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Abstract: Wearable technology is attracting most attention in healthcare for the acquisition of
physiological signals. We propose a stand-alone wearable surface ElectroMyoGraphy (sEMG) system
for monitoring the muscle activity in real time. With respect to other wearable sEMG devices,
the proposed system includes circuits for detecting the muscle activation potentials and it embeds
the complete real-time data processing, without using any external device. The system is optimized
with respect to power consumption, with a measured battery life that allows for monitoring the
activity during the day. Thanks to its compactness and energy autonomy, it can be used outdoor
and it provides a pathway to valuable diagnostic data sets for patients during their own day-life.
Our system has performances that are comparable to state-of-art wired equipment in the detection of
muscle contractions with the advantage of being wearable, compact, and ubiquitous.

Keywords: wearable device; stand-alone processing; surface electromyography; embedded system;
long-time monitoring

1. Introduction

Application of Information Communication Technology (ICT) and sensor technology to healthcare
is an innovative strategy for possibly improving the overall clinical management of specific diseases,
especially in situations in which the conventional methods of medicine are poorly effective.

In this scenario, wearable devices and body sensor networks are attracting the most attention for
those diseases requiring continuous monitoring for optimal therapeutic strategies [1–10]. The ultimate
goal of wearable sensors is the convergence in a compact platform of multimodal recognition of
distinct biological signals, such as electroencephalography, electrooculography, electromyography,
electrocardiography for continuous, and automatic monitoring of human health status, thus possibly
leading to improvement in the diagnosis, follow-up, and therapeutic strategies of several disorders.
Moreover, the combined use of wearable sensors and Internet of Things (IoT) is opening to a variety of
new applications with distributed virtual services based on embedded and cyber-physical systems [11].
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Among others, the electromyography (EMG) is a well-known standardized technique that detects
the muscle activity using needles or patch electrodes. It is extremely useful in those cases in which
it is necessary to monitor the muscle activity and to detect/distinguish involuntary from voluntary
muscle contractions, as in the case of specific movement disorders that are associated to neurological
disease [12]. The surface EMG (sEMG) is not invasive, as opposed to the EMG with needles, and it is
more comfortable and tolerated by patients. Conventionally, it is performed during outpatient visits
by means of wired research laboratory equipment. It uses three patch electrodes that are properly
placed on the skin. Positive and negative electrodes are positioned over the target muscle, whereas
the third reference electrode has to be positioned far from it. Multichannel operation is possible,
in order to acquire signals from more than one muscle at the same time. Examples of multichannel
systems are reported in [13,14], where electrodes are positioned all around the forearm for hand motion
recognition. In [14], an innovative two electrode configuration is proposed, sharing one electrode in
adjacent channels.

The power spectrum of a typical raw EMG signal is sketched in Figure 1. As one can see,
the frequency components are typically in the band between 3 and 500 Hz, with a main content
between 10 and 250 Hz (outlined with dashed vertical lines). This holds, regardless of the muscle
and of the type of physical connections (needles or patch electrodes). In the case of sEMG, the signal
amplitude is typically a few mVs or below (it rises up to 5.0 mV in special cases as for athletes).

Sensors 2018, 18, x FOR PEER REVIEW  2 of 14 

 

opening to a variety of new applications with distributed virtual services based on embedded and 

cyber-physical systems [11]. 

Among others, the electromyography (EMG) is a well-known standardized technique that 

detects the muscle activity using needles or patch electrodes. It is extremely useful in those cases in 

which it is necessary to monitor the muscle activity and to detect/distinguish involuntary from 

voluntary muscle contractions, as in the case of specific movement disorders that are associated to 

neurological disease [12]. The surface EMG (sEMG) is not invasive, as opposed to the EMG with 

needles, and it is more comfortable and tolerated by patients. Conventionally, it is performed during 

outpatient visits by means of wired research laboratory equipment. It uses three patch electrodes 

that are properly placed on the skin. Positive and negative electrodes are positioned over the target 

muscle, whereas the third reference electrode has to be positioned far from it. Multichannel 

operation is possible, in order to acquire signals from more than one muscle at the same time. 

