2 g2

1

3 g2
4

1 .

(4.4)

Note that the W mixing matrix cancels by unitary in the neutral current sector and hence

it does not enter in the Z ′ and g′ interactions. This situation is completely analogous to

5In this section we show only the interactions of the new gauge bosons with the SM fermions for illustra-

tion. Full expressions, including also the couplings to vector-like fermions, can be found in appendix A.7.
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the SM, in which the CKM cancels in the γ and Z interactions. Also note that the assumed

down-aligned flavour structure implies no tree-level FCNC in the down-quark and charged-

lepton sectors mediated by these extra gauge bosons. In the case where sq1 6= sq2 6= sq3 ,

FCNC in the up sector proportional to the CKM matrix elements are induced. These

transitions yield potentially dangerous contributions in ∆C = 2 observables. Assuming

θq1 = θq2 ≡ θq12 ensures an additional U(2)-like protection of the FCNC in the up sector.

As we show in section 4.3.2, this extra protection plays a crucial role in keeping the effects

in D−D mixing under control. An even larger protection against FCNCs can be achieved

when θq12 = θq3 , which we denote as full-alignment limit. In this limit the flavour matrices

in eq. (4.4) become proportional to the identity, yielding, as with the W matrix, a unitarity

cancellation of the CKM matrix in the up sector and thus resulting in a complete absence of

tree-level FCNC mediated by the g′ and the Z ′. As we show in sections and 4.3.2 and 5.3,

this latter limit is disfavoured by low-energy and high-pT data.

The relevant low-energy phenomenology of the model is described in terms of the

fermion mixing angles: θqi and θ`i , the W matrix, the ratios of fermion masses to the

leptoquark mass, and the following combinations of gauge couplings and vector masses

CU =
g2

4v
2

4M2
U

, CZ′ =
g2
Y

24 g2
1

g2
4v

2

4M2
Z′
, Cg′ =

g2
s

g2
3

g2
4v

2

4M2
G′
, (4.5)

which measure the strength of the new gauge boson interactions relative to the weak

interactions. In the limit g4 � g1,3, in which we are working, we have gY ≈ g1 and gs ≈ g3.

Moreover, in the phenomenological limit v3 � v1 � v15, the following approximate relation

among vector masses holds (see appendix A.4):

Mg′ : MU : MZ′ ≈
√

2 : 1 :
1√
2
, (4.6)

while for the NP scale constants we find:

Cg′ : CU : CZ′ ≈
1

2
: 1 :

1

12
. (4.7)

In what follows, we describe the main low-energy constraints on these model parameters.

4.1 Constraints on fermion mixing

The fermion mass mixing induced by eqs. (2.1) and (2.2) is the essential ingredient in our

construction. While the full fermion mass diagonalization is discussed in appendix A.6,

here we give a simplified discussion and comment on the main constraints on the mixing

angles. To a good approximation, this mixing is such that each family of the SM fermions

mixes with a single vector-like family. We introduce the following notation,

εiu(d) =
Y i
u(d) v√
2M̂Q

, xqi =
λiq v3√
2M̂Q

, (4.8)

where i = 1, 2, 3 is the family index, and analogously for the lepton sector. The quark and

lepton mixing angles, expanded in small εix, are given by

tan θqi,`i ≈ xqi,`i , tan θuiR(diR) ≈
mui(di)

mU i(Di)
tan θqi , tan θeiR

≈ mei

mEi
tan θ`i . (4.9)
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The physical masses are instead given by

mui(di) ≈
Y i
u(d) v√

2
cos θqi , MUi(Di) ≈

M̂Q

cos θqi
,

mei ≈
Y i
e v√
2

cos θ`i , MEi(Ni) ≈
M̂L

cos θ`i
.

(4.10)

Note that large left-handed mixing angles of the third generation quarks and leptons are

required by the R(D(∗)) anomaly (cf. eq. (4.13)). There are a few subtleties regarding the

top quark mixing due to its large mass. After electroweak symmetry breaking, contributions

to electroweak precision tests are generated, setting important limits on the right-handed

top mixing. In particular, Z → bLbL decay and the ρ parameter, both induced at one-

loop, set upper limits of tan θu3
R
. 0.4 and tan θu3

R
. 0.15, respectively (for more details

see ref. [67]). As a consequence, the two charged components of the doublet are almost

degenerate (MT ≈ MB) since the relative mass difference, MUi/MDi − 1 ∼ 1
2(tan2 θuiR

−
tan2 θdiR

). In addition, setting sin θq3 = 0.8, the second relation in eq. (4.9) implies a

lower limit MT & 1.7 TeV. The maximal size of the mixing angles is also limited by the

perturbativity of the Yukawa couplings (cf. section 4.5). For example, setting sin θq3 = 0.8

implies yt ≈ 1.7 (see eq. (4.10)). Similarly, large values for λ3
q and λ3

` are also required to

keep these angles maximal.

4.2 Semileptonic processes

A key element of the Cabibbo mechanism introduced in section 3 is that NP effects in

flavour-violating semileptonic transitions are expected to be maximal. In particular, the

relative misalignment in flavour space between quark and leptons, parametrised by the W

matrix, is responsible for sizeable 3-2 transitions mediated by the leptoquark. In what

follows, we describe the main NP effects in this sector, paying particular attention to the

anomalies in b→ cτν and b→ sµµ transitions.

4.2.1 Charged currents

Current measurements of the R(D(∗)) = B(B → D(∗)τν)/B(B → D(∗)`ν) (` = e, µ) ratios

performed by BaBar [2, 3], Belle [8–11] and LHCb [6, 13, 68] point to a large deviation

away from lepton flavour universality (LFU). We define possible NP contributions to these

LFU ratios as

∆RD(∗) =
R(D(∗))exp

R(D(∗))SM
− 1 . (4.11)

Effects in these observables are induced in our model by the tree-level exchange of Uµ. Since

Uµ only couples to SM fermions of left-handed chirality (see eq. (4.1)), the NP effect has

the same structure as the SM one mediated by the W±µ . As a result, our model predicts the

same NP contributions to R(D) and R(D∗), compatible with current experimental data.

Using the HFLAV experimental average for the R(D(∗)) ratios [69] (summer 2018), taking

the arithmetic average of latest SM predictions for these observables [70–73], and assuming
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∆RD = ∆RD∗ (as predicted by the model) we find: ∆RD(∗) = 0.217 ± 0.053. The model

contribution to this observable (taking only the leading interference contribution) reads

∆RD(∗) ≈ 2CU βbτ

(
βbτ + βsτ

Vcs
Vcb

)
. (4.12)

In the limit βbτ |Vts| � βsτ , we can neglect the first term in the equation above. This allows

us to derive the following approximate expression

∆RD(∗) ≈ 0.2

(
2 TeV

MU

)2 ( g4

3.5

)2
sin(2θLQ)

(
s`3
0.8

)2(sq3
0.8

)(
sq2
0.3

)
, (4.13)

which is helpful in order to understand the parametric dependence: a successful explana-

tion of the R(D(∗)) anomaly requires large mixing angles with third-generation fermions.

Moreover, setting θLQ = π/4 and the third family mixing and g4 nearly to the maximum

value compatible with perturbativity, the NP contribution to R(D(∗)) is fixed in terms of

sq2 and the NP scale, see blue contours in figure 4. Interesting constraints on the value of

sq2 arise from ∆F = 2 observables and high-pT searches for vector-like partners, which are

addressed respectively in sections 4.3.2 and 5.3.

An interesting remark is that the W matrix introduces an additional source of U(2)q
breaking other than that discussed in [35]. As a result, we predict a NP enhancement that

is different for b→ c and b→ u transitions. In particular, we have that

∆b→c : ∆b→u =

(
βbτ + βsτ

Vcs
Vcb

)
:

(
βbτ + βsτ

Vus
Vub

)
, (4.14)

where ∆b→c(u) is the ratio of the NP amplitude over the SM one for the b → c(u)τν

transitions. The previous formula, in the phenomenological limit of the parameters that

we are considering (βbτ |Vcb| � βsτ ), reduces to

∆b→c : ∆b→u ≈ 1 :
VusVcb
VubVcs

≈ 1 : 1 + 2.5 i . (4.15)

While the real part of the NP contribution shows the same universal enhancement, rela-

tively large non-interfering effects in b → u transitions are predicted in our model, which

could allow differentiation of this solution from the one in [35]. So far, the only experimen-

tal measurement of b → uτν transitions is B(B → τν). The modification of B(B → τν)

compared to the SM is dictated by ∆b→u, while ∆b→c is fixed by ∆RD(∗) . Using eq. (4.15)

we can derive the following prediction:

∆B(B → τν) =
B(B → τν)exp

B(B → τν)SM
− 1 = ∆RD(∗) + 1.8 (∆RD(∗))

2 , (4.16)

which for ∆RD(∗) = 0.22 yields ∆B(B → τν) = 0.31. Remarkably, using the PDG

value [74] for the experimental input and the UTFit value [75] for the SM prediction,

we have ∆B(B → τν) = 0.35± 0.31, which supports the model prediction, but still has a

very large error. Future improvements of the sensitivity could be used to test this prediction

and possibly discriminate among different sources of U(2)q breaking.
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τ, E3
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ℓ ℓ

γ

τ, E3

E2 E2

Figure 2. EFT diagrams contributing to b→ s`` transitions after Uµ has been integrated out.

4.2.2 Neutral currents

The effective Hamiltonian describing b→ s`` transitions reads

Heff = −4GF√
2

α

4π
VtbV

∗
ts

∑
i

(
C`iO`i + C ′`i O′`i

)
, (4.17)

with

O`9 = (sγµPLb)
(
`γµ`

)
, O`10 = (sγµPLb)

(
`γµγ5`

)
, (4.18)

where we ignore the scalar and chirality-flipped (primed) operators which receive negligible

contributions in our model and are thus irrelevant for the present discussion. Due to

the assumed down-aligned flavoured structure, only the leptoquark mediates tree-level

contributions to b→ s`` transitions. Since the leptoquark only couples to left-handed SM

fields, NP contributions to these transitions are of the form (we define Ci = CSM
i + ∆Ci)

∆Cµµ9 |tree = − ∆Cµµ10 |tree = − 2π

αVtbV
∗
ts

CU βsµ β
∗
bµ . (4.19)

As recently put forward in [76], given the large values of the βsτ leptoquark coupling

required in our setup to explain the R(D(∗)) anomaly, one-loop log-enhanced contributions

to these Wilson coefficients at the scale of the bottom mass can be sizeable. The most

relevant of such contributions is given by a photon penguin with a τ in the loop, see

figure 2.

This yields a contribution only to C9 that is universal for all leptons. We find (` =

e, µ, τ )

∆C``9

∣∣∣
loop

(m2
b) ≈ −

1

VtbV
∗
ts

2

3
CU
(
βsτ β

∗
bτ log xb + βsE2 β

∗
bE2

log xE2 + βsE3 β
∗
bE3

log xE3

)
≈ − 1

VtbV
∗
ts

2

3
CU

1

2
sin 2θLQ sq2 sq3

(
s2
τ log xb + c2

τ log xE3 − log xE2

)
,

(4.20)
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with xα = m2
α/M

2
U . In the computation we neglected fermion mixing in the muon sector

(i.e. we took s`2 ≈ 0), which amounts to a very small correction. Our result is in agreement

with the one in [76], however in our setup we also have computed the contributions involving

the vector-like leptons E2,3.

The violations of LFU measured in the RK [5] and RK∗ [12] ratios (as well as Q4,5 =

Pµ′4,5−P e′4,5 [77]) fix the (non-universal) tree-level contribution. Combining the experimental

measurements of LFU observables in b → s`` transitions yields the following preferred

region for the non-universal NP effect [78] (see also [79–84])

∆Cµµ9 |tree = − ∆Cµµ10 |tree = −0.66± 0.18 . (4.21)

This value can be perfectly accommodated by fixing s`2 in terms of the remainaing param-

eters. Taking typical values for the other model parameters, we find that s`2 ∼ O(0.1) is

required in order to fit the RK(∗) anomaly.

Concerning the one-loop contribution, we can connect its value to the NP shift in

∆RD(∗) in the βbτ |Vts| � βsτ limit. In this limit the following approximate relation holds

∆C``9

∣∣∣
loop

(m2
b) ≈

1

3
∆RD(∗)

(
log xb −

1

s2
τ

log xE2

)
. (4.22)

For sτ = 0.8, MU = 2.5 TeV, ME = 850 GeV and ∆RD(∗) = 0.1, we find ∆C``9
∣∣
loop

(m2
b) ≈

−0.3. The presence of this universal contribution predicts a further enhancement of P ′5 [85],

beyond the one given by the tree-level effect. As shown in [76], this prediction is in good

agreement with current data.

The assumed flavour structure also implies large NP effects mediated by the leptoquark

in b→ sττ transitions,

∆Cττ9 = −∆Cττ10 = − 2π

αVtbV
∗
ts

CU βsτ β
∗
bτ . (4.23)

For typical values of the model parameters, this contribution is O(100) larger than the

corresponding NP effect in the µ channel. Such large NP effects are compatible with

current experimental data and provide an interesting smoking-gun signature that can be

tested by future experiments such as Belle II, see e.g. [15, 31, 35, 86].

Concerning NP contributions to b→ sνν, again here the flavour structure of the model

forbids tree-level contributions mediated by the Z ′. Moreover, being an SU(2)L singlet,

the leptoquark does not contribute to these transitions at tree level. The leading effects

to these observables thus arise at one loop from U and W boxes and U penguins with a

tree-level Z or Z ′. In contrast to the b → s`` case, the contributing penguin diagrams

do not have large log-enhancements and/or are mass-suppressed, thanks to the additional

suppression from the Z mass. As a result, we find the model contributions to b→ sνν to

be well below the current experimental limits.

4.2.3 Lepton Flavour Violating transitions

The protection from our flavour structure (aligned to the charged-lepton sector), forbids

tree-level lepton flavour violation (LFV) mediated by the Z ′. As a result, the dominant
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LFV effects are mediated by the leptoquark and hence they necessarily involve semileptonic

processes for the tree-level effects (see section 4.4 for a discussion on one-loop induced LFV

transitions). Further assuming s`1 = 0 implies no NP effects in the electron sector, and

offers an additional protection from dangerously large LFV effects in the µ−e sector such as

in KL → µe. Small departures from charged-lepton alignment and/or s`1 = 0 are possible.

However, for simplicity, in the following discussion we only consider this limit (the possible

departures are not connected to the anomalies and hence they are more model dependent).

