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Introduction 

 

This work was inspired by the growing need to have a measure of the accuracy of 

the estimates produced within the short-term statistics in the Official Statistics. In 

particular, the aim of the work is to illustrate the methodology for the 

computation of the variance for the estimators currently used in the service 

turnover survey carried on by the Italian National Institute of Statistics (ISTAT) for 

the quarterly turnover growth rate estimation. The variance for the estimators 

currently used in the service turnover survey is computed only for the total 

estimations in the quarters t and t-4, while the variance of the growth rate 

estimation for the different estimation domains is not calculated. My 

methodological contribution is not only to suggest how to assess the variance of 

possible estimators of the turnover variation over time, but also to compare such 

estimators with respect to their variance to identify the best one. 

While the adopted methodologies are fairly uniform within structural statistics on 

companies, this does not happen for short-term statistics, where the situation is 

quite heterogeneous. In fact, at European level, as indicated in the Short-Term 

Methodologies Handbook by Eurostat (see Eurostat, 2006), the choice of 

methodologies to be implemented is left to the various National Statistical 

Institutes. This heterogeneity appears both at the sampling plan level and at the 

estimation methods level. 

Short-term statistics measure the evolution of a phenomenon over time. Often, we 

are not interested in the value itself of the variables of interest, but rather in their 

variation over time. Changes can be measured as the difference between two 

quantities at different waves (for example the difference in unemployment rate 

between two consecutive quarters) or as the relative percentage difference 

between two quantities over time (e.g. the percentage change of turnover with 

respect to previous quarter or same quarter of the previous year). In these cases, 

the variance is important for the production of a confidence interval of the 

variation. Confidence intervals are useful not only to evaluate the reliability of the 

estimate, but also to understand if a variation is statistically significant. In fact, if 

the confidence interval does not contain the zero value, it means that the 

calculated variation is statistically different from zero. 
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While the calculation of the variance of the estimates produced for a given instant 

of time is now a good practice (also through the development of software 

packages), the same does not happen for the variation of two quantities over time. 

An estimator of variance must take into account of both the estimator and the 

sampling design (Wolter, K.M. (1985)). The biggest difficulty is that for many 

surveys, the samples for producing estimates in two different time are not 

independent each other, due to the rotation operations of the sample. In particular 

for business surveys, in order to take into account the birth-mortality of units in 

the population and changes in stratification variables (such as size category and 

type of economic activity), the sample is updated, and a part of the units is 

replaced with others. Surveys, such as the Italian EU-SILC survey and the Italian 

Labour Force survey (LFS), include a rotated panel sample, resulting in partially 

overlapping samples between two occasions (Gazzelloni (2006), Ceccarelli et al. 

(2008)). This means that in calculating the estimate of the variance of change over 

time, we need not only the estimates of the variances of the cross-sectional 

estimates, but also the covariance terms between cross-sectional estimates. 

Moreover, many indicators are non-linear functions of linear estimators (e.g. 

simple ratio, difference of ratios), therefore, to calculate their variance a first-order 

Taylor approximation can be used. This is the case, for example, for the variance 

estimations of the LFS-based indicators’ annual net changes (Ceccarelli et al. 

(2017)). Alternatively, balanced repeated replication (BRR) can be used (Moretti et 

al. (2005)). 

Currently, two estimators for the turnover growth rate estimation in the domain of 

services are used. The first is based on the variation computed on the overlapping 

sample units in both occasions (the quarter t and the quarter t-4), while the second 

is based on the ratio of totals computed through calibration, using all observations 

in both quarters and not only the overlapping sample units (Bacchini et al. (2013), 

Chianella et al. (2013), Bacchini et al. (2014), Bacchini et al. (2015), Chianella et al. 

(2015)). Other two estimators are taken into consideration in this study. The first 

additional estimator is based on the ratio of totals computed through calibration 

using only the overlapping sample units in both occasions, while the second 

additional estimator is based on the ratio of the sample means calculated using 

turnover data on all respondent units over the two quarters. Therefore, four non-

linear estimators are presented for the turnover growth rate: ratio of sample means 

at the periods t and t-4, and ratio of totals through calibration, both computed: (i) 

on all the respondents units at both occasions, and (ii) only on overlapping 

respondents units. The performance is assessed by a simulation study, which also 
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has the aim of exploring under which conditions it is better to use all the 

observations or only the overlapping observations. The change estimators and the 

corresponding estimators of the variance are defined at stratum and estimation 

domain level and take into account the use of a stratified sampling design and the 

updating of the sample due to a replacement of some units and to a dynamic 

stratification of the population.  

This work is organized as follows.  

The first Chapter provides an overview of the literature available about the 

variance of the change over time. Contributions of different authors are described, 

focusing the attention on different types of population (large/not large population; 

stratified/non-stratified population, with/without the hypothesis of no birth-

mortality in the population). 

Chapter 2 describes the methodology used in Istat for the quarterly turnover 

growth rate estimation in the service sector. The aim of this Chapter is to introduce 

the methodology for the computation of the standard errors for the quarterly 

turnover growth rate. The computation is performed using the Taylor series 

approximation, at stratum and estimation domain level. It is also provided the 

formula of the overlapping values over which the estimator using only the 

overlapping sample units between both occasions is better than the estimator 

using all observations in both occasions. 

In Chapter 3, a simulation study was conducted with the aim of analyzing the 

performance of these estimators and exploring under which conditions it is better 

to use all the observations or only the overlapping observations. The bias, the 

standard deviation and the mean squared error have been analyzed through 1000 

different samples extracted from the population, considering different values of 

the overlap between the respondent units at the occasions t and t-4 and different 

values of the correlation between the variable of interest and the calibration 

variable, together with different correlations between    and     . The estimator 

with minimum mean squared error was preferred. 

In Chapter 4 an application performed on real data is described, using information 

from the quarterly service turnover survey with the aim to evaluate the standard 

errors associated with different estimates. A confidence interval is defined at 95% 

level. The standard errors obtained with the Taylor series approximation are 

compared with those obtained with the bootstrap method. The results are also 
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compared with the results obtained by Knottnerus and Van Delden (2012) about 

the standard error of the turnover growth rate in Dutch supermarkets.  
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CHAPTER 1 

Literature on the variance of the change over 

time 

 

1.1 - The variance of change based on overlapping samples 

from large populations 

Suppose we are interested in estimating the change in the mean value in the 

population, of a quantity on two different occasions    ̅   ̅ . We use the 

difference between sample means calculated on two different occasions: 

 ̂   ̅   ̅ . 

