
fphar-10-00032 February 1, 2019 Time: 17:51 # 1

REVIEW
published: 05 February 2019

doi: 10.3389/fphar.2019.00032

Edited by:
Francisco R. Nieto,

University of Granada, Spain

Reviewed by:
Andrea Antal,

University Medical Center Göttingen,
Germany

Stephanie J. Nahas,
Thomas Jefferson University,

United States

*Correspondence:
Vittorio Di Piero

vittorio.dipiero@uniroma1.it

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Neuropharmacology,
a section of the journal

Frontiers in Pharmacology

Received: 30 July 2018
Accepted: 14 January 2019

Published: 05 February 2019

Citation:
Viganò A, Toscano M, Puledda F

and Di Piero V (2019) Treating Chronic
Migraine With Neuromodulation:
The Role of Neurophysiological
Abnormalities and Maladaptive

Plasticity. Front. Pharmacol. 10:32.
doi: 10.3389/fphar.2019.00032

Treating Chronic Migraine With
Neuromodulation: The Role of
Neurophysiological Abnormalities
and Maladaptive Plasticity
Alessandro Viganò1,2†, Massimiliano Toscano1,3†, Francesca Puledda4 and
Vittorio Di Piero1,5*

1 Headache Research Centre and Neurocritical Care Unit, Department of Human Neuroscience, Sapienza University
of Rome, Rome, Italy, 2 Molecular and Cellular Networks Lab, Department of Anatomy, Histology, Forensic Medicine
and Orthopaedics, Sapienza University of Rome, Rome, Italy, 3 Department of Neurology, Fatebenefratelli Hospital, Rome,
Italy, 4 Headache Group, Department of Basic and Clinical Neuroscience, King’s College Hospital, King’s College London,
London, United Kingdom, 5 University Consortium for Adaptive Disorders and Head Pain – UCADH, Pavia, Italy

Chronic migraine (CM) is the most disabling form of migraine, because pharmacological
treatments have low efficacy and cumbersome side effects. New evidence has shown
that migraine is primarily a disorder of brain plasticity and migraine chronification
depends on a maladaptive process favoring the development of a brain state of
hyperexcitability. Due to the ability to induce plastic changes in the brain, researchers
started to look at Non-Invasive Brain Stimulation (NIBS) as a possible therapeutic option
in migraine field. On one side, NIBS techniques induce changes of neural plasticity
that outlast the period of the stimulation (a fundamental prerequisite of a prophylactic
migraine treatment, concurrently they allow targeting neurophysiological abnormalities
that contribute to the transition from episodic to CM. The action may thus influence
not only the cortex but also brainstem and diencephalic structures. Plus, NIBS is not
burdened by serious medication side effects and drug–drug interactions. Although the
majority of the studies reported somewhat beneficial effects in migraine patients, no
standard intervention has been defined. This may be due to methodological differences
regarding the used techniques (e.g., transcranial magnetic stimulation, transcranial
direct current stimulation), the brain regions chosen as targets, and the stimulation types
(e.g., the use of inhibitory and excitatory stimulations on the basis of opposite rationales),
and an intrinsic variability of stimulation effect. Hence, it is difficult to draw a conclusion
on the real effect of neuromodulation in migraine. In this article, we first will review
the definition and mechanisms of brain plasticity, some neurophysiological hallmarks
of migraine, and migraine chronification-related (dys)plasticity. Secondly, we will review
available results from therapeutic and physiological studies using neuromodulation in
CM. Lastly we will discuss the results obtained in these preventive trials in the light of a
possible effect on brain plasticity.

Keywords: chronic migraine, plasticity, neuromodulation, NIBS, LTD, LTP, prophylaxis

Frontiers in Pharmacology | www.frontiersin.org 1 February 2019 | Volume 10 | Article 32

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2019.00032
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphar.2019.00032
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2019.00032&domain=pdf&date_stamp=2019-02-05
https://www.frontiersin.org/articles/10.3389/fphar.2019.00032/full
http://loop.frontiersin.org/people/64240/overview
http://loop.frontiersin.org/people/519046/overview
http://loop.frontiersin.org/people/676531/overview
http://loop.frontiersin.org/people/167521/overview
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-10-00032 February 1, 2019 Time: 17:51 # 2

Viganò et al. Neuromodulation and Displasticity in CM

INTRODUCTION

Chronic migraine (CM) (ICHD-III 1.3) (>15 days of headache
per months, with >8 with migraine features for at least 3 months)
affects about 2% of the general population and is the more
disabling form of migraine, with a disability greater than that of
episodic migraine (EM) (Dodick, 2006; Natoli et al., 2010).

Managing CM is extremely challenging for several reasons.
First, only a few drugs, as OnabotulinumtoxinA, Topiramate,
and Erenumab (the latter not available worldwide yet), have
a clear level of evidence of efficacy (Silberstein et al., 2007,
2009; Tepper et al., 2017) Other available pharmacological
options [as anticonvulsants (valproate), beta-blockers (atenolol
and propranol), calcium antagonists (cinnarizine or flunarizine),
anti-depressants (mostly tricyclic antidepressants)] or mini-
invasive procedures [anesthetic Greater Occipital Nerve (GON)
block], have in general a lower level of evidence (Saper et al.,
2002; Spira et al., 2003; Yurekli et al., 2008; Magalhães et al.,
2010; Sarchielli et al., 2014; Stovner et al., 2014; Inan et al., 2015;
Cuadrado et al., 2017).

On average, the efficacy of pharmacological treatments does
not exceed 50% of cases and the majority of these drugs are
often poorly tolerated for their adverse effects (Evers et al., 2009;
Blumenfeld et al., 2013). CM patients require more preventive
lines and they annually spend more than episodic migraineurs,
in medical expenses and loss of productivity (Blumenfeld et al.,
2011; Berra et al., 2015).

There is thus a need of new more effective and better
tolerated by patients pharmacological and non-pharmacological
therapeutic options. To date, available non-pharmacological
techniques include nutraceutical, ketogenic diet, cognitive-
behavioral therapy, neurofeedback, psychotherapy, and Non-
Invasive Brain Stimulation (NIBS). In particular, NIBS represents
a very promising strategy for CM, since CM depends on a
progressive maladaptation of the brain to sensory stimuli, and
then it is theoretically possible reverting maladaptive plasticity to
restore pre-chronicity status.