In this case, the leptoquark contributes to the following LFV transitions at tree-level:

i) τ → µss. This is the most promising LFV channel, since it is enhanced in the large

βsτ limit, of phenomenological interest for the R(D(∗)) anomaly. The most rele-

vant observable involving this transition is τ → µφ, for which we find the following

expression for the branching fraction

B(τ → µφ) =
1

Γτ

f2
φm

3
τ

32πv4
C2
U |βsµ β∗sτ |2 (1− ηφ)2 (1 + 2ηφ) , (4.24)

with fφ ≈ 225 MeV and ηφ ≡ m2
φ/m

2
τ ≈ 0.33. In the large βsτ limit (or equivalently

|Vcb| � sq2 and θLQ ≈ π/4) , the following approximate expression holds

B(τ → µφ) ≈ 4.7× 10−9

(
0.8

sq3

)2 (sq2
0.3

)2
(

∆RK(∗)

0.3

)(
∆RD(∗)

0.2

)
. (4.25)

This is to be compared with the current 90% CL experimental limit by the Belle

Collaboration [87]: B(τ → µφ) < 8.4 × 10−8. Our model prediction is found to lie

well below the current experimental sensitivity for the range of model parameters

considered here. As emphasised in [52], bounds from this observable can arise in the

very large βsτ limit (i.e. βbτ < βsτ ), which in our model yields to the following upper

bound: sq2 . 1.6 sq3 . However such extreme values of sq2 are largely incompatible,

in our model, with other low-energy observables as well as with direct searches (see

discussion in sections and 4.3.2 and 5.3) and hence are not considered.

ii) b→ sτµ. These transitions are parametrised by (see eq. (4.18) for the definition of

the Wilson coefficients)

Cτµ9 = −Cτµ10 = − 2π

αVtbV
∗
ts

CU βsµ β
∗
bτ , Cµτ9 = −Cµτ10 = − 2π

αVtbV
∗
ts

CU βsτ β
∗
bµ .

(4.26)

Taking the explicit expression for β in eq. (4.2), we find Cτµi = −Cµτi (i = 9, 10)

when θLQ = π/4. Using the expressions in [88] (see also [89]), we derive the following

limits in the large βsτ limit,

B(B → Kτ±µ∓) ≈ 2.0 × 10−6

(
∆RK(∗)

0.3

)(
∆RD(∗)

0.2

)
,

B(B → K∗τ±µ∓) ≈ 3.9 × 10−6

(
∆RK(∗)

0.3

)(
∆RD(∗)

0.2

)
.

(4.27)
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Experimental results are only available for the K+ channel. The experimental limit at

90% CL from the BaBar Collaboration reads [90]: B(B+ → K+τ±µ∓) < 4.8× 10−5.

Another interesting observable in this category is B(Bs → τ±µ∓), whose expression

in terms of the Wilson coefficients reads

B(Bs → τ±µ∓) =
τBsm

2
τ mBsf

2
Bs

32π3
α2G2

F |VtbV ∗ts|2
(

1− m2
τ

m2
Bs

)2 (
|Cτµ9 |

2
+ |Cτµ10 |

2
)
.

(4.28)

Again, in the large βsτ limit we can write the model prediction in terms of the NP

effect in RK(∗) and R(D(∗));

B(Bs → τ±µ∓) ≈ 2 × 10−6

(
∆RK(∗)

0.3

)(
∆RD(∗)

0.2

)
. (4.29)

However, no experimental measurement of this observable is currently available.

iii) bb→ τµ. In contrast to the case of τ → µss transitions, the transitions in this category

are suppressed in the large βsτ limit and are therefore less interesting. The only

measured observables in this category are B(Υ(nS) → τµ) (n = 1, 2, 3) [91, 92].

The model predictions for these observables are found to lie far below the current

experimental sensitivity.

4.3 Hadronic processes

The most important constraints in this category arise from ∆F = 2 transitions. As an-

ticipated in section 3, the assumed flavour structure offers a protection from the stringent

limits set on these transitions. In particular, the down-alignment hypothesis implies no

tree-level contributions to meson mixing observables in the down-quark sector mediated by

the Z ′ and g′.6 Furthermore, the U(2)q symmetry arising from setting θq1 = θq2 ≡ θq12 is

enough to keep the tree-level contributions to D−D mixing under control. As a result we

find that the dominant NP contribution to these observables arises from loops mediated by

the leptoquark, and is proportional to the W matrix. This has two important implications:

i) The assumption that W rotates only second- and third-generation fermion partners,

required to maximise the NP contribution to R(D(∗)), implies no NP contributions

to Bd −Bd or K −K mixing at one loop.

ii) Unitarity of the W matrix provides a GIM-like protection similar to that in the SM

arising from CKM unitarity.

In what follows we detail the model contributions to Bs and D mixing.

6As shown in [50], deviations from this hypothesis are possible, and could even be welcome, if we allow

for CP violating couplings (see also [93]). For simplicity we restrict ourselves here to the down-aligned

scenario.
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Figure 3. Leptoquark mediated one-loop diagrams contributing to Bs − Bs mixing. The symbol

E denotes a six-dimensional vector containing SM charged-leptons and their partners.

4.3.1 Bs −Bs mixing

The leading NP contribution to the mixing amplitude is given by the leptoquark box

diagrams shown in figure 3. The resulting leptoquark contribution follows a very similar

structure as that of the SM with a W±µ boson (see e.g. [94]). Defining NP contributions to

the Bs meson-anti-meson mass difference, ∆Ms, as CLLbs ≡ ∆Ms/∆M
SM
s − 1, we find

CLLbs = − g2
4

64π2
CU

1

(VtbV
∗
ts)

2Rloop
SM

∑
α,β

λBαλ
B
β F (xα, xβ) , (4.30)

with α and β running over all the leptons, including the vector-like partners, and where

Rloop
SM =

√
2GF m

2
W η̂B S0(xt)/16π2 = 1.34×10−3, with S0(xt) ≈ 2.37 being the Inami-Lim

function [95]. In this expression F (xα, xβ) is a loop function defined as

F (xα, xβ) =
1

(1− xα)(1− xβ)

(
7xαxβ

4
− 1

)
+

x2
α log xα

(xβ − xα)(1− xα)2

(
1− 2xβ +

xαxβ
4

)
+

x2
β log xβ

(xα − xβ)(1− xβ)2

(
1− 2xα +

xαxβ
4

)
, (4.31)

with xα = m2
α/M

2
U and λBα = βbα β

∗
sα, where β denote the leptoquark couplings to left-

handed fermions given in eq. (A.50). The explicit form of λBα in terms of fermion mixing

angles reads

λBα =
1

2
sin 2θLQ sin θq3 sin θq12

(
sin2 θ`3 δα3 + cos2 θ`3 δα6 − sin2 θ`2 δα2 − cos2 θ`2 δα5

)
.

(4.32)

Note that, analogously to the SM case, the flavour parameter λBα has the key property∑
α λ

B
α = 0, related to the unitarity of the flavour rotation matrices (and to the as-

sumed down-aligned flavour structure). This property, similarly to the GIM-mechanism

in the SM, is essential to render the loop finite and is required to derive the expression

in eq. (4.30). As a result of this GIM-like protection, we find that the leptoquark contribu-

tion to CLLbs receives an additional mass suppression proportional to M2
L/M

2
U with respect
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Figure 4. Constraints from ∆Ms at 95% CL using the 2015 SM prediction [96], for different values

of the vector-like lepton mass parameter ML. The 1σ and 2σ preferred regions by the R(D(∗))

anomaly are shown in dark and light blue, respectively. We use as input for the model parameters:

g4 = 3.5, sq3 = 0.8, s`3 = 0.8, v3 = 1.75 v1 and λ15 = 2.5.

to the naive dimensional analysis expectation with generic leptoquark couplings and no

vector-like fermions.7 In particular, we find that the NP contribution to ∆Ms follows the

approximate scaling

CLLbs ∼ ∆R2
D(∗) M

2
L , (4.33)

and therefore it is completely controlled by ML, for fixed R(D(∗)) anomaly and leptoquark

gauge coupling. This scaling is made manifest in figure 4 where we show the constraints

arising from the leptoquark contribution to CLLbs in the MU − sq12 plane, together with the

preferred region for R(D(∗)), and for different values of ML. The experimental limit on

CLLbs is obtained using the SM determination in [96–98]8 and the experimental measurement

from [69]. We have

CLLbs = 1.03± 0.15 . (4.34)

The radial excitation arising from the linear combination of Ω1 and Ω3 (see appen-

dices A.1–A.2) could also potentially yield dangerous NP contributions not protected by

7This GIM-like behaviour has been qualitatively noticed also in a different model presented in ref. [38].

On the other hand, models that address the R(D(∗)) anomaly with scalar leptoquarks do not exhibit this

suppression, see eq. (5.18) in [45].
8A recent lattice QCD simulation from the Fermilab/MILC collaboration [99] finds a larger central value

(and a smaller error) for the non-perturbative parameter fBs

√
B̂ entering the determination of ∆Ms. That

would imply a 1.8 σ tension with respect to the SM and translates into very stringent limits for purely

left-handed NP contributions featuring real couplings [93]. Given the fact that the new lattice result has

not been confirmed yet by other collaborations, we conservatively use the pre-2016 determination in [96].
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the U(2)q symmetry. These contributions depend on other parameters (masses and cou-

plings) that are not directly connected to the anomalies and are therefore more model

dependent. Moreover, in the phenomenological limit v3 � v1 we find the coupling of the

radial mode to be suppressed by cot βT = v1/v3 (see appendix A.3).9 As an estimate of the

size of such contributions, we compute the box diagrams with two radial modes (similar to

the ones in figure 3 but with the leptoquark replaced by the radial excitations). Recasting

the result in [100] for the up squark box we find in our model

CLLbs =
1

(VtbV
∗
ts)

2Rloop
SM

G2
F C

2
U M

4
3

128π2
t−4
βT
s2
q2s

2
q3

×
{

1

m2
L2

[
G′(xTR L2 , xTR L2 , 1)−G′(xTR L2 , xTR L2 , xL3 L2)

]
+

1

m2
L3

[
G′(xTR L3 , xTR L3 , 1)−G′(xTR L3 , xTR L3 , xL2 L3)

]}
, (4.35)

with xab = m2
a/m

2
b and the loop function G′ defined in [100]. Assuming typical values for

the model parameters, we estimate that values as small as tan βT & 1.75 are enough to

keep this radial-mode contribution to CLLbs to be below 1% and therefore small enough to be

ignored. Mixed contributions involving both the leptoquark and the radial mode are present

as well. Assuming similar sizes for the loop functions and including the cot βT = 1/1.75

suppression in the radial-mode coupling, we find such contribution to be also sufficiently

suppressed to be neglected.

4.3.2 D −D mixing

Following the analysis from UTfit [101, 102], the constraint obtained from D−D transitions

can be expressed in terms of bounds on the Wilson coefficients of the four-fermion effective

Hamiltonian

H∆C=2
eff ⊃ CD1 (cLγµuL)2 . (4.36)

The latest constraints on CD1 from UTFit read [101]

Re (CD1 ) = (0.3± 1.4)× 10−7 TeV−2 ,

Im
(
CD1
)

= (−0.03± 0.46)× 10−8 TeV−2 .
(4.37)

In our model, NP effects are induced in both the real and the imaginary parts of CD1 . Also,

in contrast to the Bs mixing case, the model yields contributions both at tree level and at

one loop. In what follows we describe both contributions.

9Note that in this phenomenological limit purely leptonic transitions mediated by the radial excita-

tions would receive additional tan βT enhancements. However, we find the bounds from this sector to be

significantly smaller and thus they do not pose any relevant constraint on these effects (see section 4.4).
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Figure 5. Leptoquark mediated one-loop diagrams contributing to D−D mixing. The symbol N
denotes a six-dimensional vector containing both SM neutrinos and their partners.

Tree level. The Z ′ and g′ mediate tree-level contributions to the D − D amplitude

proportional to the CKM matrix elements. These are given by

CD1
∣∣
tree

=
4GF√

2

(
CZ′ +

Cg′

3

)
(V ∗ub Vcb)

2

(
sin2 θq3 + sin2 θq2

V ∗us Vcs
V ∗ub Vcb

+ sin2 θq1
V ∗ud Vcd
V ∗ub Vcb

)2

,

(4.38)

with CZ′ and Cg′ defined in eq. (4.5). Setting θq1 = θq2 ≡ θq12 and using CKM unitarity,

the expression above simplifies into

CD1
∣∣
tree

=
4GF√

2

(
CZ′ +

Cg′

3

)
(V ∗ub Vcb)

2
(
sin2 θq3 − sin2 θq12

)2
. (4.39)

This assumption on the mixing angles ensures a U(2)-like protection, rendering the tree-

level contribution to CD1 sufficiently small to pass the stringent constraints from D −
D mixing. In particular, we find that for values of the NP scale compatible with an

explanation of the R(D(∗)) anomaly, the tree-level contributions to both the real and the

imaginary parts of CD1 are ≈ 10−9 TeV−2, and are thus compatible with the present bounds.

It is also interesting to note from eq. (4.39) that in the full-alignment limit, corresponding

to θq12 = θq3 , the tree-level contribution to CD1 would completely vanish by unitarity, as

expected from the discussion at the beginning of this section.

One loop. In this case, the computation of the loop effects is technically more challenging

than in the previous section, since now also the g′ and Z ′ mediate NP contributions at one

loop. However, it is important to note that thanks to the flavour structure of the model all

these additional contributions are protected by the same U(2)q symmetry that protected

the tree-level contribution (i.e. they are proportional to (V ∗ubVcb)
2), and therefore they are

much smaller than the (already small) tree-level effect. As in the Bs-mixing case, we find

that the dominant contributions to CD1 arise from loop diagrams involving the leptoquark

(see figure 5), which are not protected by the U(2)q symmetry, and that these effects are

proportional to the W matrix. Neglecting corrections of O((V ∗ubVcb)
2), we find

CD1
∣∣
loop
≈ −4GF√

2

g2
4

64π2
CU
∑
α,β

λDα λ
D
β F (xα, xβ) , (4.40)
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Figure 6. Constraints from D −D mixing, for different values of the bare vector-like lepton mass

parameter ML. In the left bounds arising from Im (CD1 ) and in the right those arising from Re (CD1 )

at 95% CL (see text for more details). The 1σ and 2σ preferred regions by the R(D(∗) anomaly are

shown in dark and light blue, respectively. We use as input for the model parameters: g4 = 3.5,

sq3 = 0.8, s`3 = 0.8, v3 = 1.75 v1 and λ15 = 2.5.

where the loop function is defined as in eq. (4.31), and λDα = VciV
∗
uj βiα β

∗
jα with β the

leptoquark coupling to fermions. Keeping only the U(2)q-violating contributions, λDα can

be written in terms of CKM matrix elements and fermion mixing angles as

λDα ≈ VcsV ∗us s2
q12

[
c2
LQ s

2
`2 δα2 + c2

LQ c
2
`2 δα5 + s2

LQ s
2
`3 δα3 + s2

LQ c
2
`3 δα6 − δα4

]
− (VcbV

∗
us + VcsV

∗
ub) sq12sq3 cLQ sLQ

[
s2
`2 δα2 + c2

`2 δα5 − s2
`3 δα3 − c2

`3 δα6

]
+ VcbV

∗
ub s

2
q3

[
c2
LQ s

2
`2 δα2 + c2

LQ c
2
`2 δα5 + s2

LQ s
2
`3 δα3 + s2

LQ c
2
`3 δα6 − δα4

]
.