Examples of multichannel systems are reported in [13,14], where electrodes are positioned all 

around the forearm for hand motion recognition. In [14], an innovative two electrode configuration 

is proposed, sharing one electrode in adjacent channels. 

The power spectrum of a typical raw EMG signal is sketched in Figure 1. As one can see, the 

frequency components are typically in the band between 3 and 500 Hz, with a main content between 

10 and 250 Hz (outlined with dashed vertical lines). This holds, regardless of the muscle and of the 

type of physical connections (needles or patch electrodes). In the case of sEMG, the signal amplitude 

is typically a few mVs or below (it rises up to 5.0 mV in special cases as for athletes). 

 

Figure 1. Sketch of the power spectrum of a typical raw electromyography (EMG) signal. 

The fact that, traditionally, the sEMG is performed in a health facility by means of wired 

equipment poses a number of problems. First, the test is short-lasting and is confined in a limited 

space, thus precluding lasting and free-living monitoring of specific symptoms in movement 

disorders [15]. Second, the presence of wires implies the execution of a limited range of movements, 

not allowing for the analysis of coordinated movements requiring wide change of body position, 

which is a major clinical issue [16]. Third, the wired connection to the electrical grid introduces noise 

at 50 Hz, in the mid of the most meaningful portion of the EMG spectrum [17,18]. 

In order to overcome the limitations of the wired conventional equipment, recently, wearable 

sEMG devices have been proposed and a few products are already available on the market. Most of 

the commercial products need an external signal processing unit [19–22], others take advantage of 

the integrated inertial units for classifying specific movements (as, for example, [23], which is used 

for hand gestures). Several research applications of those products can be found in the literature. For 

instance, in [24], the contraction frequency of the levator palpebrae muscle is monitored to control 

car drivers drowsiness; in [25], the hand gestures reproducing the sign language is detected; in [26], 

the sit-to-stand condition is monitored using a sEMG device on the quadriceps and a smartphone on 

the back to detect the trunk tilt angle. In [27], the authors realized a device in order to study the 

involuntary activity of the jaw muscles along the day. In [28], a wearable device is designed, which 

uses two electrode pairs for reading positive expressions from facial EMG signals. In [29], a network 

of several nodes that are distributed on the human body detects contemporarily electromyograms, 

Figure 1. Sketch of the power spectrum of a typical raw electromyography (EMG) signal.

The fact that, traditionally, the sEMG is performed in a health facility by means of wired equipment
poses a number of problems. First, the test is short-lasting and is confined in a limited space,
thus precluding lasting and free-living monitoring of specific symptoms in movement disorders [15].
Second, the presence of wires implies the execution of a limited range of movements, not allowing
for the analysis of coordinated movements requiring wide change of body position, which is a major
clinical issue [16]. Third, the wired connection to the electrical grid introduces noise at 50 Hz, in the
mid of the most meaningful portion of the EMG spectrum [17,18].

In order to overcome the limitations of the wired conventional equipment, recently, wearable
sEMG devices have been proposed and a few products are already available on the market. Most of
the commercial products need an external signal processing unit [19–22], others take advantage of
the integrated inertial units for classifying specific movements (as, for example, [23], which is used
for hand gestures). Several research applications of those products can be found in the literature.
For instance, in [24], the contraction frequency of the levator palpebrae muscle is monitored to control
car drivers drowsiness; in [25], the hand gestures reproducing the sign language is detected; in [26],
the sit-to-stand condition is monitored using a sEMG device on the quadriceps and a smartphone
on the back to detect the trunk tilt angle. In [27], the authors realized a device in order to study the
involuntary activity of the jaw muscles along the day. In [28], a wearable device is designed, which
uses two electrode pairs for reading positive expressions from facial EMG signals. In [29], a network
of several nodes that are distributed on the human body detects contemporarily electromyograms,
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electrocardiograms, accelerations, temperature, and input impedance. In all of those applications,
data are processed on an external device (PC, smartphone, Arduino).