Non-Invasive Brain Stimulation techniques can act on neural
plasticity by modifying brain excitability for periods outlasting
the stimulation itself. This is a fundamental prerequisite of
any valuable prophylactic treatment in migraine. Moreover,
NIBS can directly aim at the migraine-related neurophysiological
abnormalities, so that interventions may be planned on a precise
pathophysiological rationale. Lastly, NIBS avoids cumbersome
medication-related side effects and drug-drug interactions that
limit the use of pharmacological therapies (Blumenfeld et al.,
2013; Ansari and Ziad, 2016).

Up to date, several NIBS interventions have been tried
with different results depending on different methodologies and
techniques (e.g., transcranial magnetic stimulation, transcranial
direct current stimulation), or protocols (as high-frequency and
low-frequency), brain regions chosen as targets (e.g., primary
vs. associative cortex), and stimulations types (e.g., the use of
inhibitory and excitatory stimulations on the basis of opposite
rationales). Aside to these, other therapeutic interventions have
been tried with peripheral nerve stimulations, as trigeminal
nerve stimulation and vagus nerve stimulation. Although these

techniques that are not properly considered as NIBS, in this
review, we will include some the results from these trials, since
preclinical and human studies showed that their efficacy rely
on the same plasticity-mediated mechanism (Pilurzi et al., 2016;
Buell et al., 2018; Mertens et al., 2018; Meyers et al., 2018).

Due to their use in migraine field, in the present review, we will
consider as NIBS single-pulse and repeated transcranial magnetic
stimulation (sTMS or rTMS), as well as anodal and cathodal
transcranial direct current stimulation (tDCS). As peripheral
stimulations, we included stimulations directed to cranial nerves,
i.e., Superficial Trigeminal Stimulation (STS), Greater Occipital
Nerve Stimulation (GONS), and vagal nerve stimulation (VNS).

NEURAL PLASTICITY AND ITS
RELATIONSHIP TO CHRONIC MIGRAINE

Synaptic Plasticity
The notion of plasticity dates back over 50 years ago, when
Hebb and co-workers observed increased learning skill in
those rats reared as pets at home in respect to laboratory-
raised counterparts. On this observation, they postulated that
a morphological change somehow occurs in the brain of these
animals (particularly at the level of synapses) in response to a
change in the environment, producing brain remodeling (Brown
and Milner, 2003) (see Table 1 for definition of different forms of
plasticity).

These changes were firstly described in the cortex and
include growth of dendrites, axonal sprouting, synaptic
membrane modifications, and also synaptogenesis, gliogenesis,
and neurogenesis (Sanes and Donoghue, 2000; Ward and
Frackowiak, 2006; Wieloch and Nikolich, 2006).

TABLE 1 | Definitions of plasticity.

Synaptic plasticity: a plasticity mechanism based on the strengthening of
synapses between neurons to encode mnemonic traces. These synapses are in
fact activated as an ensemble in processes of formation or recall of memory traces
(e.g., mnesic engram, motor patterns, and pain).

Homosynaptic plasticity: plasticity phenomena occurring in the synapse that is
firing. It relies on modifications in synaptic weights or in the number of receptors
expressed in the synaptic cleft. The two cardinal mechanisms responsible for
homosynaptic plasticity are long term depression (LTD) and long term
potentiation (LTP).

Heterosynaptic plasticity: plasticity phenomena occurring in synapses different
from the firing synapse. In general these changes involved near synapses in an
opposite way compared to the stimulated one. For example, if the firing synapse
is undergoing LTP, the other synapses tend to present LTD.

Neuronal plasticity: referred to plasticity changes occurring in neurons respect
to plasticity in non-neuronal structures, as oligodendrocytes and axonal
myelination degree.

Anatomic plasticity: plasticity mechanism depending on an anatomical correlate
(e.g., reduction or increase of gray matter, changes of brain connectivity, dendric
and axonal sprouting, rewiring after a lesion). It includes non-synaptic forms of
plasticity relying on changes of intrinsic neural excitability after a structural
modification, e.g., after a stroke the injured tissue becomes hyperexcitable.

Dysplasticity: indicates the maladaptive reshaping of brain connections, leading
to abnormal, either diminished or increased plasticity. Dysplasticity has been
advocated as cause of several chronic and progressive neurological diseases,
as Alzheimer disease, Huntington disease, depression, and schizophrenia.
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Plasticity adaptive morphological changes can occur in
response to environmental experiences and challenges. They
also can happen after brain injury, since damaged brain has
the same molecular and cellular properties of healthy brain to
induce neural plasticity. However, in pathological conditions,
as brain damage (e.g., major stroke or migraine chronification),
changes in brain excitability tend to be more pronounced,
widespread, or also aberrant, compared to those of healthy brain
(Schmidt et al., 2012; Brennan and Pietrobon, 2018). The core
of synaptic plasticity is the reshaping of the excitatory-inhibitory
balance, through modifications of synaptic weights occurring in
both excitatory and inhibitory synapses. This adaptation mostly
relies on specific patterns of activity of pre-synaptic and post-
synaptic neurons (Froemke, 2015). The two well-known long-
term synaptic mechanisms of plasticity are long-term depression
(LTD) and long-term potentiation (LTP). LTP and LTD are
mathematically predicted by the Bienenstock–Cooper–Munro
(BCM) theory (Bienenstock et al., 1982). LTD refers to a
progressive reduction of the responses, while LTP indicates an
increase of responses of the post-synaptic neuron.

At the molecular level, LTD and LTP responses depend
on the function of N-methyl-D-aspartate (NMDA) receptors,
whose activation, in response to presynaptic input, induces a
Ca2+ influx into the postsynaptic neuron. This leads to changes
of the strength in the synapsis connecting the pre- and the
postsynaptic neuron, by means of functional and structural
remodeling (MacDermott et al., 1986). According to the BMC
model, an infrequent presynaptic activity releases a low level
of glutamate that activates mostly AMPA receptors, whereas
metabotropic and NMDA receptors remain inactive. By contrast,
following an intense presynaptic discharge, NMDA receptor is
activated and synaptic weight changes (Gu, 2002; Froemke, 2015).

Aside from NMDA receptors, GABAA and GABAB, meta-
botropic and AMPA glutamatergic receptors, acetylcholine
(ACh), noradrenaline (NA), serotonin (5-HT), dopamine (DA),
histamine (Hist), oxytocin (Oxt), and also adenosine receptors
are also linked to LTP plasticity, since they may be regulated by
their own neurotransmitters and increase glutamate or reduce
GABA. So far, these modulatory transmitters play a permissive
role in plasticity, in auditory, somatosensory, and visual cortex
(Gu, 2002; Froemke, 2015).