(4.41)

Also in this case, the GIM-like protection encoded in
∑

α λ
D
α ≈ 0 ensures an additional

suppression of the box contributions. More precisely, we find the following approximate

scaling connecting the NP effect in R(D(∗)) with the one in D −D mixing

CD1
∣∣
loop
∼ s2

q12
∆R2

D(∗) M
2
L . (4.42)

Interestingly, this different scaling results in an upper limit on the maximum allowed value

for sq12 . This is shown in figure 6, where we plot the constraints from D−D mixing (both

for the real and imaginary contributions) together with the preferred region by R(D(∗)).

In the low-sq12 region of the left figure there is a small violation of the scaling in eq. (4.42).

This violation is due to the tree-level contribution in eq. (4.39), which for the real part

plays a marginal role.

Finally, concerning the contribution from the scalar radial modes, similarly to the case

of Bs mixing we find that these receive cot βT suppressions in the phenomenological limit

v3 > v1, making their effect sufficiently small to be neglected.

4.4 Leptonic processes

The fully leptonic transitions play a less important role in the low-energy phenomenology

than hadronic processes. As already mentioned, the assumption of flavour alignment in the
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Figure 7. Left: sample one-loop RGE evolution for the benchmark point: g4 = 3.5 and λq = λ` =

λ15 = 2.5 and Yt = 1.7 at the matching scale µ = 2.5 TeV. Other (subleading) couplings are not

shown in the plot. Right: same for g4 = 3.5, λq = 2.1, λ` = 2.0, λ15 = 2.3 and Yt = 1.7.

charged-lepton sector forbids tree-level LFV transitions mediated by the Z ′. The leading

effects are therefore those mediated by the leptoquark at one loop, and are completely

controlled by the W matrix. The assumed structure for this matrix, i.e. θLQ = π/4,

chosen to maximise the NP contribution in R(D(∗)), implies no NP contributions to fully

leptonic LFV transitions involving electrons (even for s`1 6= 0). Furthermore, the loop

suppression, together with the additional suppression coming from the mixing angle of the

muon, s`2 ≈ 0.1, are sufficient to render the model contributions to τ → 3µ and τ → µγ

well below the current experimental sensitivity. Purely-leptonic and electroweak operators

generated by the renormalisation-group running of the semi-leptonic operators from the

mass scale of the leptoquark down to the electroweak scale [56, 57], are already taken into

account in the global fits of [35] and in the limit of large 3-2 mixing studied in this paper

they are even less important.

4.5 Perturbativity

The fit of the R(D(∗)) anomaly (cf. eq. (4.13)) requires simultaneously large g4 and mixing

angles sq3 and s`3 , which translate to sizeable third generation Yukawa couplings λq and

λ`, thus pushing the model close to the boundary of the perturbative domain. When

assessing the issue of perturbativity, there are two conceptually different questions that one

could address: the first (more conservative) is to which extent low-energy observables are

calculable in perturbation theory and the second (more ambitious) is up to which energy

the model can be extrapolated in the UV before entering the strongly coupled regime.

Regarding the convergence of the perturbative expansion at low energy, the most important

coupling is g4, which for typical benchmarks is ∼ 3. This is still within the limits imposed by

standard perturbativity criteria: e.g. the beta function criterium of [103] βg4/g4 < 1 yields

g4 < 4π/
√

10 ≈ 4, while perturbative unitarity of leptoquark-mediated 2 → 2 fermion
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scattering amplitudes requires g4 <
√

8π ≈ 5 [104, 105]. Remarkably, the phenomenological

requirement of a large g4 coupling in the IR does not prevent extrapolation of the theory in

the UV, thanks to the (one-loop) asymptotic freedom of the SU(4) gauge factor. Following

the g4 evolution from the UV to the IR the theory flows towards the confining phase, until

the running is frozen by the spontaneous breaking of SU(4) via the Higgs mechanism.

From the point of view of the UV extrapolation, the problematic couplings are actually

the Yukawas, which are required to be large in order to generate sizeable mixings between

the third generation SM fields and their vector-like partners. To investigate their effects we

have computed the one-loop renormalisation group equations (RGEs) of the 4321 model

(which are reported for completeness in appendix A.9). In figure 7 we show the RGE

evolution for two typical benchmark points which are compatible with low-energy and

high-pT observables and which yield a 13% (left panel) and 10% (right panel) contribution

to ∆RD(∗) . Depending on the initial values of the 33 components of the λq,`,15 and Yu
matrices, the theory can be extrapolated in the UV for several decades of energy before

hitting a Landau pole. These figures also clearly give an idea of the tension between the

need to give a sizeable contribution to ∆RD(∗) and that of extrapolating the 4321 model

in the UV.

5 High-pT signatures

In this section we survey the main high-pT signatures of the 4321 model in pp collisions at

the LHC. After reviewing the main features of the resonances spectrum in section 5.1, we

describe the leading decay channels in section 5.2. In section 5.3, we derive the exclusion

limits from the coloron searches in tt and jj final states, Z ′ searches in τ+τ− and vector

leptoquark searches. Finally, we highlight the non-standard phenomenology of the vector-

like lepton (and vector-like quarks) as the most novel aspect of the high-pT discussion.

The upshot of this section is that the 4321 model predicts a vastly richer set of high-pT
signatures than the simplified dynamical model of a vector leptoquark introduced in [35].

5.1 Resonances spectrum

The 4321 model predicts a plethora of new resonances around the TeV scale that are

potential targets for direct searches with the ATLAS and CMS experiments. In this sec-

tion we discuss the spectrum of new resonances and their couplings, focusing on the pa-

rameter space of the model preferred by the flavour anomalies and consistent with other

low-energy data.

The starting point is the low-energy fit to the charged current anomalies in RD(∗) . In

the limit sq2 � Vcb, the following approximate formula can be derived,

∆RD(∗) ≈ 0.2

(
2 TeV

MU

)2( g4

3.5

)2

sin(2θLQ)

(
s`3
0.8

)2(sq3
0.8

)(
sq2
0.3

)
. (5.1)

To explain RD(∗) , one needs (i) a rather low G4321 → G321 breaking scale, MU/g4 ∼ O(TeV),

(ii) large leptoquark flavour violation controlled by θLQ and (iii) sizable fermion mass mix-

ings. Requiring, in addition, the couplings of the model, g4, λq and λ`, to be perturbative,

sets an upper limit on the masses of new vectors and fermions.
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The spectrum of the new scalar resonances depends on the details of the scalar potential

(see appendix A.2), which introduces extra free parameters that are less directly related to

the flavour anomalies. In the following, we focus on the fermionic and vector resonances,

postponing the discussion of the radial scalar excitations to section 5.3.7.

New vectors. Applying eq. (5.1) to the perturbative parameter space of the 4321 model,

the implied mass scale of the new vectors g′µ, Uµ and Z ′µ is in the interesting range for direct

searches at the LHC. Setting θLQ = π/4 and maximising the left-handed fermion mixings

for the third family, the spectrum can be further moved up by increasing sq2 and g4 –

eventually limited by phenomenology (see e.g. eq. (4.42)) and perturbativity, respectively.

In the motivated limit, v15 � v1 � v3 (for the minimisation of the scalar potential see

appendix A.1), and g1, g3 � g4, the spectrum of the new vectors approximately follows the

pattern mg′ : mU1 : mZ′ ≈
√

2 : 1 : 1√
2
. A typical benchmark point is illustrated in figure 8

(left panel).

The structure of the V ff interactions is discussed in length in appendix A.7. Here we

highlight the key aspects for the high-pT searches. The fermion mass mixing in the right-

handed sector is neglected for the purposes of this discussion (the largest mixing being

su3
R

. 0.1). All the V fRfR interactions are practically flavour diagonal, except for the

leptoquark couplings to fermionic partners described by the W matrix. The couplings to

right-handed SM fermions are suppressed.

In contrast, the fermion mass mixing in the left-handed sector plays a major role. These

interactions are worked out in eqs. (A.48) to (A.53). To illustrate the main implications, in

figure 8 (right panel) we show the normalized V fLfL couplings for Z ′ and g′ as a function

of sin θL, valid for any of the left-handed mixing angles. Solid, dotted and dashed lines

represent couplings to light-light, light-heavy and heavy-heavy combinations, where labels

light and heavy denote a SM fermion and its partner, respectively. Red color is for g′

couplings (Cg′) normalized as L ⊃ Cg′ g4gs
g3

ψqT
aγµPLψq g

′a
µ , while blue is for Z ′ couplings

(CZ′) normalized as L ⊃ CZ′
√

3g4gY
6
√

2g1

(
ψqγ

µPLψq − 3ψ`γ
µPLψ`

)
Z ′µ . It is worth noting that

sizable couplings to SM fermions are generated only for large mixing angles. In practice, the

third family mixings, sq3 and s`3 , typically control the decay channels of new resonances,

while sq2 (= sq1) is relevant for their production mechanisms in pp collisions.

New fermions. The main features of the fermion spectrum are controlled by the fermion

mass mixing constraints discussed in section 4.1. Relevant facts for the high-pT discussion

are the following: i) the components of an SU(2)L doublet are practically degenerate, ii)

partners of the first two families are close in mass, iii) a partner of the third SM family is

always heavier than the partners of the first two, and iv) lepton partners are typically lighter

than quark partners as required by consistency with loop-induced ∆F = 2 observables, see

section 4.3.

Consistency with tree-level ∆C = 2 transitions requires sq1 = sq2 ≡ sq12 as discussed in

section 4.3.2. One the one hand, sizeable sq2 boosts the NP contribution to R(D(∗)). On the

other hand, sq1 cannot be too large since it leads to an increased production cross section

of new vector bosons in pp collisions due to couplings to valence quarks. For example, for
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Figure 8. (Left panel) A typical spectrum of new vectors and fermions. The benchmark point is:

g4 = 3.5, v3 = 1.2, v1 = 0.66 TeV and v15 = 0.3 TeV, which fixes the masses of g′µ, Uµ and Z ′µ,

while MQ = 1.6 TeV, ML = 0.85 TeV, sq3 = 0.79, s`3 = 0.81 and sq2 = 0.3, which sets the fermionic

masses. (Right panel) Normalized V fLfL couplings of the g′ (red) and Z ′ (blue) to left-handed

fermions as a function of the sin θL. Solid, dotted and dashed lines are for the light-light, light-heavy

and heavy-heavy combinations, respectively. The coupling normalizations are, g4gsg3
for g′ to quarks,

and
√
3g4gY

6
√
2g1

(
√
3g4gY
−2
√
2g1

) for the Z ′ to quarks (leptons).

sq12 . 0.4, the formula for the light quark partner’s mass, MU i(Di) ≈ M̂Q, holds at 10%

level, see eq. (4.10), while for the third family quark partner, MC(U)/MT ≈ cos θq3 . Note

that perturbativity of λiq, together with the requirement of fitting the R(D(∗)) anomaly,

implies an upper limit on the M̂Q to be not far above ∼ 1 TeV, see eq. (4.8). Similar

arguments hold for the lepton partners since s`3 is almost maximal, while s`1 , s`2 are

rather small.

The typical spectrum of new fermions is illustrated in figure 8 (left panel) and will

serve as a benchmark in the following discussion.

5.2 Decay channels

The rich spectrum of new resonances, together with the peculiar structure of V ff inter-

actions, leads to an interesting decay phenomenology in the 4321 model. For example,

cascade decays involving particles in figure 8 (left panel) are possible, predicting spectac-

ular signatures in the detector. Let us survey the main decay modes of each new state

separately.

5.2.1 Vector decays

The dominant decay modes of the vector bosons are 1 → 2 processes induced by the V ff

couplings listed in appendix A.7. We start with the Lagrangian,

L ⊃ χiγµ (gLPL + gRPR) Cijkψj V k
µ + h.c. , (5.2)

– 26 –



J
H
E
P
1
1
(
2
0
1
8
)
0
8
1

Particle Decay mode B (BP) Γ/M (BP)

Uµ

q3`3 = tν, bτ ∼ 0.3

12%

q3L2 = tN2, bE2 ∼ 0.3

q3L3 = tN3, bE3 ∼ 0.1

q1L1 = jN1, jE1 ∼ 0.1

Q2`3 = Cν, Sτ ∼ 0.1

g′µ

q3q3 = tt, bb ∼ 0.6

10%q1Q1 = jU, jD ∼ 0.2

q2Q2 = jC, jS ∼ 0.2

Z ′µ

L1L1 = N1N1, E1E1 ∼ 0.4

44%L2L2 = N2N2, E2E2 ∼ 0.4

`3`3 = ττ, νν ∼ 0.1

Table 3. Relevant decay channels of new vectors Uµ, g′µ and Z ′µ. Branching ratios (B) are calculated

for the benchmark point (BP) corresponding to the spectrum shown in figure 8 (left panel). The

last column shows the total decay width to mass ratio (Γ/M) for the BP.

where χ and ψ are Dirac fermions with color indices i and j and masses mχ and mψ,

respectively, while Cijk is the color tensor and k is the color index of vector Vµ with mass

MV . Chiral projectors in the spinor space are PR/L = (1± γ5)/2. The general formula for

V → χψ partial decay width, following from this Lagrangian, is (MV > mχ +mψ)

Γ(V → χψ) = NC
MV

48π

√
λ1

(
mχ

MV
,
mψ

MV

)
×
[ (
|gL|2 + |gR|2

)
λ2

(
mχ

MV
,
mψ

MV

)
+ 12

mχmψ

M2
V

R(gLg
∗
R)

]
, (5.3)

where NC is the color factor and

λ1(x1, x2) = 1− 2 (x2
1 + x2

2 + x2
1x

2
2) + x4

1 + x4
2 ,

λ2(x1, x2) = 3 (1− x2
1 − x2

2)− λ1(x1, x2) .
(5.4)

For the Z ′ boson, Cijk → δij and k index is trivial for quarks (or all indices trivial for

leptons). The color factor is NC = 3 (1) for Z ′ decays to quarks (leptons). For g′ instead

Cija → T aij , where a = 1, . . . , 8, and the color factor for decays to quarks is NC = 1/2.

Finally, for the Uµ leptoquark, Cijk → δik, j index is trivial, and the colour factor for decay

to quark and lepton is NC = 1. The same formula eq. (5.3) also applies in the case of ψ ≡ χ
and real vector field V †µ ≡ Vµ, provided that gL, gR are real and there is no ’+ h.c.’ term

in eq. (5.2).

Using these formulas, we calculate the total width and the leading branching ratios

for g′, U , and Z ′ vector bosons. The results for the benchmark spectrum from figure 8

(left panel) are shown in table 3. In this context, the most relevant parameters are the two

largest mixing angles sq3 and s`3 , as well as, the masses of the vector-like fermions.

g′: the coloron will decay most of the time to a pair of third family SM quarks, tt or

bb. It could, in principle, decay also to vector-like quark partners if these are kinematically
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Figure 9. (Top panel) Representative Feynman diagrams for dominant vector-like fermion decays.

(Bottom panel) Phase space suppression in a fermion decay to three fermions of which one is massive

and two massless.

accessible. For the benchmark point, sizeable decays are into light-heavy combination. The

exclusion limits on the coloron from pp → jj and pp → tt searches are explored in more

detail in section 5.3.1.

Uµ: the vector leptoquark is expected to decay to tν and bτ final states. Decay modes

involving light-heavy combinations are also relevant if kinematically allowed. Examples

include Uµ → tN2 and Uµ → bE2 decays.

