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Abstract. In this paper, we study existence of solutions for the following elliptic
problem, related to mean-field games systems:

−div(M(x)∇ζ) + ζ − div(ζ A(x)∇u) = f in Ω,

−div(M(x)∇u) + u+ θ A(x)∇u · ∇u = ζp in Ω,

ζ = 0 = u on ∂Ω,

where p > 0, 0 < θ < 1, and f ≥ 0 is a function in some Lebesgue space.

1. Introduction

Let Ω be a bounded, open subset of RN , N ≥ 2, and let M : Ω → RN2
, and

A : Ω→ RN2
, be matrices such that

(1.1) M(x)ξ · ξ ≥ α|ξ|2 , |M(x)| ≤ β ,
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and

(1.2) A(x)ξ · ξ ≥ α|ξ|2 , |A(x)| ≤ β ,

for every ξ in RN , where 0 < α ≤ β are real numbers. Furthermore, M is symmetric.
Let us define the differential operator L : W 1,2

0 (Ω)→ W−1,2(Ω) by

L(v) = −div(M(x)∇v) , v ∈ W 1,2
0 (Ω) .

Thanks to the assumptions on M , L is linear, coercive, selfadjoint, and surjective.
In this paper, we are going to study the existence of solutions for a class of elliptic

systems whose main example is the following:

(1.3)


L(ζ) + ζ − div(ζ A(x)∇u) = f in Ω,

L(u) + u+ θ A(x)∇u · ∇u = ζp in Ω,

ζ = 0 = u on ∂Ω.

Here

p > 0, 0 < θ < 1 ,

and f ≥ 0 is a function in some Lebesgue space.
Coupled systems similar to (1.3) appear, for example, in the theory of mean-field

games introduced in [23], [24], [25]. In this context, even when the matrices A and
M are smooth, and f is a bounded function, the existence of bounded solutions is
not clear due to the growth of the coupling term ζp.

In the case of mean-field games systems, it is known from [16] that solutions are
bounded, for any choice of the exponent p, if A(x) = M(x) and f belongs to L∞(Ω);
this result is proved through a change of variable which transforms the problem into
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a weakly coupled system of semilinear equations. We notice that the same proof of
[16] would also work for problem (1.3) provided θ < 1. However, for a general choice
of A(x) and M(x), even possibly smooth, and a general growth p, the question of
boundedness of solutions is still open, only partial results have been obtained so far.
In particular, boundedness (and then smoothness, for smooth matrices) of solutions
is known if the function ζp is replaced by a logarithm or if the growth exponent p
does not exceed a certain value, see [19], [20], [21], [22], [25], and the most recent
preprint [26] where the growth limitation for p is p ≤ 2

N
. Further developments and

estimates obtained with different methods, which especially apply to nonlinearities
which are possibly decreasing with respect to ζ, appear in the recent preprint [17].

In this paper we try to investigate, in general terms, the problem of a priori esti-
mates in Lebesgue spaces and existence of solutions to the system assuming that the
matrices are not smooth and that f itself may be unbounded.

To be more precise, we assume A(x) and M(x) to be only measurable with respect
to x, and satisfying the boundedness and coerciveness conditions above, while the
function f is supposed to belong to some Lebesgue space Lm(Ω), m ≥ 1. The
interest in this condition upon f is related to the study of the evolution problem
with unbounded initial data belonging to some Lebesgue class.

The main purpose of the paper is to find the conditions between the Lebsegue class
Lm of the data f and the growth exponent p of the coupling term which allow us to
find a priori estimates and solutions of the system.

We stress that the main difficulty is due to the fact that A(x)∇u, appearing as
the drift field in the first equation, possibly lies outside the standard Lebesgue class
LN(Ω). This fact makes the analysis of the first equation highly non trivial and
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requires truncation methods in order to get the existence of a solution in some sense.
We recall that the study of the Fokker-Planck type equation

(1.4) L(ζ) + ζ − div(ζ b(x)) = f(x)

with only L2(Ω) transport field b, has been recently addressed in [5], [6] for the
stationary case, and in [13] for the evolution case. In those papers the authors
prove a priori estimates, compactness results and the existence of a so-called entropy
solution, satisfying a non linear formulation, introduced in [3], given in terms of
truncations. This formulation allows one to give sense to equation (1.4) under the
quite weak condition b in L2(Ω). However, if no extra conditions are given, this
formulation does not necessarily imply the distributional formulation and is possibly
too weak for a robust theory to be developed. On another hand, as shown in [14],
[27], equation (1.4) is well posed for distributional solutions such that ζ|b|2 belongs
to L1(Ω). This class is mostly relevant when the equation acts in the coupling with
Hamilton-Jacobi-Bellman equations, as in (1.3). In particular, in [27] it is proved
that mean-field games systems are well posed in this case, which means, specialized
to the stationary problem (1.3), that uniqueness holds for distributional solutions
such that ζ|∇u|2 belongs to L1(Ω).

On the other hand, the study of Dirichlet problems of the type

u ∈ W 1,2
0 (Ω) : L(u) +H(x, u,∇u) = g(x) ∈ Lλ(Ω)

is nowadays “classic” (see [12] for the general case, and [11], [4] for the case with
“sign condition”); here we only recall the regularizing effect proved in [9] (see also
[10]), where the existence of u ∈ W 1,2

0 (Ω) is proved even if λ = 1.
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On account of the above discussion, in our study of system (1.3) we have both the
case in which solutions of (1.3) can be found in a weaker sense (the first equation is
satisfied in the sense of entropy solutions, see below) and the case in which solutions
are found in a stronger sense, i.e. such that ζ|∇u|2 belongs to L1(Ω).

A critical threshold appears to be the value p = 2
N−2

. Strictly below this threshold,

even data f in L1(Ω) can be taken as source terms, and solutions can be found such
that u belongs to L∞(Ω), ζ|∇u|2 belongs to L1(Ω) and the system is nicely dealt with.
If p = 2

N−2
, we need the slightly stronger assumption of f belonging to L1 logL1(Ω)

to obtain the same result.
Above this threshold the situation is more involved and we find two kind of regimes:

(i) if p > 2
N−2

, and m ≥ 2N(p+1)
(N+2)(p+1)+N

, we find again solutions of (1.3) such that

ζ|∇u|2 belongs to L1(Ω).
(ii) if either p < 2∗ and m = 1, or p ≥ 2∗, and m > 2Np

(N+2)p+2N
, we are still able

to find solutions of (1.3), but the additional property that ζ|∇u|2 belongs to
L1(Ω) is lost.

Before stating the results proved in this paper, we have to define what we mean
for solution of system (1.3); in order to do that, we recall that Tk(s) is the function
defined by

Tk(s) = max(−k,min(s, k)) , k ≥ 0 , s ∈ R .

Definition 1.1. For “solution of system (1.3)” we mean a couple (u, ζ) of functions
such that u belongs to W 1,2

0 (Ω), Tk(ζ) belongs to W 1,2
0 (Ω) for every k > 0, and ζ

belongs to Lp(Ω); furthermore, we require that ζ is an entropy solution of the first
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equation, in the sense that∫
Ω

M(x)∇ζ ·∇Tk(ζ−ϕ)+

∫
Ω

ζ Tk(ζ−ϕ)+

∫
Ω

ζA(x)∇u ·∇Tk(ζ−ϕ) ≤
∫

Ω

f Tk(ζ−ϕ) ,

for every ϕ in W 1,2
0 (Ω) ∩ L∞(Ω), and for every k > 0, while u is a weak solution of

the second one, in the sense that∫
Ω

M(x)∇u · ∇ϕ+

∫
Ω

uϕ+ θ

∫
Ω

A(x)∇u · ∇uϕ =

∫
Ω

ζp ϕ ,

for every ϕ in W 1,2
0 (Ω) ∩ L∞(Ω).

For a detailed study of the properties of entropy solutions, introduced in order
to study nonlinear elliptic equations with L1(Ω) data, see [3], and [5], where this
definition is used in order to deal with equations similar to the first one of (1.3). The
requirement on the solution ζ that its truncations Tk(ζ) belong to W 1,2

0 (Ω) for every
k > 0 allows to define a generalized gradient ∇ζ (see [3]).

Let us notice that a possibly different notion of solution for mean-field games
systems, standing on the Minty’s weak formulation for monotone operators, is also
introduced in the very recent preprint [18].

We now state the main results we prove in the paper. The first one deals with the
cases in which ζ|∇u|2 belongs to L1(Ω). We stress that in this case ζ is not only an
entropy solution but also a distributional solution of the first equation in (1.3) (see
Remark 3.5).
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Theorem 1.2. Let p > 0, and let f ≥ 0 be such that
f belongs to L1(Ω), if 0 < p < 2

N−2
,

f belongs to L1 logL1(Ω), if p = 2
N−2

,

f belongs to Lm(Ω), m = 2N(p+1)
(N+2)(p+1)+N

, if p > 2
N−2

.

Then there exists a solution (u, ζ) of system (1.3), in the sense of Definition 1.1, with
u in W 1,2

0 (Ω), and ζ in Lp+1(Ω). Furthermore, we have that

(1.5)


u belongs to L∞(Ω), if 0 < p < 2

N−2
,

u belongs to Ls(Ω), for every s ≥ 1, if p = 2
N−2

,

u belongs to LQ(Ω), Q = 2N(p+1)
(N−2)p−2

, if p > 2
N−2

and that ζ|∇u|2 belongs to L1(Ω). Finally, if f belongs to Lm(Ω), with{
m > 1, if 0 < p ≤ 2

N−2
,

m ≥ 2N(p+1)
(N+2)(p+1)+N

. if p ≥ 2
N−2

,

then ζ belongs to W 1,q
0 (Ω), q = 2(p+1)

p+2
.

The second result deals with the remaining cases, also giving some summability
results on u and ζ.

Theorem 1.3. Let p > 2
N−2

, and let f in Lm(Ω), with{
m ≥ 1 , if 2

N−2
< p < 2∗,

m > 2Np
(N+2)p+2N

, if p ≥ 2∗.
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Then there exists a solution (u, ζ) of system (1.3), in the sense of Definition 1.1.
Furthermore,

u belongs to Lq(Ω), for every 1 ≤ q < N(p+2)
Np−2(p+1)

, if m = 1,

u belongs to LQ(Ω), with Q = Nm(p+2)
Np−2m(p+1)

, if 2Np
(N+2)p+2N

< m < N
2

p
p+1

,

u belongs to Lq(Ω), for every q ≥ 1, if m ≥ N
2

p
p+1

,

and {
ζ belongs to Ls(Ω), for every 1 ≤ s < p+2

2
N
N−1

, if m = 1,

ζ belongs to Ls(Ω), with s = min
(
p+ 1, p+2

2
m∗
)
, if m > 2Np

(N+2)p+2N
.

2. Preliminary results and approximation of (1.3)

In this section we construct a suitable approximation of the system (1.3). We begin
by recalling some well-known results (see e.g. [15, Theorems 3,4]).