Besides BCM theory, another model of plasticity is the spike-
timing-dependent plasticity (STDP) principle (Huang et al.,
2017). STDP also is linked to the glutamatergic synapses
properties but plasticity process depends on the timing between
the pre- and post-synaptic spike. In this model, in fact, the
weight of the synaptic plasticity becomes stronger whether
the presynaptic spike occurs before the post-synaptic one, and
weaker if the postsynaptic spike precedes the presynaptic one.
STDP mechanism also depends on the activity of NMDA
receptors and, consequently, on modulation of the Ca2+ influx
into the postsynaptic neuron (Froemke, 2015).

The STDP is the physiological basis of the concept of
“metaplasticity.” Metaplasticity refers to the fact that synaptic
plasticity can be modulated differently varying the pattern of
stimulation, like delivering spikes in triplets or trains of few
pulses repeated several times, or administrating two or more

stimulations in sequence. In some cases, plasticity can also
be reversed (then termed “reversal plasticity”) with adequate
combination of stimulations.

In excitatory synapses, STDP produces LTP if spikes from the
presynaptic neuron anticipate the ones from the postsynaptic
neurons. By contrast, LTD occurs if postsynaptic neuron fires
before the presynaptic one (Markram et al., 1997; Song et al.,
2000; D’amour and Froemke, 2015). In inhibitory circuits, LTP or
LTD can both occur, regardless which spike occurs first, if the two
spikes happened within or outside a precise time interval (Vogels
et al., 2011; D’amour and Froemke, 2015).

Plasticity can develop though either homosynaptic and
heterosynaptic mechanisms, which generally coexist. Homo-
synaptic plasticity happens in a stimulated synapse, according
to BMC or STDP model. During the stimulation of a synapsis,
however, the inactive synapses of the same network can develop
plastic forms of LTP or LTD, in order to counterbalance and
minimize the change of weight occurring in the stimulated one
(Song et al., 2000). The coupling of homosynaptic LTP and
heterosynaptic LTD basically has the purpose of controlling the
excitatory-inhibitory tone at long-range networks level (Stent,
1973).

In condition as sensitization, excitatory-inhibitory balan-
ce may be altered toward a progressive enhancement of
LTP. Homosynaptic LTP may facilitate the occurrence of
heterosynaptic LTP phenomena instead of LTD. Neuro-
physiologically, it corresponds to an increase in the amplitude
of evoked potentials recorded in humans (van den Broeke et al.,
2010) and it may cause an increase of nociceptive response
to unmodified stimulation (Harvey and Svoboda, 2007). This
phenomenon may be even stronger in pathological conditions,
as migraine chronification.

Migraine Pathophysiology:
Cycling Excitability
Migraine is a disorder characterized by an altered sensory
processing, as it has been unveiled by several electrophysiological
and imaging studies (for reviews, see de Tommaso et al., 2014;
Harriott and Schwedt, 2014; Goadsby et al., 2017). In episodic
migraineurs, during the migraine cycle (the alternating periods
of wellbeing and pain), the abnormal functioning of the brain
fluctuates according to the particular moment of the cycle itself.

During the interictal phase, migrainous brain is characterized
by a low level of preactivation in all sensory (e.g., visual,
somatosensory, auditory, etc.) and associative cortices. Affected
cortices respond to external repetitive stimulation with an initial
low response (that may resemble hypoexcitability), followed by
a progressive increase of neural activity, instead of a progressive
reduction (i.e., habituation) as the stimulation continues (de
Tommaso et al., 2014).

In healthy subjects, sensory stimulation generally evokes
cerebral responses though a dual-process, involving both
sensitization and habituation of responses (Groves and
Thompson, 1970). When a sensory stimulation begins, the
receiving cortex produces at first an increase of evoked responses
due to the novelty of the stimulation (i.e., sensitization) and
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later (if stimuli persist unmodified), the responses decrement
(i.e., habituation). This is independent from neural fatigue
since if some unexpected event occurs, it provokes a sudden
reappearance of the initial response (i.e., dishabituation)
(Thompson and Spencer, 1966).

The pattern found in migraineurs is in line with this
theory of a ceiling effect regulating habituation (Thompson
and Spencer, 1966; Groves and Thompson, 1970). A lower
preactivation level drives toward a delayed start of habituation
process because the ceiling threshold to be activated is reached
lately or not reached at all. This altered response may depend
on a deficit of serotoninergic projections from the brainstem
to the thalamus and then to cortex (Coppola et al., 2007b).
Reduced excitatory inputs from the thalamus produce in
the cortex a slowing of the natural oscillations: for instance
the visual cortex shifts from alpha (8–12 Hz) to theta (4–
7 Hz) range with a consequent impairment of GABAergic
interneurons, resulting in an increase of the high-frequency
activity in the boundaries of the slowed-down area (this
phenomenon is called “the edge-effect”) (Llinás et al., 1999;
De Ridder et al., 2015). In normal conditions, high frequency
gamma oscillations occur only transiently and mediate the
conscious perception of external stimuli by binding different
cortical networks (Melloni et al., 2007). In migraine, gamma
oscillations of the visual cortex are increased and do not
habituate as in normal subjects. This leads to recruitment and
activation of multiple networks of neurons at once during a
stimulation and eventually to hyperactivity (Coppola et al.,
2007a).

Since gamma activity is more energy-demanding than other
brain rhythms (Nishida et al., 2008; Huchzermeyer et al., 2013),
this may explain how a habituation deficit conducts to metabolic
strain, and ultimately to a migraine attack. The lack of habituation
is maximal in the days preceding the attack (Coppola et al.,
2009).

On the other hand, during the attack, the lower level of
preactivation (found in the interictal phase) rises to normal
values, sensitization increases and habituation normalizes,
eventually leading to a state of hyperexcitability, whose
manifestation is central sensitization, i.e., the increase of the
normal nociceptive sensitization. When sensitization is set, the
nociceptive threshold lowers so that the perception of similar
noxious stimulations is amplified (Woolf and Thompson, 1991).
In migraine during an attack trigeminal ganglion and thalamus
are sensitized (Burstein et al., 2010; Mathew, 2011).

