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Abstract Direct Numerical Simulations of a turbulent channel ow have been
performed. The lower wall of the channel is made of staggered ces with a
second uid locked in the cavities. Two viscosity ratios have been cosidered,
m = 1= , =0:02 and Q4 (the subscript 1 indicates the uid in the cavity and
2 the overlying uid) representing superhydrophobic surfaces ($1S) and liquid
infused surfaces (LIS) respectively. A rst set of simulations with a slippery
interface has been performed and results agree well with those in &tature for
perfect slip conditions and Stokes approximations.

To assess how the dynamics of the interface a ects the drag, a send
set of DNS has been carried out atWe = 100 and 1;000 corresponding to
We' ' 10 2 and 10 2. The deformation of the interface is fully coupled to
the Navier-Stokes equation and tracked in time using a Level Set Miod.
Two gas fractions, GF = 0:5 and 0875, have been considered to assess how
the spacing between the cubes a ects the deformation of the intdace and
therefore the drag. For the dimensions of the substrate here ewidered, under
the ideal assumption of at interface, staggered cubes withGF = 0:875 provide
about 20% drag reduction. However, a rapid degradation of the pgormances
is observed when the dynamics of the interface is considered, andh¢ same
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geometry increases the drag of about 40% with respect to a smaotwall. On
the other hand, the detrimental e ect of the dynamics of the interface is much
weaker for GF = 0:5.

Keywords Drag reduction Liquid Infused Surfaces Super-Hydrophobic
surfaces DNS Level Set

1 Introduction

Theoretical studies and numerical simulations have proved that Sperhydro-
phobic Surfaces (SHS) and Liquid Infused Surfaces (LIS) reduciae drag with
respect to a smooth wall. SHS and LIS consist of a textured surfacthat traps
either air or an oil which sustains a slip velocity and reduces the wall skar
stress. In general, SHS should reduce more the drag because thiscosity
of the uid in the substrate is much smaller than that of oil. On the oth er
hand, LIS have been shown to be more resistant to pressure uciations [1],
and still have potential to reduce the drag up to 35% [2] in turbulent ow.

For increased robustness of LISs patterned wettability have bee proposed to
prevent drainage of the infused liquid [3]. It has been proven that ths friction

reduction is kept as long as the interface remains at without failure.

SHSs have been studied extensively by numerical simulations. Giverhe
high value of the viscosity of water compared to that of air, for cortinuity of
the shear stress at the interface, the velocity gradient on the akwater interface
is expected to be very small. Based on this, in most of the numericaltsdies
SHS have been modeled as alternating regions of no-slip and free-stipundary
conditions without solving the ow in the texture ([4{7]).

The assumption of perfect slip cannot be made in case of LIS becagishe
viscosity of the lubricant is of the same magnitude order of that of he main
stream and then the shear at the interface is not zero. Fu et al. [8performed
DNS of two superposed uids in a turbulent channel with one textured wall
made of either longitudinal or square bars for a wide range of viscdty ratio,
from SHS to LIS. The interface between the two uids was forced b be hori-
zontal and slippery in the streamwise and spanwise direction. Resuit agreed
well with the model of Schenecker et al. [9] to determine the slip lenth for a
given gas fraction of the substrate. They also demonstrated thacorrelation
between the amount of drag reduction and the slip length in wall units de-
veloped by Rastegari and Akhavan [10] can be extended to LIS. Térefore,
the drag reduction achieved using LIS can be described using thedmework
established for superhydrophobic surfaces.

Under the ideal condition of a at interface, the drag is reduced by both
LIS and SHS. However, failure is observed in experiments due to dinaage of
the air/oil from the cavities and the consequent loss of the Cassietate [1,
11,12]. Golovin et al. [13] explained that in real applications the stagation
pressure will expose asperities or produce meniscus curvaturedh ultimately
will increase drag in SHSs.
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Although the robustness and stability of the interface is clearly of geat
importance, all numerical simulations in literature, to our knowledge, assume
a at interface between the two uids, while linear analysis of Hopper and
Boyd [14] and Hinch [15] has shown that a discontinuity of viscosity béveen
the two uids induces a ow instability and deformations of the interf ace.

