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Abstract Direct Numerical Simulations of a turbulent channel flow have been
performed. The lower wall of the channel is made of staggered cubes with a
second fluid locked in the cavities. Two viscosity ratios have been considered,
m = µ1/µ2 = 0.02 and 0.4 (the subscript 1 indicates the fluid in the cavity and
2 the overlying fluid) representing superhydrophobic surfaces (SHS) and liquid
infused surfaces (LIS) respectively. A first set of simulations with a slippery
interface has been performed and results agree well with those in literature for
perfect slip conditions and Stokes approximations.

To assess how the dynamics of the interface affects the drag, a second
set of DNS has been carried out at We = 100 and 1, 000 corresponding to
We+ ≃ 10−3 and 10−2. The deformation of the interface is fully coupled to
the Navier-Stokes equation and tracked in time using a Level Set Method.
Two gas fractions, GF = 0.5 and 0.875, have been considered to assess how
the spacing between the cubes affects the deformation of the interface and
therefore the drag. For the dimensions of the substrate here considered, under
the ideal assumption of flat interface, staggered cubes with GF = 0.875 provide
about 20% drag reduction. However, a rapid degradation of the performances
is observed when the dynamics of the interface is considered, and the same
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geometry increases the drag of about 40% with respect to a smooth wall. On
the other hand, the detrimental effect of the dynamics of the interface is much
weaker for GF = 0.5.

Keywords Drag reduction · Liquid Infused Surfaces · Super-Hydrophobic
surfaces · DNS · Level Set

1 Introduction

Theoretical studies and numerical simulations have proved that Superhydro-
phobic Surfaces (SHS) and Liquid Infused Surfaces (LIS) reduce the drag with
respect to a smooth wall. SHS and LIS consist of a textured surface that traps
either air or an oil which sustains a slip velocity and reduces the wall shear
stress. In general, SHS should reduce more the drag because the viscosity
of the fluid in the substrate is much smaller than that of oil. On the other
hand, LIS have been shown to be more resistant to pressure fluctuations [1],
and still have potential to reduce the drag up to 35% [2] in turbulent flow.
For increased robustness of LISs patterned wettability have been proposed to
prevent drainage of the infused liquid [3]. It has been proven that this friction
reduction is kept as long as the interface remains flat without failure.

SHSs have been studied extensively by numerical simulations. Given the
high value of the viscosity of water compared to that of air, for continuity of
the shear stress at the interface, the velocity gradient on the air-water interface
is expected to be very small. Based on this, in most of the numerical studies
SHS have been modeled as alternating regions of no-slip and free-slip boundary
conditions without solving the flow in the texture ([4–7]).

The assumption of perfect slip cannot be made in case of LIS because the
viscosity of the lubricant is of the same magnitude order of that of the main
stream and then the shear at the interface is not zero. Fu et al. [8] performed
DNS of two superposed fluids in a turbulent channel with one textured wall
made of either longitudinal or square bars for a wide range of viscosity ratio,
from SHS to LIS. The interface between the two fluids was forced to be hori-
zontal and slippery in the streamwise and spanwise direction. Results agreed
well with the model of Schönecker et al. [9] to determine the slip length for a
given gas fraction of the substrate. They also demonstrated that correlation
between the amount of drag reduction and the slip length in wall units de-
veloped by Rastegari and Akhavan [10] can be extended to LIS. Therefore,
the drag reduction achieved using LIS can be described using the framework
established for superhydrophobic surfaces.

Under the ideal condition of a flat interface, the drag is reduced by both
LIS and SHS. However, failure is observed in experiments due to drainage of
the air/oil from the cavities and the consequent loss of the Cassie state [1,
11,12]. Golovin et al. [13] explained that in real applications the stagnation
pressure will expose asperities or produce meniscus curvature that ultimately
will increase drag in SHSs.
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Although the robustness and stability of the interface is clearly of great
importance, all numerical simulations in literature, to our knowledge, assume
a flat interface between the two fluids, while linear analysis of Hopper and
Boyd [14] and Hinch [15] has shown that a discontinuity of viscosity between
the two fluids induces a flow instability and deformations of the interface.