 

The variance of the difference, can be expressed as: 
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where    ∑    
  
    and    ∑    
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Considering a simple random sample without replacement (srswor), with a fixed 

size of the sample   , it is shown (Kish 1965, p. 63) that the variance and the 

covariance terms, are equal to: 
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where     and   are the sample fraction and the sample size, respectively. In the 

general case, where we have two samples of different size, assuming  that the 

population is the same over time (there is no birth-mortality), Kish (1965, pp. 457-

466) obtains the general formula: 
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where      ⁄  and    is the size of the overlap units to both samples   ,    

(Figure 1.1). In the case of large population, the above expression becomes : 
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where the covariance term is written as the product between the correlation 

coefficient estimated from the common sample  ̂    
and the standard deviation 

 ̂  
  ̂  

, while the overlap in the first sample and in the second sample, are defined 

as: 

   
  

  
      

  

  
    

Figure 1.1 - Two samples of different sizes (  and   ) with overlap of size      
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If the correlation  ̂    
is positive, when we have complete overlap between the 

two sample at the different occasions (  
  

 
  ), then the variance of the 

difference  ̂ will take its smallest value. 

From the general case, Kish reports four particular cases, where the first two, 

concern the extreme cases of non overlap and complete overlap between the 

samples: 

 Case 1. There is no overlap between the two samples (    ) 

 

In this case (Figure 1.2), we have that          and from the general formula of 

the variance of the difference, we obtain: 
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Therefore in this case the covariance term does not attend to lower     ̂( ̂) 

 

Figure 1.2 - Non overlap between the sample 

 

 

 

 

 

 Case 2. There is complete overlap between the two samples (        ). 

 

In this case (Figure 1.3), we have that        . The formula of the variance 

becomes: 
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Figure 1.3 - Complete overlap between the sample 

 

 

 

 

 

 Case 3. The samples have identical size and partial overlap (           ) 

 

In this case (Figure 1.4),          . The formula for the variance of the 

difference can be written: 
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Compared to case 2, we have now the term   in the formulation. Since    , 

   ̂( ̂) will be higher with respect to the case of complete overlap between the 

samples. 

 

Figure 1.4 - Samples with the same size and partial overlap 

 

 

 

 

 Case 4. The sample at the second occasion is a subset of the first 

 

In this case (Figure 1.5), we have         . It follows that      and     . 

The formula for the variance, becomes: 
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From this formulation can be noted that if ( ̂  
     ̂    

 ̂  
 ̂  

)   , then more 

increase the size of the units not in overlapping (more    is greater than   ) and 

more increase the value of    ̂( ̂). 

 

 

Figure 1.5. The second sample is a subset of the first 

 

 

 

 

 

 

 

1.2 - The variance of change without the hypothesis of large 

population  

The computation of the variance of  ̂ becomes more complicated when the 

hypotesis of large population is removed. In fact, in finite populations, two 

disjoint samples are not independent. 

Tam (1984) formulated the exact expression for the sampling variance of the 

difference  ̂, removing the hypothesis of “large” population supposed in Kish. The 

finite population corrections now are not negligible. The general formula of a 

srswor in this case is:  
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From the general formula Tam derived the formulas for three different sampling 

plans, assigning different values of f. 

1. In the sampling plan A, at the first occasion we have a srswor of size    from a 

population U. In the second occasion we have a sample consisting in the union of 

a random subset of the first sample    (  , of fixed size       ), and a srswor from 

U excluding the units in the first sample    (see Figure 1.6). In this case   
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If the size of the samples is the same in both occasions (       ), we can write: 
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2. In the sampling plan B, at the first occasion we have a srswor of size    from a 

population U. In the second occasion we have a sample consisting in the union of 

a random subset of the first sample    (  , of fixed size       ) and a srswor from 

U excluding the units in the overlap sample    (see Figure 1.7). In this case   
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3. In the sampling plan C, at the first occasion we have a srswor of size    from a 

population U. In the second occasion the first sample is replaced with a srswor 

from U (see Figure 1.8). In this case    is random and      and: 
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As we can see in the above formulations, the smallest value of the variance of the 

difference between two cross sectional estimates, when there is overlap between 

samples, is obtained in the sampling plan B. This sampling plan is similar to that 

in the Italian survey for turnover (we will discuss on it in next chapters), with the 
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difference that at the second occasion the subset of the first sample is not 

completely random but there is a purposive choice. 

 

Figure 1.6. Sampling plan A 

 

 

 

 

 

 

Figure 1.7. Sampling plan B 

 

 

 

 

 

 

 

Figure 1.8. Sampling plan C 

 

 

 

 

 

 

Qualitè and Tillé (2008), also took into account two samples,    and   , selected 

without replacement and of fixed size    and    respectively. Then they 

considered         ,          and         , of random size (see Figure 1.9). 

The Horvitz-Thompson estimator is used for calculate the totals   and    and 
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considered the difference of totals  ̂      . To compare the results with Tam 

we instead consider the difference  ̂   ̅   ̅ . 

 

Figure 1.9. Overlapping between two samples of fixed size of   ,    

 

 

 

 

 

 

Then we have: 
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Furthermore, since we are in the sampling plan A of Tam, thus, as we show in the 

previous pages, the conditional covariance is: 
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In this way the estimation of the variance of  ̂ becomes: 
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Where  ̂     
is the simple covariance, calculated from the sample   : 
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A few comment on the above formula are in order. 

1. If the two samples   ,    form a panel  we have that            and we 

obtain: 
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In this case, unlike the case 1 on Kish, conditionally on      can lead the 

covariance term to increase the variance of the change  ̂ (if the correlation between 

  and    is positive). 

Qualitè and Tillé also compare the variance of the estimator  ̂ with the estimator 

 ̂   ̅    ̅  , that considers the difference between the two cross sectional 

estimators only on the overlap between the samples. Also  ̂  is unbiased 

conditional on   .  

Using the approximation  (
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In the case        ,  ̂  
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     the authors obtained: 
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Recalling that the overlap is   
  

 
  (see the case 3 of Kish), in this case we can 

write: 
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so that the difference of the variance between the two estimators becomes: 
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Therefore: 

1) if    
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and the use of one estimator compared to the other one is indifferent 

 

2)  if    
 

(   )
 :    ( ̂)     ( ̂ )    

and the estimator that use only the overlap between the two sample ( ̂ ) is better 

than the estimator  ̂ 

As we can see (Table 1.1), if the size of the overlap is considerable, then it is 

convenient to use the estimator  ̂ , since a not too high value of the correlation is 

required. 

Especially for economic surveys (e.g. the turnover survey), where the correlation 

between the observed variables over time is usually high, it is better to use the 

estimator based on the overlap ( ̂ ). 
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Table 1.1 When it is better to use the estimator  ̂  for different overlapping rates 

overlap    

0,1 >0,91 

0,2 >0,83 

0,3 >0,77 

0,4 >0,71 

0,5 >0,67 

0,6 >0,63 

0,7 >0,59 

0,8 >0,56 

0,9 >0,53 

1 >0,50 

 

 

1.3 - The variance of change in dynamic non-stratified 

population  

Laniel (1988) considered in his research, the case of the difference between levels 

in two consecutive occasion        , removing the hypothesis of no birth-

mortality in the population. 