The deformation of the interface has been studied by Seo et al. [16].hey
imposed alternating free-slip and no-slip boundary condition on a hozontal
wall to mimic an array of aligned cubes. The calculated pressure eld vas used
as forcing to calculate the deformation of the interface. They attibuted the
failure of the interface to an increased pressure uctuation thatdevelop at the
leading edge of posts textures in correspondence of the staghan points. A
relationship of texture size with surface tension was proposed byhe authors
to predict potential rupture of the air-water interface and an up per bound on
the texture size is suggested for robust operation of SHSs. This lifnis only
an upper bound because the dynamics of the interface is not coupleto the
ow eld, and the pressure in a real scenario could be larger.

In the present paper we further corroborate their ndings by coupling the
dynamics of the interface with the solution of the Navier-Stokes eqations.
Both uids are solved and the texture is modeled with an immersed boundary
method. The objective of the paper is to quantify the deformation of the
interface and how it a ects the drag for two di erent gas fraction GF =0:5
and GF =0:875, varying the Weber number.

2 Numerical procedure

We consider the motion of two superposed, incompressible an dim-
miscible uids in a turbulent channel with a textured surfac e of
staggered cubes. By using the channel-half height h and the bulk
velocity U, as length and velocity scales, density and viscosity of
uid 2 (main stream) as reference quantities, the Navier Sto kes and
continuity equations can be written in dimensionless form a S
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where U; are the velocity components in the streamwisei(= 1), wall-normal
(i = 2) and spanwise direction (i = 3), is the pressure gradient required

to maintain a constant ow rate, P is the pressure,n the normal vector to
the interface, is the signed distance function from the interface, is the
Dirac delta function at the interface ( = 0), is the curvature, and S; is the
symmetric part of the velocity gradient tensor. The function is used to mark
the two uids and it also appears in the non-dimensional factor ~= m+ (1

m)H, wherem = ;= , is the viscosity ratio and H the Heaviside function,
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which is H = 0, when < 0 (uid 1, in the substrate), and H = 1 when
> 0 (uid 2). The two uids are assumed to have the same density.

The Reynolds number isRe = Uyh= , = 2;800 where ; is the kinematic

viscosity of the overlying ow and it corresponds to a friction Reynolds number

Re = u h=, = 180 for a smooth channel whereu is the friction velocity.

The Weber number isWe= U 2h=, being the surface tension.

The Navier Stokes equations have been discretized in a Cartesian o
dinate system using a staggered con guration for the velocity comonents
and second order nite di erence approximations. The discretized system is
advanced in time by a third order Runge-Kutta algorithm coupled with the
Crank-Nicolson scheme combined with the fractional step method Were vis-
cous terms are treated implicitly and the convective terms explicitly. The large
sparse matrix resulting form the implicit terms is inverted by an approximate
factorization technique. At each time step the momentum equatiors are ad-
vanced with the pressure of the previous step, obtaining an interradiate non-
solenoidal velocity eld. Then the Poisson equation is solved to enfared the
solenoidal constraint, through Fourier transform method. The numerical de-
tails can be found in Orlandi [17]. The roughness is modeled by the e ciat
immersed boundary technique described in detailed by Orlandi & Leoardi

[18].
The tracking of the interface is achieved by solving the level set ecation
@  @u )
—+ ——2=0; 2
@t  @x @

which is written in conservative form due to ow incompressibility. The numer-
ical discretization of equation 2 presents challenges related to theharp varia-
tion of viscosity ~( ) across the interface as well as the presence of the Dirac
delta function for the application of the force due to surface tengn. This prob-
lem is alleviated by giving a xed thickness to the interface [19], proportional
to the mesh spacing and introducing accordingly a smeared Heavisidenction
(H ) and molli ed delta function (). Note that while this spreading of

the interface is essential to avoid the onset of numerical os cillations
it should be chosen as small as possible (2 points on both side S are
a common value) to guarantee the representation of a \sharp" in-

terface on the mesh. The level set equation is solved using a high-order
accurate approximations for the convective term to avoid un-physical oscilla-
tions. A weighted essentially non oscillatory (WENO) reconstruction is used,
which provides third order accuracy for the spatial derivatives [2Q. The level
set equation is advanced in time using the same third-order Runge Kita
algorithm implemented to solve the Navier Stokes equations.