Proposition 2.1. Let ρ and σ be two nonnegative functions in L∞(Ω), and let
g : R→ R be a continuous nondecreasing function such that

(2.1) g(s) s ≥ 0 for every s ∈ R.

Then there exists a unique solution ϕ in W 1,2
0 (Ω) ∩ L∞(Ω) of{

L(ϕ) + σ(x) g(ϕ) = ρ(x) in Ω,

ϕ = 0 on ∂Ω,
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in the sense that σ(x) g(ϕ) belongs to L1(Ω) and∫
Ω

M(x)∇ϕ · ∇ζ +

∫
Ω

ϕ ζ +

∫
Ω

σ(x) g(ϕ) ζ =

∫
Ω

ρ(x) ζ ,

for every ζ in W 1,2
0 (Ω) ∩ L∞(Ω). Furthermore, ϕ ≥ 0,

(2.2) ‖ϕ‖
W 1,2

0 (Ω)
≤ C ‖ρ‖

L2∗ (Ω)
,

and

‖ϕ‖
L∞(Ω)

≤ C ‖ρ‖
L∞(Ω)

,

where 2∗ = 2N
N+2

, for some positive constant C independent on ρ and σ.

We now recall some results on a problem related to the first equation of the system,
when E = A(x)∇u.

Proposition 2.2. Let E be in (L∞(Ω))N , and let ` ≥ 0 be in L∞(Ω). Then there
exists a unique solution ψ in W 1,2

0 (Ω) ∩ L∞(Ω) of

(2.3)

{
L(ψ) + ψ − div(ψE) = ` in Ω,

ψ = 0 on ∂Ω,

in the sense that∫
Ω

M(x)∇ψ · ∇ϕ+

∫
Ω

ψ ϕ+

∫
Ω

ψE · ∇ϕ =

∫
Ω

` ϕ ,
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for every ϕ in W 1,2
0 (Ω). Furthermore ψ ≥ 0,

(2.4) ‖ψ‖
L∞(Ω)

≤ exp
(
C
(
‖E‖

L∞(Ω)
+ 1
))
‖`‖

L∞(Ω)
,

and

(2.5) ‖ψ‖
W 1,2

0 (Ω)
≤ C(‖E‖

L∞(Ω)
‖ψ‖

L∞(Ω)
+ ‖`‖

L∞(Ω)
) ,

for some positive constant C independent on E and `.

Proof. See the Appendix. �

We are now ready to prove an existence result for an approximation of system
(1.3).

Proposition 2.3. Let n in N and ε > 0. Let p > 0, and let f ≥ 0 be in L1(Ω).
Then there exists a solution (unε, ζnε) in (W 1,2

0 (Ω) ∩ L∞(Ω))2 of the system

(2.6)


L(ζnε) + ζnε − div

(
ζnε

A(x)∇unε
1 + ε|∇unε|2

)
= Tn(f) in Ω,

L(unε) + Tk(n)(unε) + θ
A(x)∇unε · ∇unε

1 + ε|∇unε|2
= (Tn(ζnε))

p in Ω,

ζnε = 0 = unε on ∂Ω.

Furthermore, unε ≥ 0, and ζnε ≥ 0.
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Proof. We divide the proof in two steps. In the first one, we build a solution
(unεδ, ζnεδ) in (W 1,2

0 (Ω) ∩ L∞(Ω))2 of the system

(2.7)


L(ζnεδ) + ζnεδ − div

(
ζnεδ

A(x)∇unεδ
1 + ε|∇unεδ|2

)
= Tn(f) in Ω,

L(unεδ) + Tk(n)(unεδ) + θ
Tδ(unεδ)

δ

A(x)∇unεδ · ∇unεδ
1 + ε|∇unεδ|2

= (Tn(ζnεδ))
p in Ω,

ζnεδ = 0 = unεδ on ∂Ω.

where δ > 0 is fixed. In the second step, we will let δ tend to 0 to recover (2.6).

Step 1. In order to solve (2.7), we will use Schauder’s fixed point theorem. Let
(v, w) be in (W 1,2

0 (Ω))2, and let (V,W ) be the solutions of

L(W ) + Tk(n)(W ) + θ
Tδ(W )

δ

A(x)∇w · ∇w
1 + ε|∇w|2

= (Tn(v+))p ,

and

L(V ) + V − div

(
V

A(x)∇W
1 + ε|∇W |2

)
= Tn(f) ,

respectively. Existence, uniqueness, boundedness and positivity of W is given by
Proposition 2.1. Note that the extra term Tδ(W )/δ is added, at this step, only to
guarantee that (2.1) is satisfied. Since ‖ρ‖

L∞(Ω)
≤ np, from (2.2) it follows that

(2.8) ‖W‖
W 1,2

0 (Ω)
≤ C np = R2 .
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To prove existence, uniqueness, boundedness and nonnegativity of V , we apply Propo-
sition 2.2, with

E =
A(x)∇W

1 + ε|∇W |2
, and ` = Tn(f) .

Since

‖E‖
L∞(Ω)

≤ C√
ε
, ‖`‖

L∞(Ω)
≤ n ,

from (2.4) and (2.5) it follows that there exists a constant C such that

(2.9) ‖V ‖
W 1,2

0 (Ω)
≤ C n (ε−

1
2 exp(C(ε−

1
2 + 1)) = R1 .

As a consequence of (2.8) and (2.9), the closed convex set

K = B(0, R1)×B(0, R2) ,

where B(0, R) is the ball in W 1,2
0 (Ω), centered at the origin and with radius R, is such

that, if S : W 1,2
0 (Ω)×W 1,2

0 (Ω)→ W 1,2
0 (Ω)×W 1,2

0 (Ω) is defined by S(v, w) = (V,W ),
one has S(K) ⊆ K. Thus, in order to apply Schauder’s fixed point theorem, one has
to prove that S is continuous and compact.

In order to prove the continuity of S, let (vm, wm) be a sequence strongly converging
to (v, w) in (W 1,2

0 (Ω))2, and define the sequence (Vm,Wm) = S(vm, wm). Then,
thanks to (2.8) and (2.9), both {Vm} and {Wm} are bounded in W 1,2

0 (Ω), so that, up
to subsequences, they converge weakly in the same space, and strongly in Lq(Ω) for
every q < 2∗, to some functions V∞ and W∞. Furthermore, since L(Wm) is bounded in
L∞(Ω), and therefore compact in W−1,2(Ω), we have that Wm is compact in W 1,2

0 (Ω).
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Therefore we may assume, up to subsequence, that Wm strongly converges to W∞ in
W 1,2

0 (Ω).
Now we turn our attention to Vm. Thanks to the strong convergence of Wm to W

in W 1,2
0 (Ω), the sequence

Em =
A(x)∇Wm

1 + ε|∇Wm|2

converges strongly in (Ls(Ω))N , for every s > 1, to

E =
A(x)∇W∞

1 + ε|∇W∞|2
.

Since Em is also uniformly bounded and Vm converges strongly in L2(Ω) to V∞,
we deduce in particular that Em Vm converges to E V∞ in L2(Ω)N . Being L(Vm)
converging in W−1,2(Ω), we conclude that Vm strongly converges in W 1,2

0 (Ω) to V∞.
Note that the strong convergence in W 1,2

0 (Ω) of Wm and Vm (up to subsequences)
has been obtained only using the fact that {wm} and {vm} were bounded in W 1,2

0 (Ω).
Using the fact that the sequences

σm = θ
A(x)∇wm · ∇wm

1 + ε|∇wm|
, and ρm = (Tn(v+

m))p

converge to the two explicit functions σ and ρ given by

σ = θ
A(x)∇w · ∇w

1 + ε|∇w|
, and ρ = (Tn(v+))p ,
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we can pass to the limit in the equation satisfied by Wm to find that W∞ is the unique
solution of

L(W∞) + Tk(n)(W∞) + θ
Tδ(W∞)

δ

A(x)∇w · ∇w
1 + ε|∇w|2

= (Tn(v+))p .

Similarly, we can pass to the limit in the equation for Vm so that V∞ is the unique
solution of

L(V∞) + V∞ − div

(
V∞

A(x)∇W∞
1 + ε|∇W∞|2

)
= Tn(f) .

Summing up, we have proved that, up to subsequences, Vm and Wm strongly converge
in W 1,2

0 (Ω) to V∞ and W∞, which solve the problems with v and w as data. Since the
limit functions V∞ and W∞ do not depend on the extracted subsequences (thanks to
uniqueness), then the whole sequences Vm and Wm strongly converge in W 1,2

0 (Ω) to
V∞ and W∞ respectively; in other words, S(vm, wm) strongly converges in (W 1,2

0 (Ω))2

to S(v, w); i.e., S is continuous.
To prove the compactness of S, we remark that if {vm} and {wm} are only bounded

in W 1,2
0 (Ω), then the strong convergence of both Vm and Wm in W 1,2

0 (Ω) has already
been proved (see the preceding remarks), so that S is compact.

Thus, by Schauder’s fixed point theorem, there exists (ζnεδ, unεδ), fixed point of S,
and solution of the system.

Step 2. We now let δ tend to zero in (2.7). By the previous step, we have that
both {ζnεδ} and {unεδ} are bounded in W 1,2

0 (Ω), by R1 and R2 respectively (see
(2.8) and (2.9)). Since R1 and R2 are independent on δ, then {ζnεδ} and {unεδ} are
bounded in W 1,2

0 (Ω) with respect to δ. Using the fact that S is compact, we can
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extract two subsequences (still denoted by ζnεδ and unεδ), such that ζnεδ and unεδ
strongly converge in W 1,2

0 (Ω) to ζnε and unε respectively.
Using these strong convergences, it is easy to see that (ζnε, unε) is such that

L(ζnε) + ζnε − div

(
ζnε

A(x)∇unε
1 + ε|∇unε|2

)
= Tn(f) ,

while some extra care is needed in order to prove that unε is a solution of the second
equation. Indeed, the sequence Tδ(s)/δ converges to the discontinuous function which
is equal to 1 if s > 0, and is equal to 0 for s = 0, so that it is not clear what is the
almost everywhere limit of Tδ(unεδ)/δ as δ tends to zero. However, we are helped by
the presence of the gradient term, since we can use that ∇unε ≡ 0 almost everywhere
on the set {unε = 0} by a result by G. Stampacchia, [28]. Thus, let x in Ω be such
that unεδ(x) converges to unε(x), and ∇unεδ(x) converges to ∇unε(x): every x in Ω
but in a set of zero measure is such that this happens. If unε(x) 6= 0 (which implies
unε(x) > 0 by Proposition 2.1), then

lim
δ→0

Tδ(unεδ(x))

δ

A(x)∇unεδ(x) · ∇unεδ(x)

1 + ε|∇unεδ(x)|2
=
A(x)∇unε(x) · ∇unε(x)

1 + ε|∇unε(x)|2
.