At the first occasion, Laniel considered a sample    of size    selected with srswor 

from the population   . Between the first and second occasion there are change in 

the population, due to the birth-mortality of the units. At the second occasion, 

Laniel identified the units in the population    that have survived from the first 

occasion (  ) and the new units (  ) referring to births. Laniel also identified the 

units in the sample    that survived at the second occasion. We will refer to them 

with    , of random size     (Figure 1.10). 

The sample at the second occasion comes from two independent sampling 

performed on    and    respectively.  

He distinguished the sampling from    in two cases, according to a modified 

version previously described in Tam. 
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1. In the sampling plan A, a part of the first sample, of size      (where      ), is 

randomly selected from the sample    , while the remaining part, of size (   ) is 

selected according to srswor from         (see Figure 1.11). 

 

2. In the sampling plan B, a part of the first sample, of size     , is randomly selected 

from the sample    , while the remaining part, of size (   )    is selected 

according to srswor from          (see Figure 1.12). 

 

Figure 1.10. Effect of birth-mortality in population on the sample 

 

 

 

 

 

 

 

 

Figure 1.11. Sampling plan A 
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Figure 1.12. Sampling plan B 

 

 

 

 

 

 

 

 

 

The estimates for the total level in the two different occasions can be estimated 

through the expansion estimator. 

At the first occasion, the estimate for the total is: 

  ̂  
  

  
∑      

At the second occasion, the estimate of   , is given by the sum of the total in    

and the total in   : 

  ̂    ̂   ̂   

  ̂  
  

   
∑    

  ̂  
  

  
∑    

 

where the expansion factor 
  

   
 is a random variable. 

The formula of the variance of the difference between the two occasions is: 

   ( ̂   ̂ )     ( ̂ )     ( ̂ )     ( ̂ )      ( ̂   ̂ ) 

 

𝑈𝑏 

𝑈  𝑈  

𝑈𝑐  

𝑠 𝑐 

𝑟𝑛 𝑐  
(  𝑟)𝑛 𝑐 

𝑠  

𝑠𝑟𝑠𝑤𝑜𝑟 𝑓𝑟𝑜𝑚 𝑈𝑐   𝑟𝑠 𝑐 
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The variance for the total  ̂  and  ̂ , are known to be (Cochran, 1977, p.23): 
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 (    )
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)    

   

Using Lemma 1 of Tam (1984, p.288), Laniel found the formula of the variance for 

 ̂   

   ( ̂ )    
 ( [

 

   
]  

 

  
)    

    

where, following Sukhatme P. & Sukhatme B. (1970), and assuming    sufficiently 

large, 

 [
 

   
]  

  

    
[  

(     )(     )

(    )    
]  

Using Lemma 2 and Lemma 3 of Tam (1984, p.289), Laniel found the estimate for 

the covariance between  ̂   ̂ : 

   ( ̂   ̂ )  

 

{
 
 

 
     (

 

  
 

 [   ]

    
)     

                                                                 

    (
 

  
 

 [   ]

    
 

   

  
 [

   

       
])      

                    

 

 

where in the above expression, supposing   sufficiently large and using the 

second order Taylor’s formula, we have  

 [
   

       
]  

  

      
  

(     )(     )     

(    )(      )   
   

 

Laniel found the formula of the estimate of the variance of the change between 

two consecutive occasions in dynamic population, but he did not consider that in 

many repeated surveys, in particular business surveys (eg. the italian quarterly 

service turnover survey),  a stratified simple random sample without replacement 

(stratified srswor) is actually used. 
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1.4 - The variance of change in dynamic stratified 

population 

Tam (1984) and Qualité and Tillé (2008) do not provide an explicit form for 

stratification. However,  under the assumption of a fixed population, fixed sample 

size and overlapping rate, and constant stratification over time, the result can be 

easily derived (Andersson, 2011):  

   ̂ ( ̅   ̅ )  ∑(
    

        
 

 

  
)  ̂       

 ∑(
    

    
 

 

  
)  ̂      

 

  

 

where  ̂      
 is the covariance between    and    calculated on the common 

sample    within stratum  . 

Knottnerus and Van Delden (2012) considered in their research the case of rotating 

panels and population with dynamic strata and change in the population over 

time. In this case, there are three aspects that must be taken into consideration. 

1. As specified in Holt & Skinner (1989) and Kitagawa (1955) in the case of a 

stratified population, the net change in population means between two different 

occasions,    ̅   ̅  , can be decomposed as a sum of a component referred to the 

change in population mean, assuming no change in the stratum composition in the 

population between the two occasions (A), and the change in the stratum 

composition (due to different stratum classification of the same units in both 

occasion or births and deaths), assuming no change in the mean within stratum   

(B): 

 

   ̅   ̅      

 ∑   ( ̅    ̅  )  ∑  ̅  (       )

 

   

 

   

 

 

In this formulation, as we can see, in the first term the stratum composition is 

fixed at the first occasion and we only measure the change in the mean within 

stratum while in the second term the mean within stratum is fixed at the first 

occasion and we measure only the change in the stratum composition between the 

two occasions.  

 

2. Between two occasions, some units in the population could change their 

stratification variables value. This is very common for business surveys, where 
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one of the stratification variables can be the number of employees, so a different 

number of employees between one occasion and another can lead some units to be 

classified into different stratum over time. Because of these stratum migration, 

some estimates referred to a stratum “ ” on the first occasion, could be correlated 

with the estimates of the stratum “ ” on the second occasion. 

 

3. As the population is repeatedly sampled, sample overlap may occur between the 

two occasions, as already discussed in the previous paragraphs. 

 

Considering these aspects, Knottnerus and Van Delden derives the formula of 

variance for the yearly relative grow rate of Ducht monthly turnover in 

Supermaket. The survey is based on a rotating sample stratified by economic 

activity and size. The sample is monthly updated to take into account of births and 

deaths in the population. The sample is updated also in January of every year: the 

10% of the sample is replaced with other units and the units that remain in the 

sample are stratified according to their actual size.  

Due to the migration of units from one stratum to another, strata are probably 

composed by units with different inclusion probabilities. To solve this problem the 

authors form substrata that take into account the reallocation of the units from the 

stratum   in December to the stratum   in January. They define the following 

quantities 

 

    
       

  set of units in the population that have migrated from the stratum   in 

december to the stratum   in january, having size    
       

. 

    
       

  set of births in the population is the stratum  , having size    
       

. 