Central sensitization has both clinical (allodynia) and
neurophysiological correlates [ictal laser-evoked potentials
(LEPs) responses (de Tommaso et al., 2005)], and lasts for the
entire duration of the attack, slowly disappearing with a return
to the interictal state. During an attack, the normal habituation
seems to be restored via a compensatory enhancement of
inhibitory activity driven by the hyperexcitability state (Conte
et al., 2010; Cosentino et al., 2014). It is interesting to notice that
several indices of cortical excitability vary with the time elapsed
from the last attack: excitability of the motor cortex is low far
from attack and become higher as the attack approaches (Cortese
et al., 2017a). As well, intracortical lateral inhibition, a measure

of activity of inhibitory interneurons, follows the same dynamics
(Coppola et al., 2016).

Migraine Chronification as Maladaptive
Synaptic and Anatomical Plasticity
Migraine chronification is clinically related to the repetition of
migraine attacks. The number of attacks is the main risk factor
for chronification itself (Buchgreitz et al., 2006). In CM, outside
an attack, the neurophysiological response to repeated stimuli is
similar to the pattern found in episodic form during an attack:
hyperexcitability, central sensitization and normal habituation
(Ayzenberg et al., 2006; Chen et al., 2011, 2012; Mathew, 2011;
Schoenen, 2011; Viganò et al., 2018). Interestingly, when patients
are successfully treated and return to episodic migraine, the low
preactivation and the lacking habituation reappear (Chen et al.,
2011, 2012).

The mechanism of the shift from episodic to CM is not
still completely elucidated, however, it may depend on a
maladaptive response to environmental sensory stimuli, leading
to pain sensitization in trigeminal-cervical complex, thalamus,
and cortical sensory and associative areas.

Homosynaptic synaptic plasticity may play a significant role
in migraine transition from episodic to chronic form. Structures
of the central nervous system may show central sensitization
show central sensitization when nociception is enhanced with
an increase in membrane excitability, synaptic efficacy or a
reduced inhibition (Woolf and Thompson, 1991). Experimental
evidence showed that sensitization of nociceptive responses at a
trigeminal level is mediated by a combination of heterosynaptic
and homosynaptic plasticity that are also responsible for the
spatial spread of enhanced responses in neighboring cutaneous
territories (Woolf and Thompson, 1991; Ikeda et al., 2006; Luo
et al., 2008).

Moreover, homosynaptic LTD of sensory terminals is
responsible for habituation, based on the fact that short-term
habituation and synaptic depression coexist and show similar
kinetics of onset and decay (Christoffersen, 1997; Glanzman,
2009; Gover and Abrams, 2009).

During chronification, each attack induces activation of
excitatory and inhibitory circuits. However, inhibitory circuits
are differently affected from excitatory ones, since they show a
higher and faster adaptation and a slower recovery to a repeated
stimulation (Wehr and Zador, 2003; Kuhlman et al., 2013).
A higher number of attacks may induce LTD of inhibitory
synapses while excitatory synapses are preserved, leading to a
progressive disinhibition of brain responses and then to the patter
of hyperexcitability found in CM. This state has been called “a
never-ending attack” (Schoenen, 2011).

As neurotransmitter, serotonin seems to be directly
involved. In a recent paper of our group, we investigated
electrophysiological patterns associated to transition from
CM to EM after GON anesthetic block (Viganò et al., 2018).
We found that during the recovery from chronic to episodic
migraine, an early increase of the serotonin firing (within the 1st
week after GON block) was found in patients who had clinical
improvement in the following weeks. By contrast, patients who
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didn’t benefit from the treatment serotonin firing remained
low. The size of the increase of serotonin firing was linearly
correlated to the clinical improvement. Interestingly, habituation
passed from normal (in CM condition) to lacking (when patients
improved to EM). Since in EM high serotonin is associated to
normal habituation and low serotonin to lacking habituation,
that support the idea that normal habituation in CM depends
on plastic tuning of synapses rather than solely on ceiling effect
as in EM. In our paper, we defined it “pseudonormal” to stress
the different mechanism. Serotonin seems able modulate the
excitatory/inhibitory balance and metaplasticity, shifting the
activity of neural circuits from inhibition to excitation, as already
found in the hippocampus (Kemp and Manahan-Vaughan,
2005). We measured serotonergic firing by using the intensity
dependence of auditory evoked potentials (IDAP) that is a
measure of 5-HT1B receptors activity (Proietti-Cecchini et al.,
1997; Juckel et al., 2008; Wutzler et al., 2008). 5-HT1B receptors
are involved, together with others 5-HT receptors, in plastic
adaptation in different brain regions (Hurley et al., 2008; Dölen
et al., 2013; Barre et al., 2016; Carhart-Harris and Nutt, 2017;
Zhou et al., 2019).

Besides synaptic modifications in CM, plasticity may originate
also from anatomical restructuration of dendritic spines and
axonal connection, as happens in brain injury model, where
synchronous electrical hyperactivity following the brain insult
can promote axonal sprouting, resulting similar to LTP (Wieloch
and Nikolich, 2006).

Both cortical hyperexcitability and the axonal sprouting play a
role in promoting the neuroanatomical plasticity and consolidate
new neural networks in response to a change in the environment
(Buchli and Schwab, 2005; Dancause et al., 2005).

At a microscopic level some studies found same brain
structures may change their morphology due to pain presence.
The first hint of anatomical plastic changes in migrainous brain
came from the evidence of alterations in thalamic structure,
measured by fractal anisotropy (FA), according to migraine cycle
(Coppola et al., 2014). This result was confirmed by subsequent
experiment in different phases of migraine cycle in EM (Coppola
et al., 2015). The changes in FA has been attributed to a rework
of neuronal connections and dendritic arborizations, suggesting
that the number of local circuits could be increased during the
attack and decreased interictally (Beaulieu, 2002). This result gave
an interpretative basis to look at structural data in CM.