If, instead, unε(x) = 0, we only consider those x such that ∇unε(x) = 0; i.e., every
x such that unε(x) = 0 but in a set of zero measure. In this case, we only use that
|Tδ(unεδ(x))/δ| ≤ 1, but this is enough, since ∇unεδ(x) tends to 0. Therefore, also in
this case,

lim
δ→0

Tδ(unεδ(x))

δ

A(x)∇unεδ(x) · ∇unεδ(x)

1 + ε|∇unεδ(x)|2
=
A(x)∇unε(x) · ∇unε(x)

1 + ε|∇unε(x)|2
,
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almost everywhere in Ω. Now, the limit actually holds in L1(Ω) by dominated con-
vergence, as a consequence of the strong convergence of unεδ to unε in W 1,2

0 (Ω).
Therefore, we can pass to the limit in the equation satisfied by unεδ to get

L(unε) + Tk(n)(unε) + θ
A(x)∇unε · ∇unε

1 + ε|∇unε|2
= (Tn(ζnε))

p ,

as desired. �

3. Proof of Theorem 1.2

In this section we are going to prove Theorem 1.2. Our aim is to pass to the limit
as ε tends to 0 and then n tends to infinity in (2.6). We will divide this task in several
steps.

3.1. Step 1: ε tends to zero. Since unε is the strong limit in W 1,2
0 (Ω) of unεδ,

passing to the limit in the estimates (obtained using (2.8))

(3.1) ‖unεδ‖W 1,2
0 (Ω)

≤ C np , ‖unεδ‖L∞(Ω)
≤ C np ,

yields that {unε} is bounded in W 1,2
0 (Ω)∩L∞(Ω) uniformly with respect to ε. There-

fore, unε weakly converges to some function un in W 1,2
0 (Ω) (and ∗-weakly to the same

function in L∞(Ω)). Passing to the limit as δ tends to zero in (2.9) written for ζnεδ,
yields

‖ζnε‖W 1,2
0 (Ω)

≤ C n (ε−
1
2 exp(C(ε−

1
2 + 1)) ,
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which is however not uniform with respect to ε. Therefore, we need to use another
technique, introduced in [5]. We choose ζnε

1+ζnε
as test function in the first equation of

(2.6): we obtain, using (1.1)

α

∫
Ω

|∇ζnε|2

(1 + ζnε)2
+

∫
Ω

ζ2
nε

1 + ζnε

+

∫
Ω

ζnε
1 + ζnε

A(x)∇unε
1 + ε|∇unε|2

· ∇ζnε
1 + ζnε

≤
∫

Ω

Tn(f)
ζnε

1 + ζnε
.

Using Young inequality, and dropping the second, positive term, we obtain, also using
that ζnε

1+ζnε
≤ 1,

(3.2)

∫
Ω

|∇ζnε|2

(1 + ζnε)2
≤ β

α2

∫
Ω

|∇unε|2 +
2

α
‖f‖

L1(Ω)
,

Choosing Tk(ζnε) as test function, we obtain, using (1.1) as usual

α

∫
Ω

|∇Tk(ζnε)|2 +

∫
Ω

ζnε Tk(ζnε)

+

∫
Ω

ζnε
A(x)∇unε

1 + ε|∇unε|2
· ∇Tk(ζnε) ≤

∫
Ω

Tn(f)Tk(ζnε) .

From this inequality we obtain

(3.3)

∫
Ω

|∇Tk(ζnε)|2 ≤
β2k2

α2

∫
Ω

|∇unε|2 + k
2

α
‖f‖

L1(Ω)
.
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Since {unε} is bounded in W 1,2
0 (Ω), from (3.2) and (3.3), we obtain the {log(1 +

ζnε)} and {Tk(ζnε)} are bounded in W 1,2
0 (Ω). Using the compactness of the Sobolev

embedding, we have that, up to subsequences, ζnε almost everywhere converges to
some function ζn in Ω. Once we have this convergence, the sequence (Tn(ζnε))

p is
strongly convergent to (Tn(ζn))p in Ls(Ω), for every s > 1. Since, being unε ≥ 0, the
lower order terms in the left-hand side of (2.6) have the “good sign property” and the
natural growth, we can use classical results (see e.g. [4, Section 2]) and we deduce
that

(3.4) unε → un strongly in W 1,2
0 (Ω),

with un ∈ W 1,2
0 (Ω) ∩ L∞(Ω) being a weak solution of

L(un) + Tk(n)(un) + θA(x)∇un · ∇un = (Tn(ζn))p .

As for the equation satisfied by ζnε, we apply Proposition A.2 in the Appendix setting
m = 1

ε
, and

wm = ζnε , Em =
A(x)∇unε

1 + ε|∇unε|2
, `m = Tn(f) .

We can apply Proposition A.2 since, as m tends to infinity, wm almost everyhwere
converges to w = ζn, Em strongly converges in (L2(Ω))N to E = A(x)∇un (as a
consequence of the strong convergence of unε to un in W 1,2

0 (Ω)), and `m strongly
converges to ` = Tn(f) in L1(Ω). Furthermore, (A.2) holds, with equality sign, since
Tk(ζnε − ϕ) is an admissible test function in the weak formulation of the second
equation of (2.6) (see Proposition 2.2). Thus, we have that (ζn, un) is such that (A.3)
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holds, which in the present case becomes∫
Ω

M(x)∇ζn · ∇Tk(ζn − ϕ) +

∫
Ω

ζn Tk(ζn − ϕ)

+

∫
Ω

ζnA(x)∇un · Tk(ζn − ϕ) ≤
∫

Ω

Tn(f)Tk(ζn − ϕ) ,

for every k > 0, and every ϕ in W 1,2
0 (Ω)∩L∞(Ω). Therefore, (ζn, un) is a solution of

the system

(3.5)


L(ζn) + ζn − div(ζnA(x)∇un) = Tn(f) in Ω,

L(un) + Tk(n)(un) + θA(x)∇un · ∇un = (Tn(ζn))p in Ω,

ζn = 0 = un on ∂Ω.

Furthermore, thanks to the strong convergence (3.4) and to weak lower semicontinu-
ity, from (3.2) and (3.3), we deduce that

(3.6)

∫
Ω

|∇ζn|2

(1 + ζn)2
≤ β

α2

∫
Ω

|∇un|2 +
2

α
‖f‖

L1(Ω)
,

and, for every k > 0,

(3.7)

∫
Ω

|∇Tk(ζn)|2 ≤ β2k2

α2

∫
Ω

|∇un|2 + k
2

α
‖f‖

L1(Ω)
.

3.2. Step 2: Coupling the two equations. Before letting n tend to infinity,
we will take advantage of the “coupling” between the equations of the system in
order to obtain further estimates on un and ζn. As we will see, due to the very weak
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formulation of both the equations satisfied by un and ζn (distributional and entropic,
respectively), we will have to work with the equations satisfied by unε and ζnε (which
allow for a wider class of test functions).

Lemma 3.1. Let ϕ : R→ R be a C2 function, with ϕ(0) = 0. Then

(3.8)

(1− θ)
∫

Ω

A(x)∇un · ∇un ϕ′(un)ζn −
∫

Ω

M(x)∇un · ∇un ϕ′′(un)ζn

+

∫
Ω

ζn ϕ(un) +
1

2

∫
Ω

(Tn(ζn))p ϕ′(un) ζn

≤
∫

Ω

Tn(f)ϕ(un) +

∫
Ω

ϕ′(un)u
1+ 1

p
n .

Proof. Let 0 < q < 1 (to be fixed later), δ > 0 and choose [(ζnε + δ)q − δq] (unε + 1)
as test function in the first equation of (2.6). We obtain

q

∫
Ω

M(x)∇ζnε · ∇ζnε
unε + 1

(ζnε + δ)1−q +

∫
Ω

M(x)∇ζnε · ∇unε [(ζnε + δ)q − δq]

+

∫
Ω

ζnε[(ζnε + δ)q − δq] (unε + 1) +

∫
Ω

A(x)∇unε · ∇unε
1 + ε|∇unε|2

ζnε[(ζnε + δ)q − δq]

+q

∫
Ω

A(x)∇unε · ∇ζnε
1 + ε|∇unε|2

ζnε(ζnε + δ)q−1(unε + 1)

=

∫
Ω

Tn(f)[(ζnε + δ)q − δq](unε + 1) ,
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We now pass to the limit as δ tends to zero; thanks to Fatou’s lemma (for the first
term), and Lebesgue ’ s dominated convergence theorem (for all the others), we obtain

(3.9)

q

∫
Ω

M(x)∇ζnε · ∇ζnε
unε + 1

ζ1−q
nε

+

∫
Ω

M(x)∇ζnε · ∇unε ζqnε

+

∫
Ω

ζq+1
nε (unε + 1) +

∫
Ω

A(x)∇unε · ∇unε
1 + ε|∇unε|2

ζq+1
nε

+q

∫
Ω

A(x)∇unε · ∇ζnε
1 + ε|∇unε|2

ζqnε(unε + 1) ≤
∫

Ω

Tn(f)ζqnε(unε + 1) .

On the other hand, choosing 1
q+1

ζq+1
nε as test function in the second equation of (3.5),

we have ∫
Ω

M(x)∇unε · ∇ζnε ζqnε +
1

q + 1

∫
Ω

Tk(n)(unε) ζ
q+1
nε

+
θ

q + 1

∫
Ω

A(x)∇unε · ∇unε
1 + ε|∇unε|2

ζq+1
nε =

1

q + 1

∫
Ω

(Tn(ζnε))
pζq+1
nε .

Subtracting, and using the assumptions on A and M , we obtain

(3.10)

qα

∫
Ω

|∇ζnε|2

ζ1−q
nε

(unε + 1) +
(

1− θ

q + 1

)∫
Ω

A(x)∇unε · ∇unε
1 + ε|∇unε|2

ζq+1
nε

+
1

q + 1

∫
Ω

(Tn(ζnε))
pζq+1
nε +

∫
Ω

ζq+1
nε

(
unε −

Tk(n)(unε)

q + 1

)
+

∫
Ω

ζq+1
nε

≤
∫

Ω

Tn(f)ζqnε(unε + 1) + qβ

∫
Ω

|∇unε||∇ζnε|
1 + ε|∇unε|2

ζqnε(unε + 1)
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By Young inequality, we have

qβ

∫
Ω

|∇unε||∇ζnε|
1 + ε|∇unε|2

ζqnε(unε + 1)

≤ qα

2

∫
Ω

|∇ζnε|2

ζ1−q
nε

(unε + 1) + Cq

∫
Ω

|∇unε|2

(1 + ε|∇unε|2)2
ζq+1
nε (unε + 1)

≤ qα

2

∫
Ω

|∇ζnε|2

ζ1−q
nε

(unε + 1) + Cq(‖unε‖L∞(Ω)
+ 1)

∫
Ω

A(x)∇unε · ∇unε
1 + ε|∇unε|2

ζq+1
nε .