Z ′: decays of the Z ′ boson are typically into a pair of third family SM leptons, ττ

and ντντ , as well as, heavy vector-like lepton partners, which are required to be relatively

light by ∆F = 2 constraints as already discussed in section 4.3. It is worth noting that,

for the benchmark point, Z ′ has a rather large total decay width Γ/M ∼ 40% (unlike g′, U

with Γ/M ∼ 10%) signalling that the model is at the edge of perturbativity. The extra

decay modes to heavy lepton partners are welcome to avoid the bounds from Z ′ → ττ

as discussed in section 5.3.2. However, Z ′ assisted production becomes the dominant

production mechanism for heavy lepton partners, as discussed in section 5.3.4.

5.2.2 Fermion decays

SM-like Yukawa interactions in eq. (2.1) induce a vector-like fermion decay to its SM

partner and a Higgs, W or Z since the heavy fermion mass eigenstate has a projection
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Particle Decay mode

N1, E1 j(tν), j(bτ)

N2
t(tν), t(bτ)

j(tν), j(bτ)

E2
b(tν), b(bτ)

j(tν), j(bτ)

U
N1(tν), N1(bτ)

j(tt), j(bb), j(ττ), j(νν)

D
E1(tν), E1(bτ)

j(tt), j(bb), j(ττ), j(νν)

C

N2(tν), N2(bτ)

ν(tν), ν(bτ)

j(tt), j(bb), j(ττ), j(νν)

S

E2(tν), E2(bτ)

τ(tν), τ(bτ)

j(tt), j(bb), j(ττ), j(νν)

Table 4. Leading decay modes of vector-like fermion partners of the first and second family. The

corresponding Feynman diagrams are shown in figure 9 (top panel). See section 5.2.2 for more

details.

over the q′L or `′L states. Working in the SM unbroken phase, the partial decay width for

La1 → HaeR is

Γ(La1 → HaeR) =
ML

16π

(me

v
t`1

)2
, (5.5)

where a = 1, 2 denotes the component of an SU(2)L doublet and t`1 ≡ tan θ`1 . Anal-

ogous formulae hold for the other fermions. Being suppressed by the SM fermion mass

squared, this decay channel is negligible for the fermion partners of the first and second

family. Even for the charm quark partner, we find B(C → H̃0c) < 10−7 in the interesting

parameter range.10

In addition, a vector-like fermion decay to a SM fermion and a radial scalar excitation

is, in principle, possible via eq. (2.2). The precise details depend on the scalar potential,

however, we expect scalar modes to be heavy enough such that on-shell 1 → 2 decay is

kinematically forbidden.

The dominant decay modes of the first and second family vector-like fermion partners

are 1→ 3 processes induced via an off-shell g′, Uµ or Z ′µ mediator exchanged at tree-level.

Typically, a heavy fermion will decay to three SM fermions of which (at least) two are

10This is in contrast to the decays of (T,B) due to the large top quark mass. The predictions for the

branching ratios are B(T → ht) ≈ B(T → Zt) ≈ 0.5 and B(B → Wt) ≈ 1. Recent dedicated experimental

searches exclude MB < 1.35 TeV [106] and MT < 1.3 TeV [107]. These are below the indicated limits from

electroweak precision observables discussed in section 4.1. That is, the collider searches for the third family

partners are less relevant for the spectrum on figure 8 (left panel).
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third generation, or it will decay to another vector-like partner and two SM fermions (see

representative Feynman diagrams in figure 9 (top panel)). To a good approximation, we

can integrate out heavy vectors and work with the following effective Lagrangian,

L ⊃ 1

Λ2
eff

Cijkl(Ψi
Lγ

µψjL)(χkLγµχ
l
L) + h.c. , (5.6)

where Cijkl is the colour tensor, Ψ is the decaying fermion (in this case Q or L) with color

index i and mass MΨ, while ψ is a massive/massless final state fermion with color index

j and mass mψ. Also, χ and χ are two massless SM fermions with colour indices k and l,

respectively. We consider fermions to be triplets or singlets of colour. The partial decay

width following from this Lagrangian is

Γ(Ψ→ ψχχ) = NC
1

Λ4
eff

M5
Ψ

1536π3
F

(
m2
ψ

m2
Ψ

)
(5.7)

where NC is the color factor depending on the Cijkl. For example, for Qa1 → La1`
b
3q
b
3, the

Cijkl → δil with indices j, k trivial and NC = 1. Another example is La1 → qa1q
b
3`
b
3, where

Cijkl → δjk with indices i, l trivial and NC = 3. (Here, SU(2)L indices a, b are fixed and

not summed over.) The phase space suppression for Ψ → ψχχ decay with massive ψ and

massless χ, χ is [108]

F (x) = 1− 8x− 12x2 ln(x) + 8x3 − x4 . (5.8)

This function is plotted in figure 9 (bottom panel), showing rather large suppression factors

for sizable mψ/MΨ. Using these relations, we calculated the partial decay widths and

identified the leading vector-like fermion decay modes in table 4. The precise branching

ratios depend strongly on the benchmark point. For example, for the selected BP, diagrams

(a) and (b) from figure 9 (top panel) lead to rates of similar sizes, which is, however, highly

sensitive on the ML/MQ ratio, see figure 9 (bottom panel). It is also interesting to note

that these resonances are rather narrow, Γ/M ∼ O(10−4).

Loop-induced 1 → 2 decays can, in principle, compete with tree-level 1 → 3 decays.

An example in the 4321 model is C → tγ with the dipole operator generated by the

heavy neutral lepton and vector letoquark in the loop. These decays are typically sub-

leading in the relevant parameter space due to an extra suppression from the electroweak

gauge coupling.

To sum up, the 4321 model predicts drastically different signatures of light vector-like

fermion partners from those currently being searched for by experiments (see e.g. ref. [109]).

5.3 Collider constraints

In this section we investigate the most stringent current LHC limits on the 4321 model,

and propose novel (exotic) collider signatures for future searches. As a recap, the core im-

plication of the R(D(∗)) anomaly is i) a relatively light vector leptoquark and ii) relatively

light vector-like leptons — to simultaneously pass the bounds from ∆F = 2 transitions.
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(a) (b)

Figure 10. Feynman diagrams for the coloron and Z ′ searches.

By the model construction, the accompanying vector resonances are close in mass to the

leptoquark, and are resonantly produced in pp collisions. The strongest collider constraints

are due to an s-channel coloron (or Z ′) decaying to a pair of third family SM femions, see

figure 10. Such final state has i) a large branching ratio and ii) a simple topology. Although

these topologies have been extensively exploited by experiments, a simple interpretation

in terms of a narrow-width resonance fails to capture the effect, and a slight complication

arises in properly including finite width and interference effects. By performing a dedicated

recast of the existing dijet and tt searches, we show how to consistently extract bounds on

the model’s parameter space.

An essential ingredient of the 4321 model is the existence of heavy SM fermion partners

with masses below the vector boson spectrum — with peculiar new decay channels leading

to exotic final states with multiple jets and/or leptons — a distinct smoking gun signature

of the model. Here we provide a catalog of promising topologies and estimate their potential

future impact.

5.3.1 Coloron searches in tt and bb final states

The dominant production mechanism of the colour octet g′ in pp collisions is resonant

production from a quark-antiquark pair, qq → g′. There is no tree-level coupling between

a single g′ and a gg pair, see appendix A.8. Due to the flavour structure of the model, the

couplings to light quarks are suppressed, however the PDF enhancement of valence quarks

relative to third generation quarks in the proton ensures that this channel is nevertheless

dominant. The interesting regimes of the model are when the width is rather large (but

still calculable) or the resonance is narrow but rather heavy.

Existing analyses which are most sensitive to the coloron are an ATLAS tt invariant

mass measurement [110], an ATLAS dijet resonance search [111], and an ATLAS dijet

resonance search with one or two jets identified as b jets [112]. The relevant Feynman

diagrams are shown in figure 10; the largest contribution to the dijet process is through

production of a left-handed bb pair.

We calculate the model predictions for the tt process using Madgraph5 aMC@NLO [113],

implementing the coloron and its interactions in FeynRules [114], and using the default

NNPDF2.3 leading order PDF set [115]. The representative benchmark examples are shown

in figure 11 (top right panel). We use the measured unfolded, parton-level invariant mass

distribution, which allows direct comparison to parton level predictions, and involves a
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Figure 11. (Top panel) Coloron contribution to the pp → jj (left panel) and pp → tt (right

panel) invariant mass spectrum for two representative benchmark points. (Bottom panel) Coloron

exclusion limits in the mass-total width plane for jj and tt for several representative sq2 benchmarks.

cut of pT > 500 GeV for the leading top quark, and pT > 350 GeV for the second leading

top quark. Exclusion regions are then calculated from the measured tt invariant mass

spectrum [110] requiring ∆χ2 > 6.2. The excluded regions found in this way, for 3 different

values of sq2 , are shown in green in figure 11 (bottom panel). As shown in figure 8 (right

panel), the coloron coupling to left-handed valence quarks depends on sq2 and leads to the

reduced coloron production for sq2 ∼ 0.3.

Additionally, exclusion regions are calculated from an ATLAS dijet resonance

search [111]. The search involves dijet events with mjj > 1.1 TeV, for which the trans-

verse momentum of the leading (subleading) jet is greater than 440 (60) GeV, and the

rapidity difference between the jets is less than 0.6. Cross sections differential in the invari-

ant mass are calculated for the process pp→ bb using MSTW PDF sets [116], including the

effects of interference between the SM and coloron-mediated diagrams. Note that g′ → bb

is by far the dominant coloron dijet decay.) We estimated the signal acceptance in the

relevant invariant mass region to be about 35%.

Following an ATLAS method, we determine whether bumps could be seen in the total

invariant mass spectrum by fitting the background with a curve f defined as

f(z) = p1(1− z)p2zp3zp4 log(z), (5.9)
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where z = mjj/
√
s.11 In each case, this parameterised curve is binned and added to the

binned new physics contribution, and the χ2 calculated by comparison with the ATLAS

measured data, assuming poissonian errors on the data. Each of the curve parameters pi
is allowed to vary independently to minimise the χ2 value, and this minimum χ2 is used

to determine whether the coloron parameter point is ruled out if ∆χ2 > 6.2. The resulting

exclusion regions are shown in red in figure 11 (bottom left panel), for three different

sq2 values.

A recent ATLAS search [112] looks for bumps, in a very similar way, in the invariant

mass spectrum of dijet events for which one or both of the leading jets pass b-tagging

requirements. Since our coloron-mediated dijet signal is made up almost entirely of bb

pair production events, this is clearly an important search. In the “high-mass region” for

which the invariant mass of the dijet pair is mjj > 1.2 TeV, the analysis requires that the

transverse momentum of the leading (subleading) jet is greater than 430 (80) GeV. Both

leading jets are additionally required to have pseudorapidity |η| < 2.0, and the rapidity

difference between them is required to be less than 0.8. We use the fitting method described

above (eq. (5.9)) to extract exclusion regions from the measured invariant mass spectrum

requiring ≥ 1 b-tag.12 The b-tag efficiency for the signal events is taken from figure 2 (a)

of [112]. The exclusion regions found in this way are shown in blue in figure 11 (bottom

right panel), for three different sq2 values.

Some discussion of the different shapes and reaches of the tt and dijet exclusions shown

in figure 11 (bottom panel) is in order. The green tt regions exclude even large widths,

because the tt predictions exist for the SM. This means that even for large widths, when

the signal is spread over many bins, the discrepancy from the SM can still be apparent.

The sensitivity falls off sharply around coloron masses of 3 TeV, because the spectrum is

only measured up to mtt = 3 TeV, and in the last bin the error on the data is already rather

large. By contrast, for the dijet bump hunts, the SM background must be simply fitted

to the data. So if the coloron has a very large width, such that its effects are spread over

many bins, then the signal can be hidden within the background fit, and the bump hunt is

no longer sensitive. This is why the red and blue dijet regions do not reach to such large

widths as the green tt regions. The thin red lines represent dijet limits when fixing the

background to the SM-only fitted value, rather than profiling. Indeed, these show similar

behaviour to tt exclusions.

For low coloron masses, the blue region found from the bump hunt with b-tags reaches

larger widths than the red region found from the bump hunt without b-tags. This is because

the b-tag requirement increases the signal over background ratio for dijet invariant masses

below around 2.5 TeV. This advantage disappears for larger coloron masses because the

signal b-tagging efficiency decreases for higher invariant masses. Finally, we would like to

11In ref. [111], the analysis in fact made use of a novel fit method with a sliding window, such that

in each section of the spectrum defined by the window, a new three-parameter fit was made. However,

they compared both methods and found compatible results between this sliding window method and the

traditional global four-parameter fit described here, so we use the four-parameter fit model for simplicity.
12The ≥ 1 b-tag selection was chosen rather than the 2 b tag selection because the signal efficiency becomes

very small for the 2 b-tag selection.
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point out that a different b-tagging (and misidentification) operating point choice might be

more optimal for our signal. In particular, one might try a tighter b-tagging requirement

with rather severe background rejection rate.

5.3.2 Z′ search in τ+τ− final state

Production of high-pT τ
+τ− pairs in pp collisions (e.g. [117]) has been identified as a generic

signature of models addressing R(D(∗)) anomalies [58]. The 4321 model is not an exception,

as the effect comes from an on-shell Z ′ boson, i.e. pp→ Z ′ → τ+τ−.

Let us, for a moment, assume that the Z ′ exclusively decays to SM fermions (unlike in

the chosen benchmark). For large sq3 ≈ s`3 (and small sq2) the Z ′ decay width is saturated

by decays to bb, tt, νν and τ+τ−, with a branching ratio B(Z ′ → τ+τ−) ∼ 3/8. The

total Z ′ decay width, for g4 ∼ 3, is at the level of Γ/M ∼ 10%. For a small sq2 , the

dominant production mechanism is from bLbL → Z ′, followed by uRuR fusion (a factor of

∼ 4 smaller). Increasing sq2 leads to sizeable increase in the production cross section from

the valence quarks, uLuL and dLdL. The observed upper limit on the narrow resonance

σ×B(Z ′ → τ+τ−) is about . 10 fb for the Z ′ masses in the 1–3 TeV range (see figure 7 (c) in

the latest ATLAS search done at 13 TeV with 36 fb−1 [117]). If we assume (conservatively)

that the Z ′ is produced exclusively from bottom-bottom fusion, without even considering

extra uu and dd channels, these constraints imply that m′Z & 1.8 TeV. This illustrates the

tension with the present data if the Z ′ exclusively decays to SM fermions.

On the other hand, the reference benchmark point easily avoids the τ+τ− bound due to

extra open decay channels to vector-like lepton partners (see table 3). Interestingly enough,

these states are also required to be light for the consistency with ∆F = 2 observables. The

extra decay channels ensure i) a diluted branching ratio to τ+τ− and ii) a large total

decay width (Γ/M ∼ 40%) which reduces the effectiveness of the search (see figure [4] in

ref. [58]). Finally, we note that the limits from Z ′ → µ+µ− decay are irrelevant due to the

small s`2 ∼ 0.1.