Equation 2 will move correctly the zero level set, however it does ntoguar-
antee that will remain a distance function. For this purpose a re-initialization
method is performed at each time step. This procedure is carried duby fol-
lowing the method developed by [21], which guarantees to conservén¢ mass
of each uid with high accuracy. To apply the surface tension, the @ntinu-
ous surface force (CSF) method is used, which adds the interfadidension
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Fig. 1 Time averaged velocity vectors superposed to color contour s of streamwise velocity:
We=0:(a) GF =0:875, m=0:02, (b) GF =0:875m =0:4, (c) GF =0:5, m =0:02, (d)
GF =0:5,m=0:4

as a body force to the discretized Navier Stokes equation. For ancaurate
evaluation of the curvature the PROST method [22] is used in our leveset
formulation.

3 Flow Con guration

Direct numerical simulations of two superposed uids in a channel wih a
textured surface made of staggered cubes have been perforcad he height of
the cubes in the substrate isk = 0:05h. Two gas fractions (GF) are considered
with pitch p=k=2 fora GF =0:5 and p=k=4 for a GF =0:875 (Fig.1). The
gas fraction is de ned as the ratio of uid interface area to the total area of
the surface. Two viscosity ratios are consideredn = ;= , =0:02 and Q4, to
mimic SHSs (water over air) and LISs and (water over heptane) resectively.
A rst set of simulations, with an ideal slippery interface, undeformable, at
W e = 0 has been performed. In order to study more realistic cases witla nite
surface tension, two sets of simulations have been carried out folWe = 100
and 1; 000, corresponding in viscous units to aVe* ' ,u = ' 10 ° and
10 2 respectively. Note that given the Reynolds and Weber numbers

here investigated, assuming a water-air surface tension of 0.07 N/m,
kinematic viscosity of water 10 ®m3=sand water density of  10°kg=m?°,
the the ow con gurations simulated in this work can be achie ved
experimentally only in microchannels . Results are compared with those
obtained with a at interface (at We = 0) to highlight the detrimental e ect



6 Edgardo J. Garca Cartagena et al.

of the deformation of the interface to the drag reduction.We point out that

in our approach the interface between the two uids is assume dto
be e ectively pinned at the post edges. As discussed by Seo et al.
[16], this assumption can be interpreted as an asymptotic mo del
for a contact line moving on a round corner whose curvature is

much smaller than the post size and with a microscopic contac t
angle that is always between the nominal advancing and reced ing
contact angles. We also highlight that the goal of the presen t work
is to investigate the e ect of the surface tension on turbule nt drag
reduction and no attempts have been made to study the conditi ons
for the interface failure, with the subsequent transition f rom the

Cassie-Baxter to the Wenzel state.

The computational box is 6:4h  2:05h  3:2h in the streamwise (1), wall-
normal (X»2) and spanwise &3) directions respectively. The additional 0:05h
increase in channel height corresponds to the cavity height of thaextured
surface with plane of the crest aty=h = 1. Periodic boundary conditions
are applied in the horizontal direction and no-slip condition is imposed & the
walls. The computational grid is 1280 384 640 in the streamwise, wall-
normal and spanwise directions respectively. A non-uniform grid is ged in the
wall normal direction with 40 points clustered within the textured su bstrate.
All the simulations are carried out imposing a constant ow r ate.