The deformation of the interface has been studied by Seo et al. [16]. They
imposed alternating free-slip and no-slip boundary condition on a horizontal
wall to mimic an array of aligned cubes. The calculated pressure field was used
as forcing to calculate the deformation of the interface. They attributed the
failure of the interface to an increased pressure fluctuation that develop at the
leading edge of posts textures in correspondence of the stagnation points. A
relationship of texture size with surface tension was proposed by the authors
to predict potential rupture of the air-water interface and an upper bound on
the texture size is suggested for robust operation of SHSs. This limit is only
an upper bound because the dynamics of the interface is not coupled to the
flow field, and the pressure in a real scenario could be larger.

In the present paper we further corroborate their findings by coupling the
dynamics of the interface with the solution of the Navier-Stokes equations.
Both fluids are solved and the texture is modeled with an immersed boundary
method. The objective of the paper is to quantify the deformation of the
interface and how it affects the drag for two different gas fraction GF = 0.5
and GF = 0.875, varying the Weber number.

2 Numerical procedure

We consider the motion of two superposed, incompressible and im-
miscible fluids in a turbulent channel with a textured surface of
staggered cubes. By using the channel-half height h and the bulk
velocity Ub as length and velocity scales, density and viscosity of
fluid 2 (main stream) as reference quantities, the Navier Stokes and
continuity equations can be written in dimensionless form as

∂Ui

∂t
+

∂UiUj

∂xj

= −
∂P

∂xi

+
1

Re

∂

∂xj

[2µ̃(φ)Sij ] +Πδi1 +
1

We
κniδ(φ) (1a)

∂Ui

∂xi

= 0 (1b)

where Ui are the velocity components in the streamwise (i = 1), wall-normal
(i = 2) and spanwise direction (i = 3), Π is the pressure gradient required
to maintain a constant flow rate, P is the pressure, n the normal vector to
the interface, φ is the signed distance function from the interface, δ is the
Dirac delta function at the interface (φ = 0), κ is the curvature, and Sij is the
symmetric part of the velocity gradient tensor. The function φ is used to mark
the two fluids and it also appears in the non-dimensional factor µ̃ = m+ (1−
m)H , where m = µ1/µ2 is the viscosity ratio and H the Heaviside function,
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which is H = 0, when φ < 0 (fluid 1, in the substrate), and H = 1 when
φ > 0 (fluid 2). The two fluids are assumed to have the same density.
The Reynolds number is Re = Ubh/ν2 = 2, 800 where ν2 is the kinematic
viscosity of the overlying flow and it corresponds to a friction Reynolds number
Reτ = uτh/ν2 = 180 for a smooth channel where uτ is the friction velocity.
The Weber number is We = ρU2

b h/σ, σ being the surface tension.
The Navier Stokes equations have been discretized in a Cartesian coor-

dinate system using a staggered configuration for the velocity components
and second order finite difference approximations. The discretized system is
advanced in time by a third order Runge-Kutta algorithm coupled with the
Crank-Nicolson scheme combined with the fractional step method where vis-
cous terms are treated implicitly and the convective terms explicitly. The large
sparse matrix resulting form the implicit terms is inverted by an approximate
factorization technique. At each time step the momentum equations are ad-
vanced with the pressure of the previous step, obtaining an intermediate non-
solenoidal velocity field. Then the Poisson equation is solved to enforced the
solenoidal constraint, through Fourier transform method. The numerical de-
tails can be found in Orlandi [17]. The roughness is modeled by the efficient
immersed boundary technique described in detailed by Orlandi & Leonardi
[18].

The tracking of the interface is achieved by solving the level set equation

∂φ

∂t
+

∂(Uiφ)

∂xi

= 0, (2)

which is written in conservative form due to flow incompressibility. The numer-
ical discretization of equation 2 presents challenges related to the sharp varia-
tion of viscosity µ̃(φ) across the interface as well as the presence of the Dirac
delta function for the application of the force due to surface tension. This prob-
lem is alleviated by giving a fixed thickness ǫ to the interface [19], proportional
to the mesh spacing and introducing accordingly a smeared Heaviside function
(Hǫ) and mollified delta function (δǫ). Note that while this spreading of
the interface is essential to avoid the onset of numerical oscillations
it should be chosen as small as possible (2 points on both sides are
a common value) to guarantee the representation of a “sharp” in-
terface on the mesh. The level set equation is solved using a high-order
accurate approximations for the convective term to avoid un-physical oscilla-
tions. A weighted essentially non oscillatory (WENO) reconstruction is used,
which provides third order accuracy for the spatial derivatives [20]. The level
set equation is advanced in time using the same third-order Runge Kutta
algorithm implemented to solve the Navier Stokes equations.