 

Let now  ̂       be the relative change of the monthly turnover with respect to the 

same month of the previoulsy year: 

 ̂       
 ̂ 

 ̂    
     

and define further: 

 ̂       
 ̂ 

 ̂    
    ̂        



31 
 

 
 

To estimate the variance of  ̂       the authors use the first order Taylor expansion 

of a ratio between two estimators, obtaining: 

 

   ( ̂      )     ( ̂      )   

    (
 ̂ 

 ̂    
)  

   ( ̂           ̂    )

(     ) 
 

 
   ( ̂ )  (       )    ( ̂    )             ( ̂      ̂ )

(     ) 
 

Considering the sampling design, the covariance term can be written as 

   ( ̂      ̂ )      (∑  
     ̅ 

    

 

   

 ∑  
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∑∑  
      

     ( ̅ 
     

 

   

 

   

  ̅
 ) 

 

where  ̅ 
  and   ̅ 

     are the mean of the turnover in the sample in the stratum   

in month   and in the stratum   and in the same month of the previously year, 

respectively. 

To take into account the reallocation of the units within stratum, and proceed with 

the analysis, the authors define the variables: 

 

    
        size of the units in the population that at the occasion t belong in the 

stratum   while in the same month of the previously year belonged in the stratum 

  (   
      ). 

    
      size of the units in the sample in the month     (        ) 

within the substratum    (   
    ): the size in    

    can be different from that in    
  

because the units that belonged to    
    and change stratum, can be not selected in 

t, thus no belong to    
  

    
    and  ̅  

    are the total and the mean turnover, respectvely, within population 

in month     (      ), of the units that have migrated from the stratum   to 

the stratum   in january (   
      ). 

    
    and  ̅  

     total and the mean turnover, respectvely, within the sample in 

month     (      ), of the units that have migrated from the stratum   to the 

stratum   in the population, between t-12 and t. 
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        size of the overlapping units between the sample at the   and      

occasion within the substratum   . 

  ̅  
     mean turnover in the month     (      ) of the overlapping units, 

within the substratum       
       

They define   (       ) at the occasion t-12 and    (         ) at the 

occasion t, to take into account the birth (   ) and the mortality (     ) 

respectively. 

Then the    (  
      

 )  term can be formuled as 

   ( ̅ 
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Since: 
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 )     for       

we obtain: 
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Conditionally on     (   
        

          
 ), the covariance term can be expressed in 

this way: 
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where the second term is equal to: 
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Developing the first term and postponing the various steps to the paper of 

Knottnerus and Van Delden, we obtain 

   ( ̅ 
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This expression can be estimated from the overlapping sample : 
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As    
       is sufficiently large, this is a reasonable estimate while for small value 

could lead to a negative estimates in the numerator of    ( ̂      ). For this reason, 

Knottnerus and Van Delden proposed an alternative estimator to  ̂      
      , namely 

 ̂  
        ̂      

       ̂  
     ̂  

    

where: 

 ̂  
    √  

   
     

∑ (    
     ̅  

   ) 

   
   

   

           (    ) 

 ̂      
      is computed on the sample    

       and is the estimate of the correlation 

between    and       in    
      . 

With this estimator in the formula of the estimate of the covariance, they 

computed the confindence interval of the growth rates of the turnover for the 

ducht supermarket. 

Summarizing the various steps, then we have: 
                                                           
1
 Like described by the authors, we will see that Nordberg (2000) derived a different result for this 

expression 
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Nordberg (2000), using inclusion indicators, derived the formula for the variance 

of change over time, considering dynamic stratified populations, with units that 

can migrate between strata. He calculated this formula for the business survey in 

Statistics Sweden. To increase the precision of the estimates overt time, the 

sampling design in Statistics Sweden is constructed by using the Samu system2. 

This system is based on permanent random numbers associated with the units in 

the frame populations, and is used in particular to ensure a given overlapping 

between consecutive samples. A random number is associated with each units in 

the frame population at time 1 (frame1), then the frame is ordered by this number, 

and from a predeterminate starting point the first    units within the stratum 

  (  (      )) are selected. At time 2, there is a new updated frame population 

that take into account of birth-mortality on the enterprises (frame 2). Each unit in 

frame 2 that was also in the frame 1, maintains  his permanent random number. At 

each new units a new random number is assigned, while units that were in frame 

1 and no in the frame 2 are discarded. Then the units in the frame 2 are order on 

the basis of assigned random number, and from a starting point, the first    units 

within the stratum   (  (      )) are selected. To obtain the maximum overlap 

between the two samples, the starting point in frame 2 is the same used in frame 1. 

A random effect is due to the birth-mortality between the two populations over 

time.  

                                                           
2
 See “Samu: the system for co-ordination of frame populations and sample from the Business Register at 

Statistic Sweden”, Background Facts on Economic Statistics (2003) 
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Nordberg considers the estimates of the totals at time 1 and a time 2, obtained 

with both the Horvitz-Thompson estimator (H-T) and the Generalised Regression 

estimator (GREG). Then the estimates for the variable at time 1 (  ) and the 

variable at time 2 (  ) are functions of these totals. For istance, using the Horvitz 

Thompson estimator we obtain: 
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where: 

     {
      
           

 

     {
      
           

 

The estimates of   and    are then obtained as functions of totals  ̂    and  ̂    

respectively: 

 ̂   ( ̂     ̂         ̂   )  

 ̂   ( ̂     ̂         ̂   )  

The formula of the covariance in the expression of the variance of change  ̂, can be 

written using a Taylor linearisation: 

 ( ̂   ̂ )  ∑∑  
 ( ̂     ̂         ̂   )  

 ( ̂     ̂         ̂   ) ( ̂    ̂  )

  

  

where   
        ⁄ ,   

        ⁄  and  ( ̂   ̂ ) is the covariance between  ̂    ̂  . 

The units in the two populations can be split into death (D), overlapping (O) and 

born units (B). 

Since the population is stratified, we can split the three groups D, O and B in   , 

   ,   , where:  

    is the subset of units belonging only to the frame 1, within stratum  . Its size is 

   . 
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     is the subset of the overlapping units between the two frame, within stratum   

in frame 1, and in stratum   in frame 2. Its size is    . 

    is the subset of units belonging only to the frame 2, within stratum  . Its size is 

   . 

   and    are the size of the sample within stratum   in the frame 1 and of the 

sample within stratum   in the frame 2, respectively. They can be calculated as: 

       ∑   

 

   

   

       ∑  
  

 

   

   

where     and     are the size of the sample units belonging to the group    and 

   respectively, while     and   
    are the size of the sample units at time 1 and at 

time 2 respectively, belonging to the group    . Furthermore, let     be the size of 

the sample overlapping units, belonging to the group    . The rappresentation just 

described is showed in Figure 1.13. 