Unlike the mentioned wearable systems, the one that is proposed here performs the sEMG signal
processing on-board and it recognizes in real-time the muscle activity without any external elaborating
station. This is a considerable improvement since it opens to outdoor long term monitoring, allowing
for the reliable evaluation of muscle activity during daily life, especially in patients with episodic
and unpredictable disturbances, such as motor fluctuations and Freezing of Gait in Parkinson’s
disease [30–32], or with motor impairment after stroke [33]. The lasting and objective evaluation of
motor disturbances by means of wearable sEMG would significantly improve therapeutic management
in the clinical setting, by overcoming the biased recall of symptoms self-report by patients [34].
The proposed system starts from a prototypal device that was developed by STMicroelectronics
(Agrate Brianza, Italy), which is able to detect sEMG signals [35]. With respect to that preliminary
work, in this paper, we extensively discuss the potentiality of that wearable system and present
further systematic results that are related to a variety of muscle activities, including the least and short
contraction and stretching. Our system is designed for low power-consumption with data saving on
an integrated nonvolatile solid-state Flash memory making possible to monitor the muscle activity of
the patient during his day-life. All of these improvements candidate our system as a valuable tool for
collecting diagnostic datasets in domestic environment and outdoor.

2. Materials and Methods

The system recognizes the muscle activity without any external working station, since the
processing algorithms run on the computational unit integrated on-board. In this operation mode,
all of the information is recorded on the microSD. In alternative, data can be transmitted via Bluetooth
to a PC. The system can eventually give a feedback in real time switching on an alarm (audio, LED,
other) in specific cases. This option can be particularly useful in outpatient visits, when the doctor
needs to check the activity intensity or time duration with respect to the determined thresholds and/or
the eventual contraction of a specific muscle during movement disorders.

Hardware. The hard device is the prototypal device Bio2Bit Move (STMicroelectronics, Agrate
Brianza, Italy) that was developed by STMicroelectronics, as shown in Figure 2. It includes:
an ultra-low power bio-potential acquisition system with one differential channel for EMG acquisition
(ST HM121), a 32 bit computational unit ARM® Cortex®-M4, a microSD, a low-energy Bluetooth
(BT) 4.0, a 592 mWh battery, a micro-USB connector. The Bio2Bit Move also includes a set of other
physical and physiological sensors (not used in this work): electrocardiogram (ECG), Galvanic Skin
Response (GSR), bioimpedance, accelerometer, gyroscope, and magnetometer. The presence of several
functionalities in the same device opens to a possible future convergence of multimode operations
on the same platform, with the contemporary detection of different biological and physical signals.
The device dimensions are 30 × 30 × 15 mm, and the weight is 10 g, including the battery. Two clips
are integrated into the device package (as shown in Figure 2). The electrode patches that are pictured
in Figure 2 are buttoned in the clips so that their position remains fixed. The distance between the
electrodes is 20 mm respecting the specification of SENIAM (a European concerted action in the
EU Biomedical Health and Research program). Actually, the presence of fixed clips on the back of
the device is an advantage with respect to measurements that were performed with conventional
wired equipment. In fact, in this way, the distance between the two electrodes is always constant and
the positioning of the adhesive electrodes can be performed by non-specialized users in a domestic
environment, after they are trained to recognize specific muscles landmarks. Once the electrodes
are fixed on the skin, in principle, the device adheres without falling down, thanks to its minimum
weight (10 g). In any case, in practical long-time applications, it can be further tightened by elastic or
cloth bands.
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Figure 2. Back-side of Bio2Bit Move and the electrodes.

The signal that is detected by patch electrodes needs to be amplified because of the attenuation
due to the skin and the subcutaneous tissue. The block diagram of the bio-potential system (HM 121,
STMicroelectronics, Agrate Brianza, Italy) for sEMG signal acquisition is displayed in Figure 3.
The maximum amplification provided by HM 121 is 128, whereas the Common Mode Rejection
Ratio (CMRR) (at 50 Hz) and the Signal to Noise Ratio (SNR) (with a signal of 10 Hz, 10 mVpp, gain 64)
are respectively 65 dB and 59 dB. The integrated bandpass filter features bandwidth 0.5–300 Hz,
to avoid aliasing effects and to eliminate the DC component. The integrated ADC features 14 bit
resolution and ±0.6 V reference voltage. The measured overall noise is 38 µV, which is in agreement
with requirements for medical applications (<50 µV). The device collects data in real time with a
sampling frequency of up to 4 KHz.
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electromyography (sEMG) signal acquisition.