Equation 2 will move correctly the zero level set, however it does not guar-
antee that φ will remain a distance function. For this purpose a re-initialization
method is performed at each time step. This procedure is carried out by fol-
lowing the method developed by [21], which guarantees to conserve the mass
of each fluid with high accuracy. To apply the surface tension, the continu-
ous surface force (CSF) method is used, which adds the interfacial tension
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Fig. 1 Time averaged velocity vectors superposed to color contours of streamwise velocity:
We = 0: (a) GF = 0.875, m = 0.02, (b) GF = 0.875 m = 0.4, (c) GF = 0.5, m = 0.02, (d)
GF = 0.5, m = 0.4

as a body force to the discretized Navier Stokes equation. For an accurate
evaluation of the curvature the PROST method [22] is used in our level set
formulation.

3 Flow Configuration

Direct numerical simulations of two superposed fluids in a channel with a
textured surface made of staggered cubes have been performed. The height of
the cubes in the substrate is k = 0.05h. Two gas fractions (GF) are considered
with pitch p/k = 2 for a GF = 0.5 and p/k = 4 for a GF = 0.875 (Fig.1). The
gas fraction is defined as the ratio of fluid interface area to the total area of
the surface. Two viscosity ratios are considered m = µ1/µ2 = 0.02 and 0.4, to
mimic SHSs (water over air) and LISs and (water over heptane) respectively.
A first set of simulations, with an ideal slippery interface, undeformable, at
We = 0 has been performed. In order to study more realistic cases with a finite
surface tension, two sets of simulations have been carried out for We = 100
and 1, 000, corresponding in viscous units to a We+ ≃ µ2uτ/σ ≃ 10−3 and
10−2 respectively. Note that given the Reynolds and Weber numbers
here investigated, assuming a water-air surface tension of 0.07 N/m,
kinematic viscosity of water 10−6m3/s and water density of 103kg/m3,
the the flow configurations simulated in this work can be achieved
experimentally only in microchannels. Results are compared with those
obtained with a flat interface (at We = 0) to highlight the detrimental effect
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of the deformation of the interface to the drag reduction. We point out that
in our approach the interface between the two fluids is assumed to
be effectively pinned at the post edges. As discussed by Seo et al.
[16], this assumption can be interpreted as an asymptotic model
for a contact line moving on a round corner whose curvature is
much smaller than the post size and with a microscopic contact
angle that is always between the nominal advancing and receding
contact angles. We also highlight that the goal of the present work
is to investigate the effect of the surface tension on turbulent drag
reduction and no attempts have been made to study the conditions
for the interface failure, with the subsequent transition from the
Cassie-Baxter to the Wenzel state.

The computational box is 6.4h× 2.05h× 3.2h in the streamwise (x1), wall-
normal (x2) and spanwise (x3) directions respectively. The additional 0.05h
increase in channel height corresponds to the cavity height of the textured
surface with plane of the crest at y/h = −1. Periodic boundary conditions
are applied in the horizontal direction and no-slip condition is imposed at the
walls. The computational grid is 1280 × 384 × 640 in the streamwise, wall-
normal and spanwise directions respectively. A non-uniform grid is used in the
wall normal direction with 40 points clustered within the textured substrate.
All the simulations are carried out imposing a constant flow rate.