5.3.3 Leptoquark signatures

Vector leptoquarks are copiously produced in pairs via QCD interactions. For more details

on their phenomenology at hadron colliders, we refer the reader to section 2.2 of ref. [118].

We compute the leptoquark pair production cross-section at LO in QCD in pp collisions at

13 TeV, using the FeynRules model implementation of ref. [118] with MadGraph5 aMC@NLO

(see also ref. [119]). The results are shown in figure 13 with a solid black line. It is worth

noting the fast drop of the cross section with the leptoquark mass.

Vector leptoquark decays to tν or bτ final states with large branching ratios. (Other

relevant decays are listed in table 3.) A dedicated analysis targeting the simplified dynam-

ical model of ref. [35] has recently been performed by CMS [120], excluding pair-produced

leptoquarks with masses mU1 < 1.53 TeV, under the assumption of B(U1 → tν) = B(U1 →
bτ) = 0.5. This limit is also shown in figure 13 (grey region). For the benchmark point in

table 3, this bound is slightly relaxed due to somewhat smaller branching ratio. The first

lesson is that direct bounds on leptoquarks cannot compete with those indirectly inferred

from e.g. coloron exclusions.
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(a) (b)

Figure 12. Representative Feynman diagrams for (a) vector leptoquark pair production and (b)

vector leptoquark production in association with an L1 lepton partner.
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Figure 13. Vector leptoquark (Uµ) production cross section (in fb) at the 13 TeV LHC. The solid

black line shows the leptoquark pair production cross section via QCD interactions. The dashed red

line represents pp→ E1 +Uµ production cross section, fixing g4sq2 = MU/2 TeV to fit the R(D(∗))

anomaly, and with the E1 lepton partner mass set to ML = 0.85 TeV. The grey region is excluded

by the CMS leptoquark search in the (tν)(tν) final state, assuming B(Uµ → tν) = 0.5 [120].

In fact, as the experimental searches are moving forward, the dominant mechanism for

on-shell leptoquark production will instead become g q1 → L1 Uµ, see figure 12. As shown

in figure 13 (red dashed line), the cross section for the single leptoquark production in

association with a vector-like lepton E1 dominates over the leptoquark pair production for

large MU . In this calculation, we fix ML = 0.85 and g4sq2 = MU/(2 TeV), as indicated by

R(D(∗)) anomaly. The present excluded mass reach from the CMS search [120] is already

nearing the point where this channel becomes dominant, and suggests reconsideration of

the working strategy to search for our leptoquark.

In addition to extending the scope to a novel production channel, we also suggest

searching in new decay modes as listed in table 3. For example, there is a significant

branching fraction to Uµ → q3L2 → q3(q3`3q3) — clearly calling for a dedicated experi-

mental analysis.
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Figure 14. Vector-like lepton pair production cross section in pp collisions at 13 TeV as a function

of the lepton mass for several benchmark points.

5.3.4 Vector-like lepton production

Vector-like leptons are pair produced in proton-proton collisions via electroweak interac-

tions. In addition, a sizeable contribution to the total cross section comes from s-channel

Z ′ exchange. A quantitative estimate of this effect is illustrated in figure 14, where we

plot the total cross section for pp → EE, pp → EN and pp → NN (where E1 is the

first generation charged lepton partner and N1 is the first generation neutrino partner)

as a function of the vector-like lepton mass ML for several motivated benchmark points.

The cross sections were calculated using MadGraph5 aMC@NLO (with the Z ′ and vector-like

leptons implemented using FeynRules), including both electroweak production and the

Z ′-assisted process. At each vector-like lepton mass, the Z ′ width was recalculated, taking

into account all the kinematically accessible final states.

Let us analyse figure 14 in more detail. While the charged current process is fixed by

the electroweak interactions, it is important to notice that the neutral current processes

i) receive increased contribution for large sq2 , and that ii) the cross section exhibits a

plateau for ML < MZ′/2, that is when Z ′ → LL is kinematically open. Neutral current

processes are basically dominated by the Z ′-assisted production in the interesting range of

parameters. As discussed in section 5.3.6, these processes lead to distinct collider signatures

which already set an upper limit on the total production of O(10) fb. Cross sections
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Figure 15. (Left panel)Vector-like quark pair production cross section in pp collisions at 13 TeV

as a function of the quark mass for several benchmark points. (Right panel) Same for the single

vector-like quark production in association with a light quark.

below . 10 fb are obtained for relatively heavy M̂L & 0.8 TeV and relatively small mixing

sq2 . 0.4.13 Having the Z ′ mass below 2M̂L also helps to reduce the yield, however, this

scenario is disfavoured by Z ′ → τ+τ− searches, see section 5.3.2.

5.3.5 Vector-like quark production

The QCD induced cross section for pp → QQ is completely determined by mQ, and it is

dominated by the gluon fusion subprocess, gg → QQ, and the sub-leading quark fusion,

qq → QQ. Specific to this model is an extra contribution to the quark fusion subprocess,

qq → g′/Z ′ → QQ, which depends on the g′/Z ′ masses and interactions. Due to the flavour

structure of the model, g′ and Z ′ could decay to a pair of heavy partners of same flavour,

or to a heavy-light combination.

To investigate the importance of the g′ assisted production, we plot the total pp→ QQ

and pp → Qq, qQ cross sections as a function of mQ in figure 15 for several benchmark g′

masses and sq2 mixing. We do not include the Z ′-mediated process here as it is highly sub-

dominant to the coloron-mediated process. Again, the cross sections were calculated using

MadGraph5 aMC@NLO (the g′ and vector-like quarks were implemented using FeynRules),

with the coloron width varying as a function of the vector-like quark mass.

Let us discuss the main implications of figure 15. The QQ production (left panel) is

dominated by the g′ diagram, and shows a plateau for 2M̂Q < Mg′ , i.e. when g′ → QQ

decay is kinematically opened, while it drops fast for larger M̂Q. On the contrary, single

production of a vector-like quark in association with a light quark (right panel) increases

when the g′ → QQ decays is forbidden, due to the jump in B(g′ → Qq). The benchmark

point from figure 8 (left panel) has suppressed cross section for pair production as this

process has a more constraining signature, see section 5.3.6.

13We also note that pp → L1L1 can be induced via vector leptoquark exchanged in t-channel, e.g.

dd→ E1E1 and uu→ N1N1. The cross section due to this diagram scales with s4
q2 and is relevant only for

large sq2 . We have checked that for sq2 . 0.4, the Z′-assisted production dominates.
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5.3.6 Multi-leptons plus multi-jets

As shown in figures 14 and 15, vector-like fermions are produced with sizeable cross sections

in the interesting parameter range (1− 10 fb), and decay dominantly to three SM fermions

of the third family, t, b, τ and ντ . Thus, the signature in the detector contains multiple jets

and leptons and is rich with b-tags, hadronic τ -tags, etc. While the extraction of precise

limits requires a dedicated experimental analysis, we estimate the potential sensitivity in

the current and near-future datasets, by comparing with the existing R-parity conserving

(RPC) and R-parity violating (RPV) supersymmetry (SUSY) searches.

Using 36 fb−1 of 13 TeV pp collision data, the ATLAS collaboration has searched for

signatures involving multiple b-jets, high missing transverse momentum and either (at

least) three isolated leptons, or two isolated same-sign leptons [121]. Following this general

selection, the upper limits are set on the signal regions based on the number of b-jets, jets,

leptons and Emiss
T , which are then interpreted in terms of simplified SUSY benchmarks.

As an example, pair production of gluinos, each decaying to a top pair and a neutralino,

can be qualitatively compared to our pp → N2N2 → (ttν)(ttν). Interpreting naively the

exclusion limits, that is, neglecting any differences in acceptances between our model and

the SUSY benchmarks, we conclude that the signal rate for this process is . 5 fb. This

search is already starting to probe the interesting parameter space, see figure 14 (top right

panel). Another relevant RPC example involves pair production of stops, each decaying to

t, W± and neutralino, and sets an upper limit on the cross section . 10 fb. Finally, the

limit from RPV searches on gluino pair production, where each decays to tbj, implies an

upper limit of . 15 fb.

In addition to these final states, the 4321 model predicts even more exotic multi-

lepton plus multi-jet signatures due to cascade decays among particles shown in figure 8

(left panel). An example of such process is illustrated in figure 16. In this example, a

pair of vector-like quarks is created by an s-channel coloron, and one of them decays to

vector-like lepton which eventually decays to three SM fermions. The final state contains

3q3 + 5`3, or 5q3 + 3`3, where q3 = t, b and `3 = ντ , τ .

To sum up, the 4321 model predicts a plethora of novel signatures and calls for a

dedicated experimental effort.

5.3.7 Scalars

The radial modes of the Higgs fields which break the 4321 symmetry to the SM group may

also be produced at the LHC. They consist of a singlet, a colour triplet and a colour octet,

as described in section A.2. A scalar singlet at the TeV scale is not easy to find at the

LHC, so here we focus on the coloured states.

The colour octet can be pair produced via QCD and via an s-channel coloron, and

will, if kinematically allowed, decay with close to 100% branching ratio to a vector-like

quark and a SM quark. It may also decay to a tt pair, but this coupling is suppressed by

the right handed top-vector like quark mixing. The colour octet’s mass is very dependent

on parameters of the scalar sector but can easily be as heavy as 2− 3 TeV. A very similar

model has been investigated in ref. [122], and the pair production cross-section of the colour
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Figure 16. An example of the cascade decay process at the LHC leading to heavy-flavoured

multi-lepton + multi-jet final state signature.

octet scalar was found to be O(10−2) fb for a 2 TeV octet scalar. Depending on the width

of the coloron and the mass of the scalar, the coloron-assisted production may be larger

than this, but will not be more than 10−1 fb at 2 TeV. This is more than an order of

magnitude smaller than the vector-like quark pair production cross section investigated in

section 5.3.5 above, and will produce a similar signature with extra jets.

The colour triplet will also be pair produced via QCD and coloron-assisted production,

and will decay to a vector-like quark and a SM lepton, or a vector-like lepton and a SM

quark. The signature will appear as vector-like quark pair production with extra leptons

(or missing energy),vector-like lepton pair production with extra jets, or a combination

of single vector-like lepton and vector-like quark single production with extra leptons and

jets. Again, the mass depends on the scalar parameters, but can be as large as a few

TeV. The QCD pair production cross-section for this state can be found in ref. [62], and is

again O(10−2) fb at 2 TeV, while the coloron assisted production is parameter-dependent

but no larger than O(10−1) fb. This is therefore subdominant to other vector-like lepton

and vector-like quark production modes in the model.

6 Conclusions

The evidence for flavour anomalies in semi-leptonic B decays is growing with time. Al-

though they might eventually disappear, they represent at the moment one of the few hints

of NP, and deserve exploration. From a beyond the SM perspective they are certainly un-

expected: the common expectation was that NP in flavour had to appear first in rare

processes where the SM contribution is suppressed, while the anomalous data in b → cτν

charged currents suggest a sizeable deviation in a channel where the SM contributes at

tree level. Even allowing for the most conservative estimate of the scale of NP based on

perturbative unitarity arguments [104], something has to happen below 9 TeV in order to

unitarize the four-fermion operator responsible for the NP contribution to b → cτν. How
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is it possible to reconcile this with a plethora of long-standing indirect probes (flavour,

electroweak, etc.) and the impressively growing amount of LHC data at high-pT ?

The main challenge, from a model building point of view, is to find a model which

can offer a coherent explanation for the anomalies in both charged and neutral currents,

while remaining compatible with all other constraints. A non-trivial point when addressing

this question is to show that this is actually possible in a UV complete construction which

allows for a connection between the anomalies and other observables. This is what we have

achieved in this paper, in the context of the 4321 model introduced in ref. [37].

The main virtue of the model is that it is renormalizable and fully calculable. It is

however fair to say that the phenomenological constraints push the model in the direction

of largish couplings, although still in the perturbative domain. Depending on the size of

the anomaly in charged currents, the model can be extrapolated in the UV over several

decades of energy.

The 4321 model belongs to a class of B-anomalies solutions which involve new dynamics

in purely left-handed currents (see e.g. [35]). The effect in R(D(∗)) is obtained either from

i) a pure third family interaction via the CKM, or ii) a large direct 3-2 flavour violation.

The second option points to a larger effective NP scale (by a factor of order 1/
√
Vcb ≈ 5)

alleviating the problems with indirect constraints in precisely measured Z-pole observables

and leptonic τ decays [56, 57], as well as direct searches at the LHC (see e.g. [58, 59]);

but introduces a potential problem with FCNC due to the SU(2)L nature of left-handed

interactions. In the context of our model, one has not only to address tree-level ∆F = 2

effects due to g′ and Z ′, but also a large 3-2 leptoquark transition which feeds in at one

loop in ∆F = 2 observables.

A crucial phenomenological ingredient of this construction in order to make the size

of the anomalies compatible with indirect and direct constraints is a generalisation of the

Cabibbo-GIM mechanism of the SM, which allows a large 3-2 leptoquark transition while

suppressing FCNC at tree level and at one loop. We have computed these and shown that

they are under control as long as lepton partners, which play a crucial role in suppressing

the contribution to the box diagrams via a GIM-like mechanism, are light enough. The

latter are predicted to be the lowest-lying states of the NP spectrum (cf. figure 8) and

hence represent a clear target for LHC. This is a nice example of the complementarity

between indirect and direct searches, which is possible only thanks to the fact that the

model is UV complete and hence the observables are calculable.

The 4321 model predicts a very rich phenomenology at high-pT . While the low-energy

phenomenology can be matched, to a large extent, to the simplified dynamical single-

mediator model of ref. [35], the high-pT physics is very different from that of the simplified

model. Since the fit to the R(D(∗)) anomaly requires the vector leptoquark to be around

the TeV scale, the same is true for the whole spectrum of new vectors and fermions. The

main high-pT signatures are, in fact, not related to the vector leptoquark, but to i) the

coloron decaying to tt and bb, ii) Z ′ → τ+τ− and iii) production of heavy vector-like

leptons and quarks. As a proof of principle, we have identified a benchmark point which

fits the low-energy data well and is safe from the present LHC exclusions.

One of the key predictions of the 4321 model is the peculiar decay phenomenology

of the new fermions, and a possibility of cascade decays leading to exotic signatures with
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multiple leptons and jets in the detector. Such novel signatures, exemplified by figure 16,

require a dedicated experimental effort which, if performed, could significantly improve the

limits in the near future.
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A Anatomy of the 4321 model

In this appendix we provide a detailed account of several theoretical aspects of the 4321

model, including: the minimisation of the scalar potential (appendix A.1), the scalar spec-

trum (appendix A.2), the Yukawa interactions of the radial modes (appendix A.3), the

gauge boson spectrum within the minimal scalar sector (appendix A.4) and beyond (ap-

pendix A.5), the vector-fermion interactions in the mass basis (appendix A.7), the rel-

evant tri-linear gauge vertices (appendix A.8), the renormalisation group equations (ap-

pendix A.9), and the list of SU(4) generators and structure constants (appendix A.10).