Nordberg use the random quantity    {     
 
              }             

      , to split  ( ̂   ̂ ) in: 

 ( ̂   ̂ )    ( ( ̂   ̂   ))    ( ( ̂   )  ( ̂   )) 

Figure 1.13. Frame population and sample units between the occasion 1 and 2 
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Let's see now, how Nordberg calculates the two terms: 

1) The covariance in the first term   ( ( ̂   ̂   )), can be calculated as: 

 ( ̂   ̂   )  ∑∑  
 ( ̂     ̂         ̂   )  

 ( ̂     ̂         ̂   ) ( ̂    ̂    )

  

   

Using the expression of the H-T estimators, we obtain:  

 ( ̂    ̂    )  ∑∑ ∑ ∑
    

 

    
              (           )

    
     

 

   

 

   

 

 ∑∑ ∑ ∑
    

 

    
             ( (           )

    
     

 

   

 

   

  (      ) (      ))   

 

The unbiased estimator for  ( ̂    ̂    ) is: 
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Nordberg also computed the first and second order inclusion probabilietis, and 

obtained: 
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where  ̃   
      

 

  
   

Hence: 

 ̂( ̂   ̂   )  ∑∑  
 ( ̂     ̂         ̂   )  

 ( ̂     ̂         ̂   ) ̂( ̂    ̂    )

  

 

2) Nordberg considers the second term as a remainder term. He proposed a method 

to calculate it for the Swedish sampling disegn, trought a computer intensive 
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procedure with the Samu system. This term in Knottnerus and Val Deldend is 

instead estimated to be 0 (see again above). Nordberg estimates this term in this 

way: 

  ( ( ̂   )  ( ̂   ))  

 ∑∑  
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and similarly 
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Then, to estimate   ( ( ̂   )  ( ̂   )) he applies the following procedure. He 

assigns a random number to each unit in the union of the two populations. Then 

such units are ordered by their random numbers, and the value      is assigned 

to the firsts    units within stratum   of the first population, and the value   
    

is assigned to the firsts    ordered units within stratum   of the second population. 
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To the other units the valued   
    is assigned. Then, the following quantities are 

computed: 
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These values are calculated for            .  ̅        ̅        ̅        ̅       are the 

sample means associated to  ̅        ̅        ̅        ̅      . We can now calculate the 

estimates for the covariance   ( ( ̂   )  ( ̂   )), by: 
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and then: 

 ̂ ( ( ̂   )  ( ̂   ))  ∑∑  
 ( ̂     ̂         ̂   )  

 ( ̂     ̂         ̂   ) ̃  

  

  

1.5 -  Other approaches 

Berger (2004) also proposes a design-based estimator for covariance matrix that is 

adapted to overlapping samples between one wave and the next one, and he 

generalizes his results for stratified sample. He shows that his approach “yields 

non-negative definite estimates for covariance matrices and therefore positive 

variance estimates for a large class of measures of change”. 

Berger, based his results on the aggregation of conditional covariances, using a 

Poisson sampling approximation of the actual sampling scheme. While Hajeck 

(1964) developed his approach for a single sample, Berger extends this approach 

to overlapping samples. His assumptions are “a fixed number of units rotating in 
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and out as well as a fixed number of units in the matched sample”. These 

assumptions “hold with most rotating sampling scheme”. However, as mentioned 

by Wood (2008) this method “involved a variety of matrix operations and no 

explicit covariance formula were presented”. 

Osier & Raymond (2017) describe possible approach to estimates the variance for 

annual changes in the European Union Labour Force Survey (EU-LFS) based 

indicators. Almost all the countries of the European Union use a 2-(2)-2 rotating 

design: the units in the sample are interviewed for two consecutive quarters, then 

leave for two quarters and return in the sample for two more quarters of the 

following year. Therefore, they have to take into account the overlap between 

quarterly and annual data. They suggest to adopt an estimator proposed by Berger 

& Priam (2013) and Berger & Oguz Alper (2015). This estimator can be used with 

several EU-LFS sampling designs, and is easy to implement because it does not 

require the calculation of the joint inclusion probability, that can be unknown with 

rotating designs. It can be implemented by standard statistical software as R, SAS, 

SPSS, Stata, and requires minimal computing power. The idea is to estimate the 

design covariance matrix of  ̂  and  ̂  (  ̂) in: 

   ̂( ̂)     ̂( ̂ )     ̂( ̂ )     {   ̂( ̂ )   ̂( ̂ )}
 

 ⁄      ̂ ̂    

from the covariance of the residuals     and     of the following multivariate linear 

regression model: 
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where   (    ) ,             and the residuals (        ) have a bivariate 

distribution with null mean and unknown variance-covariance matrix. The 

covariate       and       are dummy design variables defined by: 

      {
             
           

         {
             
           

 

 



41 
 

 
 

The            term, represents the interaction in the regression and take the rotation 

of the design into account. The   
( )

   
( )

    
(  )

   
( )

   
( )

   
(  )

 terms are the 

regression parameters of the model.  

The model relies on the assumption that the sampling fractions are negligible, that 

is common thing for social survey like LFS. When we have large sampling 

fractions, which are common for example in business surveys, this approach is not 

suitable. Moreover, the estimator of the covariance matrix is unbiased only in the 

case of a large entropy.  

One of the advantages of this approach is that the covariance matrix   ̂ is 

estimating using a single model, also if we have many stratum and totals. 

Moreover, in the case of the complex measures of the change  ( ̂   ̂   ̂  or  ̂  

 ̂ 

 ̂ 
, where  ̂  and  ̂  are smooth functions of estimators of totals  ̂  and  ̂ ), using 

Taylor linearization we have that: 

   ̂( ̂)   ( ̂)  ̂ ̂
( )

 ( ̂)  

where  ( ) is the gradient of  ( ) and the same estimated variance-covariance 

matrix   ̂ can be used for several measures of change (any function of the same 

totals). Therefore, the user, known the covariance matrix, have to define only the 

gradient. The estimate is possible without knowing the design and auxiliary 

variables because only the covariance matrix is necessary. 
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CHAPTER 2 

Evaluation of the variance for the growth rate 

estimators used in the Istat service turnover 

survey 

 

2.1 - Description of the survey and sampling design 

The quarterly service turnover survey measures the quarterly percentage change 

recorded in sales at current prices by enterprises belonging to the domain of 

services (sections G, H, I, J, M, N of the Nace Rev. 2 classification), except for retail 

sales (G47). The indices are aggregated according to the Laspeyres formula, using 

a fixed weight structure that reflects the sectorial distribution of services turnover 

in the base year (figure 2.1). The quarterly service turnover index is obtained by 

aggregating all estimation domains. 

The indicators produced up to March 2012 (G452, G46, H50, H51, H53, J) 

represented 60,1% of the total service turnover3. Istat’s strategic aim for the period 

2010-2013 has been to complete the set of indices for the services sector as required 

by European Regulation (Regulation No 1158/05 of the European Parliament and 

of the Council, annex D). For the quarterly turnover indices, this implied the 

creation of new surveys to increase the coverage of the indices already produced 

for other economic activities. 

The planning and launch of the new surveys allowed in March 2012 the 

dissemination of the indices for the sectors G45-G452, H49, H52, I55, I56, reaching 

84,9% of the total service turnover and the completion of the indices for the G, H 

and I sections. Moreover, in 2013 the launch of new surveys related to M and N 

sections allowed to complete the total set of indicators required (for more details 

see Bacchini et al. 2015). 