Software. The choice of algorithm category depends on whether it is required that the processed
signal is known a priori or not. To be more general, we decided to implement an algorithm independent
of the a priori knowledge, because it gives greater flexibility and it is not related to any specific muscle.
In fact, in the case of voluntary muscle contractions, the EMG signal is stochastic and it denotes a
sudden variation of both amplitude and frequency, deriving from the activation of the action potential.
Therefore, we focused onto the Teager-Kaiser Energy Operator (TKEO), which puts in evidence the
instantaneous increase of the action potential and reduces the baseline noise [36]. In its discrete form
in time domain, the TKEO is defined as:

Ψ[x(n)] = x2(n)− x(n + 1)x(n − 1) (1)

where n is the sequence index. Applying the TKEO to a given signal with amplitude A, frequency ω0,
and initial phase ϑ, of the type:

x(n) = A(n) cos(ω0(n) + ϑ) (2)

it becomes:
Ψ[x(n)] = A2(n) sin2(ω0(n)) (3)

Therefore, the output of TKEO is positive and proportional to the product between the
instantaneous amplitude and the frequency of the input signal. An example of TKEO operation
is shown in Figure 4.
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Figure 4. Raw and Teager-Kaiser Energy Operator (TKEO) EMG signal, on the same time and
amplitude scale.

The threshold algorithm for detecting muscle contraction was then implemented in the TKEO
domain, taking into consideration the standard minimum period of muscular contraction (50–70 ms),
the standard minimum period of muscle inactivity (50–70 ms) and the margin of accuracy in the
estimation of such measurements (±10 ms) [37,38]. The signal processing chain is shown in Figure 5.
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Figure 5. Data processing chain.

In order to remove movement artifacts, the raw sEMG signal is high-pass filtered by a HP Finite
Impulse Response (FIR) with a cut off frequency of 3 Hz. This filter subtracts the average of 32 previous
samples to the current one. The subsequent steps consist on the TKEO rectification, the amplitude
normalization, and the Root Mean Square (RMS) smoothing. The last step is the identification of the
signal baseline and the definition of a dynamic threshold (T), which distinguishes the time intervals
during which the muscle is active (ON state) from those during which it is inactive (OFF state). It holds:

T = mean(EMG(tw)) + j·std(EMG(tw)) (4)

In the equation above, mean is the average value, std is the standard deviation, j is a dynamic
factor, and tw is the time window. In Figure 6 the same trace detected by the Bio2Bit Move related to
the contraction of a specific muscle (lasting three seconds) and repeated with progressively reduced
amplitude, is processed, as described above. The timing of the muscle activity is shown with the
red line: in Figure 6a, the time intervals during which the contraction is in ON state are indicated
by “1”, while the OFF state intervals are indicated by “0”. The muscle activity is correctly detected
with progressive amplitude reduction, down to a factor of ten. In that figure, the time window for
the threshold definition was tw = 500 ms. In Figure 6b, the filtered EMG raw signal is sketched in the
ON and OFF time intervals (red dashed line). Finally, in Figure 6a, the blue line represents the signal
RMS, while the green line represents the dynamic factor j: the former is calculated with a tw = 10 ms,
the latter with a tw = 200 ms.
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Figure 6. (a) The Root Mean Square (RMS) signal (blue) and factor j (green); and, (b) an example of the
filtered EMG raw signal.

3. Results

In order to calibrate our wearable device, we used state-of-art conventional wired equipment
(Digitimer D360, Digitimer Ltd., Hertfordshire, UK). In Figure 7, pictures of the Digitimer D360 set-up
are shown. As one can see, a number of wires limits and obstacles movements, therefore the calibration
tests were performed on sitting subjects. The success of the calibration tests is necessary to allow for us
to use the wearable device in subjects moving with wide changes of body/limb position.
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Figure 7. Typical set-up of a sEMG with a conventional wired equipment that is used in biomedical
research laboratories.