4 |deal case, at interface

Time averaged velocity vectors in horizontal and vertical planes ae shown in
Fig. 1. For a gas fraction GF = 0:5, the momentum near the side walls of the
cavities is very small, and the ow structure is mainly two-dimensional with
a re-circulation in the vertical plane between two consecutive cubg, similar
to that occurring over squared cavities. For the larger gas fradon, the ow
in the textured surface becomes three-dimensional, resembling m® closely
the wake behind a wall mounted isolated cube. On the horizontal plaer, two
separated regions are observed behind the cubes, with oppositéaulation.
Two streams from the sides of the cube merge downstream the seated
regions and in correspondence, an ejection of the ow is observe@he upward
ow is redirected in the streamwise direction by the main stream and are-
circulation is formed upstream of the next cube. The length of this gparated
region in the vertical plane is much larger than that relative to GF = 0:5.
Comparing the two set of simulations at di erent viscosity ratio, in general a
similar ow structure is observed in the substrate, however, the irtensity of
the velocity is larger for SHS (due to the smaller viscosity in the substate,
m = 0:02). Near the leading edge of the cubes velocity vectors are tilted
upward. This tendency to ejections at the leading edge of the cubewill be
addressed further in the next section as it is expected to promote deformation
of the interface (although for We = 0 the surface tension is large enough to
prevent any deformation of the interface).
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Fig. 2 Time averaged streamwise velocity on the horizontal plane a t the crest plane for
We = 0: (a) with gas fraction GF = 0:875, viscosity ratio m = 0:02, (b) GF = 0:875,
m=0:4,(c) GF =0:5,m=0:02, (d) GF =0:5, m=0:4.

The slip velocity (Us), that is the time averaged velocity at the interface
between the two uids, is highly anisotropic for the case with sparsecubes
(GF =0:875) as shown in Fig.2. Slippage is large in the longitudinal streaks
with no cubes and much smaller between two consecutive cubes aligtheén
the streamwise direction. In the limit of negligible viscosity in the textured
surface, Ybert et al. [23] developed a model correlating the slip lertg (b) and
the gas fraction for an array of aligned cubes

b=p= 0:3255(1 GF)*?] 0:44; 3)

where the slip length can be de ned asb = Us=@;=@fy- n, [24,25] repre-
senting the distance at which themean velocity would be zero extrapolating
into the surface the mean velocity gradient at the interface @Ti:@'ﬁ: h-
While in Ybert et al. [23] the cubes are aligned with the ow direction and
equally spaced in streamwise and spanwise direction, here each rowshifted
half wavelength in the spanwise direction with respect to the previos one.
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Fig. 3 Normalized slip length b=pas a function of gas fraction: ( 2) GF =0:5; (4 ) GF =
0:875, empty symbols m =0:02, lled m =0:4. (—) eq.3 from Ybert et al [23]. The model
from Schenecker et al. [9] is also included as reference: (——) and (——) for transversal bars
with m = 0:4 and 0:02 respectively; (—) and ( ) for longitudinal bars with - m =0:4 and
m = 0:02 respectively.

Considering the ow pattern in Fig. 2, and the predominance of the high
speed streaks on the overall slip velocity, the present con gurabn would have
a similar ow structure of an aligned array of cubes with a pitch equal to
p = 2k. The gas fraction of the equivalent array of aligned cubes would be
GF =1 (k=p)® = 0:75. Using p-= 2k, and GF = 0:75 the results with
m = 0:02 compare well with eq.3 as shown in Fig. 3. The value of the slip
length is slightly larger than that predicted by the model. In fact, while the
slip velocity in the high speed streak should be basically the same for lio
con gurations (aligned cubes and staggered cubes), the spacinand velocity
between two streamwise aligned cubes is larger in our layout with resgct to
that considered by Ybert et al [23]. Given the predominance of the fgh speed
streaks observed in Figure 2, results are also compared with the nael pro-
posed by [9], which incorporates the e ects of viscosity of the uid within the
cavity when exposed to Stokes ow for longitudinal and square bas:

In sec ax
b= — P e @)
m 1+sin (&~
¢ + 2ab In 1 sin(%)

where D is a geometric parameter related to the maximum local slip length,
m is the dynamic viscosity ratio between the external uid and lubricant (i.e.
M = w=ext) and ¢ = 1 and 2 for streamwise and transverse grooves,
respectively. Using the modeling derived by [9], given the area fractio a, D
can be calculated for a given surface morphology. In particular fotransverse
groovesD  0:123.