Recalling that ‖unε‖L∞(Ω)
≤ C np (see (3.1)), we may choose q = q(n) < 1 small

enough, and independent on ε, such that the last term of the right hand side of
(3.10) can be absorbed by the first and second term. Thus, we obtain

(3.11)

c1

∫
Ω

|∇ζnε|2

ζ1−q
nε

(unε + 1) + c2

∫
Ω

A(x)∇unε · ∇unε
1 + ε|∇unε|2

ζq+1
nε

+
1

q + 1

∫
Ω

(Tn(ζnε))
pζq+1
nε +

∫
Ω

ζq+1
nε

(
unε −

Tk(n)(unε)

q + 1

)
+

∫
Ω

ζq+1
nε

≤
∫

Ω

Tn(f)ζqnε(unε + 1) ≤ n(‖un‖L∞(Ω)
+ 1)

∫
Ω

ζqnε ≤ Cnp+1

∫
Ω

ζqnε .

Now we remark that the five terms on the left hand side are positive; hence, we have∫
Ω

ζq+1
nε ≤ Cnp+1

∫
Ω

ζqnε ≤ Cnp+1

(∫
Ω

ζq+1
nε

) q
q+1

,
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which implies that {ζnε} is bounded in Lq+1(Ω) with respect to ε. Using (3.11), we
then have that

(3.12)

∫
Ω

|∇ζnε|2

ζ1−q
nε

≤ C(n) ,

∫
Ω

A(x)∇unε · ∇unε
1 + ε|∇unε|2

ζq+1
nε ≤ C(n) .

Let now E be a measurable subset of Ω. Then∫
E

A(x)∇unε · ∇unε
1 + ε|∇unε|2

ζnε =

∫
E∩{ζnε≤k}

A(x)∇unε · ∇unε
1 + ε|∇unε|2

ζnε

+

∫
E∩{ζnε>k}

A(x)∇unε · ∇unε
1 + ε|∇unε|2

ζnε ≤ β k

∫
E

|∇unε|2

+
1

kq

∫
Ω

A(x)∇unε · ∇unε ζq+1
nε ≤ β k

∫
E

|∇unε|2 +
C(n)

kq
.

Choosing k large enough so that the second term is small, and then the measure of
E small enough so that the first term is small uniformly with respect to ε (this can
be done thanks to the strong convergence of unε in W 1,2

0 (Ω)), we have that

lim
|E|→0

sup
ε

∫
E

A(x)∇unε · ∇unε
1 + ε|∇unε|2

ζnε = 0

which means that

the sequence

{
A(x)∇unε · ∇unε

1 + ε|∇unε|2
ζnε

}
ε

is equi-integrable.
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Hence, since it is almost everywhere convergent, by Vitali convergence theorem we
have that

(3.13) lim
ε→0+

A(x)∇unε · ∇unε
1 + ε|∇unε|2

ζnε = A(x)∇un · ∇un ζn strongly in L1(Ω) .

Now we choose 1
q+1

ζq+1
nε as test function in the equation solved by un (this can be

done since ζnε is in W 1,2
0 (Ω) ∩ L∞(Ω)). From the second equation of (2.6) we obtain

that

θ

q + 1

∫
Ω

A(x)∇un · ∇un ζq+1
nε +

1

q + 1

∫
Ω

Tk(n)(un) ζq+1
nε

≤ 1

q + 1

∫
Ω

(Tn(ζn))pζq+1
nε +

∣∣∣ ∫
Ω

M(x)∇un · ∇ζnε ζqnε
∣∣∣ .

We also use (ζnε + δ)q un, with δ > 0, as test function in the equation solved by
ζnε (first equation in (2.6)). After letting δ tend to 0, after using Fatou lemma and
Lebesgue dominated convergence theorem as in (3.9), and after dropping two positive
terms, we have that∫

Ω

M(x)∇ζnε · ∇un ζqnε +

∫
Ω

A(x)∇unε · ∇un
1 + ε|∇unε|2

ζq+1
nε + q

∫
Ω

A(x)∇unε · ∇ζnε
1 + ε|∇unε|2

ζqnε un

≤
∫

Ω

Tn(f)ζqnεun .
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Thus,∣∣∣ ∫
Ω

M(x)∇ζnε · ∇un ζqnε
∣∣∣

≤
∫

Ω

Tn(f)ζqnεun + β

∫
Ω

|∇unε||∇un|
1 + ε|∇unε|2

ζq+1
nε + qβ

∫
Ω

|∇unε||∇ζnε|
1 + ε|∇unε|2

ζqnε un ,

so that

(3.14)

θ

q + 1

∫
Ω

A(x)∇un · ∇un ζq+1
nε ≤

1

q + 1

∫
Ω

(Tn(ζn))pζq+1
nε

+

∫
Ω

Tn(f)ζqnεun + β

∫
Ω

|∇unε||∇un|
1 + ε|∇unε|2

ζq+1
nε + qβ

∫
Ω

|∇unε||∇ζnε|
1 + ε|∇unε|2

ζqnε un .

Recalling that un belongs to L∞(Ω), and that we are performing estimates with
respect to ε, we have, by (3.12),∫

Ω

|∇unε||∇un|
1 + ε|∇unε|2

ζq+1
nε un ≤

θ

2β(q + 1)

∫
Ω

A(x)∇un · ∇unζq+1
nε

+C(n)

∫
Ω

|∇unε|2

(1 + ε|∇unε|2)2
ζq+1
nε ≤

θ

2(q + 1)

∫
Ω

A(x)∇un · ∇unζq+1
nε + C(n) ,

and∫
Ω

|∇unε||∇ζnε|
1 + ε|∇unε|2

ζqnεun ≤ C(n)

∫
Ω

|∇ζnε|2

ζ1−q
nε

+ C(n)

∫
Ω

|∇unε|2

(1 + ε|∇unε|2)2
ζq+1
nε ≤ C(n) .
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Thus, (3.14) becomes

θ

q + 1

∫
Ω

A(x)∇un · ∇un ζq+1
nε ≤

1

q + 1

∫
Ω

(Tn(ζn))pζq+1
nε

+

∫
Ω

Tn(f)ζqnεun +
θ

2(q + 1)

∫
Ω

A(x)∇un · ∇un ζq+1
nε + C(n)

≤ θ

2(q + 1)

∫
Ω

A(x)∇un · ∇un ζq+1
nε + C(n) ,

where in the last passage we have used the boundedness of ζnε in Lq+1(Ω). Hence,∫
Ω

A(x)∇un · ∇un ζq+1
nε ≤ C(n) ,

and this, again, implies that

(3.15) lim
ε→0+

A(x)∇un · ∇un ζnε = A(x)∇un · ∇un ζn strongly in L1(Ω) .

Let now ϕ : R→ R be a C2 function, with ϕ(0) = 0 as in the statement, and choose
ϕ(un) as test function in the equation for ζnε. We obtain∫

Ω

A(x)∇unε · ∇un
1 + ε|∇unε|2

ϕ′(un)ζnε +

∫
Ω

ζnε ϕ(un)

=

∫
Ω

Tn(f)ϕ(un)−
∫

Ω

M(x)∇ζnε · ∇unϕ′(un) .
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Choosing ϕ′(un) ζnε as test function in the equation for un, we have that∫
Ω

M(x)∇un · ∇ζnε ϕ′(un) =

∫
Ω

(Tn(ζn))p ϕ′(un) ζnε −
∫

Ω

Tk(n)(un)ϕ′(un) ζnε

−
∫

Ω

M(x)∇un · ∇un ϕ′′(un)ζnε − θ
∫

Ω

A(x)∇un · ∇un ϕ′(un) ζnε .

Therefore,

(3.16)

∫
Ω

A(x)∇unε · ∇un
1 + ε|∇unε|2

ϕ′(un)ζnε +

∫
Ω

ζnε ϕ(un)

=

∫
Ω

Tn(f)ϕ(un)−
∫

Ω

(Tn(ζn))p ϕ′(un) ζnε +

∫
Ω

Tk(n)(un)ϕ′(un) ζnε

+

∫
Ω

M(x)∇un · ∇un ϕ′′(un)ζnε + θ

∫
Ω

A(x)∇un · ∇un ϕ′(un) ζnε .

Since we have (by Young inequality) that∣∣∣A(x)∇unε · ∇un
1 + ε|∇unε|2

ϕ′(un)ζnε

∣∣∣ ≤ C(n)
A(x)∇unε · ∇unε

1 + ε|∇unε|2
ζnε + C(n)A(x)∇un · ∇un ζnε ,

and since, from (3.13) and (3.15), the right-hand side are dominated sequences, we
conclude that

lim
ε→0+

A(x)∇unε · ∇un
1 + ε|∇unε|2

ϕ′(un)ζnε = A(x)∇un · ∇un ϕ′(un)ζn strongly in L1(Ω).
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This convergence, and (3.15), allow to pass to the limit as ε tends to zero in (3.16),
obtaining

(3.17)

(1− θ)
∫

Ω

A(x)∇un · ∇un ϕ′(un)ζn −
∫

Ω

M(x)∇un · ∇un ϕ′′(un)ζn

+

∫
Ω

ζn ϕ(un) +

∫
Ω

(Tn(ζn))p ϕ′(un) ζn

=

∫
Ω

Tn(f)ϕ(un) +

∫
Ω

Tk(n)(un)ϕ′(un) ζn .

In order to obtain (3.8) from (3.17), we split the last integral on the sets

{2Tk(n)(un) ≤ (Tn(ζn))p} , and {(Tn(ζn))p < 2Tk(n)(un)} ,
so that

(3.18)

∫
Ω

Tk(n)(un)ϕ′(un) ζn ≤
1

2

∫
Ω

(Tn(ζn))p ϕ′(un) ζn +

∫
{(Tn(ζn))p<2Tk(n)(un)}

Tk(n)(un)ϕ′(un) ζn .

We now recall that k(n) = np

4
; therefore, on the set where (Tn(ζn))p < 2Tk(n)(un), we

have

(Tn(ζn))p < 2Tk(n)(un) ≤ np

2
,

which implies that ζn ≤ n. Therefore, Tn(ζn) = ζn in the set {(Tn(ζn))p < 2Tk(n)(un)},
and we thus have ζpn < 2Tk(n)(un) ≤ 2un, which implies ζn ≤ (2un)

1
p . Therefore∫

{(Tn(ζn))p<2Tk(n)(un)}

Tk(n)(un)ϕ′(un) ζn ≤
∫
{(Tn(ζn))p<2Tk(n)(un)}

Tk(n)(un)ϕ′(un)u
1
p
n ≤

∫
Ω

ϕ′(un)u
1+ 1

p
n .
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Putting together this inequality with (3.18), and recalling (3.17), we obtain (3.8), as
desired. �

3.3. Step 3: A priori estimates on un and ζn. We begin with the estimates
which will lead to the existence result and we will take advantage of the “coupling”
between the equations of the system. To give the feeling of the “coupling”, we
formally explain the key estimate (3.22) below: the idea is the use of the duality
method in nonlinear problems. In (1.3) we use u as test function in the first equation
and ζ in the second one. Then we have (recall that 0 < θ < 1), if 1

m
+ 1

2q∗∗
= 1,

thanks to an adaptation of the Stampacchia summability theory,∫
Ω

ζp+1 ≤
∫

Ω

fu ≤ ‖f‖
Lm(Ω)

‖u‖
L2q∗∗ (Ω)

≤ C0‖f‖Lm(Ω)
‖ζp‖

1
2

Lq(Ω)
≤ C0‖f‖Lm(Ω)

(∫
Ω

ζpq
) 1

2q

.