To date, different studies have reported contrasting results
on local changes in gray matters, however, a common feature
seems to be present in the majority of them. In CM, several brain
areas involved in migraine pathophysiology showed a decrease
of the gray matter volume (GMV). In a recent paper, Coppola
et al. (2017) found that in CM patients gray matter is reduced
in the temporal lobe pole and gyrus, amygdala, hippocampus,
pallidum, and orbitofrontal cortex, and also in the visual cortex
and cerebellum in comparison to healthy subjects. It is interesting
to notice that the alterations were found predominantly in the
left hemisphere. This is also supported by a previous study
that found a decrease of the GMV in the amygdala, insula,
cingulate cortex and medial frontal gyrus, although the difference
was found only between chronic and episodic migraneurs

(Valfrè et al., 2008). In the same study by Valfrè et al. (2008),
migraineurs showed a reduced local GMV in right superior
temporal gyrus, parietal operculum, right inferior frontal gyrus
and left precentral gyrus compared to healthy subjects, although
none of the latter regions have had a correlation with clinical
outcome while areas highlighted only in CM did (Valfrè et al.,
2008). Another study performed on patients with CM and
medication overuse headache (MOH) showed a larger reduction
of brain volumes in the orbitofrontal cortex and left middle
occipital gyrus of patients with MOH (Lai et al., 2016).

Interestingly, some of these alterations are correlated to
clinical parameters, such as the frequency of migraine attacks and
the duration of the disorder (Valfrè et al., 2008; Coppola et al.,
2017). A study by Bilgiç et al. (2016) also found a decrease of
the size of the cerebellum and brainstem, without, however, a
correlation to clinical features.

On the other hand, in contrast with previous results, some
studies showed an increase of GMV in amygdala, putamen and
left temporal pole/parahippocampus (Lai et al., 2016; Neeb et al.,
2017).

NIBS-INDUCED PLASTICITY

Transcranial magnetic stimulation (TMS) and transcranial direct
current stimulation (tDCS) are the most common NIBS methods
used to study and modulate cortical excitability in experimental
settings investigating neural plasticity. They act on both synaptic
and anatomic plasticity. Some of the effects obtained by
the stimulation are achieved from changes in the neuronal
structures, elicited by external electric (tDCS) or magnetic
(TMS) fields, beside the fact that external electric field causes
displacement of intracellular ions, thus altering the internal
charge distribution and modifying the neuronal membrane
potential (Ruffini et al., 2013). Repetitive magnetic stimulation
(rMS) is known to elicit structural remodeling of dendritic
spines by remodeling postsynaptic gephyrin scaffolds, in addition
to modifying synaptic GABAergic strength (Lenz and Vlachos,
2016).

TMS Protocols
Repeated TMS protocols are able to induce amplitude changes
in motor evoked potentials (MEPs) similar to those expected
following LTP in the glutamatergic synapses (Huang et al.,
2017). According to the BCM model, stimulation trains at high
frequency (10–20 Hz) are able to induce LTP, whereas stimulation
trains with a low frequency (around 1 Hz) induce LTD (Bliss and
Collingridge, 1993; Pascual-Leone et al., 1994; Chen et al., 1997).
TMS can easily induce metaplasticity (Huang et al., 2017). Not
varying frequency nor intensity, the effect of neuromodulation
changes according to the pattern of stimuli administration, as
happens in theta burst stimulation (Huang et al., 2011).

Theta burst stimulation (TBS) is based on bursts of 3 pulses
(triplets) delivered at 50 Hz and separated by 200 ms intervals
(trains of 3 pulses are delivered at 5 Hz). Two types of TBS
have a good effect: the intermittent (iTBS) and the continuous
(cTBS) theta burst stimulation. iTBS is made with train of a 2 s
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(30 pulses) every 10 s (600 pulses in total). In cTBS, 50 Hz triplets
are repeated continuously for a 40 s (600 pulses in total) (Huang
et al., 2005).

Metaplasticity can also be achieved by the combination
of priming stimulation with a conditioning stimulation. For
example, if the priming is excitatory and the conditioning
stimulation is inhibitory the effect of the conditioning stimulation
can be reverted to excitation. A similar metaplasticity-like
effect has been found following quadripulse stimulation (QPS)
(Hamada et al., 2008) and theta burst stimulation (TBS)
(Murakami et al., 2012).

rTMS influences brain excitability on a target cortex as well
as in distant regions belonging to the same networks varying
the functional connectivity between long-range areas. The
application of excitatory QPS on M1 decreased interhemispheric
functional connectivity of the contralateral M1, whereas
inhibitory QPS did the opposite (Watanabe et al., 2014). The
same results were replicated with a minor extent on S1 or DLPFC.

As mechanism, NMDA Ca2+-channels involvement has been
demonstrated for high frequency rTMs (Liu et al., 2017),
theta burst stimulation (TBS) (Huang et al., 2007), quadripulse
stimulation (QPS) (Tanaka et al., 2015), and paired associative
stimulation (PAS) (Stefan et al., 2002).

tDCS Protocols
The mechanism underlying tDCS plasticity seems to be mediated
by N-methyl-D-aspartate (NMDA) and γ-aminobutyric acid
type A (GABA) receptors. Anodal stimulation reduces GABA,
whereas cathodal stimulation reduced both glutamatergic and
GABA levels [for an exhaustive review see (Stagg and
Nitsche, 2011)]. This result is supported by the notion that
pharmacological blockage of NMDA abolishes tDCS after-effects,
while NMDA agonists enhance them (Nitsche et al., 2003).
Moreover, animal studies have confirmed the involvement of
NMDA receptors and brain-derived neurotrophic factor (BDNF)
for the long-term effects observed after anodal tDCS, and
adenosine A1 receptors after cathodal tDCS (Ammann et al.,
2016). In a PET study, anodal stimulation enhanced rCBF while
cathodal induced a decrement of rCBF (Lang et al., 2005).

However, predicting the outcome of a tDCS protocol is not
straightforward, since several parameters may influence the final
effect (Horvath et al., 2015). The stronger evidence of an effect
is available for MEPs, since almost the totality of studies found
the anodal stimulation is excitatory and cathodal is inhibitory
(Priori et al., 1998; Nitsche and Paulus, 2001; Nitsche et al., 2003,
2005). For a review, see (Horvath et al., 2015). However, outside
of the motor cortex, the studies yielded contrasting results. Visual
evoked potentials (VEPs) resulted enhanced after either anodal or
cathodal stimulation (Antal et al., 2004; Accornero et al., 2007).
In two recent sham-controlled TMS EEG experiments (Romero
Lauro et al., 2014; Varoli et al., 2018), authors showed that anodal
stimulation on posterior parietal cortex produce an immediate
and sustained increase of cortical excitability not limited to the
stimulated region, but spread through all the fronto-parietal
network and bilaterally, while the same experiment with cathodal
stimulation yielded no significant results. This different result was
attributed to the network properties: networks with a low baseline

activity can respond better to anodal stimulation than cathodal
(in the latter stimulation may suffer from a flooring effect), while
the opposite condition, namely that anodal stimulation may be
less effective on brain regions with high baseline activity, i.e.,
ceiling effect, occurs rarely.