Present numerical results, normalized by the equivalent pitch f = 2k)
agree well with equation 4 as shown in Fig. 3 and seem to indicate thatraays
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Fig. 4 Drag reduction as function of slip length b* in wall units: staggered cubes GF =
0:5,m = 0:02 (2); staggered cubes GF = 0:5,m = 0:4 ( ); staggered cubes GF = 0:875,
m = 0:02 (4 ); staggered cubes GF = 0:875m = 0:4 (N); longitudinal bars from [8], GF =
0:5:k=0:05hand m =0:1( ); k=0:05hand m =0:4( ); k=0:1lhand m =0:1 (#);
k=0:1h and m =0:4 ( ); (---) analytic results of Rastegari and Akhavan [10].

of staggered cubes with small gas fraction behave as transvelsads, where
the streamwise spacing is the dominant length scale. When the gasédction is
much larger and the spanwise spacing allows the formation of streakwithout
obstacles perpendicular to the main stream, the slip length is similar tothat
of longitudinal bars with an equivalent pitch equal to the periodicity of the
longitudinal alley of high speed uid.

Drag reduction (DR = ( o )= 0, where ¢ is the wall shear stress of a
smooth channel and is the shear stress of either SHS or LIS) as function of
slip length b" in wall units is shown in Fig.4. Results are in good agreement
with the correlation proposed by Rastegari and Akhavan [10]

DR = b" b’ + (Re=Re)]: (5)

The higher is the gas fraction, the larger is the amount of drag redation.
The maximum DR, for the value of p* here considered is of the order of 20%
for staggered cubes withGF = 0:875. For a given substrate, SHS presents a
smaller drag than LIS. Regardless of the di erent viscosity ratio ard geometry
of the textured surface, the qualitative agreement with eq. 5 indiates that the
mechanism leading to drag reduction is to a good approximation dominged
by the overall slippage and reduction of the shear for both SHS and.IS.
With respect to eq. 5, which assumes a shear-free boundary coition over the
gas/liquid region, present simulations account for the frictional and pressure
drag taking place in the underlying uid. It is therefore expected that the
amount of drag reduction is lower, the di erence corresponding tothe drag
below the crests plane. Moreover, eq. 5 does not take into accottie presence
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Fig. 5 (a) Wall shear stress  normalized by the wall shear stress of the smooth wall  ¢:
We =0, GF =05, m =0:02 (—-); We=0, GF =0:5m =0:4 (- -); We =0,
GF =0:875,m =0:02 (——-); We =0, GF =0:875, m = 0:4 (—-—). Solid lines are for
We = 1000 and dashed for We = 100. The simulations at We > 0 are restarted from those
at We =0 as indicated by the vertical dotted line.

of spanwise slip, which reduces the amount of achievable drag rediicn, as
shown by Rastegari and Akhavan [10].

5 Deformable interface

A second set of simulations has been performed at Weber numbel& e = 100
and 1;000, corresponding to some approximation toWe" ' 0:001 and Q01
respectively (Table 1). In such cases, the interface can deform imddition
to providing a slippage. The simulations started from the last velocity and
pressure eld obtained at We = 0, to monitor how rapid is the deterioration
of performances when the interface deforms. The variation in timeof the wall
shear stress, normalised by that of the smooth channel is shown ifrigure
5. The wall shear stress over cubes witltGF = 0:875 increases very rapidly
when the Weber number is increased from 0 to 100 or 1,000. Within ahg 20
non{dimensional time units the drag becomes larger than that of tre smooth

Table 1 Summary of the Weber number in viscous units for the di erent cases studied

m GF We We*
0.02 0.5 1000 10168 10
0.02 0.875 1000 11592 10

0.4 0.5 1000 10135 10
0.4 0.875 1000 11205 10
0.02 0.5 100 10318 10
0.02 0.875 100 11284 10
0.4 0.5 100 10242 10
0.4 0.875 100 11319 10

W W wwNNNN
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Fig. 6 Color contours of time and phase averaged pressure for m 0:02: (a,b) GF =0:5 and
We=0; (c,d) GF =0:5and We =1;000. (e,f) GF =0:875 and We =0; (g,h) GF =0:875
and We =1;000.

wall. Coupling the deformation of the interface with the ow eld is ver y
important, in fact, GF = 0:875 andm = 0:02, which is the most e ective
geometry reducing the drag under the ideal condition ofWe = 0, turns out to
increase the drag in more realistic conditions with a nite surface tersion and
a Weber numberWe =100 1;000. Results are qualitatively similar for both
Weber numbers and viscosity ratio.