Then the choice q = p+1
p

gives(∫
Ω

ζp+1

) 1
p+1

≤ C0‖f‖2

Lm(Ω)
.

Our first case deals with the “large p” values.

Lemma 3.2. Let p > 2
N−2

, and let f in Lm(Ω), with m = 2N(p+1)
(N+2)(p+1)+N

. Then

{Tn(ζn)} is bounded in Lp+1(Ω), {un} is bounded in W 1,2
0 (Ω) ∩ LQ(Ω),
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with Q = 2N(p+1)
(N−2)p−2

, and

{ζn|∇un|2} is bounded in L1(Ω).

Proof. We choose ϕ(s) = s in (3.17) to obtain

(3.19) (1−θ)
∫

Ω

A(x)∇un ·∇un ζn+

∫
Ω

ζnGk(n)(un)+

∫
Ω

(Tn(ζn))p ζn =

∫
Ω

Tn(f)un .

Dropping the first two terms which are positive, and observing that m > 1 since
p > 2

N−2
, we then have that

(3.20)

∫
Ω

(Tn(ζn))p+1 ≤
∫

Ω

(Tn(ζn))p ζn ≤
∫

Ω

Tn(f)un ≤ ‖f‖Lm(Ω)
‖un‖Lm′ (Ω)

.

Let now 1 < s < N
2

and use u2γ−2
n , with γ = 2s∗∗

2∗
, as test function in the second

equation of (3.5). Reasoning as in [2], we have that there exists a constant C such
that

(3.21) ‖un‖L2s∗∗ (Ω)
≤ C ‖(Tn(ζn))p‖

1
2

Ls(Ω)
.

Choosing s = p+1
p

in (3.21), which can be done since 1 < s < N
2

by the assumption

p > 2
N−2

, we then have that

‖un‖L2s∗∗ (Ω)
≤ C ‖(Tn(ζn))p‖

1
2

Ls(Ω)
=

(∫
Ω

(Tn(ζn))p+1

) p
2(p+1)

.
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We now suppose that m′ = 2s∗∗, which (recalling the definition of s) is true since

m = 2N(p+1)
(N+2)(p+1)+N

by our assumption. Therefore, from (3.20) we have that∫
Ω

(Tn(ζn))p+1 ≤ C ‖f‖
Lm(Ω)

(∫
Ω

(Tn(ζn))p+1

) p
2(p+1)

.

Since p
2(p+1)

< 1, we have thus proved that there exists C > 0 such that

(3.22)

∫
Ω

(Tn(ζn))p+1 ≤ C ,

as desired. Once we have this estimate on the right hand side of the second equation
of (3.5), the results of [9] imply that {un} is bounded in W 1,2

0 (Ω), while the estimate in
LQ(Ω) follows from (3.21), and the choice s = p+1

p
. Finally, the estimate on ζn|∇un|2

in L1(Ω) follows from (3.19) (dropping again positive terms). �

We now deal with the “small p” cases.

Lemma 3.3. Let 0 < p < 2
N−2

, and let f belong to L1(Ω). Then we have that

{Tn(ζn)} is bounded in Lp+1(Ω), {un} is bounded in W 1,2
0 (Ω) ∩ L∞(Ω),

and
{ζn|∇un|2} is bounded in L1(Ω).

Proof. We choose Gk(un) = (un−k)+ as test function in the second equation of (3.5):
we obtain, dropping two positive terms (the second and the third), and using (1.1),

α

∫
Ω

|∇Gk(un)|2 ≤
∫

Ω

(Tn(ζn))pGk(un) .
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Setting Ak = {un ≥ k}, we therefore obtain, by Sobolev and Hölder inequalities,

αC

(∫
Ω

Gk(un)2∗
) 2

2∗

≤
(∫

Ω

Gk(un)2∗
) 1

2∗
(∫

Ω

(Tn(ζn))p+1

) p
p+1

|Ak|1−
1
2∗−

p
p+1 .

Note that Hölder inequality can be applied since the assumption p < 2
N−2

implies

1

2∗
+

p

p+ 1
< 1 .

Thus, reasoning as in [28], if h > k we have (after simplifying equal terms)

(h− k) |Ah|
1
2∗ ≤ C

(∫
Ω

(Tn(ζn))p+1

) p
p+1

|Ak|1−
1
2∗−

p
p+1 ,

which then implies

|Ah| ≤
C

(h− k)2∗

(∫
Ω

(Tn(ζn))p+1

) 2∗p
p+1

|Ak|2
∗−1− 2∗p

p+1 .

Since

2∗ − 1− 2∗p

p+ 1
> 1 ⇐⇒ p <

2

N − 2
,

a result of [28] implies that un is in L∞(Ω) (which was already known), and that

‖un‖L∞(Ω)
≤ C

(∫
Ω

(Tn(ζn))p+1

) p
p+1

= C ‖Tn(ζn)‖p
Lp+1(Ω)

.
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Recalling (3.20), we then have

‖Tn(ζn)‖p+1

Lp+1(Ω)
≤ ‖f‖

L1(Ω)
‖un‖L∞(Ω)

≤ C ‖f‖
L1(Ω)

‖Tn(ζn)‖p
Lp+1(Ω)

.

From this inequality it follows an a priori estimate on Tn(ζn) in Lp+1(Ω), hence an
a priori estimate on un in L∞(Ω) and, using the second equation, in W 1,2

0 (Ω). The
estimate on ζn|∇un|2 is then obtained as in the proof of Lemma 3.2. �

Lemma 3.4. Let p = 2
N−2

, and let f belong to L1 logL1(Ω). Then we have that

{Tn(ζn)} is bounded in Lp+1(Ω), {un} is bounded in W 1,2
0 (Ω) ∩ Ls(Ω),

for every s > 1, and

{ζn|∇un|2} is bounded in L1(Ω).

Proof. Here we follow the proof (contained in [7]) of the Stampacchia exponential
summability theorem (see [28]). Let λ > 0, and choose exp(2λun)−1 as test function
in the second equation of (3.5). Dropping positive terms, and using (1.1), we obtain

2αλ

∫
Ω

|∇un|2 exp(2λun) ≤
∫

Ω

(Tn(ζn))
2

N−2 (exp(2λun)− 1)

≤ 2

∫
Ω

(Tn(ζn))
2

N−2 (exp(λun)− 1)2 +

∫
Ω

(Tn(ζn))
2

N−2 .
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Using Sobolev inequality on the left, and Hölder inequality on the right, we get

2αS
λ

(∫
Ω

[exp(λun)− 1]2
∗
) 2

2∗

≤ 2

(∫
Ω

(Tn(ζn))
N
N−2

) 2
N
(∫

Ω

[exp(λun)− 1]2
∗
) 2

2∗

+C

(∫
Ω

(Tn(ζn))
N
N−2

) 2
N

.

Define now

yn =
2

αS

(∫
Ω

(Tn(ζn))
N
N−2

) 2
N

,

so that the previous inequality becomes

αS
(

2

λ
− yn

)(∫
Ω

[exp(λun)− 1]2
∗
) 2

2∗

≤ C1 yn .

Choosing λ = 1
yn

we thus have

(3.23) αS
(∫

Ω

[
exp

(
un
yn

)
− 1

]2∗) 2
2∗

≤ C1 .

Using again (3.20) as in Lemma 3.2, we have

y
N
2
n =

∫
Ω

(Tn(ζn))
N
N−2 ≤

∫
Ω

f un .

Recalling that

s t ≤ s log(1 + s) + et − 1 , ∀ s , t ≥ 0 ,
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we have

f un = yn f
un
yn
≤ yn f log(1 + ynTn(f)) + exp

(
un
yn

)
− 1

≤ yn f log(1 + (yn + 1) f

)
+ exp

(
un
yn

)
− 1

≤ yn f [log(1 + yn) + log(1 + f)] + exp

(
un
yn

)
− 1 .

Therefore, integrating on Ω and recalling (3.23), we have

y
N
2
n =

∫
Ω

(Tn(ζn))
N
N−2 ≤ yn log(1 + yn) ‖f‖

L1(Ω)
+ yn

∫
Ω

f log(1 + f) + C2 .

From this inequality, and since N > 2, we obtain that {yn} is bounded in R, so that
{Tn(ζn)} is bounded in Lp+1(Ω). Once this estimate has been proved, it then follows
from (3.23) that {un} is exponentially bounded (hence it is bounded in Ls(Ω) for
every s > 1), and that it is bounded in W 1,2

0 (Ω). As in the previous lemmas, the
estimate on {ζn|∇un|2} is obtained from (3.19) dropping positive terms. �

3.4. Step 4: Proof of Theorem 1.2. Thanks to Lemma 3.2, Lemma 3.3, and
Lemma 3.4, we have that {un} is bounded in W 1,2

0 (Ω); hence, up to subsequences, it
converges to some function u weakly in W 1,2

0 (Ω). Thanks again to Lemmas 3.2–3.4,
u is such that (1.5) holds. Using the boundedness of un in W 1,2

0 (Ω), from (3.6) and
(3.7) it follows that the sequences {log(1+ζn)} and {Tk(ζn)} are bounded in W 1,2

0 (Ω),
so that ζn almost everywhere converges to some function ζ.
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This fact and the estimates on {Tn(ζn)} in Lp+1(Ω) (proved in Lemmas 3.2–3.4)
imply that

(Tn(ζn))p → ζp strongly in L1(Ω) .

Using [9, Theorem 1], one can pass to the limit in the second equation of (3.5), proving
the strong convergence of un in W 1,2

0 (Ω). Therefore, the limit u of un satisfies the
second equation in the sense that∫

Ω

M(x)∇u ·∇ϕ+

∫
Ω

uϕ+ θ

∫
Ω

A(x)∇u ·∇uϕ =

∫
Ω

ζp ϕ , ∀ϕ ∈ W 1,2
0 (Ω)∩L∞(Ω) .

Once we have the strong convergence of un in W 1,2
0 (Ω), we can apply Proposition A.2

with Em = A(x)∇um, which is strongly convergent in (L2(Ω))N , and `m = Tm(f), to
prove that ζ is an entropy solution of the first equation, in the sense that∫

Ω

M(x)∇ζ ·∇Tk(ζ−ϕ)+

∫
Ω

ζ Tk(ζ−ϕ)+

∫
Ω

ζA(x)∇u ·∇Tk(ζ−ϕ) ≤
∫

Ω

f Tk(ζ−ϕ) ,

for every ϕ in W 1,2
0 (Ω) ∩ L∞(Ω), and for every k ≥ 0. Finally, the fact that ζ|∇u|2

belongs to L1(Ω) follows from the estimate∫
Ω

ζn|∇un|2 ≤ C ,

proved in Lemmas 3.2–3.4, and from Fatou lemma.
We now choose k = 1 and ϕ = Th(ζ), with h ≥ 0, in the entropy formulation of

the first equation in (3.5); if we define Ah = {ζ ≥ h} and Bh = {h ≤ ζ < h + 1} we
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obtain, after dropping a positive term, and using (1.1),

α

∫
Bh

|∇ζ|2 +

∫
Bh

ζ A(x)∇u · ∇ζ ≤
∫
Ah

f .