SUMMARY OF NEUROMODULATION
TECHNIQUES AND STUDIES IN
CHRONIC MIGRAINE

Non-invasive Brain Stimulation (NIBS)
Techniques
Transcranial Magnetic Stimulation (TMS)
Some rather surprising results in migraine prophylaxis have been
obtained by sTMS (see Table 2). sTMS was firstly implemented
in clinical trials as a non-pharmacological acute treatment
for its ability to block cortical spreading depression in rats,
as well as inhibiting the firing rate of nociceptive thalamocortical
projection neurons (Andreou et al., 2016). However, a large
United Kingdom post-market survey, performed on 190
migraineurs, using a hand-held sTMS device for acute headache
relief (Bhola et al., 2015), showed that at 3 months, both
episodic and CM groups (the latter constituting two thirds of
the population) had a significant reduction in the number of
headache days respect to baseline. Moreover, a similar study
(ESPOUSE trial) evaluated sTMS treatment in both the acute
and preventive setting have shown a reduction in headache
frequency in both episodic and CM subjects (Starling et al.,
2018).

These results in prevention are not easy to explain. sTMS
was in fact tested in a pilot and later sham-controlled RCT
(Clarke et al., 2006; Lipton et al., 2010). In this RCT, 164 subjects
with episodic migraine (EM) self-administered sTMS over the
occipital cortex during the aura phase or the beginning of an
attack: 2-h pain free response rates were significantly higher with
sTMS (39%) respect to sham stimulation (22%); treatment with
sTMS showed a therapeutic gain of 17%.

The rational of the study was acting directly on migraine
aura neural correlate, the cortical spreading depression, to abort
the attack. So it is not clear how it can also prevent the
repetition of new attacks. Two possible explanations led to
the development of the ESPOUSE trial. One could be that
several drugs used in migraine prevention inhibit CSD and,
therefore, CSD inhibition can also be preventive of new attacks,
alternatively, a modulation of the thalamic function induced by
sTMS produced the prophylactic effect. Thalamus has a role
in both attack development and central sensitization (Burstein
et al., 2010). Beside that, however, we may think that sTMS
may act in migraine prevention with an indirect mechanism.
Repetition of the attack is in fact one of the main cause
of chronification process. While painkillers or triptans drug
therapies abuse facilitates central sensitization (clinically known
as MOH), to date there is no evidence that the acute treatment
of attack with sTMS induce sensitization producing a sort of
“stimulation overuse headache”. We could therefore hypothesize

Frontiers in Pharmacology | www.frontiersin.org 8 February 2019 | Volume 10 | Article 32

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-10-00032 February 1, 2019 Time: 17:51 # 9

Viganò et al. Neuromodulation and Displasticity in CM

that reducing the days of headache per se with neuromodulation
has a prophylactic value against future attacks.

Repetitive TMS has also been studied in migraine prophylaxis,
with conflicting results depending on the type (high vs.
low frequency) and area of stimulation. The first study to
evaluate rTMS in migraine was a pilot trial by Brighina and
colleagues, in which six CM patients received 400 pulses
of high-frequency (20 Hz) rTMS to the area corresponding
to the dorso-lateral prefrontal cortex (DLPFC); five subjects
received sham stimulation instead (Brighina et al., 2004). The 12
total stimulation sessions significantly reduced migraine attacks,
as well as disability and use of abortive medication, respect to
baseline. Significant differences in outcome measures were not
observed in the placebo group. However, these results were not
confirmed in a subsequent study in 18 migraine patients (9),
who received a similar protocol of 1600 pulses 10 Hz stimulation
over the DLPFC per session, for 23 sessions. After 8 weeks of
treatment, the number of headache days decreased significantly
more in the sham group than in the active rTMS-DLPFC group
(Conforto et al., 2014).

Repetitive TMS applied over the primary motor cortex was
also investigated in migraine, in a RCT of 100 episodic or
CM patients. In this study, rTMS as preventive treatment was
given in sessions of 600 pulses at 10 Hz on alternate days
(Misra et al., 2013). The treatment was capable of significantly
reducing headache frequency (from 78.7 to 33.3%) respect to
placebo. Another study on 29 total CM patients compared
the effects of rTMS over the motor cortex versus botulinum
toxin-A injections (Shehata et al., 2016). The protocol was
designed to deliver 20 trains of 100 stimuli at 10 Hz in tri-
weekly sessions over 1 month. The treatment showed a reduction
in headache frequency and a comparable efficacy to Botox,
with, however, a less sustained effect. In a randomized trial
using add-on deep rTMS vs. standard treatment, treatment-
resistant CM patients received 10 Hz trains of 600 pulses
in lateral and medial part of the prefrontal cortex bilaterally
(according to authors the stimulation should reach DLPRF and
orbitofrontal cortex). The 4 weeks period produced a decrement
in pain intensity, number of headache days and also depressive
symptoms compared to the pharmacological group (Rapinesi
et al., 2016).

The biological rationale for the use of rTMS as a preventive
treatment for migraine originates from the hypothesis of an
abnormal cortical excitability of the migraineous brain. Repetitive
TMS, with its effects on cortical depolarization and neuronal
plasticity, could potentially repair this abnormal excitability in
migraineurs. In an RCT by Teepker et al. (2010), the effects
of low frequency rTMS in migraine prophylaxis were studied,
based on the hypothesis of hyperexcitability in the migraineous
brain. Interestingly the study, in which 27 migraneurs received
500 pulses of 1 Hz stimulation over the vertex, failed to show
a significant decrease in headache frequency respect to sham
stimulation (Teepker et al., 2010).

In a proof of concept studies, the efficacy of rTMS quadripulse
applied over the visual cortex has recently been completed,
however, results are still not available. The trial has been
preceded by a proof of concept study for CM prevention

(Sasso D’Elia et al., 2012), which showed a ≥50% reduction of
migraine days in 40% of the 12 total participants.

The usefulness of modifying habituation deficit was partially
confirmed by a recent study showing that active rTMS
stimulation was capable of reducing the habituation deficit,
measured through somatosensory evoked potentials, in 56
migraineurs; furthermore this normalization correlated with a
parallel reduction in headache severity following 1 month of
treatment (Kalita et al., 2017).