A.1 Scalar potential

The scalar sector comprises the representations: Ω3 ∼
(
4,3,1, 1/6

)
, Ω1 ∼

(
4,1,1,−1/2

)
,

Ω15 ∼ (15,1,1, 0) and H ∼ (1,1,2, 1/2). Note that Ω15 is taken to be a real field. Given

the hierarchy 〈Ω3〉 > 〈Ω1〉 � 〈Ω15〉 � 〈H〉 suggested by phenomenology, we simplify the

problem by first considering the Ω3,1 system in isolation and comment later on about the

inclusion of the other fields. We represent Ω3 and Ω1 respectively as a 4× 3 matrix and a

4-vector transforming as Ω3 → U∗4 Ω3U
T
3′ and Ω1 → U∗4 Ω1 under SU(4)× SU(3)′. The most

general scalar potential involving Ω3 and Ω1 can be written as

VΩ3,Ω1 =µ2
3 Tr (Ω†3Ω3) + λ1

(
Tr (Ω†3Ω3)− 3

2
v2

3

)2

+ λ2Tr

(
Ω†3Ω3 −

1

2
v2

313

)2

+µ2
1 |Ω1|2 + λ3

(
|Ω1|2 −

1

2
v2

1

)2

+ λ4

(
Tr (Ω†3Ω3)− 3

2
v2

3

)(
|Ω1|2 −

1

2
v2

1

)
+λ5Ω†1Ω3Ω†3Ω1 + λ6 ([Ω3Ω3Ω3Ω1]1 + h.c.) , (A.1)

where 13 denotes the 3× 3 identity matrix and we have used a relative rephasing between

the fields Ω1 and Ω3 in order to remove the phase of λ6. Note that the non-trivial invariants
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Ω†1Ω3Ω†3Ω1 and

[Ω3Ω3Ω3Ω1]1 ≡ εαβγδεabc(Ω3)αa (Ω3)βb (Ω3)γc (Ω1)δ , (A.2)

are required in order to avoid extra global symmetries in the scalar potential leading to

unwanted massless Goldstone bosons (GBs). The scalar potential in eq. (A.1) is written in

such a way that in the limit µ3 = µ1 = 0 and λ6 = 0, the configuration

〈Ω3〉 =
1√
2


v3 0 0

0 v3 0

0 0 v3

0 0 0

 , 〈Ω1〉 =
1√
2


0

0

0

v1

 , (A.3)

is (by construction) a stationary point. For λ6 6= 0, the stationary equations are satisfied by

µ2
3 = −3λ6v1v3 , µ2

1 = −3λ6
v3

3

v1
. (A.4)

By imposing that the second derivatives of the potential (evaluated at the stationary point)

are positive definite, we can make sure that the configuration in eq. (A.3) is a local mini-

mum14 and compute in turn the scalar spectrum.

The decomposition of the scalar multiplets under the unbroken G321 symmetry reads

Ω3 → S3 ∼ (1,1, 0)⊕ T3 ∼ (3,1, 2/3)⊕O3 ∼ (8,1, 0) , (A.5)

Ω1 → S1 ∼ (1,1, 0)⊕ T ∗1 ∼ (3,1,−2/3) . (A.6)

More explicitly, the SM fragments are embedded into Ω3,1 as

Ω3 =

(
1√
2
v313 + χ

T3

)
, Ω1 =

(
T ∗1

1√
2
v1 + S1

)
, (A.7)

where χ = 1√
6
S3I3 +Oata and ta (a = 1, . . . , 8) are the Gell-Mann matrices.

A.2 Scalar spectrum

The spectrum of the scalar excitations is readily obtained by evaluating the second deriva-

tives of the scalar potential on the stationary point. Sorting the multiplets according to

the SM quantum numbers, we obtain the following:

• Octet sector

M2
ReO3

= 2
(
λ2v

2
3 − 3λ6v1v3

)
, (A.8)

M2
ImO3

= 0 . (A.9)

The null eigenvalue corresponds to the GB eaten by the coloron, while the positivity

of the non-zero eigenvalue yields the condition λ2v3 > 3λ6v1.

14Determining the global minimum is a non-trivial mathematical problem. Nevertheless, in the limit

v1 → 0 the configuration in eq. (A.3) is the global minimum of the potential for λ2 > 0 and λ1 > − 1
3
λ2 [123].
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• Triplet sector

M2
T =

(
1
2λ5v

2
1 − 3λ6v1v3

1
2λ5v1v3 − 3λ6v

2
3

1
2λ5v1v3 − 3λ6v

2
3

1
2λ5v

2
3 − 3λ6

v3
3
v1

)
, (A.10)

defined on the basis (T3, T1). Upon diagonalization

M2
TR

=

(
1

2
λ5 − 3λ6

v3

v1

)(
v2

1 + v2
3

)
, (A.11)

M2
TGB

= 0 , (A.12)

where (
TR
TGB

)
=

1√
v2

3 + v2
1

(
v1 v3

−v3 v1

)(
T3

T1

)
. (A.13)

The GB mode is associated with the longitudinal component of the leptoquark. In

the limit v3 � v1 one has TGB ' −T3 + v1
v3
T1 and TR ' T1 + v1

v3
T3. The positivity of

the non-zero eigenvalue yields λ5v1 > 6λ6v3.

• Singlet sector

M2
S =
1
2 (3λ1 + λ2) v2

3 + 3λ6v1v3
1
2 (3λ1 + λ2) v2

3 − 3λ6v1v3

√
3
2

(
3λ6v

2
3 + 1

2λ4v1v3

)
1
2

√
3
2λ4v1v3

1
2 (3λ1 + λ2) v2

3 − 3λ6v1v3
1
2 (3λ1 + λ2) v2

3 + 3λ6v1v3
1
2

√
3
2λ4v1v3

√
3
2

(
3λ6v

2
3 + 1

2λ4v1v3

)√
3
2

(
3λ6v

2
3 + 1

2λ4v1v3

)
1
2

√
3
2λ4v1v3 λ3v

2
1 λ3v

2
1 − 3λ6

v3
3
v1

1
2

√
3
2λ4v1v3

√
3
2

(
3λ6v

2
3 + 1

2λ4v1v3

)
λ3v

2
1 − 3λ6

v3
3
v1

λ3v
2
1

 ,

(A.14)

defined in the basis (S3, S
∗
3 , S1, S

∗
1). It turns out that Rank M2

S = 3 and the zero

mode corresponds to the eigenvector

SGB =
1√

v2
1 + 2

3v
2
3

(
v3√

3
S3 −

v3√
3
S∗3 −

v1√
2
S1 +

v1√
2
S∗1

)
, (A.15)

which is associated to the longitudinal degree of freedom of the Z ′. In the limit

v3 � v1 one has SGB ' iImS3 −
√

3
2
v1
v3
iImS1. One of the three non-zero eigenvalues

has a simple form

M2
S0

= 3λ6v3

(
3

2
v1 +

v2
3

v1

)
, (A.16)

and it is associated to the eigenstate

S0 =
1√

v2
3 + 3

2v
2
1

(
− v1√

2
S3 +

v1√
2
S∗3 −

v3√
3
S1 +

v3√
3
S∗1

)
, (A.17)

while the two remaining non-zero eigenvalues have a complicated analytical expression

and we do not report them explicitly (we just mention that they are different from zero

in the λ6 → 0 limit). Note that in the λ6 → 0 limit one recovers an extra (physical)

– 43 –



J
H
E
P
1
1
(
2
0
1
8
)
0
8
1

GB, which can be understood in terms of an additional global U(1) emerging in

eq. (A.1). Hence the presence of the λ6 term in the scalar potential is crucial for

a proper description of the scalar spectrum and it also affects in a non-trivial way

the determination of the accidental global symmetries of the Lagrangian (cf. the

discussion below table 1).

The inclusion in the scalar potential of the other two representations Ω15 and H,

which are assumed to take the VEVs 〈Ω15〉 = T15v15 and 〈H〉 = 1
2(0, v)T , with v =

246 GeV, can be safely considered as a perturbation. The reason is because their VEVs

are subleading for phenomenological reasons and they do not alter the pattern of global

symmetries of the scalar potential. Finally, the decomposition of Ω15 under G321 yields:

Ω15 → (1,1, 0)⊕(3,1, 2/3)⊕(3,1,−2/3)⊕(8,1, 0), whose mixing with the states contained

in Ω3,1 is parametrically suppressed by the ratio v2
15/v

2
3,1 and hence they play a subleading

role for phenomenology.

A.3 Radial modes

The radial modes discussed in the previous section have non-trivial consequences for

low-energy phenomenology. In particular, the most relevant one is the state TR ∼
(3,1, 2/3) which induces one-loop FCNC via its Yukawa interactions, beyond the “model-

independent” contribution of the vector leptoquark containing the corresponding GB mode

as a longitudinal degree of freedom. Working in the phenomenological limit v15 � v1,3,

which allows us to decouple the contribution of Φ to the radial modes originating from Ω1,3,

the relevant interaction terms after G4321 breaking are readily extracted from eq. (2.2)

Lmix ⊃ (−cβT TR + sβT TGB) λq q
′
L L
′
R + (sβT T

∗
R + cβT T

∗
GB) λ` `

′
LQ
′
R

+

(
MQQ

′
L +

λq v3√
2
q′L

)
Q′R +

(
ML L

′
L +

λ` v1√
2
`
′
L

)
L′R + h.c. , (A.18)

where we have defined tan βT = v3/v1 and used eq. (A.13) after the redefinition T3 → −T3.

The mass parameters MQ,L are instead

MQ = M +
λ15 v15

2
√

6
, ML = M − 3λ15 v15

2
√

6
. (A.19)

Following the discussion about the flavour structure of the 4321 model (cf. section 3) we

assume ML,Q ≡ M̂L,Q to be proportional to the identity, and the following textures for the

λq,` matrices:

λq ≡ λ̂q = diag(λq12 , λq12 , λq3) , λ` ≡ λ̂` ·W = diag(0, λ`2 , λ`3) ·W , (A.20)

with W a unitary matrix. The mass eigenstates of the fermion fields (denoted without a

prime) and prior to EW symmetry breaking are

Q′ iL = sqi q
i
L + cqi Q

i
L , QR = Q′R ,

Wij L
′ j
L = s`i `

i
L + c`i L

i
L , LR = W L′R ,

q′ iL = cqi q
i
L − sqi QiL , `′ iL = c`i `

i
L − s`i LiL ,

(A.21)
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where

sqi =
λ̂iq v3√
2MQi

, cqi =
M̂Q

MQi

,

s`i =
λ̂i` v1√
2MLi

, c`i =
M̂L

MLi

,

MQi =

√
|λ̂iq|2 v2

3√
2

+ M̂2
Q , MLi =

√
|λ̂i`|2 v2

1√
2

+ M̂2
L .

(A.22)

Hence, in terms of mass eigenstates, eq. (A.18) reads

Lmix ⊃ (sβT T
∗
R + cβT T

∗
GB) λ̂i`

(
c`i `

i
L − s`i L

i
L

)
Wij Q

j
R

+ (−cβT TR + sβT TGB) λ̂iq

(
cqi q

i
L − sqi Q

i
L

)
W ∗ji L

j
R

+M i
L L

i
L L

i
R +M i

QQ
i
LQ

i
R + h.c. . (A.23)

The latter equation can be re-parametrised in a more compact notation as (ignoring heavy-

heavy interactions which are not relevant for ∆F = 2)

Lmix ⊃ (T ∗GB + tβT T
∗
R)

(
4GF√

2
CU M̂

2
L

)1/2

s`i `
i
LWij Q

j
R

+
(
TGB − t−1

βT
TR

) (4GF√
2
CU M̂

2
Q

)1/2

sqi q
i
LW

∗
ji L

j
R

+M i
L L

i
L L

i
R +M i

QQ
i
LQ

i
R + h.c. . (A.24)

A.4 Gauge boson spectrum

Let us introduce the following notation: given the extended gauge group G4321 we denote

respectively the gauge fields by Hα
µ , G

′a
µ ,W

i
µ, B

′
µ, the gauge couplings by g4, g3, g2, g1 and

the generators by Tα, T a, T i, Y ′ (with indices α = 1, . . . , 15, a = 1, . . . , 8, i = 1, 2, 3). In

order to determine the gauge boson spectrum we start from the definition of the covariant

derivatives acting on the scalar fields Ω3,1,15 (in the following, A = 9, . . . , 14 spans over the

SU(4)/(SU(3)4 ×U(1)4) coset and we neglect EW symmetry breaking effects):

DµΩ3 = ∂µΩ3 + ig4H
a
µT

a∗Ω3 + ig4H
A
µ T

A∗Ω3 + ig4H
15
µ T

15∗Ω3

− ig3G
′a
µ T

aΩ3 −
1

6
ig1B

′
µΩ3 ,

DµΩ1 = ∂µΩ1 + ig4H
a
µT

a∗Ω1 + ig4H
A
µ T

A∗Ω1 + ig4H
15
µ T

15∗Ω1 +
1

2
ig1B

′
µΩ1 ,

DµΩ15 = ∂µΩ15 − ig4 [T a,Ω15]Ha
µ − ig4

[
TA,Ω15

]
HA
µ − ig4

[
T 15,Ω15

]
H15
µ . (A.25)
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The gauge boson masses are extracted from the (canonically normalized) kinetic term of

the scalar fields:

Tr (Dµ 〈Ω3〉)†Dµ 〈Ω3〉 =
1

2

(
Ha
µ G

′a
µ

)( g2
4 −g4g3

−g4g3 g2
3

)
v2

3

2

(
Hbµ

G′bµ

)
+

1

2

(
g2

4v
2
3

)
HA
µH

µA

+
1

2

(
H15
µ B′µ

)( 1
4g

2
4 − 1

2
√

6
g4g1

− 1
2
√

6
g4g1

1
6g

2
1

)
v2

3

2

(
H15µ

B′µ

)
,

(A.26)

(Dµ 〈Ω1〉)†Dµ 〈Ω1〉 =
1

2

(
g2

4v
2
1

)
HA
µH

Aµ

+
1

2

(
H15
µ B′µ

)( 3
4g

2
4 − 3

2
√

6
g4g1

− 3
2
√

6
g4g1

1
2g

2
1

)
v2

1

2

(
H15µ

B′µ

)
,

(A.27)

1

2
Tr (Dµ 〈Ω15〉)†(Dµ 〈Ω15〉) =

1

2

(
1

3
g2

4v
2
15

)
HA
µH

Aµ . (A.28)

Putting together all the contributions we get the massive gauge boson spectrum

M2
U =

1

4
g2

4

(
v2

1 + v2
3 +

4

3
v2

15

)
, (A.29)

M2
g′ =

1

2
(g2

4 + g2
3)v2

3 , (A.30)

M2
Z′ =

1

4

(
3

2
g2

4 + g2
1

)(
v2

1 +
1

3
v2

3

)
, (A.31)

corresponding to the mass eigenstates

U1,2,3
µ =

1√
2

(
H9,11,13
µ − iH10,12,14

µ

)
, (A.32)

g′aµ =
g4H

a
µ − g3G

′a
µ√

g2
4 + g2

3

, (A.33)

Z ′µ =
g4H

15
µ −

√
2
3g1B

′
µ√

g2
4 + 2

3g
2
1

. (A.34)

The combinations orthogonal to eqs. (A.33)–(A.34) correspond instead to the massless

SU(3)c ×U(1)Y degrees of freedom of G321 prior to electroweak symmetry breaking

gaµ =
g3H

a
µ + g4G

′a
µ√

g2
4 + g2

3

, (A.35)

Bµ =

√
2
3g1H

15
µ + g4B

′
µ√

g2
4 + 2

3g
2
1

. (A.36)
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The matching among the couplings g4, g3, g1 and gY , gs is readily obtained by acting

on a field which transforms trivially under SU(4). Let us consider, for instance, u′R =

(1,3,1, 2/3). The covariant derivative can be decomposed as follows

Dµu
′
R = ∂µu

′
R − ig3G

′a
µ T

au′R −
2

3
ig1B

′
µu
′
R

⊃ ∂µu′R − i
g4g3√
g2

4 + g2
3

gaµT
au′R −

2

3
i

g4g1√
g2

4 + 2
3g

2
1

Bµu
′
R , (A.37)

where in the last step we projected on the SU(3)c × U(1)Y fields: G′aµ → g4√
g2
4+g2

3

gaµ and

B′µ → g4√
g2
4+ 2

3
g2
1

Bµ. Hence, the matching with the SM gauge couplings reads

gs =
g4g3√
g2

4 + g2
3

, (A.38)

gY =
g4g1√
g2

4 + 2
3g

2
1

. (A.39)

Evolving the SM gauge couplings up to µ = 2 TeV we obtain gs = 1.02 and gY = 0.363.