                                                           
3
 according the turnover weights structure of 2010 
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The turnover data are collected by a sample survey of about 17.000 enterprises. 

For the sectors where the market dynamics are determined by a small number of 

large companies (H50, H51, H53, J61, N78 domains of the Nace Rev. 2 

classification), cut-off unit selection scheme have been adopted. In this case, the 

sample includes the biggest companies up to cover a sufficiently high share of the 

total turnover of the sector4 (usually over 80%). 

 

Table 2.1- The weights structure in 2015 for the quarterly turnover indicators of services 

Nace Rev. 2 Economic Activities 
Weights 

2015 

G45-G452 
Wholesale & retail trade of motor vehicles and 

wholesale & retail trade and repair of motorcycles 
8.792 

G452 Maintenance and repair of motor vehicles 1.168 

G46   
Wholesale trade, except of motor vehicles and 

motorcycles 
46.292 

H49 Land transport and transport via pipelines 5.735 

H50    Water transport 1.049 

H51 Air transport 0.911 

H52 
Warehousing and support activities for 

transportation 
4.752 

H53    postal and courier activities 0.509 

I 55 Accomodation 1.977 

I 56 Food and beverage service activities 4.704 

J         Information and comunication 9.237 

M69 Legal and accounting activities 2.853 

M70.2 management consultancy activities 1.240 

M71 
Architectural and engineering anctivities; technical 

testing and analysis 
2.097 

M73 Advertising and market research 1.112 

M74 Other professional, scientific and technical activities 1.304 

N78 Employment activities 0.771 

N79 
Travel agency, tour operator and other reservation 

service and related activities 
0.992 

N80 Security and investigation activities 0.325 

N81.2 Cleaning activities 1.150 

N82 
Office administrative, office support and other 

business support activities 
3.030 

Total 
 

100.000 

                                                           
4
 More information are available on the methodological note (istat.it) 
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However, for most sectors a stratified simple random sampling without 

replacement (stratified srswor) is used. The stratification variables are the 

economic activity and the size of the enterprise. Businesses above a given size 

threshold (usually 100 employees) are included in self-representative strata. For 

some sectors, a specific size threshold (usually of at least 2 employees) is applied 

in the sampling selection of companies. 

Every year, the sample size is computed by means of the Bethel algorithms 

implemented  in Mauss-R (see Barcaroli et al. 2010). This allows to minimize the 

sample size, given the maximum expected sampling errors on target estimates for 

each type of domain5. Estimation domains are the sub-populations at which level 

you want to compute the estimates of the parameters of interest. The precision 

required for the estimates, indicates the degree of reliability that the estimates 

have to guarantee. It is expressed in terms of the coefficient of variation (ratio 

between the standard error of the estimate and the estimate itself), to be specified 

for each parameter and each type of domain. The planned coefficient of variation 

for each estimation domain is fixed at 3%. The estimation domains are usually the 

2 or 3 digits of the Nace Rev. 2 classification. 

The auxiliary variables necessary for the allocation are stratification variables, that 

are essential to define strata and study domains, and the variables correlated with 

the variables of interest, useful for the study of their variability. The auxiliary 

information for the planning of the design is contained in the Istat Statistic 

Register of Active Firms (ASIA). The Register consists of economic units that run 

an activity in industrial and commercial sectors, as well as services to businesses 

and families sector. It provides identifying information (name and address) and 

business specific information (economic activity, employee number, activity start 

and end date, annual turnover) of these units6. The Register is annually updated 

through a process of integration of information from both administrative sources 

and statistical sources. Its regular maintenance guarantees the update of the 

complex of active economic units over time, ensuring an official data source, 

harmonized at European level, on the structure of the population of enterprises 

and on its demographic characteristics. The Register (also used for the calculation 

of the national accounts estimates) has a central role in the field of economic 

statistics: it identifies the reference population for the sampling plans and for the 

carryover to the universe of the main surveys on companies conducted by Istat. 

                                                           
5
 See the “User and methodological manual” about Mauss-R 

6
 Istat.it -Schede standard di qualità -Archivio Statistico delle Imprese Attive 
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The latest available ASIA contains a delay of two years. This means that for the 

year 2019, the latest Asia contains information updated to 2017. For this reason, 

within the service turnover survey an integration with sample data is used. In 

particular, the annual turnover sample values obtained from the quarterly 

observations and the number of employees replace the values contained in Asia. 

Due to the high correlation with the quarterly turnover, the variable used to study 

of the variability of the variables of interest is the annual turnover.  

The sample is updated to account for both a re-stratification of the units and a 

sample replacement of approximately 15%. The units in the sample are re-

stratified according to their actual size and economic activity from Asia. Dead 

companies are discarded from the sample, together with the companies that have 

been in the sample for several years. New companies are randomly selected from 

the last Asia available excluding the units already in the sample (plan A of Tam), 

until the theoretical size provided by the Mauss-R software is reached within each 

stratum. In this way between two consecutive years we have two overlapping 

samples. 

The situation just described is represented in Figure 2.1. As we can see, between 

one quarter (t) and the same quarters of the previous year (t-4) we have two 

different partially overlapping samples,     and    . The overlapping sample is 

represented by   .  

The overlapping units (  ) in the samples     and     could belong to different 

stratum, because the stratification variable values can change across the two 

consecutive years. 

Figure 2.1. Overlapping sample between two consecutive years 
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New companies entering in the sample (  ) are required to indicate the turnover 

data for both the current year (t) and the previous year (t-4). In this way, it is 

possible to have turnover data for both estimation quarters, even if the firm was 

not in the sample     at the occasion t-4.  

The estimates of the change between the occasion t and the occasion t-4 are both 

computed on the sample    . It means that all observations are stratified in the 

same way over the two estimation quarters, according to the latest information 

available on the stratification variables. The rotated units are not included in the 

estimates, neither in the quarter t nor in the quarter t-4. 

The situation is shown in Figure 2.2. The dashed red line indicates data referred to 

the t-4 occasion that have been collected from the new enterprises entered in the 

sample at the occasion t (  ).  

 

Figure 2.2. Use of the new sample     for both quarters of estimation 

 

 

 

 

 

 

 

 

 

2.2 - The methodology used for the growth rate estimation 

As we have seen in the previous paragraph, the aim of the quarterly service 

turnover survey is the estimation of the percentage change of the turnover 

between the occasion t and t-4: 
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Let    be the set of the respondent enterprises only at the occasion t-4,    the set of 

respondent enterprises on both occasions t-4 and t,    the set of respondent 

enterprises only at the occasion t. Then we define           and          . 

The completion of the indicators for all the service sectors represented an 

opportunity to review the  estimation procedure for  . For the new sectors, it is 

used a new estimation method that is different from the one used for the sectors 

already disseminated. In this section we analyze the two different methodologies. 