For a smaller gas fraction, GF = 0:5, the increase in drag due to the
deformation of the interface is much smaller. Regardless of the Wedy number,
the drag remains similar to that of a smooth wall, the reduced shear aithe
wall being compensated by the drag inside the cavities.

The increase in drag is due to an increased pressure drag in the sutme.
At We = 0, a stagnation point is observed at the upper corner of the cubse
(Figure 6), as shown in previous studies of the ow over rough walls rade of
cubes. The intensity of the stagnation pressure increases with # gas fraction.
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In fact, the larger is the gas fraction, the larger is the slip velocity and therefore
the pressure at the edge of the cube (scaling to some approximatioto the
square of the local slip velocity). For GF = 0:5, since we consider a pinned
interface, and the spacing between cubes is small, the changes inetfpressure
eld are weak.

On the other hand, for GF = 0:875, the distance between two cubes aligned
in streamwise direction is large (i.e. x = 4k) and the deformation of the
interface, despite pinned to the cubes, is signi cant as shown in gue 7. In
spanwise direction, the larger deformation is observed in the centebetween
two consecutive cubes. In the streamwise direction, the larger @dlation of the
interface is in proximity of the leading edge of the cubes, where thetagnation
pressure is larger. This is also consistent with the tendency to havejections
at the leading edge of the cubes discussed in Fig.2. The oscillation of ¢h
interface increases further the momentum transfer in the textue and as a
consequence, the stagnation pressure becomes much larger ththat at We =
0. The corresponding increase of pressure drag overcomes theduction of the
shear due to the ow in the cavities, and the drag becomes larger tan that
over smooth walls.

Pro les of root mean square of pressure fokVe = 0 and 1; 000 are shown in
Figure 8. In the ideal case of a slippery interface,\(V e = 0), the case reducing
the drag the most, GF = 0:875, m = 0:02, presents pressure uctuations
smaller than those relative to the at channel almost up to the centerline. For
the other cases, in the inner part of the channel results agree Wewith those
of [26], the e ect of either LIS or SHS being weak to the outer ow. Near
the crests plane, on the other hand, a large peak of pressure rnis observed.
This is due to the dispersive component of the pressure, resultingrém the
spatial inhomogeneities in the mean pressure eld shown in Fig.6. Whiledr
the ideal case ofWe = 0 the increased pressure uctuations remain con ned
to a very thin layer near the interface, at We = 1;000 We" ' 0:01) the
uctuation of pressure penetrates a larger fraction of the ow. The di erences
with respect to a smooth wall extend up to Q2h above the crests plane which
in this case, similarly to rough walls, corresponds to 4 times the heighof the
cubes. Both the mean pressure as well as the uctuating presserare larger at
We = 1,;000. Therefore, using results from perfect slip boundary conditios
may underestimate the pressure and then the deformation of thenterface as
also discussed in Seo et al. [16] in the context of aligned cubes.

The e ect of the deformation of the interface on the drag and increased
pressure uctuations is further corroborated by visualization of iso-contours of

2 (Fig. 9). For a gas fraction GF = 0:5, the drag and pressure uctuations are
in good approximation the same as those over a smooth channel. Csistently
no signi cant di erences are observed in the coherent structurewith respect
to the elongated vortices in smooth channels. On the other hand,dr the drag
reducing con gurations, at GF = 0:875 andWe = 0, for both viscosity ratio,
the streamwise vortices are destroyed, due to a reduced sheat the wall. As
discussed previously,GF = 0:875 is the most sensitive to theW e number,
and a signi cant deformation of the interface leads to an increasedirag. The
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Fig. 7 Interface between the two uids superposed to color contour s of instantaneous pres-
sure,m = 0:02, We = 1000, Re = 2800, GF = 0:875: a) vertical section in spanwise direction
at x=h = 0:025; b) vertical section in streamwise direction at z=h = 0:225; c) vertical section
in streamwise direction at z=h = 0:025.
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-1 08 06 02 ¢
(b) y=h