Following the indications by SENIAM, the two positive and negative electrodes of the wired
equipment were placed along the muscle to be studied, the third reference one far from it.

We performed systematic calibration recording the sEMG signals with the Digitimer D360 and
with our wearable device, at the same time, on the same muscle. In general, artefacts due to the
presence of skin hair and humidity, adipose tissues, as well as bad patch adhesion, are critical issues
for sEMG signal acquisition. To overcome the problem, in our tests, we adopted specific strategies
for electrode fixing, consisting of local cleaning and epilation of the skin surface, and ensured the
robustness of the patch adhesion. In each test, the electromyograms that were obtained with the
Digitimer D360 equipment were our control traces. As shown in Figure 8, the two Bio2Bit Move
electrodes were positioned as close as possible to the two signal electrodes of the wired equipment.
The contraction activity of abductor pollicis brevis, biceps brachii muscle, tibialis anterior, frontalis
muscle, and gastrocnemius (picture not shown for brevity) was monitored.

The traces of the Digitimer D360 and the Bio2Bit Move were displayed on a PC, using the
integrated Bluetooth facility for the wearable device.
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Figure 8. Placement of Digitimer D360 and Bio2Bit surface electrodes on the: (a) abductor pollicis
brevis muscle; (b) biceps brachii muscle; (c) frontalis muscle; and (d) tibialis anterior.

Preliminary, we noticed that the trace recorded by the Digitimer D360 exhibited a much worse
baseline due to the connection to the electrical grid. In fact, in Figure 9a, there are displayed the
synchronized baseline traces referring to a rest time interval between 2 and 7 s in the test on the
abductor pollicis brevis, as discussed in the next Section. As one can see, the blue trace (Digitimer
D360) features a much higher amplitude than the red one (Bio2Bit Move), whereas in Figure 9b,
where the Notch filter at 50 Hz of the Digitimer was activated, the two traces are superimposed.
Of course, the filter activation penalizes the analysis of contributions around 50 Hz, as it can be verified
in Figure 10a. In that figure, we show the normalized power spectrum of the signal that was recorded
by the Digitimer during a contraction of the abductor pollicis brevis with the Notch filter activated.
It can be compared with the spectrum recorded by our wearable device displayed in Figure 10b.
In consideration of the penalty introduced by the Notch filter exactly in the mid of the meaningful
band, it was deactivated in all of the tests.
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Figure 10. Normalized power spectrum of the sEMG signal during the contraction of the abductor
pollicis brevis recorded by: (a) Digitimer D360 with Notch filter activated, (b) our wearable device.

Acquisition of the baseline with the Bio2Bit Move was repeated several times on each subject
removing and repositioning the electrodes every time and changing the electrodes every two–three
times, resulting in the superposition of all the baselines, thus confirming the repeatability. Obviously,
moving from one subject to another, different baselines were found due to specific tissue and
skin features.

Then, we studied the sEMG traces that were recorded during contractions of random duration
and intensity (hereafter indicated as “random contractions” for brevity). Four healthy subjects were
studied. All of the subjects gave a written informed consent, and the experimental procedures have
been approved by the institutional review board of Sapienza University of Rome, Italy, in agreement
with the Declaration of Helsinki, and the protocol was approved by the Ethics Committee with
Project number 4310. In Figure 11, typical HP filtered signals recorded on the tibialis anterior (a)
and the gastrocnemius muscle (b) are shown. The red trace refers to our wearable device and the
blue one is the reference trace that was recorded by the Digitimer D360. As one can see, the two
traces are superimposed on the time scale. Furthermore, the wearable device records all of the muscle
contractions without introducing any erroneous contribution.
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Figure 11. Filtered sEMG signal during random contractions of the tibialis anterior (a) and the
gastrocnemius muscle (b) recorded by the Digitimer D360 with the Notch filter deactivated (blue curve)
and by our wearable device (red curve).