To date, one open-label clinical trial with cTBS has been
implemented in migraine patients. It included both episodic
(n = 6) and chronic patients (n = 3). The cTBS treatment
improved the baseline by a 29% of total headache days
immediately after the end of the stimulation and by −35% in
the 4 weeks follow-up. Similarly, it reduced migraine attacks by
66% by the end of the treatment and by 88% 4 weeks later (Chen
et al., 2016). Since no subanalysis is provided, drawing a firm
conclusion in not possible.

Non-invasive Transcranial Direct Current
Stimulation (tDCS)
To date only few studies selectively investigated the role of tDCS
in CM (Dasilva et al., 2012; Rocha et al., 2015; Andrade et al.,
2017) (see Table 2). In some other studies, chronic patients
were recruited together with episodic, so that drawing a firm
conclusion in not possible in the absence of a separate subanalysis
(Antal et al., 2011; Rocha et al., 2015).

The first tDCS trial including CM patients was that performed
by Antal et al. (2011). This was a randomized sham-controlled
trial with crossover design. Out of the 30 patients enrolled,
26 participants complete the protocol and were included into
the analysis. According to the hypothesis of hyperexcitability
of the visual cortex, authors applied an inhibitory stimulation
on the occipital cortex. Intensity of the active stimulation was
1 mA for 15 min every 2nd day for 3 weeks. Trial’s results were
almost negative: neither active nor sham stimulation provided an
improvement in primary endpoint (migraine attacks). Although
active stimulation improved migraine-related days (−42.5%),
mean duration of attacks (−19.5%) and intensity of pain
(−22.6%), only the latter barely differed significantly from the
sham treatment (p = 0.05).

The second RCT by Dasilva et al. (2012) included ten
sessions over a 4 weeks period of anodal (or sham) tDCS
over contralateral-to-pain M1 (Dasilva et al., 2012). Stimulation
protocol used 2 mA for 20 min two or three times a week. This
trial was aimed only to CM patients and recruited 13 patients
distributed in a non-crossover design with 5 patients enrolled in
the sham and 8 to the active group. The outcome measure was
the reduction in pain. Although the difference between active and
sham group was only close to significance immediately after the
stimulation, active group showed clinical benefit overtime and
significance difference was found after 4 months (−36.96%) and
a trend for reduction in length of migraine episodes (in hours)
of 88.75%. In this study, the sample size is quite small, and self-
reported questionnaire and not a headache diary have been used
to assess pain scores.
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In a recent three arm study, one arm (M1-a) received active
anodal stimulation aimed on left primary motor (M1), a second
arm (DLPFC-a) received anodal tDCS on left dorsolateral
prefrontal cortex (DLPFC) and a sham arm (SHAM-a) received
sham stimulation also on left primary motor (M1) (Andrade
et al., 2017). Thirteen CM patients were distributed in the three
groups: 6 in the M1-a, 3 in the DLPFC-a, 4 in the SHAM-
a. Stimulation protocol involved 12 sessions of 2 mA lasting
20 min, three times a week for 4 weeks. tDCS on DLPFC was
more effective than M1 and sham stimulation. Direct comparison
between M1 and DLPFC is lacking in the paper, except for the fact
that M1 stimulation was associated to a higher risk of side effects
(namely: headache, burning, and sleepiness).

Peripheral Nerve Stimulations
Non-invasive Vagus Nerve Stimulation (nVNS)
The initial use of vagus nerve stimulation to treat headaches first
came from the epilepsy field, following several anecdotal reports
of migraine improvement in patients with comorbid epilepsy
who had been implanted with the device (Sadler et al., 2002; Hord
et al., 2003).

The breakthrough for its use in migraine therapy certainly
came with the development of portable devices, which allow
to stimulate the vagus nerve transcutaneously at the neck
(GammaCore R© device) or in its auricular portion (Nemos R©

device) in a non-invasive way.
The hypothesis for the effect of vagus nerve stimulation

in headache lies on the presence of distinct anatomical and
functional connections between the vagus nerve and the
trigeminal complex (Kaube et al., 1993; Ruggiero et al., 2000).
Furthermore, animal evidence has shown that vagus stimulation
can reduce neuronal activity and glutamate levels in the spinal
trigeminal nucleus, as well as pain (Ren et al., 1989; Randich
et al., 1990; Lyubashina et al., 2012) and allodynia (Oshinsky et al.,
2014) in the trigeminal area. This evidence overall seems to point
to a nociceptive ascending modulating effect of the vagus nerve
on the trigeminal system.

The GammaCore R© device was initially trialed for acute
migraine therapy. In a first pilot study on 30 episodic migraine
patients (27 of which entered the final analysis) 80 total attacks
were treated with two right-sided 90 seconds sessions. A total of
22% of patients were pain free from moderate/severe attacks at
2 h, and 43% had pain relief at 2 h; 38% of the milder attacks
were resolved at 2 h (Goadsby et al., 2014). Barbanti et al. (2015)
administered the GammaCore R© device acutely in two unilateral
120 s doses in 48 patients; 14 subjects had high frequency episodic
migraine and 36 CM. Results on 131 treated attacks showed a
39.6% pain free and 64.6% pain relief rate at 2 h from treatment
(Barbanti et al., 2015). Side effects in both studies were transient
and mild.

In the preventive setting, the GammaCore R© device has been
used in a limited number of studies and it has to date not
shown similar encouraging effects. A recent double-blind, sham-
controlled RCT was performed on 59 CM patients who were
treated with two unilateral 90 s doses three times a day for
2 months, and subsequently for an open label phase lasting
up to 6 months (Silberstein et al., 2016). Outcomes were not

significantly different between the sham and active stimulation
group; however, at the end of the open label phase, the group
initially assigned to nVNS - i.e., in the randomized phase- showed
a significant reduction in headache days respect to baseline.

The Nemos R© device, developed in Germany, is used to
stimulate the auricular branch of the vagus nerve through an
electrode worn in the ear. In a recent RCT the efficacy of the
device for preventive use was tested in 46 chronic migraineurs.
Treatment was given in 4-h daily sessions with either active
(25 Hz) or sham (1 Hz) stimulation (Straube et al., 2015).
Results from this study were, however, disappointing, showing
that subjects in the sham arm had a higher reduction in headache
days than the ones receiving active stimulation.