4 Ideal case, flat interface

Time averaged velocity vectors in horizontal and vertical planes are shown in
Fig. 1. For a gas fraction GF = 0.5, the momentum near the side walls of the
cavities is very small, and the flow structure is mainly two-dimensional with
a re-circulation in the vertical plane between two consecutive cubes, similar
to that occurring over squared cavities. For the larger gas fraction, the flow
in the textured surface becomes three-dimensional, resembling more closely
the wake behind a wall mounted isolated cube. On the horizontal plane, two
separated regions are observed behind the cubes, with opposite circulation.
Two streams from the sides of the cube merge downstream the separated
regions and in correspondence, an ejection of the flow is observed. The upward
flow is redirected in the streamwise direction by the main stream and a re-
circulation is formed upstream of the next cube. The length of this separated
region in the vertical plane is much larger than that relative to GF = 0.5.
Comparing the two set of simulations at different viscosity ratio, in general a
similar flow structure is observed in the substrate, however, the intensity of
the velocity is larger for SHS (due to the smaller viscosity in the substrate,
m = 0.02). Near the leading edge of the cubes velocity vectors are tilted
upward. This tendency to ejections at the leading edge of the cube will be
addressed further in the next section as it is expected to promote a deformation
of the interface (although for We = 0 the surface tension is large enough to
prevent any deformation of the interface).
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Fig. 2 Time averaged streamwise velocity on the horizontal plane at the crest plane for
We = 0: (a) with gas fraction GF = 0.875, viscosity ratio m = 0.02, (b) GF = 0.875,
m = 0.4, (c) GF = 0.5, m = 0.02, (d) GF = 0.5, m = 0.4.

The slip velocity (Us), that is the time averaged velocity at the interface
between the two fluids, is highly anisotropic for the case with sparse cubes
(GF = 0.875) as shown in Fig.2. Slippage is large in the longitudinal streaks
with no cubes and much smaller between two consecutive cubes aligned in
the streamwise direction. In the limit of negligible viscosity in the textured
surface, Ybert et al. [23] developed a model correlating the slip length (b) and
the gas fraction for an array of aligned cubes

b/p = 0.325/[(1−GF )1/2]− 0.44 , (3)

where the slip length can be defined as b = Us/∂U i/∂n|y=−h, [24,25] repre-
senting the distance at which the mean velocity would be zero extrapolating
into the surface the mean velocity gradient at the interface ∂U i/∂n|y=−h.
While in Ybert et al. [23] the cubes are aligned with the flow direction and
equally spaced in streamwise and spanwise direction, here each row is shifted
half wavelength in the spanwise direction with respect to the previous one.
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Fig. 3 Normalized slip length b/p as a function of gas fraction: (2) GF = 0.5; (△) GF =
0.875, empty symbols m = 0.02, filled m = 0.4. ( ) eq.3 from Ybert et al [23]. The model
from Schönecker et al. [9] is also included as reference: ( ) and ( ) for transversal bars
with m = 0.4 and 0.02 respectively; ( ) and ( ) for longitudinal bars with m = 0.4 and
m = 0.02 respectively.

Considering the flow pattern in Fig. 2, and the predominance of the high
speed streaks on the overall slip velocity, the present configuration would have
a similar flow structure of an aligned array of cubes with a pitch equal to
p̃ = 2k. The gas fraction of the equivalent array of aligned cubes would be
GF = 1 − (k/p̃)2 = 0.75. Using p̃ = 2k, and GF = 0.75 the results with
m = 0.02 compare well with eq.3 as shown in Fig. 3. The value of the slip
length is slightly larger than that predicted by the model. In fact, while the
slip velocity in the high speed streak should be basically the same for both
configurations (aligned cubes and staggered cubes), the spacing and velocity
between two streamwise aligned cubes is larger in our layout with respect to
that considered by Ybert et al [23]. Given the predominance of the high speed
streaks observed in Figure 2, results are also compared with the model pro-
posed by [9], which incorporates the effects of viscosity of the fluid within the
cavity when exposed to Stokes flow for longitudinal and square bars:

b =
p ln

(

sec
(

aπ
2

))

cπ + m
2aD

ln

(

1+sin(πa
2 )

1−sin(πa
2 )

) (4)

where D is a geometric parameter related to the maximum local slip length,
m is the dynamic viscosity ratio between the external fluid and lubricant (i.e.
m = µlub/µext), and c = 1 and 2 for streamwise and transverse grooves,
respectively. Using the modeling derived by [9], given the area fraction a, D
can be calculated for a given surface morphology. In particular for transverse
grooves D ≈ 0.123.