Since gs ≤ g4,3 and gY ≤
√

3
2g4, g1, the hierarchy gs � gY also implies g4,3 � gY ' g1.

In the limit v3 � v1 � v15 and g4 � g3 � g1, one has for instance Mg′ '
√

2MU and

MZ′ ' 1√
2
MU .

A.5 Gauge boson spectrum beyond minimal scalar sector

Given the tight relations between the vector boson masses within the minimal scalar sector,

one might wonder whether it is possible to parametrically decouple the Z ′ and g′ from the

leptoquark mass scale by considering different scalar representations responsible for the

G4321 breaking. To this end, we have considered the contribution of all the possible one-

and two-index tensor representations of SU(4)×SU(3)′ to the gauge boson mass spectrum

such that SU(4) × SU(3)′ → G ⊇ SU(3)c. Defining rg′ = Mg′/MU and rZ′ = MZ′/MU ,

and working in the phenomenologically motivated limit g4 � g3, g1, we find the results

displayed in table 5. The best option for simultaneously maximising both the g′ and Z ′

masses is a (10,6), which yields rg′ =
√

2 and rZ′ = 1. None of them really allows for a

sizeable decoupling from the mass scale of the leptoquark.

A.6 Fermion diagonalization to the mass basis

As discussed in appendix A.1, one can choose appropriate scalar potential parameters such

that a global minimum is obtained for the VEV configurations of 〈Ω3,1〉 defined in eq. (A.3),

〈Ω15〉 = v15 T
15 and 〈H†H〉 = v2/2, with the hierarchies v3 > v1 > v15 > v = 246 GeV.

After SSB, mixing among the chiral and the vector-like fermions is induced. Using the

flavour basis defined by eq. (3.2) and employing the Yukawa textures assumed in (3.4), the
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SU(4)× SU(3)′ rg′ rZ′

(4,1) 0
√

3/2

(4,3)
√

2 1/
√

2

(6,3) 1 1

(10,1) 0
√

3

(10,3) 1 1

(10,6)
√

2 1

(15,1) 0 0

(15,3) 1/
√

2
√

2

(15,8) 3/2 0

Table 5. Vector mass ratios for different scalar representations.

6× 6 fermion mass matrices read

Mu =

(
V † Ŷu

v√
2
λ̂q

v3√
2

0 M̂Q

)
, Md =

(
Ŷd

v√
2
λ̂q

v3√
2

0 M̂Q

)
,

MN =

(
0 λ̂`

v1√
2

0 M̂L

)
, Me =

(
Ŷe

v√
2
λ̂`W

† v1√
2

0 M̂L

)
, (A.40)

with Ŷu,d,e and λ̂q,` diagonal, V and W unitary matrices, and

M̂Q = M̂ +
λ15 v15

2
√

6
, M̂L = M̂ − 3λ15 v15

2
√

6
, (A.41)

being proportional to the identity matrix. The mass matrices in eqs. (A.40) can be

readily diagonalised by means of the unitary transformations: ψ′x = Ux ψx, where ψx
(x = q, u, d, `, e,N) denotes 6-dimensional fields containing both chiral and vector-like

fermions and the unprimed fields denote the mass eigenstates.15 The chosen flavour struc-

ture is such that in the limit W → 1 the mixing is family-specific, i.e. each vector-like

family mixes with only one chiral family (up to CKM rotations). At leading order, the

resulting mixing matrices read

Uq ≈ R14(θq1)R25(θq2)R36(θq3) , U` ≈ R14(θ`1)R25(θ`2)R36(θ`3) ,

Uu ≈ R14(θuR)R25(θcR)R36(θtR) , Ue ≈
(

1 0

0 W

)
R14(θeR)R25(θµR)R36(θτR) ,

Ud ≈ R14(θdR)R25(θsR)R36(θbR) , UN ≈
(

0 0

0 W

)
, (A.42)

15Note that since we do not include a νR field, the vector ψN is actually 3-dimensional (namely its

components only contain NR ⊂ ΨR). For notational simplicity we use 6-dimensional vectors.
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where we adopted a flavour basis for the SM SU(2)L fermion multiplets in which

qi =

(
V ∗ji u

j
L

diL

)
, `α =

(
ναL
eαL

)
, (A.43)

with V the CKM matrix. The mixing angles are defined in terms of the Lagrangian

parameters as

sin θqi =
λqi v3√

|λqi |2 v2
3 + 2 M̂2

Q

, cos θqi =

√
2 M̂Q√

|λqi |2 v2
3 + 2 M̂2

Q

,

sin θ`i =
λ`i v1√

|λ`i |2 v2
1 + 2 M̂2

L

, cos θ`i =

√
2 M̂L√

|λ`i |2 v2
1 + 2 M̂2

L

,

sin θuiR
=
mui

MQi

tan θqi , sin θdiR
=

mdi

MQi

tan θqi ,

sin θeiR
=
mei

MLi

tan θ`i , cos θf iR
= 1 (f = u, d, e) ,

(A.44)

with mi and Mi the physical fermion masses. These read (up to corrections of O
(
m2
i /M

2
i

)
)

MLi =

√
|λ`i |2 v2

1

2
+ M̂2

L , MQi =

√
|λqi |2 v2

3

2
+ M̂2

Q ,

mfi ≈ |Ŷ i
f | cos θfi

v√
2

(f = u, d, e) .

(A.45)

A.7 Vector-fermion interactions in the mass basis

The interaction terms of the massive gauge bosons with the fermions in the interaction

basis, are readily obtained from the action of the covariant derivative on the fermion fields:

LL =
g4√

2
Q
′
Lγ

µL′L Uµ + h.c.

+ gs

(
g4

g3
Q
′
Lγ

µT aQ′L −
g3

g4
q′Lγ

µT aq′L

)
g′aµ

+ gY

(√
3

2

g4

g1
Y (Q′L)Q

′
Lγ

µQ′L −
√

2

3

g1

g4
Y (q′L) q′Lγ

µq′L

)
Z ′µ

+ gY

(√
3

2

g4

g1
Y (L′L)L

′
Lγ

µL′L −
√

2

3

g1

g4
Y (`′L) `

′
Lγ

µ`′L

)
Z ′µ , (A.46)

LR =
g4√

2
Q
′
Rγ

µL′R Uµ + h.c.

+ gs

(
g4

g3
Q
′
Rγ

µT aQ′R −
g3

g4
u′Rγ

µT au′R −
g3

g4
d
′
Rγ

µT ad′R

)
g′aµ

+ gY

(√
3

2

g4

g1
Y (Q′R)Q

′
Rγ

µQ′R−
√

2

3

g1

g4
Y (u′R)u′Rγ

µu′R−
√

2

3

g1

g4
Y (d′R) d

′
Rγ

µd′R

)
Z ′µ

+ gY

(√
3

2

g4

g1
Y (L′R)L

′
Rγ

µL′R −
√

2

3

g1

g4
Y (e′R) e′Rγ

µe′R

)
Z ′µ , (A.47)
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where we left implicit the SM hypercharges: Y (Q′L) = Y (Q′R) = Y (q′L) = 1
6 , Y (u′R) = 2

3 ,

Y (d′R) = −1
3 , Y (L′L) = Y (L′R) = Y (`′L) = −1

2 and Y (e′R) = −1.

To express the interactions above in the fermion mass basis, we collect the fields in 6-

dimensional multiplets, ψx (x = q, u, d, `, e), and apply the unitary transformations defined

in eq. (A.42). Neglecting right-handed rotations, suppressed by the small masses of the

SM fermions, we have

LU =
g4√

2
Uµ
[
β ψqγ

µψ` +W QRγ
µLR

]
+ h.c. ,

Lg′ = gs
g4

g3
g′ aµ
[
κq ψqγ

µ T a ψq + κu ψuγ
µ T a ψu + κd ψdγ

µ T a ψd
]
,

LZ′ =
gY

2
√

6

g4

g1
Z ′µ
[
ξq ψqγ

µψq + ξu ψuγ
µψu + ξd ψdγ

µψd − 3 ξ` ψ`γ
µψ` − 3 ξe ψeγ

µψe
]
,

(A.48)

with (A,B = 4, 5, 6 and α, β = 1, . . . , 6)

βαβ =
[
Uq
]∗
Aα

[
W
]
AB

[
U`
]
Bβ

,

καβq =
[
Uq
]∗
Aα

[
Uq
]
Aβ
− g2

3

g2
4

δαβ , κu ≈ κd ≈
(

0 0

0 13×3

)
− g2

3

g2
4

16×6 ,

ξαβq =
[
Uq
]∗
Aα

[
Uq
]
Aβ
− 2 g2

1

3 g2
4

δαβ , ξu ≈ ξd ≈
(

0 0

0 13×3

)
− 2 g2

1

3 g2
4

16×6 ,

ξαβ` =
[
U`
]∗
Aα

[
U`
]
Aβ
− 2 g2

1

3 g2
4

δαβ , ξe ≈
(

0 0

0 13×3

)
− 2 g2

1

3 g2
4

16×6 .

(A.49)

Note in particular that the W matrix cancels by unitarity in the Z ′ and g′ interactions.

This is a key result of the assumed flavour structure. Assuming W = R56(θLQ) and no CP

violation in the mixing angles, the left-handed couplings can be rewritten as

β ≈



sq1s`1 0 0

0 cθLQ sq2 s`2 sθLQ sq2 s`3
0 −sθLQ sq3 s`2 cθLQ sq3 s`3

−sq1c`1 0 0

0 −cθLQ sq2 c`2 −sθLQ sq2 c`3
0 sθLQ sq3 c`2 −cθLQ sq3 c`3

−cq1s`1 0 0

0 −cθLQ cq2 s`2 −sθLQ cq2 s`3
0 sθLQ cq3 s`2 −cθLQ cq3 s`3

cq1c`1 0 0

0 cθLQ cq2 c`2 sθLQ cq2 c`3
0 −sθLQ cq3 c`2 cθLQ cq3 c`3


, (A.50)

κq ≈



s2
q1 0 0

0 s2
q2 0

0 0 s2
q3

−cq1sq1 0 0

0 −cq2 sq2 0

0 0 −cq3 sq3
−cq1sq1 0 0

0 −cq2 sq2 0

0 0 −cq3 sq3

c2
q1 0 0

0 c2
q2 0

0 0 c2
`3


− g2

3

g2
4

16×6 , (A.51)
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ξq ≈



s2
q1 0 0

0 s2
q2 0

0 0 s2
q3

−cq1sq1 0 0

0 −cq2 sq2 0

0 0 −cq3 sq3
−cq1sq1 0 0

0 −cq2 sq2 0

0 0 −cq3 sq3

c2
q1 0 0

0 c2
q2 0

0 0 c2
`3


− 2 g2

1

3 g2
4

16×6 , (A.52)

ξ` ≈



s2
`1

0 0

0 s2
`2

0

0 0 s2
`3

−c`1s`1 0 0

0 −c`2 s`2 0

0 0 −c`3 s`3
−c`1s`1 0 0

0 −c`2 s`2 0

0 0 −c`3 s`3

c2
`1

0 0

0 c2
`2

0

0 0 c2
`3


− 2 g2

1

3 g2
4

16×6 . (A.53)

We remind the reader that these expressions hold in the flavour basis for the SU(2)L
doublets defined in eq. (A.43).

A.8 Tri-linear gauge boson vertices

The interactions among gauge bosons are obtained from the gauge kinetic term

Lgauge = −1

4
Hα
µνH

α,µν − 1

4
G′aµνG

′a,µν − 1

4
W i
µνW

i,µν − 1

4
B′µνB

′µν , (A.54)

with the field strengths defined as

Hα
µν = ∂[µH

α
ν] + g4f

αβγHβ
µH

γ
ν , (A.55)

G′αµν = ∂[µG
′a
ν] + g3f

abcG′bµG
′c
ν , (A.56)

W i
µν = ∂[µW

i
ν] + g2ε

ijkW j
µW

k
ν , (A.57)

B′µν = ∂[µB
′
ν] . (A.58)

Let us first prove that the Z ′gg and g′gg couplings are zero (this is important in view of

LHC resonance searches). The former statement simply follows from the fact that fab15 = 0

(cf. table 6); while to prove the latter we keep from eq. (A.54) only trilinear terms either

in Ha or G′ and use the projections on the mass eigenstates (cf. eq. (A.33) and (A.35)):

Lgauge ⊃−
1

2
g4f

abc∂[µH
a
ν]H

b,µHc,ν − 1

2
g3f

abc∂[µG
′a
ν]G
′b,µG′c,ν

=− 1

2

fabc√
g2

4 + g2
3

[
g4∂[µ(g4g

′a
ν] + g3g

a
ν])(g4g

′b,µ + g3g
b,µ)(g4g

′c,ν + g3g
c,ν)

+g3∂[µ(−g3g
′a
ν] + g4g

a
ν])(−g3g

′b,µ + g4g
b,µ)(−g3g

′c,ν + g4g
c,ν)
]

⊃− 1

2

fabc√
g2

4 + g2
3

[
g2

4g
2
3

(
∂[µg

′a
ν]g

b,µgc,ν + ∂[µg
a
ν]g
′b,µgc,ν + ∂[µg

a
ν]g

b,µg′c,ν
)

−g2
3g

2
4

(
∂[µg

′a
ν]g

b,µgc,ν + ∂[µg
a
ν]g
′b,µgc,ν + ∂[µg

a
ν]g

b,µg′c,ν
)]

= 0 , (A.59)

where in the last step we only kept g′gg terms.
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Other non-zero trilinear couplings of phenomenological relevance are for instance those

of two leptoquarks to a U(1)Y gauge boson or to a Z ′ (see e.g. [124]). To determine them,

we first compute the U †UH15 gauge vertex from

Lgauge ⊃ −
1

2
g4f

αβγ∂[µH
α
ν]H

β,µHγ,ν (A.60)

⊃ −1

2
g4f

15AB
[
∂[µH

15
ν] H

A,µHB,ν − ∂[µH
A
ν]H

15,µHB,ν − ∂[µH
B
ν]H

A,µH15,ν
]
,

where A,B = 9, . . . , 14. There are only three non-zero f15AB (cf. table 6), namely f15,9,10 =

f15,11,12 = f15,13,14 =
√

2
3 . Let us focus e.g. on the f15,9,10 contribution, yielding

Lgauge ⊃ −
1

2
g4

√
2

3

[
∂[µH

15
ν]

(
H9,µH10,ν −H10,µH9,ν

)
−H15,µ

(
∂[µH

9
ν]H

10,ν − ∂[µH
10
ν] H

9,ν
)

−H15,ν
(
∂[µH

10
ν] H

9,µ − ∂[µH
9
ν]H

10,µ
)]

= ig4

√
2

3

[(
U1
µU

1†
ν − U1

νU
1†
µ

)
∂µH15,ν +

(
∂µU

1†
ν − ∂νU1†

µ

)
H15,µU1ν

−
(
∂µU

1
ν − ∂νU1

µ

)
H15,µU1†ν

]
, (A.61)

where the last step follows from the complexification of the leptoquark basis (cf. eq. (A.32)).