Transcutaneous Supraorbital/Occipital Electrical
Neurostimulation (tSNS and tONS)
Although it has been applied with clinical benefit in prevention
of episodic forms, a clinical benefit from transcutaneous
supraorbital electrical neurostimulation (tSNS) in CM is not
established yet, although a clinical trial is currently ongoing
(ClinicalTrials.gov identifier: NCT02342743). Small, open-label
study showed that half of CM patients involved in the study had
a reduction superior to 50% of the baseline number of headache
days (Di Fiore et al., 2017).

Although the exact mechanism of action is not completely
understood, some hints may come from one FDG-PET study on
migraineurs that showed the effects of a 4-weeks long treatment
with transcutaneous electrical neurostimulation (Magis et al.,
2017).

In a sample of 10 subjects with migraine without aura,
pretreatment FDG-PET showed a marked hypometabolism in the
anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC).
At the 3 weeks follow-up, after tSNS treatment, patients reported
at the group level a clinical benefit. The follow-up FDG-PET
showed normalization in glucose metabolism in ACC and OFC.
This change could be due either to stimulation effect or patients’
clinical improvement. However, some data points toward a slow
neuromodulatory effect exerted by tSNS rather than to clinical
improvement itself. The major fact in this direction is this
increase didn’t differ between responders and not responders, so
that a direct connection to clinical improvement seems relatively
unlikely. One limit of this reasoning is that the sample size of
the study was quite small, so that lack of difference may derive
from low statistical power (Magis et al., 2017; Russo et al., 2017).
However, both baseline hypometabolism of prefrontal cortices
and their increase and after therapy increase were supported
by other studies on neurostimulation in migraine (Matharu
et al., 2004), cluster headache (Magis et al., 2011), or trigeminal
neuropathic pain (Willoch et al., 2003).

PROTOCOL INDICATIONS, NUANCES
AND FUTURE PERSPECTIVE

We have briefly reviewed the evidence supporting the idea
that synaptic and anatomical, plasticity causes the state
of hyperexcitability in CM. Both clinical (allodynia) and
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neurophysiological (pattern indistinguishable from the one
found in ictal phase of episodic migraines) are in line with this
interpretation.

For this reason, techniques of neurostimulation, which can
modify in a predictable manner the thalamocortical interplay
and, at the same time, induce plasticity and metaplasticity
processes in neurons, are of primary importance in the treatment
of migraine and especially CM. We know that cortical stimulation
by tDCS and TMS can influence cortical and corticothalamic
circuits and single pulse TMS also blocks the nociceptive
neurotransmission from the thalamus to the cortex (Andreou
et al., 2016; Sankarasubramanian et al., 2017).

In brief, what we can do with neurostimulation is

(1) increase or decrease cortical excitability in a target
regions;

(2) modulate the interhemispheric and intrahemispheric
functional connectivity by acting on functional connected
brain areas in a facilitatory or inhibitory way;

(3) modulate the effect of a subsequent NIBS treatment by
previously inducing LTP-like plasticity by means of a
priming NIBS stimulation.

However, despite this large choice of stimulation, to date no
clear indications have pointed out from the therapeutic studies
performed until now, so that neither rTMS nor tDCS received
any recommendation for use in migraine, except for the sTMS
that is supported National Institute for Health and Clinical
Excellence (NICE) in the United Kingdom for acute treatment
(Lefaucheur et al., 2014, 2017). Several reasons account for that
result.

In first place, some issues with therapeutic neuromodulation
in CM are intrinsically related to the method. Some of them
have been addressed in a recent paper by (Thibaut et al., 2017),
where they deeply analyze some reasons why neuromodulation
may fail. One point that they raised is very interesting because
it fully influences some of the CM neuromodulation trials
in this review: the intensity-related effect. In fact, previous
studies showed that cathodal tDCS on the left motor cortex
may have inhibitory effects when delivered at 1 mA, while
excitatory effects when delivered at 2 mA (Batsikadze et al.,
2008). In the last 5 years, safety limitations of tDCS changed
and the maximum applicable limit passed from 1 to 2 mA.
For this reason, some of the older trial, like (Antal et al.,
2011), used cathodal stimulation on visual cortex at 1 mA
to inhibit supposed hyperexcitability, while more recent trials,
like (Rocha et al., 2015), used 2 mA stimulation for the same
purpose. In this latter trial, the cathodal stimulation had no effect
on phosphenes threshold that was used as neurophysiological
measure. In the former trial, no neurophysiological measurement
was used.

The second major point is that most of trials recruited small
number of patients, so that they are generally underpowered. Not
all of them, however, provided any neurophysiological surrogate
marker of response beyond clinical improvement. On one hand,
the response in migraine is only based on anamnestic recall
and diary aid and, in CM patients with higher number of

headache days, slight changes can go unnoticed. On the other
hand in case of response the exact neurophysiological mechanism
remains only speculative. Moreover some recent trial showed
that neurophysiological modifications could also precede the
clinical improvement suggesting how it is achieved (Viganò et al.,
2018).

Another critical point is the choice of the clinical outcome
measure. Some of the trials considered various combinations of
pain intensity, attack frequency, headache days, and medication
intake. This is problematic for two reasons. First, it does not
allow comparing all trials easily. To over come this problem
the International Headache Society released the updated
guidelines for pharmacological and non-pharmacological
controlled trials in episodic and CM (Silberstein et al.,
2008).

Patient’s choice is fundamental in such trial. Clinically and
neurophysiologically, CM patients differ from EM patients, and
they should be kept separated in clinical trials. Some of the
trials presented included both EM and CM patients, without
better definition or subgroup analysis. By the same token, also
patient with MOH should be object of different trials or at
least subanalysis, especially when neurophysiological outcomes
are considered since we know that some excitability indexes as
sensitization and habituation vary in MOH vs. pure CM patients,
and moreover, with the category of MOH, amongst triptans and
analgesic overusers (Coppola et al., 2010).

In conclusion, at present, the major limitation of therapeutic
neuromodulation studies is that only few studies also provided
information on neurophysiological correlates produced by the
stimulation and in some cases the clinical benefit was not
associated to evident changes in neurophysiological parameters.
In this line, it seems promising that targeting habituation deficit
produced some reproducible results in episodic migraineurs
(Viganò et al., 2013; Cortese et al., 2017b), however, it was not
true at present for CM patients (Sasso D’Elia et al., 2012).

Further study, combining therapeutic and neurophysiological
investigations (also aimed to investigate plasticity changes)
are then needed to better understand the complexity of
NIBS restorative effects and define the better therapeutic
interventions.
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