Present numerical results, normalized by the equivalent pitch (p = 2k)
agree well with equation 4 as shown in Fig. 3 and seem to indicate that arrays
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Fig. 4 Drag reduction as function of slip length b+ in wall units: staggered cubes GF =
0.5,m = 0.02 (2); staggered cubes GF = 0.5,m = 0.4 (�); staggered cubes GF = 0.875,
m = 0.02 (△); staggered cubes GF = 0.875,m = 0.4 (N); longitudinal bars from [8], GF =
0.5: k = 0.05h and m = 0.1 (♦); k = 0.05h and m = 0.4 (�); k = 0.1h and m = 0.1 (#);
k = 0.1h and m = 0.4 ( ); ( ) analytic results of Rastegari and Akhavan [10].

of staggered cubes with small gas fraction behave as transversal rods, where
the streamwise spacing is the dominant length scale. When the gas fraction is
much larger and the spanwise spacing allows the formation of streaks without
obstacles perpendicular to the main stream, the slip length is similar to that
of longitudinal bars with an equivalent pitch equal to the periodicity of the
longitudinal alley of high speed fluid.

Drag reduction (DR = (τ0 − τ)/τ0, where τ0 is the wall shear stress of a
smooth channel and τ is the shear stress of either SHS or LIS) as function of
slip length b+ in wall units is shown in Fig.4. Results are in good agreement
with the correlation proposed by Rastegari and Akhavan [10]

DR = b+/[b+ + (Re/Reτ)]. (5)

The higher is the gas fraction, the larger is the amount of drag reduction.
The maximum DR, for the value of p+ here considered is of the order of 20%
for staggered cubes with GF = 0.875. For a given substrate, SHS presents a
smaller drag than LIS. Regardless of the different viscosity ratio and geometry
of the textured surface, the qualitative agreement with eq. 5 indicates that the
mechanism leading to drag reduction is to a good approximation dominated
by the overall slippage and reduction of the shear for both SHS and LIS.
With respect to eq. 5, which assumes a shear-free boundary condition over the
gas/liquid region, present simulations account for the frictional and pressure
drag taking place in the underlying fluid. It is therefore expected that the
amount of drag reduction is lower, the difference corresponding to the drag
below the crests plane. Moreover, eq. 5 does not take into account the presence
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Fig. 5 (a) Wall shear stress τ normalized by the wall shear stress of the smooth wall τ0:
We = 0, GF = 0.5, m = 0.02 ( ); We = 0, GF = 0.5, m = 0.4 ( ); We = 0,
GF = 0.875, m = 0.02 ( ); We = 0, GF = 0.875, m = 0.4 ( ). Solid lines are for
We = 1000 and dashed for We = 100. The simulations at We > 0 are restarted from those
at We = 0 as indicated by the vertical dotted line.

of spanwise slip, which reduces the amount of achievable drag reduction, as
shown by Rastegari and Akhavan [10].

5 Deformable interface

A second set of simulations has been performed at Weber numbers We = 100
and 1, 000, corresponding to some approximation to We+ ≃ 0.001 and 0.01
respectively (Table 1). In such cases, the interface can deform in addition
to providing a slippage. The simulations started from the last velocity and
pressure field obtained at We = 0, to monitor how rapid is the deterioration
of performances when the interface deforms. The variation in time of the wall
shear stress, normalised by that of the smooth channel is shown in Figure
5. The wall shear stress over cubes with GF = 0.875 increases very rapidly
when the Weber number is increased from 0 to 100 or 1,000. Within about 20
non–dimensional time units the drag becomes larger than that of the smooth

Table 1 Summary of the Weber number in viscous units for the different cases studied

m GF We We+

0.02 0.5 1000 1.0168 × 10−2

0.02 0.875 1000 1.1592 × 10−2

0.4 0.5 1000 1.0135 × 10−2

0.4 0.875 1000 1.1205 × 10−2

0.02 0.5 100 1.0318 × 10−3

0.02 0.875 100 1.1284 × 10−3

0.4 0.5 100 1.0242 × 10−3

0.4 0.875 100 1.1319 × 10−3
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Fig. 6 Color contours of time and phase averaged pressure for m−0.02: (a,b) GF = 0.5 and
We = 0; (c,d) GF = 0.5 and We = 1, 000. (e,f) GF = 0.875 and We = 0; (g,h) GF = 0.875
and We = 1, 000.

wall. Coupling the deformation of the interface with the flow field is very
important, in fact, GF = 0.875 and m = 0.02, which is the most effective
geometry reducing the drag under the ideal condition of We = 0, turns out to
increase the drag in more realistic conditions with a finite surface tension and
a Weber number We = 100− 1, 000. Results are qualitatively similar for both
Weber numbers and viscosity ratio.