 

2.2.1 - The estimator used for the sectors already disseminated 

The estimation procedure for the sectors already disseminated before completing 

the indicator for all the service sectors is based on the variation computed on the 

overlapping sample units (   ) in both quarters. This means that only units in the 

sample     that respond in both quarters are directly involved in the estimate. The 

calculation of the change (G) is carried out at the stratum level. In formula, we can 

write: 

 ̂      
 ̂̅ 

 ̂̅   
 

 
   

∑     
 

    

 
   

∑     
   

    

 
 ̂̅    

 

 ̂̅    
    

By applying  ̂    to the index number of the same stratum of the previous year, 

the stratum index for the current quarter is obtained: 

 ̂ 
   ̂        

     

The elementary stratum index consists of two parts: the first one is the ratio 

between the two sampling averages of turnover at the current occasion and at the 

occasion t-4, calculated on the set of common respondents    within the stratum h 

( ̂     ). The second one is the published final stratum index for the same quarter 

of the previous year. The second part takes into account the change in the average 

level of the turnover for the quarter t-4 compared to the same quarter of the base 

year. The index numbers are built in such a way that the average is equal to 100 in 

the base year. 

The indices at the domain level are obtained by aggregating the stratum indices 

with an annual fixed weights system calculated via Asia, which takes into account 

the weights of the strata within the estimation domain, in terms of turnover: 
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Finally, the turnover change at the domain level can be calculated as follows: 
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2.2.2 - The estimator used for the new sectors 

For the new sectors, instead, a methodology for the estimation of the totals in the 

population has been adopted, which is based on all respondent enterprises in the 

two occasions (   ). At the beginning the Horvitz-Thompson estimator has been 

computed and then a calibration estimator. Therefore, the initial sample weights 

are corrected using an auxiliary variable to account for non-response (Bacchini et 

al. 2014).  

The change estimation at the stratum level through calibration is obtained by the 

ratio of the totals calculated within the stratum h: 

 ̂          
 ̂     

 

 ̂     
   

 
∑     

        

∑     
   

       

 

where    and    are the calibration weights associated with the j-th unit and i-th 

unit respectively. The calibrated weights (   and   )  associated with the same unit 

on the two survey occasions of investigation (t and t-4) can be different due to the 

different non-response on the two occasions (the sets of respondent enterprises     

and     usually are not the same). 

By summing up the totals of strata at the two occasions t and t-4, is possible to 

obtain the change estimation at the domain level: 
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 ̂          
∑  ̂     

  
   

∑  ̂     
    

   

 
∑ ∑     

        
 
   

∑ ∑     
   

       
 
   

 

The calibration variable used is the annual turnover, due to its high correlation 

with the variable of interest. The values of the calibration variable and the known 

totals are the same in both the numerator and the denominator, and derive from 

the latest  available Asia together with integration on sample data. Calibration is 

performed at single stratum level, i.e. the known totals are calculated for each 

stratum. The estimated totals for each stratum are aggregated within the 

estimation domains to allow the calculation of  ̂         . By applying  ̂          to the 

index number of the same estimation domain for the previous year, the domain 

index for the current quarter is obtained as follows: 

 ̂ 
   ̂            

    

The estimation methodology adopted for the new sectors has some advantages 

with respect to the one used for the sector already disseminated. It includes in the 

calculation of the index all respondent companies, and not only the overlapping 

observations, like in the estimator  ̂   . In addition, the calibration can be 

implemented using the software ReGenesees (R Evolved Generalized Software for 

Sampling Estimates and Errors in Surveys)7. This software is a full-fledged R 

software for design-based and model-assisted analysis of complex sample surveys. 

This system is the outcome of a long-term research and development project 

aimed at defining a new Istat standard for calibration, estimation and sampling 

error assessment in large-scale sample surveys.  

The advantage of using ReGenesees in the estimation process of the service 

turnover growth rate is that it provides the standard error related to the estimates 

of the totals (Chianella et al. 2013). 

In 2013 different calibration models were tested (Bacchini et al. 2013). A 

comparison was made by integrating the annual turnover with other known 

information on the population. A list of different combinations of tested 

constraints is reported in the sequel. Annual turnover; annual turnover with 

employee number; annual turnover with company number; annual turnover with 

company and employee number. The analysis was conducted on a 3-year time 

interval (2010-2012). The range of the confidence intervals produced on the 

quarterly total estimates was evaluated together with the congruence at the 

                                                           
7
 See Zardetto D., 2015 
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domain level between the totals annual estimates (obtained by the sum of the 

quarterly estimates) of 2010 and 2011, with the annual turnover in ASIA referred 

to 2010 and 2011. The results of the different models were very similar in terms of 

estimate values and in terms of coefficients of variation. However a smaller 

variability of calibrated weights within the stratum was observed for the model 

that used only the variable of annual turnover. With this model a lower correction 

factor of the initial weights was also observed. 

 

2.2.3 - What estimator for the estimation of change over time?  

Recently, to standardize the estimation methodology for new and old sectors, a 

debate has been opened to decide whether to adopt the estimator for calibration 

on all respondents in the two reference periods or an estimator based on the ratio 

between the estimates only on the companies in overlapping. 

At the beginning of 2014, during the annual updating process of the sample, an 

application to real data was carried out for a comparison with the old estimator 

 ̂    (Chianella et al. 20158). The index of the maintenance and repair of motor 

vehicles was recalculated through the new estimator  ̂       , starting from the old 

base year (2010=100). Estimates based on the new estimator were obtained by 

considering the new stratification referred to 2014, and the results between the two 

estimated series were very similar (figure 2.2). 

Figure 2.2. Index of maintenance and repair of motor vehicles (2010=100). 

Comparison between two estimators 

 
                                                           
8
 “An estimator for the growth rates in short-term business statistics using calibration” Journal of Official 

Statistics – Anniversary Conference 2015, June 10-12. D. Chianella, B. Iaconelli, R. Iannaccone (Short Term 
Statistics Directorate) -Poster Session. 
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As a consequence, from 2014 the index of maintenance and repair of motor 

vehicles sector (452 according to Nace Rev. 2) is calculated with the estimator 

 ̂       . 