Starting from the raw sEMG signals, we tried to distinguish the activity of stretching from the
contractions. The subjects were asked to alternate the stretching and contractions of the tibialis anterior,
while sitting with the foot raised and moving the tiptoe back and forth. In Figure 12a, the raw sEMG
signal that was recorded by the Bio2Bit Move is displayed (the dashed lines indicate the stretching (s)
and contraction (c) time intervals). As expected, we can see that the raw sEMG signal does not allow
for distinguishing contractions from stretching. In Figure 12b, the signal Fast Fourier Transform (FFT)
is shown. Starting from that spectrum and following [39], we low pass (LP) filtered the raw signal with
a cutoff frequency of 10 Hz without HP filtering, thus including muscle artifacts. The result is shown
in Figure 12c, where the LP filtered signal trace (blue) is superimposed to the raw signal (yellow):
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now, the stretching and concentric contraction activities correspond, respectively, to the negative and
positive values of the blue curve. Activating the HP filter degrades the possibility to distinguish the
two opposite activities, as it can be seen in Figure 12d, where the blue curve now is the sEMG signal
band pass that is filtered in the range 3–10 Hz. In this test, the muscle artifact itself probably helps in
distinguishing stretching from contractions.
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Figure 12. (a) Raw sEMG signal during a random stretching and contraction activity of the tibialis
anterior recorded by our wearable device. The dashed trace defines the exact timing of stretching (s)
and contraction (c); (b) FFT of the raw signal; (c) The blue trace is the low pass filtered sEMG signal
(cutoff at 10 Hz); and, (d) The blue trace is the band pass filtered sEMG signal (3–10 Hz).

4. Discussion

After having demonstrated that the wearable device correctly detects all of the muscle activity,
we applied specific test protocols depending on the studied muscle, which cover a wide range of
experimental conditions. As an example, in Table 1, the two protocols relative to biceps brachii and
abductor pollicis brevis are described. Referring to it: the muscle was in “Rest” when completely
relaxed; “MVC” stands for Maximum Voluntary Contraction; the arm was in “Anti-gravity posture”
when folded bearing or not a weight; and, “Isometric contraction against a load” refers to the thumb
opposing to a prolonged resistance (load).

Table 1. Description of the procedures of two typical tests.

Brachial Biceps Abductor Pollicis Brevis

Rest (30 s) Rest (10 s)
Random short contractions (60 s) Random short contractions (40 s)

Rest (30 s) Rest (10 s)
MVC (10 s) MVC (10 s)
Rest (30 s) Rest (10 s)

Long MVC (30 s) Long MVC (30 s)
Rest (60 s) Rest (20 s)

Anti-gravity posture (30 s) Isometric contractions against a load (30 s)
Rest (30 s) Rest (10 s)

Anti-gravity posture with 1/2 Kg weight (30 s)
Rest (30 s)
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Results are shown in Figure 13a,b.
To get reliable clinical and physiological information, our system should detect timely the onset

and the end of any muscle activity. In Figure 13c, a zoom of the sEMG signal relative to the biceps
brachii between 30 s and 40 s is displayed. Classification of the ON state of the abductor pollicis brevis
activity is shown in Figure 13d, while in Figure 13e, a single ON classification on the signal RMS
(between 17 s and 18 s) is reported with the dashed black line, together with the dynamic threshold T,
which defines the ON state. All of these results put in evidence that the detection and classification
capabilities of our system are robust with respect to the eventuality of very short and weak muscle
activity, featuring a time resolution around 60 ms and a minimal detected amplitude of around 100 µV.
Similar results were obtained also in tests that were performed on other muscles.