The same expression applies to the other two leptoquark components, after replacing U1
µ →

U2,3
µ . By means of the identification g4H

15
µ = gY

(√
2
3Bµ + g4

g1
Z ′µ

)
, which follows from

eq. (A.34), (A.36) and (A.39), we finally obtain

U †UB : i
2

3
gY

[(
UµU

†
ν − UνU †µ

)
∂µBν +

(
∂µU

†
ν − ∂νU †µ

)
BµUν

− (∂µUν − ∂νUµ)BµU †ν
]
, (A.62)

U †UZ ′ : i

√
2

3

g4

g1
gY

[(
UµU

†
ν − UνU †µ

)
∂µZ ′ν +

(
∂µU

†
ν − ∂νU †µ

)
Z ′µUν

− (∂µUν − ∂νUµ)Z ′µU †ν
]
. (A.63)

A.9 Renormalisation group equations

The renormalisation group equations (RGEs) are defined as

µ
dg

dµ
= βg , (A.64)

where µ denotes the renormalisation scale and g stands for a generic coupling. We report

here the expression of the one-loop beta functions for the gauge and Yukawa sector of the

4321 model (cf. field content in table 1) for an arbitrary number nΨ of vector like fermions

(nΨ = 3 in the case of the model studied in this paper):

(4π)2βg1 =
131

18
g3

1 ,

(4π)2βg2 =

(
−19

6
+

8nΨ

3

)
g3

2 ,
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(4π)2βg3 = −19

3
g3

3 ,

(4π)2βg4 =

(
−40

3
+

4nΨ

3

)
g3

4 , (A.65)

(4π)2βYu =
3

2
YuY

†
uYu −

3

2
YdY

†
d Yu + 2λqλ

†
qYu + 3Tr (YuY

†
u )Yu

+ 3Tr (YdY
†
d )Yu + Tr (YeY

†
e )Yu −

17

12
g2

1Yu −
9

4
g2

2Yu − 8g2
3Yu ,

(4π)2βYd =
3

2
YdY

†
d Yd −

3

2
YuY

†
uYd + 2λqλ

†
qYd + 3Tr (YuY

†
u )Yd

+ 3Tr (YdY
†
d )Yd + Tr (YeY

†
e )Yd −

5

12
g2

1Yd −
9

4
g2

2Yd − 8g2
3Yd ,

(4π)2βYe =
3

2
YeY

†
e Ye + 2λ`λ

†
`Ye + 3Tr (YuY

†
u )Ye + 3Tr (YdY

†
d )Ye

+ Tr (YeY
†
e )Ye −

15

4
g2

1Ye −
9

4
g2

2Ye ,

(4π)2βλq =
7

2
λqλ

†
qλq +

1

2
λqλ

†
`λ` +

15

8
λqλ

†
15λ15 +

1

2
YuY

†
uλq +

1

2
YdY

†
d λq

+ 2Tr (λqλ
†
q)λq −

1

12
g2

1λq −
9

2
g2

2λq − 4g2
3λq −

45

8
g2

4λq ,

(4π)2βλ` =
5

2
λ`λ
†
`λ` +

3

2
λ`λ
†
qλq +

15

8
λ`λ
†
15λ15 +

1

2
YeY

†
e λ` + 2Tr (λ`λ

†
`)λ`

− 3

4
g2

1λ` −
9

2
g2

2λ` −
45

8
g2

4λ` ,

(4π)2βλ15 =
21

4
λ15λ

†
15λ15 +

3

2
λ15λ

†
qλq +

1

2
λ15λ

†
`λ` + 4Tr (λ15λ

†
15)λ15

− 9

2
g2

2λ15 −
45

4
g2

4λ15 ,

(4π)2βM =
1

2
Mλ†`λ` +

3

2
Mλ†qλq +

3

2
λ15M

†λ15 +
15

8
Mλ†15λ15

+
15

8
λ15λ

†
15M −

45

4
g2

4M −
9

2
g2

2M . (A.66)

One can use the RGEs above to test the radiative stability of our proposed solution

by evolving the Yukawa textures in eq. (3.4) from a high scale down to the SU(4)-breaking

scale. Given that the imposed U(2)q+Ψ symmetry in the quark sector is explicitly broken

in other sectors, more specifically by λ`, RGE effects are expected to introduce departures

from the original U(2)q+Ψ symmetry. These departures are severely constrained by ∆F = 2

observables and therefore they set a limit on the possible UV scale at which the Yukawa

textures in eq. (3.4) can be generated. Interestingly, we find that the U(2)q+Ψ symmetry

in the Z ′ and g′ couplings is partially protected. This protection arises from the fact that

the U(2)q+Ψ-breaking terms, i.e. those containing λ`, are the same in the RGEs of λq, λ15

and M , leading to partial cancellations of the aforementioned breaking terms for the quark

mixing angles, cf. eq. (A.44). As a result we find that the Yukawa textures in eq. (3.4)

could arise from (unspecified) UV dynamics at Λ ≈ 10 TeV without significantly impacting

∆F = 2 observables.
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A.10 SU(4) generators

Here we report some useful facts about the SU(4) algebra. The generators in the funda-

mental representation can be written as

T 1 =
1

2


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 T 2 =
1

2


0 −i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

 T 3 =
1

2


1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0



T 4 =
1

2


0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 T 5 =
1

2


0 0 −i 0

0 0 0 0

i 0 0 0

0 0 0 0

 T 6 =
1

2


0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0



T 7 =
1

2


0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0

 T 8 =
1

2
√

3


1 0 0 0

0 1 0 0

0 0 −2 0

0 0 0 0

 T 9 =
1

2


0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0



T 10 =
1

2


0 0 0 −i
0 0 0 0

0 0 0 0

i 0 0 0

 T 11 =
1

2


0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

 T 12 =
1

2


0 0 0 0

0 0 0 −i
0 0 0 0

0 i 0 0



T 13 =
1

2


0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

 T 14 =
1

2


0 0 0 0

0 0 0 0

0 0 0 −i
0 0 i 0

 T 15 =
1

2
√

6


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −3

 ,

with normalization

Tr TαT β =
1

2
δαβ . (A.67)

The matrices Tα satisfy the Lie algebra

[
Tα, T β

]
= ifαβγT γ , (A.68)

where the completely antisymmetric structure constants can be constructed via the relation

fαβγ = −2iTr
([
Tα, T β

]
T γ
)
. (A.69)

We have collected them for completeness in table 6.
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α β γ fαβγ

1 2 3 1

1 4 7 1
2

1 5 6 −1
2

1 9 12 1
2

1 10 11 −1
2

2 4 6 1
2

2 5 7 1
2

2 9 11 1
2

2 10 12 1
2

3 4 5 1
2

3 6 7 −1
2

3 9 10 1
2

3 11 12 −1
2

4 5 8
√

3
2

4 9 14 1
2

4 10 13 −1
2

5 9 13 1
2

5 10 14 1
2

6 7 8
√

3
2

6 11 14 1
2

6 12 13 −1
2

7 11 13 1
2

7 12 14 1
2

8 9 10 1
2
√

3

8 11 12 1
2
√

3

8 13 14 − 1√
3

9 10 15
√

2
3

11 12 15
√

2
3

13 14 15
√

2
3

Table 6. Non-zero SU(4) structure constants.

– 55 –



J
H
E
P
1
1
(
2
0
1
8
)
0
8
1

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an

effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].

[2] BaBar collaboration, J.P. Lees et al., Evidence for an excess of B → D(∗)τ−ντ decays,

Phys. Rev. Lett. 109 (2012) 101802 [arXiv:1205.5442] [INSPIRE].

[3] BaBar collaboration, J.P. Lees et al., Measurement of an excess of B → D(∗)τ−ντ decays

and implications for charged Higgs bosons, Phys. Rev. D 88 (2013) 072012

[arXiv:1303.0571] [INSPIRE].

[4] LHCb collaboration, Measurement of form-factor-independent observables in the decay

B0 → K∗0µ+µ−, Phys. Rev. Lett. 111 (2013) 191801 [arXiv:1308.1707] [INSPIRE].

[5] LHCb collaboration, Test of lepton universality using B+ → K+`+`− decays, Phys. Rev.

Lett. 113 (2014) 151601 [arXiv:1406.6482] [INSPIRE].

[6] LHCb collaboration, Measurement of the ratio of branching fractions

B(B
0 → D∗+τ−ντ )/B(B

0 → D∗+µ−νµ), Phys. Rev. Lett. 115 (2015) 111803 [Erratum ibid.

115 (2015) 159901] [arXiv:1506.08614] [INSPIRE].

[7] LHCb collaboration, Angular analysis of the B0 → K∗0µ+µ− decay using 3 fb−1 of

integrated luminosity, JHEP 02 (2016) 104 [arXiv:1512.04442] [INSPIRE].

[8] Belle collaboration, M. Huschle et al., Measurement of the branching ratio of

B → D(∗)τ−ντ relative to B → D(∗)`−ν` decays with hadronic tagging at Belle, Phys. Rev.

D 92 (2015) 072014 [arXiv:1507.03233] [INSPIRE].

[9] Belle collaboration, Y. Sato et al., Measurement of the branching ratio of B
0 → D∗+τ−ντ

relative to B
0 → D∗+`−ν` decays with a semileptonic tagging method, Phys. Rev. D 94

(2016) 072007 [arXiv:1607.07923] [INSPIRE].

[10] Belle collaboration, S. Hirose et al., Measurement of the τ lepton polarization and R(D∗)

in the decay B → D∗τ−ντ , Phys. Rev. Lett. 118 (2017) 211801 [arXiv:1612.00529]

[INSPIRE].

[11] Belle collaboration, S. Hirose et al., Measurement of the τ lepton polarization and R(D∗)

in the decay B → D∗τ−ντ with one-prong hadronic τ decays at Belle, Phys. Rev. D 97

(2018) 012004 [arXiv:1709.00129] [INSPIRE].

[12] LHCb collaboration, Test of lepton universality with B0 → K∗0`+`− decays, JHEP 08

(2017) 055 [arXiv:1705.05802] [INSPIRE].

[13] LHCb collaboration, Test of Lepton Flavor Universality by the measurement of the

B0 → D∗−τ+ντ branching fraction using three-prong τ decays, Phys. Rev. D 97 (2018)

072013 [arXiv:1711.02505] [INSPIRE].

[14] B. Bhattacharya, A. Datta, D. London and S. Shivashankara, Simultaneous explanation of

the RK and R(D(∗)) puzzles, Phys. Lett. B 742 (2015) 370 [arXiv:1412.7164] [INSPIRE].

[15] R. Alonso, B. Grinstein and J. Martin Camalich, Lepton universality violation and lepton

flavor conservation in B-meson decays, JHEP 10 (2015) 184 [arXiv:1505.05164]

[INSPIRE].

– 56 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/S0550-3213(02)00836-2
https://arxiv.org/abs/hep-ph/0207036
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0207036
https://doi.org/10.1103/PhysRevLett.109.101802
https://arxiv.org/abs/1205.5442
https://inspirehep.net/search?p=find+EPRINT+arXiv:1205.5442
https://doi.org/10.1103/PhysRevD.88.072012
https://arxiv.org/abs/1303.0571
https://inspirehep.net/search?p=find+EPRINT+arXiv:1303.0571
https://doi.org/10.1103/PhysRevLett.111.191801
https://arxiv.org/abs/1308.1707
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.1707
https://doi.org/10.1103/PhysRevLett.113.151601
https://doi.org/10.1103/PhysRevLett.113.151601
https://arxiv.org/abs/1406.6482
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.6482
https://doi.org/10.1103/PhysRevLett.115.159901
https://arxiv.org/abs/1506.08614
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.08614
https://doi.org/10.1007/JHEP02(2016)104
https://arxiv.org/abs/1512.04442
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.04442
https://doi.org/10.1103/PhysRevD.92.072014
https://doi.org/10.1103/PhysRevD.92.072014
https://arxiv.org/abs/1507.03233
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.03233
https://doi.org/10.1103/PhysRevD.94.072007
https://doi.org/10.1103/PhysRevD.94.072007
https://arxiv.org/abs/1607.07923
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.07923
https://doi.org/10.1103/PhysRevLett.118.211801
https://arxiv.org/abs/1612.00529
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.00529
https://doi.org/10.1103/PhysRevD.97.012004
https://doi.org/10.1103/PhysRevD.97.012004
https://arxiv.org/abs/1709.00129
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.00129
https://doi.org/10.1007/JHEP08(2017)055
https://doi.org/10.1007/JHEP08(2017)055
https://arxiv.org/abs/1705.05802
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.05802
https://doi.org/10.1103/PhysRevD.97.072013
https://doi.org/10.1103/PhysRevD.97.072013
https://arxiv.org/abs/1711.02505
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.02505
https://doi.org/10.1016/j.physletb.2015.02.011
https://arxiv.org/abs/1412.7164
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.7164
https://doi.org/10.1007/JHEP10(2015)184
https://arxiv.org/abs/1505.05164
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.05164


J
H
E
P
1
1
(
2
0
1
8
)
0
8
1

[16] A. Greljo, G. Isidori and D. Marzocca, On the breaking of lepton flavor universality in B

decays, JHEP 07 (2015) 142 [arXiv:1506.01705] [INSPIRE].

[17] L. Calibbi, A. Crivellin and T. Ota, Effective field theory approach to b→ s``′,

B → K(∗)νν and B → D∗τν with third generation couplings, Phys. Rev. Lett. 115 (2015)

181801 [arXiv:1506.02661] [INSPIRE].

[18] M. Bauer and M. Neubert, Minimal leptoquark explanation for the RD(∗) , RK and (g − 2)g
anomalies, Phys. Rev. Lett. 116 (2016) 141802 [arXiv:1511.01900] [INSPIRE].
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