We now remark that we have, by Young inequality, and since ζ2 ≤ (1 + h) ζ on Bh,∣∣∣∣ ∫
Bh

ζ A(x)ζu · ∇ζ
∣∣∣∣ ≤ α

2

∫
Bh

|∇ζ|2 + C (1 + h)

∫
Bh

ζ|∇u|2 .

Therefore, since 1 + ζ ≥ 1 + h on Bh,

(3.24)

∫
Bh

|∇ζ|2

1 + ζ
≤ 1

1 + h

∫
Bh

|∇ζ|2 ≤ C

∫
Bh

ζ |∇u|2 +
1

1 + h

∫
Ah

f .

Since we have

Ah =
+∞⋃
k=h

Bh , and
+∞⋃
h=0

Bh = Ω ,

summing (3.24) with h ranging from zero to infinity, we get∫
Ω

|∇ζ|2

1 + ζ
≤ C

∫
Ω

ζ |∇u|2 +
+∞∑
h=0

1

h+ 1

+∞∑
k=h

∫
Bk

f .

Exchanging summation order, we have

+∞∑
h=0

1

h+ 1

+∞∑
k=h

∫
Bk

f =
+∞∑
k=0

∫
Bk

f

( k∑
h=0

1

h+ 1

)
.
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Since
k∑

h=1

1

h+ 1
≤

k∑
h=1

∫ h

h−1

dx

1 + x
=

∫ k

0

dx

1 + x
= log(1 + k) ,

we have
+∞∑
h=0

1

h+ 1

+∞∑
k=h

∫
Bk

f ≤
+∞∑
k=0

∫
Bk

f [1 + log(1 + k)]

≤
+∞∑
k=0

∫
Bk

f [1 + log(1 + ζ)] =

∫
Ω

f [1 + log(1 + ζ)] .

Therefore, ∫
Ω

|∇ζ|2

1 + ζ
≤ C

∫
Ω

ζ|∇u|2 +

∫
Ω

f [1 + log(1 + ζ)] .

We now recall that f belongs to Lm(Ω), with m > 1, that z belongs to Lp+1(Ω), and

that ζ|∇u|2 is in L1(Ω); therefore, if C > 0 is such that log(1 + ζ) ≤ 1 + Cζ
p+1
m′ , we

have that ∫
Ω

|∇ζ|2

1 + ζ
≤ C + 2‖f‖

L1(Ω)
+ ‖f‖

Lm(Ω)

(∫
Ω

ζp+1

) 1
m′

≤ C .

Therefore, if q = 2(p+1)
p+2

as in the statement we have, by Hölder inequality,∫
Ω

|∇ζ|q =

∫
Ω

|∇ζ|q

(1 + ζ)
q
2

(1 + ζ)
q
2 ≤

(∫
Ω

|∇ζ|2

1 + ζ

) q
2
(∫

Ω

(1 + ζ)
2q
2−q

) 2−q
q

.
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Since 2q
2−q = p+ 1 by the definition of q, we have∫

Ω

|∇ζ|q ≤ C ,

so that ζ belongs to W 1,q
0 (Ω), as desired. �

Remark 3.5. If m > 1, we can also prove that ζ is a distributional solution of the
first equation of (1.3).

Indeed, from the first inequality in (3.12), we have (recalling that q = q(n) < 1),∫
Ω

|∇ζnε|2

1 + ζnε
≤
∫

Ω

|∇ζnε|2

ζ1−q
nε

≤ C(n) .

Therefore, the sequence {(1 + ζnε)
1
2 − 1} is bounded in W 1,2

0 (Ω), so that {ζnε} is
bounded in Lq(Ω), with q = N

N−2
by Sobolev embedding. But then, by Hölder

inequality, we have (see also [8])∫
Ω

|∇ζnε|
N
N−1 =

∫
Ω

|∇ζnε|
N
N−1

(1 + ζnε)
N

2(N−1)

(1 + ζnε)
N

2(N−1)

≤
(∫

Ω

|∇ζnε|2

1 + ζn

) N
2(N−1)

(∫
Ω

(1 + ζn)
N
N−2

) N−2
2(N−1)

≤ C .

Thus, {ζnε} is bounded in W 1,q
0 (Ω), with q = N

N−1
, which means that it is weakly

convergent to ζn in the same space, and strongly in L1(Ω); furthermore, since {ζnε}
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is bounded in Ls(Ω), with s = N
N−2

, we have, by Hölder inequality, and by (3.13),∫
Ω

(ζnε|∇unε|)
N
N−1 ≤

∫
Ω

ζ
N
N−2
nε +

∫
Ω

ζnε|∇unε|2 ≤ C .

Therefore (using the almost everywhere convergence of ζnε∇unε to ζn∇un), we have
that ζnε∇unε weakly converges to ζn∇un in (Lq(Ω))N , with q = N

N−1
. Thanks to all

the convergences proved so far, we can pass to the limit in the first equation of (2.6)
to prove that ζn is a distributional solution of the first equation of (3.5), in the sense
that

(3.25)

∫
Ω

M(x)∇ζn · ∇ϕ+

∫
Ω

ζn ϕ+

∫
Ω

ζnA(x)∇un · ∇ϕ =

∫
Ω

Tn(f)ϕ ,

for every ϕ in C∞c (Ω). If we now repeat the same calculations as in the proof of
Theorem 1.2, but starting from ζn, we get∫

Ω

|∇ζn|2

1 + ζn
≤ C

∫
Ω

ζn|∇un|2 +

∫
Ω

f log(1 + ζn) .

Recalling the boundedness of {ζn|∇un|2} in L1(Ω), proved in Lemmas 3.2–3.4, we
then have

4

∫
Ω

|∇[(1 + ζn)
1
2 − 1]|2 =

∫
Ω

|∇ζn|2

1 + ζn
≤ C +C‖f‖

L1(Ω)
+C‖f‖

Lm(Ω)

(∫
Ω

ζn

) 1
m′

≤ C .
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Using Poincaré inequality it is then easy to prove that {ζn} is bounded in L1(Ω), so
that ∫

Ω

|∇ζn|2

1 + ζn
≤ C .

Repeating the same calculations done above for ζnε we thus have that {ζn} is bounded
in W 1,q

0 (Ω), with q = N
N−1

. Therefore, ζn weakly converges to ζ in W 1,q
0 (Ω), with

q = N
N−1

, and strongly in L1(Ω). Moreover, reasoning as above, {ζn∇un} is bounded

in (Lq(Ω))N , with q = N
N−1

, so that it weakly converges to ζ∇u in the same space.
Therefore, one can pass to the limit in (3.25) to prove that∫

Ω

M(x)∇ζ · ∇ϕ+

∫
Ω

ζ ϕ+

∫
Ω

ζA(x)∇u · ∇ϕ =

∫
Ω

f ϕ ,

for every ϕ in C∞c (Ω). Therefore, ζ is a distributional solution of the first equation
of (1.3), with the property that ζ|∇u|2 belongs to L1(Ω). This is a relevant class for
uniqueness, both for the single Fokker-Planck equation and for the mean-field games
systems, see [27].

Note that the property ζ|∇u|2 ∈ L1(Ω) has been proved using the coupling between
the equations of the system: in general, it is not true for the single equation.

4. Proof of Theorem 1.3.

The result of Theorem 1.2 deals with the case in which ζ|∇u|2 belongs to L1(Ω);
in some sense, with the case in which “ζ can be chosen as test function in the second
equation”. Note that ζ does not belong to L∞(Ω) (nor to W 1,2

0 (Ω)), so that the
fact that it can be chosen as test function in the equation satisfied by u is a rather
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surprising property. However, the fact that ζ belongs to Lp+1(Ω) is not the only case
in which one can prove an existence result for the system. Indeed, in order to do that
it is enough to prove that {Tn(ζn)} is bounded in Ls(Ω) for some s > p. This result
will be proved in what follows under weaker assumptions on m. As before, we begin
with the case of “large p”.

Lemma 4.1. Let p > 2
N−2

, and let f belong to Lm(Ω), with

max

(
2Np

(N + 2)p+ 2N
, 1

)
< m <

N

2

p

p+ 1
.

Then

{un} is bounded in W 1,2
0 (Ω) ∩ LQ(Ω),

with Q = Nm(p+2)
Np−2m(p+1)

, and

{Tn(ζn)} is bounded in Ls(Ω),

with s = min(p+ 1, p+2
2
m∗).

Remark 4.2. The assumptions on m of the previous lemma can be split as follows:{
1 < m < N

2
p
p+1

if 2
N−2

< p ≤ 2∗,
2Np

(N+2)p+2N
< m < N

2
p
p+1

if p > 2∗.

We remark that, if m ≥ 2N(p+1)
(N+2)(p+1)+N

, then we also have that {ζn|∇un|2} is bounded

in L1(Ω) by the result of Lemma 3.2.
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Proof. Let γ > 1
2
, let B > 0, and define

ϕ(s) =
(s+B)2γ−1 −B2γ−1

2γ − 1
,

so that

ϕ′(s) = (s+B)2γ−2 , and ϕ′′(s) = (2γ − 2) (s+B)2γ−3 .

With this choice of ϕ, (3.8) becomes

(1− θ)
∫

Ω

A(x)∇un · ∇un(un +B)2γ−2ζn

−(2γ − 2)

∫
Ω

M(x)∇un · ∇un(un +B)2γ−3ζn

+

∫
Ω

ζn
(un +B)2γ−1 −B2γ−1

2γ − 1
+

1

2

∫
Ω

(Tn(ζn))p(un +B)2γ−2 ζn

≤
∫

Ω

Tn(f)
(un +B)2γ−1 −B2γ−1

2γ − 1
+

∫
Ω

u
1+ 1

p
n (un +B)2γ−2 .

We estimate the first two terms as

(1− θ)
∫

Ω

A(x)∇un · ∇un(un +B)2γ−2ζn

−(2γ − 2)

∫
Ω

M(x)∇un · ∇un(un +B)2γ−3ζn

≥
∫

Ω

M(x)∇un · ∇un(un +B)2γ−3 ζn

[
α

β
(1− θ)(un +B)− (2γ − 2)

]
,
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and we remark that if B = β
α

(2γ−2)+

1−θ , then

(1− θ)(un +B)− (2γ − 2) ≥ (1− θ)un ≥ 0 ,

so that the sum of the first two terms is positive. So is the third term, which we can
drop off; we then deduce that:

(4.1)

∫
Ω

(Tn(ζn))p(un+B)2γ−2 ζn ≤ C1

∫
Ω

Tn(f) (un+B)2γ−1 +C2

∫
Ω

(un+B)2γ−1+ 1
p .