For a smaller gas fraction, GF = 0.5, the increase in drag due to the
deformation of the interface is much smaller. Regardless of the Weber number,
the drag remains similar to that of a smooth wall, the reduced shear at the
wall being compensated by the drag inside the cavities.

The increase in drag is due to an increased pressure drag in the substrate.
At We = 0, a stagnation point is observed at the upper corner of the cubes
(Figure 6), as shown in previous studies of the flow over rough walls made of
cubes. The intensity of the stagnation pressure increases with the gas fraction.
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In fact, the larger is the gas fraction, the larger is the slip velocity and therefore
the pressure at the edge of the cube (scaling to some approximation to the
square of the local slip velocity). For GF = 0.5, since we consider a pinned
interface, and the spacing between cubes is small, the changes in the pressure
field are weak.

On the other hand, for GF = 0.875, the distance between two cubes aligned
in streamwise direction is large (i.e. λx = 4k) and the deformation of the
interface, despite pinned to the cubes, is significant as shown in figure 7. In
spanwise direction, the larger deformation is observed in the center between
two consecutive cubes. In the streamwise direction, the larger oscillation of the
interface is in proximity of the leading edge of the cubes, where the stagnation
pressure is larger. This is also consistent with the tendency to have ejections
at the leading edge of the cubes discussed in Fig.2. The oscillation of the
interface increases further the momentum transfer in the texture and as a
consequence, the stagnation pressure becomes much larger than that at We =
0. The corresponding increase of pressure drag overcomes the reduction of the
shear due to the flow in the cavities, and the drag becomes larger than that
over smooth walls.

Profiles of root mean square of pressure for We = 0 and 1, 000 are shown in
Figure 8. In the ideal case of a slippery interface, (We = 0), the case reducing
the drag the most, GF = 0.875, m = 0.02, presents pressure fluctuations
smaller than those relative to the flat channel almost up to the centerline. For
the other cases, in the inner part of the channel results agree well with those
of [26], the effect of either LIS or SHS being weak to the outer flow. Near
the crests plane, on the other hand, a large peak of pressure rms is observed.
This is due to the dispersive component of the pressure, resulting from the
spatial inhomogeneities in the mean pressure field shown in Fig.6. While for
the ideal case of We = 0 the increased pressure fluctuations remain confined
to a very thin layer near the interface, at We = 1, 000 (We+ ≃ 0.01) the
fluctuation of pressure penetrates a larger fraction of the flow. The differences
with respect to a smooth wall extend up to 0.2h above the crests plane which
in this case, similarly to rough walls, corresponds to 4 times the height of the
cubes. Both the mean pressure as well as the fluctuating pressure are larger at
We = 1, 000. Therefore, using results from perfect slip boundary conditions
may underestimate the pressure and then the deformation of the interface as
also discussed in Seo et al. [16] in the context of aligned cubes.

The effect of the deformation of the interface on the drag and increased
pressure fluctuations is further corroborated by visualization of iso-contours of
λ2 (Fig. 9). For a gas fraction GF = 0.5, the drag and pressure fluctuations are
in good approximation the same as those over a smooth channel. Consistently
no significant differences are observed in the coherent structure with respect
to the elongated vortices in smooth channels. On the other hand, for the drag
reducing configurations, at GF = 0.875 and We = 0, for both viscosity ratio,
the streamwise vortices are destroyed, due to a reduced shear at the wall. As
discussed previously, GF = 0.875 is the most sensitive to the We number,
and a significant deformation of the interface leads to an increased drag. The
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Fig. 7 Interface between the two fluids superposed to color contours of instantaneous pres-
sure,m = 0.02, We = 1000, Re = 2800, GF = 0.875: a) vertical section in spanwise direction
at x/h = 0.025; b) vertical section in streamwise direction at z/h = 0.225; c) vertical section
in streamwise direction at z/h = 0.025.
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Fig. 8 Pressure root mean square at We = 0 (a) and We = 1, 000 (b): GF = 0.5, m = 0.02
( ), GF = 0.5, m = 0.4 ( ) GF = 0.875, m = 0.02 ( ), GF = 0.875, m = 0.4 ( ).
DNS results from Moser et al. [26] for smooth channel with Reτ = 180 (#) are included as
reference.