Fig. 8 Pressure root mean square at We =0 (a) and We =1;000 (b): GF =0:5, m =0:02
(—),GF =0:5,m=0:4(—) GF =0:875,m =0:02 (— —), GF =0:875,m =0:4 (—-—-).
DNS results from Moser et al. [26] for smooth channel with Re =180 (#) are included as
reference.

iso-contours of ; consistently are more intense than those over a smooth wall
resembling more closely those relative to rough walls (Leonardi et al27]).

6 Conclusion

Direct Numerical Simulations of two superposed uids in a channel hae been
performed. One of the uids is locked into a textured surface madeof stag-
gered cubes on the lower wall of the channel. Two gas fractions&5F = 0:5 and
0:875) have been considered. A set of simulations has been carriedtaonsid-
ering the case of a at and slippery interface to the streamwise andspanwise
velocity but not deformable in the wall normal direction. This corresponds to
an ideal case of an in nite surface tension (and thenwW e = 0) which damps
any deformation induced by the stresses normal to the interfaceResults agree
well with the analytical models of [10,9,23] despite those were obtaed with
Stokes approximation and we do not neglect the drag in the texture sur-
faces. Considering the mean ow patterns, we de ned an equivalenpitch for
staggered cubes to use Ybert's model for aligned cubes.

A second set of simulations, with a more realistic value of surface tesion,
and Weber numbersWe =100 and 1; 000 corresponding to some approxima-
tionto We* ' 10 2 and 10 2 has been performed. The dynamics of the inter-
face is coupled with the Navier-Stokes equations, and the interfaeis pinned to
the cubes. The simulations were started from a velocity eld obtainal for the
same gas fraction and viscosity ratio atWe = 0. The degradation of perfor-
mances in terms of drag reduction are rather quick, and for &GF = 0:875 the
surface transitions from being drag reducing (about 20%) to dragincreasing
(about 40%) within 20 non-dimensional time units. The drag does notincrease
because the interface breaks and there is a transition from Casst® Wenzel
state. In fact, the interface in the present simulations is pinned tothe cubes.
We discovered that the dynamics of the interface alone, even whepinned to
the textured surface may increase the turbulence production ad the drag.
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Fig. 9 Iso-contours of » criterion for SHSs (m =0:02). (a) GF =0:5We=0,(b) GF =0:5
We = 1000, (c) GF =0:875 We =0, (d) GF =0:875We = 1000; LISs (m = 0:4). (e)
GF =0:5We =0, (f) GF =0:5We =1000, (g) GF =0:875We =0, (h) GF =0:875

W e = 1000.
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Therefore, it is not su cient that the surface remains in the Cassie state to
have drag reduction, but the deformation of the interface needso be small
enough. The detrimental e ect on the drag due of the deformatio of the in-
terface increases with the gas fraction. In fact, present resudt show that, for a
quite dense substrate GF = 0:5), the drag is almost una ected by the Weber
number or in other words by the deformation of the interface.

While simulations and analytical derivation based on perfect slip conditons
(We = 0) predict very high value of drag reduction when the gas fraction is
large, present results seem to indicate that high gas fraction will atally in-
crease the drag due to the detrimental e ect of the dynamics of he interface.
The gas fraction, on one hand, increases the theoretical drag deiction, by
allowing a larger slip length (or velocity). On the other hand, the defarmation
of the interface, increases with the gas fraction, leading to an in@ase of drag.
Present results suggest that the gas fraction should be the reds of an op-
timization process balancing the e ects of an increased slip length wh that
of an increased deformation of the interfaceWe also point out that the
present results have been obtained for staggered micro-pos ts and
cannot be directly extrapolated to dierent geometrical pa tterns.
Staggered microposts are known to develop very large stagna tion
pressure upon impact of the ow to the back of the posts and are
characterized by a reduced stability of the interaface in co mparison
with aligned micro-posts and longitudinal micro-grooves
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