Let now ρ > 1, δ > 0, and use (un + δ)2ρ−2 − δ2ρ−2 as test function in the second
equation; we have

(2ρ− 2)

∫
Ω

M(x)∇un · ∇un (un + δ)2ρ−3 +

∫
Ω

Tk(n)(un) [(un + δ)2ρ−2 − δ2ρ−2]

+θ

∫
Ω

A(x)∇un · ∇un (un + δ)2ρ−2

=

∫
Ω

(Tn(ζn))p [(un + δ)2ρ−2 − δ2ρ−2] .

Using (1.1) and (1.2), and dropping the first two terms, which are positive, we have,
as δ tends to zero,

(4.2) αθ

∫
Ω

|∇un|2u2ρ−2
n ≤

∫
Ω

(Tn(ζn))p u2ρ−2
n .
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For the right hand side, we have

∫
Ω

(Tn(ζn))p u2ρ−2
n ≤

∫
Ω

(Tn(ζn))p(un +B)2ρ−2

=

∫
Ω

(Tn(ζn))p(un +B)(2γ−2) p
p+1 (un +B)2ρ−2−(2γ−2) p

p+1 ,

which implies, by Hölder inequality and (4.1)

(4.3)

∫
Ω

(Tn(ζn))pu2ρ−2
n ≤

(∫
Ω

(Tn(ζn))p+1(un +B)2γ−2

) p
p+1

×
(∫

Ω

(un +B)(2ρ−2)(p+1)−(2γ−2)p

) 1
p+1

≤
(
C1

∫
Ω

Tn(f) (un +B)2γ−1 + C2

∫
Ω

(un +B)2γ−1+ 1
p

) p
p+1

×
(∫

Ω

(un +B)(2ρ−2)(p+1)−(2γ−2)p

) 1
p+1

.
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Thus, by Sobolev inequality, by (4.2) and (4.3), and by Hölder inequality (recall that
m > 1), we have

(∫
Ω

u2∗ρ
n

) 2
2∗

≤ C2

∫
Ω

|∇uρn|2 ≤ C3

∫
Ω

|∇un|2 u2ρ−2
n ≤ C4

∫
Ω

(Tn(ζn))pu2ρ−2
n

≤ C5

(∫
Ω

Tn(f)(un +B)2γ−1 +

∫
Ω

(un +B)2γ−1+ 1
p

) p
p+1

×
(∫

Ω

(un +B)(2ρ−2)(p+1)−(2γ−2)p

) 1
p+1

≤ C5

(
‖f‖

Lm(Ω)

(∫
Ω

(un +B)(2γ−1)m′
) 1

m′

+

∫
Ω

(un +B)2γ−1+ 1
p

) p
p+1

×
(∫

Ω

(un +B)(2ρ−2)(p+1)−(2γ−2)p

) 1
p+1

Let now ρ and γ be such that

2∗ρ = (2γ − 1)m′ = (2ρ− 2)(p+ 1)− (2γ − 2)p .

After some calculations, we obtain

2∗ρ =
Nm(p+ 2)

Np− 2m(p+ 1)
.
= Q , 2γ − 1 =

Q

m′
.
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Thus(∫
Ω

uQn

) 2
2∗

≤C6

(
‖f‖

Lm(Ω)

(
1 +

∫
Ω

uQn

) 1
m′

+

∫
Ω

u
Q
m′+

1
p

n

) p
p+1
(

1 +

∫
Ω

uQn

) 1
p+1

≤C7

(
‖f‖

Lm(Ω)

(
1 +

∫
Ω

uQn

) 1
m′

+

(∫
Ω

uQn

) 1
m′+

1
pQ
) p

p+1
(

1 +

∫
Ω

uQn

) 1
p+1

≤C8

(
(1 + ‖f‖

Lm(Ω)
)

(
1 +

∫
Ω

uQn

) 1
m′+

1
pQ
) p

p+1
(

1 +

∫
Ω

uQn

) 1
p+1

≤C9 + C9‖f‖
p
p+1

Lm(Ω)

(
1 +

∫
Ω

uQn

)( 1
m′+

1
pQ

)
p
p+1

+ 1
p+1

,

where we used that Q
m′

+ 1
p
< Q (which is true since Q > m

p
). Note that

2

2∗
>

(
1

m′
+

1

pQ

)
p

p+ 1
+

1

p+ 1
⇐⇒ m <

N

2

p

p+ 1
,

while

ρ > 1 ⇐⇒ 2Np

(N + 2)p+ 2N
< m <

N

2

p

p+ 1
.

and the latter inequalities are true by the assumptions on m. Therefore, {un} is
bounded in LQ(Ω), with Q as in the statement.

If γ ≥ 1, which corresponds to the case

2N(p+ 1)

(N + 2)(p+ 1) +N
≤ m <

N

2

p

p+ 1
,



48 L. BOCCARDO, L. ORSINA, A. PORRETTA

from (4.1) follows an estimate on {Tn(ζn)} in Lp+1(Ω) (note that the case γ = 1 was
proved in Lemma 3.2), so that we only have to deal with the case

max

(
2Np

(N + 2)p+ 2N
, 1

)
< m <

2N(p+ 1)

(N + 2)(p+ 1) +N
,

which corresponds to 1
2
< γ < 1; in this case, if s < p + 1 we have, by (4.1), and by

Hölder inequality,∫
Ω

(Tn(ζn))s =

∫
Ω

(Tn(ζn))s

(B + un)σ
(B + un)σ

≤
(∫

Ω

(Tn(ζn))p

(B + un)σ
p+1
s

ζn

) s
p+1
(∫

Ω

(B + un)
σ(p+1)
p+1−s

) p+1−s
p+1

.

We now choose σ and s such that σ p+1
s

= 2−2γ and σ(p+1)
p+1−s = Q; in this way, the right

hand side of the above inequality is bounded with respect to n, yielding an estimate
on (Tn(ζn))s. Recalling the values of γ and Q, and after some calculations, we have
that s = p+2

2
m∗. Since we are interested in estimates for which s > p, and since

p < s < p+ 1 ⇐⇒ max

(
2Np

(N + 2)p+ 2N
, 1

)
< m <

2N(p+ 1)

(N + 2)(p+ 1) +N
,

which is our assumption, we have that {Tn(ζn)} is bounded in Ls(Ω), with s = p+2
2
m∗,

as desired. Since s > p, we have therefore proved that the right hand side of the
second equation in (3.5) is bounded (at least) in L1(Ω). By the coercivity of the
matrix A(x), this immediately implies that {un} is bounded in W 1,2

0 (Ω). �
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Remark 4.3. Note that in the final part of the previous proof we have proved that
{Tn(ζn)} is bounded in Ls(Ω), with s = p+2

2
m∗, which is greater than 1 for every

m > 1 and p > 0. However, such an estimate cannot be used in order to prove further
properties on {un}; indeed, if s < p the right hand side of the second equation in
(3.5) is not bounded in L1(Ω), while if s = p it may not be compact in L1(Ω) (a
property which is needed in order to pass to the limit as n tends to infinity).

Remark 4.4. If f belongs to Lm(Ω), and

m ≥ N

2

p

p+ 1
,

the only estimate we can prove on {un} is that it is bounded in Ls(Ω) for every s ≥ 1;

this is due to the fact that the value of Q = Nm(p+2)
Np−2m(p+1)

diverges as m tends to N
2

p
p+1

.

We conjecture that, under the assumption m > N
2

p
p+1

, the sequence {un} is

bounded in L∞(Ω).

The final case we have to deal with is the one in which 2
N−2

< p < 2∗, and m = 1.

Lemma 4.5. Let 2
N−2

< p < 2∗, and let f belong to L1(Ω). Then

{un} is bounded in W 1,2
0 (Ω) ∩ Lq(Ω),

for every 1 ≤ q < Q = N(p+2)
Np−2(p+1)

, and

{Tn(ζn)} is bounded in Ls(Ω),

for every 1 ≤ s < p+2
2

N
N−1

.
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Remark 4.6. Note that, under the assumption on p of the previous lemma, we have
2Np

(N+2)p+2N
< 1, so that there is “continuity” between the results of Lemma 4.1 and

Lemma 4.5.

Proof. Let us choose γ < 1
2
, and repeat the calculations of the proof of Lemma 4.1

to obtain that

(4.4)

∫
Ω

(Tn(ζn))p(un +B)2γ−2 ζn ≤ C1‖f‖L1(Ω)
+ C2

∫
Ω

(un +B)2γ−1+ 1
p .

Starting from this inequality, and reasoning as in the proof of Lemma 4.1, we obtain
that, for evey ρ > 1,

(4.5)

(∫
Ω

u2∗ρ
n

) 2
2∗

≤ C5

(
‖f‖

L1(Ω)
+

∫
Ω

(un +B)2γ−1+ 1
p

) p
p+1

×
(∫

Ω

(un +B)(2ρ−2)(p+1)−(2γ−2)p

) 1
p+1

.

Now we link ρ to γ by requiring that

(4.6) 2∗ρ = (2ρ− 2)(p+ 1)− (2γ − 2)p ,

that is,

ρ =
2γp+ 2

2(p+ 1)− 2∗
.
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We now remark that ρ is increasing with respect to γ, and that we can choose any
γ < 1

2
to have ρ > 1. Due to the choice of ρ, (4.5) becomes(∫

Ω

u2∗ρ
n

) 2
2∗

≤ C6

(
‖f‖

L1(Ω)
+

∫
Ω

u
2γ−1+ 1

p
n

) p
p+1
(∫

Ω

u2∗ρ
n

) 1
p+1

.

Since, for γ close to 1
2
, we have 0 < 2γ − 1 + 1

p
< 2∗ρ, Hölder inequality implies that

(∫
Ω

u2∗ρ
n

) 2
2∗

≤ C7 + C8

(∫
Ω

u2∗ρ
n

) 2γ−1+ 1
p

2∗ρ
p
p+1

+ 1
p+1

,

so that, in order to obtain an a priori estimate on {un}, we only have to check that
if (4.6) holds, then

2

2∗
>

2γ − 1 + 1
p

2∗ρ

p

p+ 1
+

1

p+ 1
.

This inequality is easily seen (using (4.6)) to be equivalent to

2ρ(p+ 1) > (2ρ− 2)(p+ 1) + (p+ 1) = (2ρ− 1)(p+ 1) ,

which is clearly true. Hence, we have an a priori estimate on un in L2∗ρ(Ω), for every

ρ given by (4.6) with γ < 1
2
. As γ tends to 1

2
, we have that 2∗ρ tends to N(p+2)

Np−2(p+1)
.

However, such value cannot be attained, which implies that we have an estimate on

un in Lq(Ω), for every 1 ≤ q < N(p+2)
Np−2(p+1)

, as desired.

We repeat now the same arguments as in the final steps of the proof of Lemma 4.1
in order to prove an estimate on {Tn(ζn)}. Starting from (4.4), and taking s < p+ 1,
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we have that∫
Ω

(Tn(ζn))s ≤
(∫

Ω

(Tn(ζn))p

(B + un)σ
p+1
s

ζn

) s
p+1
(∫

Ω

(B + un)
σ(p+1)
p+1−s

) p+1−s
p+1

.