iso-contours of λ2 consistently are more intense than those over a smooth wall
resembling more closely those relative to rough walls (Leonardi et al. [27]).

6 Conclusion

Direct Numerical Simulations of two superposed fluids in a channel have been
performed. One of the fluids is locked into a textured surface made of stag-
gered cubes on the lower wall of the channel. Two gas fractions (GF = 0.5 and
0.875) have been considered. A set of simulations has been carried out consid-
ering the case of a flat and slippery interface to the streamwise and spanwise
velocity but not deformable in the wall normal direction. This corresponds to
an ideal case of an infinite surface tension (and then We = 0) which damps
any deformation induced by the stresses normal to the interface. Results agree
well with the analytical models of [10,9,23] despite those were obtained with
Stokes approximation and we do not neglect the drag in the textured sur-
faces. Considering the mean flow patterns, we defined an equivalent pitch for
staggered cubes to use Ybert’s model for aligned cubes.

A second set of simulations, with a more realistic value of surface tension,
and Weber numbers We = 100 and 1, 000 corresponding to some approxima-
tion to We+ ≃ 10−3 and 10−2 has been performed. The dynamics of the inter-
face is coupled with the Navier-Stokes equations, and the interface is pinned to
the cubes. The simulations were started from a velocity field obtained for the
same gas fraction and viscosity ratio at We = 0. The degradation of perfor-
mances in terms of drag reduction are rather quick, and for a GF = 0.875 the
surface transitions from being drag reducing (about 20%) to drag increasing
(about 40%) within 20 non-dimensional time units. The drag does not increase
because the interface breaks and there is a transition from Cassie to Wenzel
state. In fact, the interface in the present simulations is pinned to the cubes.
We discovered that the dynamics of the interface alone, even when pinned to
the textured surface may increase the turbulence production and the drag.
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Fig. 9 Iso-contours of λ2 criterion for SHSs (m = 0.02). (a) GF = 0.5We = 0, (b) GF = 0.5
We = 1000, (c) GF = 0.875 We = 0, (d) GF = 0.875 We = 1000; LISs (m = 0.4). (e)
GF = 0.5 We = 0, (f) GF = 0.5 We = 1000, (g) GF = 0.875 We = 0, (h) GF = 0.875
We = 1000.
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Therefore, it is not sufficient that the surface remains in the Cassie state to
have drag reduction, but the deformation of the interface needs to be small
enough. The detrimental effect on the drag due of the deformation of the in-
terface increases with the gas fraction. In fact, present results show that, for a
quite dense substrate (GF = 0.5), the drag is almost unaffected by the Weber
number or in other words by the deformation of the interface.

While simulations and analytical derivation based on perfect slip conditions
(We = 0) predict very high value of drag reduction when the gas fraction is
large, present results seem to indicate that high gas fraction will actually in-
crease the drag due to the detrimental effect of the dynamics of the interface.
The gas fraction, on one hand, increases the theoretical drag reduction, by
allowing a larger slip length (or velocity). On the other hand, the deformation
of the interface, increases with the gas fraction, leading to an increase of drag.
Present results suggest that the gas fraction should be the results of an op-
timization process balancing the effects of an increased slip length with that
of an increased deformation of the interface. We also point out that the
present results have been obtained for staggered micro-posts and
cannot be directly extrapolated to different geometrical patterns.
Staggered microposts are known to develop very large stagnation
pressure upon impact of the flow to the back of the posts and are
characterized by a reduced stability of the interaface in comparison
with aligned micro-posts and longitudinal micro-grooves.
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