We quantified the performance of our system, calculating the accuracy, the sensitivity, and the
specificity on a statistical sample that was made of 94 recordings on four healthy subjects, including
weak, intense, very short, and very long muscle activities. The overall recording time was 1750 s.
The measurements were performed removing, repositioning and changing the electrodes. We here
defined as true positive the contraction (ON) time and as true negative the inactivity (OFF) time,
both being detected by the conventional wired equipment. The sensitivity was evaluated by calculating
the true positive respect to the sum of the ON time detected and the ON time not detected by the
Bio2BitMove. Then, we evaluated the specificity, calculating the true negative respect to the sum of the
OFF time and the false ON time that was detected by the Bio2BitMove. We obtained an accuracy of
100% in detecting contraction events with an amplitude higher than 100 µV. The same 100% accuracy
in the detection of the contraction events was also reported by another wearable system proposed very
recently in literature [40]. Far beyond that, our system features more meaningful achievements as a
sensitivity and a specificity both over 80%, calculated on the exact time duration of the contractions,
not simply on the detection of the event, but also in the case of muscle activity time intervals as short
as some tens of ms. The values of percentage sensitivity and specificity listed in Table 2 are the average
over the 1750 s total recording time. The starting latency and the ending latency were also calculated.
The starting latency is defined as the difference between the starting edges of ON state evaluated while
considering the raw signal of the Digitimer and the raw signal of the Bio2Bit Move; the ending latency
is defined as the difference between the ending edges of ON state evaluated when considering the
raw signal of the Digitimer and the raw signal of the Bio2Bit Move. Values of the percentage starting
latency and the ending latency averaged over the total ON state events are listed in Table 2.

Finally, we wish to make some considerations about the power consumption of our portable device.
The algorithm takes 41 ms for processing 104 samples that were acquired at 512 Hz, corresponding to
a 208 ms signal time interval. This is approximately 20% of the CPU load of the ARM® Cortex®-M4
at 32 MHz, using 25 KBytes ROM and 16 KBytes RAM. In these conditions, the wearable device
dissipates only 26 mW in monitoring operation (i.e., processing data in real-time and saving them
on the memory). Since the device battery features 592 mWh, this means that, without Bluetooth
transmission, the system has more than 20 h operation autonomy, largely covering one day activity.
This outlines that our wearable device features outstanding performance and that it can serve for
reliable autonomous use by persons during day-life, both outdoor and indoor.

Table 2. Percentage values of sensitivity and specificity averaged over the total recording time; starting
latency and ending latency averaged over all of the ON state events.

Sensitivity % Specificity % Starting Latency % Ending Latency %

87.18 82.60 0.33 2.33
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Figure 13. Filtered sEMG traces recorded with the wearable device (red line) and the Digitimer D360
(blue line) in the case of (a) biceps brachii contractions and (b) the abductor pollicis brevis; (c) zoom of
the repeated fast and sudden random contraction of the biceps brachii in the time interval between
30 s and 40 s; (d) classification of ON state interval times (shadowed black line) of the abductor pollicis
brevis activity; and, (e) zoom of the ON classification (black dashed line) of the abductor pollicis brevis
and the threshold T (green line).

5. Conclusions

In conclusion, the proposed wearable device is a stand-alone system-in-package that
performs real-time monitoring of the muscle activity sensing and processing autonomously the
electromyography signal without any external device. The algorithms for data processing are
embedded in the integrated low-power microcontroller. Systematic tests of muscle contraction
detection demonstrated that our system performs comparably to state-of-art wired equipment that is
conventionally used in biomedical research laboratories with the advantage of distinguishing between
muscle stretching and contraction. Low and short muscle activity with an amplitude level down
to 100 µV and time interval as short as approximately 60 ms are correctly recognized. We studied
a statistical sample of approximately one hundred recordings on four subjects in a wide range of
experimental conditions, including maximum voluntary contractions, anti-gravity postures with and
without a weight, and isometric contractions against a load. As a final result, our system achieved
specificity and sensitivity in recognizing exact activity timing over 87% and 82%, respectively, with the
advantage of being wireless and comfortably wearable.

The system exhibits a power consumption as low as 26 mW in monitoring operation, reflecting in
a long autonomy of a conventional 592 mWh battery, well adapting to a daily use, outdoor, or indoor.

Finally, the possibility of integrating several functionalities directly in the device opens to the
future convergence of multimode operations on the same platform, with the contemporary detection
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of different physiological and physical signals. For all those reasons, this wearable device candidates
to represent a helpful tool for domestic and outdoor use, capturing data with far greater ubiquity,
regularity, and comprehensiveness than has been traditionally possible.
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