Choosing s and σ in such a way that σ p+1
s

= 2 − 2γ, and σ(p+1)
p+1−s <

N(p+2)
Np−2(p+1)

, we

obtain an estimate for every s such that

s <
N(p+ 2)(p+ 1)

(2− 2γ)(Np− 2p− 2) +Np− 2N
.

Letting γ tend to 1
2
, we thus obtain an estimate on {Tn(ζn)} in Ls(Ω), for every s

smaller than p+2
2

N
N−1

. Since

p <
p+ 2

2

N

N − 1
< p+ 1 ⇐⇒ 2

N − 2
< p <

2N

N − 2
= 2∗ ,

which is our assumption, we have thus proved that {Tn(ζn)} is bounded in Ls(Ω)
with s as in the statement. Once the right hand side of the second equation in (3.5)
is bounded in L1(Ω) (and actually better), the estimate on {un} is W 1,2

0 (Ω) then
follows as before. �

Once we have the a priori estimates on un and ζn, the proof of Theorem 1.3 follows
using the main ideas of the proof of Theorem 1.2.

Proof of Theorem 1.3. Thanks to Lemmas 4.1 and 4.5, the sequence {un} is bounded
in W 1,2

0 (Ω), and this yields (for example) that the sequence {log(1+ζn)} is bounded in
W 1,2

0 (Ω) (using (3.6)). Thus, and up to subsequences, ζn almost everywhere converges
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to some function ζ. This almost everywhere convergence, and the boundedness of
{Tn(ζn)} in Ls(Ω) for some s > p, proved in Lemmas 4.1 and 4.5, imply that (Tn(ζn))p

strongly converges to ζp in L1(Ω). Using [9, Theorem1] we deduce both the strong
convergence of un to u in W 1,2

0 (Ω), and that u is a solution of the second equation
of (1.3). Using the strong convergence of A(x)∇un to A(x)∇u and Proposition A.2
then implies that ζ is an entropy solution of the first equation of system (1.3).

Finally, using the a priori estimates proved in Lemmas 4.1 and 4.5, we get the
summability properties of u and ζ stated in the theorem. �

Appendix A

We give here, for the sake of completeness, the proof of Proposition 2.2.

Proof of Proposition 2.2. The proof of both existence and uniqueness of ψ can be
found in [28]. To see that ψ is nonnegative, we follow [6] and choose, for δ > 0,
Tδ(ψ

−)/δ as test function in the equation. Here ψ = ψ+ + ψ−, so that ψ− is a
negative function. We obtain

(A.1)

1

δ

∫
Ω

M(x)∇ψ · ∇Tδ(ψ−) +
1

δ

∫
Ω

ψ Tδ(ψ
−)

+
1

δ

∫
Ω

ψE · ∇Tδ(ψ−) =
1

δ

∫
Ω

` Tδ(ψ
−) ≤ 0 .
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By Young inequality, and since the integral is on the set where |ψ| ≤ δ, we have∣∣∣∣1δ
∫

Ω

ψE · ∇Tδ(ψ−)

∣∣∣∣≤ α

2δ

∫
Ω

|∇Tδ(ψ−)|2 +
Cα
δ

∫
{|ψ|≤δ}

ψ2 |E|2

≤ α

2δ

∫
Ω

|∇Tδ(ψ−)|2 + Cα δ

∫
Ω

|E|2 .

Therefore, the first term of the previous inequality can be absorbed by the first term
of left hand side of (A.1), which in turn is positive. Hence,

1

δ

∫
Ω

ψ Tδ(ψ
−) ≤ Cα δ

∫
Ω

|E|2 .

Letting δ tend to zero, we get ∫
Ω

|ψ−| ≤ 0 ,

so that ψ ≥ 0, as desired.
As for the L∞(Ω) estimate, we repeat in detail the proof in [5] since we wish

to specify the dependence of the norm of ψ from the data of the problem. We
may assume below that ‖`‖

L∞(Ω)
= 1 and then recover the general case by setting

ψ̃ = ψ/‖`‖
L∞(Ω)

. Let k > 0, and define

η =

(
ψ

1 + ψ
− k

1 + k

)+

.
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Choosing η as test function, and defining Ak = {ψ ≥ k}, we have∫
Ak

|∇ψ|2

(1 + ψ)2
+

∫
Ak

ψ η +

∫
Ak

ψ

1 + ψ
E · ∇ψ

1 + ψ
=

∫
Ak

` η .

Using Young inequality, ellipticity, the fact that ‖`‖
L∞(Ω)

= 1 and the fact that

0 ≤ η ≤ 1, we get

α

∫
Ak

|∇ψ|2

(1 + ψ)2
≤ Cα‖E‖2

L∞(Ω)
|Ak|+

α

2

∫
Ak

|∇ψ|2

(1 + ψ)2
+ |Ak| .

Therefore, setting v = log(1 + ψ), h = log(1 + k), and Bh = {v ≥ h} (note that
Bh = Ak), we have ∫

Bh

|∇v|2 ≤ C(‖E‖2

L∞(Ω)
+ 1)|Bh| .

Starting from this estimate, and reasoning as in [28], we get

‖v‖
L∞(Ω)

≤ C(‖E‖2

L∞(Ω)
+ 1)

1
2 ,

which then implies estimate (2.4) since v = log(1 + ψ).
To obtain the W 1,2

0 (Ω) estimate, we choose ψ as test function, thus obtaining∫
Ω

M(x)∇ψ · ∇ψ +

∫
Ω

ψ2 +

∫
Ω

ψE · ∇ψ =

∫
Ω

` ψ .

Using again ellipticity, Young inequality, and dropping positive terms, we get

α

∫
Ω

|∇ψ|2 ≤ C‖`‖
L∞(Ω)

‖ψ‖
L∞(Ω)

+ Cα‖E‖2

L∞(Ω)
‖ψ‖2

L∞(Ω)
+
α

2

∫
Ω

|∇ψ|2 ,
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and from this estimate (2.5) easily follows. �

If E belongs to (L2(Ω))N , the notion of distributional solution might be no longer
applicable; therefore we use the nonlinear notion of entropy solution.

Definition A.1. A function ψ ∈ L1(Ω) is an entropy solution of (2.3) if Tk(ψ)
belongs to W 1,2

0 (Ω) for every k > 0 and∫
Ω

M(x)∇ψ · ∇Tk(ψ − ϕ) +

∫
Ω

ψ Tk(ψ − ϕ) +

∫
Ω

ψE · Tk(ψ − ϕ) ≤
∫

Ω

` Tk(ψ − ϕ) ,

for every k > 0, and for every ϕ in W 1,2
0 (Ω) ∩ L∞(Ω).

We are now going to study the stability of the entropy solutions with respect to
convergence of the data; the result is essentially contained in [5], but we repeat its
proof here for the sake of completeness.

Proposition A.2. Let wm be a sequence of solutions of{
L(wm) + wm − div(wmEm) = `m in Ω,

wm = 0 on ∂Ω.

Here, for solution, we mean a function wm such that Tk(wm) belongs to W 1,2
0 (Ω) for

every k > 0, and such that

(A.2)

∫
Ω

M(x)∇wm · ∇Tk(wm − ϕ) +

∫
Ω

wm Tk(wm − ϕ)

+

∫
Ω

wmEm · ∇Tk(wm − ϕ) ≤
∫

Ω

`m Tk(wm − ϕ) ,
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for every k > 0, and for every ϕ in W 1,2
0 (Ω)∩L∞(Ω). If we suppose that Em strongly

converges to E in (L2(Ω))N , that `m strongly converges to ` in L1(Ω), and that wm
almost everywhere converges in Ω to some function w, then w is a solution of{

L(w) + w − div(wE) = ` in Ω,

w = 0 on ∂Ω,

in the sense that

(A.3)

∫
Ω

M(x)∇w · ∇Tk(w − ϕ) +

∫
Ω

w Tk(w − ϕ)

+

∫
Ω

wE · ∇Tk(w − ϕ) ≤
∫

Ω

` Tk(w − ϕ) ,

for every k > 0, and for every ϕ in W 1,2
0 (Ω) ∩ L∞(Ω).

Proof. Taking ϕ = 0 in (A.2), we find, after using (1.1), and dropping the positive
second term,

α

∫
Ω

|∇Tk(wm)|2 +

∫
Ω

wmEm∇Tk(wm) ≤
∫

Ω

`m Tk(wm) .

Using Young inequality, it is easy to obtain, from this inequality, that∫
Ω

|∇Tk(wm)|2 ≤ k2

α2
‖Em‖2

(L2(Ω))N
+

2k

α
‖`m‖L1(Ω)

.

Thus, {Tk(wm)} is bounded in W 1,2
0 (Ω); since wm almost everywhere converges to w,

Tk(wm) weakly converges to Tk(w) in W 1,2
0 (Ω). Once we have this convergence, we
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can pass to the limit in (A.2) to obtain (A.3). We will deal separately with each term
of (A.2). Adding and subtracting∫

Ω

M(x)∇ϕ · ∇Tk(wm − ϕ)

to the first one, we obtain∫
Ω

M(x)∇Tk(wm − ϕ) · ∇Tk(wm − ϕ) +

∫
Ω

M(x)∇ϕ · ∇Tk(wm − ϕ) .

Using the weak lower semicontinuity of the norm in W 1,2
0 (Ω), and the fact that ϕ

belongs to W 1,2
0 (Ω), we obtain, after canceling equal terms,

(A.4)

∫
Ω

M(x)∇w · ∇Tk(w − ϕ) ≤ lim inf
m→+∞

∫
Ω

M(x)∇wm · ∇Tk(wm − ϕ) .

For the second term, we add and subtract∫
Ω

ϕTk(wm − ϕ) ,

obtaining ∫
Ω

(wm − ϕ)Tk(wm − ϕ) +

∫
Ω

ϕTk(wm − ϕ) .

Using Fatou lemma, and the almost everywhere convergence of wm to w, we thus
obtain (once again canceling equal terms) that∫

Ω

w Tk(w − ϕ) ≤ lim inf
m→+∞

∫
Ω

wm Tk(wm − ϕ) .
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The right hand side passes to the limit without problems, so that

(A.5)

∫
Ω

` Tk(w − ϕ) = lim
m→+∞

∫
Ω

`m Tk(wm − ϕ) .

Thus, it only remains to deal with the third term of (A.2): we begin by observing
that the integral is only on the set {|wm − ϕ| ≤ k}. If M = ‖ϕ‖

L∞(Ω)
, we have

{|wm − ϕ| ≤ k} ⊆ {0 ≤ wm ≤ k +M} ,
so that ∫

Ω

wmEm · ∇Tk(wm − ϕ) =

∫
Ω

Tk+M(wm)Em · ∇Tk(wm − ϕ) .

Since Tk+M(wm)Em is strongly convergent in (L2(Ω))N , using also the weak conver-
gence of Tk(wm − ϕ) in W 1,2

0 (Ω) we have∫
Ω

wE · ∇Tk(w − ϕ) = lim
m→+∞

∫
Ω

wmEm · ∇Tk(wm − ϕ) .

Putting together this result and (A.4)–(A.5), we have that w satisfies (A.3), as de-
sired. �
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