However, no assessment was performed for the standard error related to the 

growth rate estimation. To decide which estimator has to be used, it is necessary to 

analyze their standard errors in order to define the confidence intervals of the 

estimates. It has been just hypothesized that the estimator  ̂        is better than the 

estimator  ̂   , because it provides accurate estimates on the totals, thanks to the 

high correlation between the variable of interest and the auxiliary calibration 

variable. Although the estimator  ̂        provides a good standard error for the 

total estimations on both quarters, this does not mean that it is better in terms of 

variance for the estimate of the change  . Since the estimator for the percentage 

growth rate is defined as follows: 

 ̂  ( ̂   )      

and its variance is given by: 

   ( ̂)         ( ̂) 

we can refer to the variance of   or to the variance of   to study the behavior of 

the variance of the estimators just proposed. In the next paragraph will be 

developed in detail the variance for the estimators of   discussed in this 

paragraph ( ̂   and   ̂       )  both at the stratum and domain level 

 

2.3 - The variance for the estimators of the change G: use of 

the first-order Taylor approximation 

The  ̂    and  ̂        estimators are non-linear functions of linear estimators 

( ̂   ̂ ). To calculate their variance we can use a first-order Taylor approximation, 

by approximating  ̂   ( ̂   ̂ ) at the point (     ). We can write: 

 ̂   (     )  ∑  ( 
    )

 

   

( ̂    )   (
 

 
)   

where   ( 
    ) are the partial derivatives with respect to    and   : 
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By replacing  (     ) with  , and by considering that the sample has a large size, 

the approximation 
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is obtained. The variance of  ̂ then becomes: 
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The first term (  ∑    
  

   ) is a constant, therefore we can write: 

   ( ̂)     (∑    ̂
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2.3.1 – Variance of the estimators of G within the stratum 

To estimate the variance of G at the stratum level, using the  ̂      and  ̂          

estimators, it is necessary for both cases to linearize a ratio. In fact,  ̂      and 

 ̂          can be written 

 ̂   ( ̂   ̂ )  
 ̂ 

 ̂ 
   

where for the  ̂      estimator  ̂   ̂̅    
  and  ̂   ̂̅    

    while for the  ̂          

estimator  ̂   ̂     
  and  ̂   ̂     

   . For     and     we obtain the following 

partial derivates: 
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]
 ̂    

 
 

  
 



54 
 

   [
  ( ̂   ̂ )

  ̂ 
]
 ̂    

  
  

(  ) 
   

As a consequence: 
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Therefore the variances of  ̂      and  ̂          are: 
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2.3.2 – Variance of the estimators of G within the estimation domain 

When we are interested in the estimation of the variance of G at the domain level, 

using  ̂      and  ̂          estimators, we have to consider that the two estimators 

have a different form. In fact, the  ̂      estimator is a sum of ratios while the 

 ̂          estimator is a ratio of sums. This implies different calculations in the 

approximation in the Taylor series. 

1. When we use the estimator  ̂     , by defining   
 

  
   ,      

     ,   
   ̂̅    

  and 

  
   ̂̅    

   , we can write: 
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For     and    , taking into account the stratification, we obtain: 
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As a consequence, the variance of  ̂      becomes: 
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2. When we use the estimator  ̂          the calculation is similar to the one for the 

 ̂          estimator, because they are both ratios. Therefore we can consider: 
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Therefore setting   ̂  ∑  ̂     
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In the above formula attention has to be paid at the term   , since the change is 

measured at the domain level and not at the stratum level.  

 

2.3.3  – The variance terms within the Taylor approximation 

We must distinguish between the two types of estimators used for the calculation 

of  . 
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1. Where the  ̂    estimator is used we have to calculate the variance of the turnover  

mean estimators for each stratum    : 
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where       is the number of the overlapping respondent units to both quarters (t 

and t-4) and    is the number of units in the population within the stratum h. In 

this case, since we only use the turnover data of the units in the sample     for the 

estimation of both quarters,    is calculated from the ASIA version used to create 

the sample    .      

  and        

  are the adjusted population variance of the 

turnover within the stratum h, at the occasion t and t-4, respectively.      

  and 

       

 can be estimated from the sample observations: 
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2. Where the  ̂        estimator is used, the calculation of the variance of the totals 

 ̂   
 and  ̂   

    is more complex, because a calibration estimator is used. Let us see 

the methodology behind the calculation of the total variance when the calibration 

estimator is used. 

An important result obtained in Deville and Sarndal (1992) indicates that in large-

scale surveys, calibration estimators that use a generic distance function are 

asymptotically equivalent to the corresponding generalized regression estimators 

using Euclidean distance. Therefore, the estimation of the variance of all the 

calibration estimator can be approximated by estimating the variance of the 

corresponding regression estimators, for which it is possible to derive the explicit 

expression.  

The variance of the estimated total using the generalized regression estimators is 

equal to the variance of the residuals. By following the steps in Righi et al. (2005) 

we can define the formula of the variance of the estimated total. We assume that 

the population U is divided into H strata and that the probability of inclusion of 
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the units in the sample is constant within the stratum h (h = 1, ..., H), so that 

       ⁄ . In this context, the regression estimator can be calculated as follows: 
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where k is the generic unit belonging to stratum h and     is a correction factor of 

the initial weight    ⁄      ⁄ , defined in the following way: 
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   is the known total of the calibration auxiliary variable within stratum   and  ̂  

is its Horvitz-Thompson estimator computed by using sample observations.     is 

the calibration auxiliary variable associated with the company k and     is a 

known constant, usually fixed to 1. As mentioned before, the calibration variable 

used to generate estimations in the services turnover survey is the annual turnover 

of the enterprises.  

If the sample units are selected without replacement, the variance estimation is 

calculated as 
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 ̂   is the Woodruff transform (Woodruff, 1971) and matches the term of the 

residuals  ̂  of the generalized regression model, while  ̅̃  is the mean of the 

quantity  ̂      within the stratum h. The expression of the residuals  ̂   ̂  of the 

generalized regression model is: 

 ̂    ̂        ̂          ̂     

Assuming that all values of the population (U) are known, it is possible to estimate 

the vector of the regression coefficients β through the use the weighted least 

squares method. Using the standard theory, the best unbiased linear estimator is 

given by: 
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However, the values of the variables X and Y are not known for all units of the 

population. An asymptotically correct estimate of β can be obtained by estimating 

    and     using the Horvitz-Thompson estimator: 
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Therefore the estimate of    is given by: 
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Residuals can be calculated as follows: 

 ̂         ̂          (∑
      

 

     
   

)

  

∑
      

     
   

    

 

Therefore, the variance for the total estimates  ̂   
  and  ̂   

    can be computed by 

applying the above formulas. To compute  ̂   
 , the terms of the summation within 

 ̂  have to vary in the set      , while to calculate  ̂   
     in the set       

As mentioned in the previous paragraphs, the ReGenesees software returns the 

variance of the totals estimation, speeding up the process. 

 

2.3.4 – The covariance term within the Taylor approximation 

In this section, the covariance    ( ̂   ̂ ) is computed. In the Chapter 1 we have 

seen that under the assumption of a fixed population, sample size and 

overlapping rate as well as of the same stratification over time, the results of Tam 

(1984) and Qualité and Tillé (2008) can be easily derived (Andersson, 2011). In fact, 

the covariance of the mean estimator between two occasions can be expressed as 

follows: 
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where    
   

    is the adjusted population covariance of the turnover within stratum 

h between the occasions t and t-4, and    is the overlap given by the ratio between 

the number of common respondent units in both quarters and the number of 

respondent units in the quarter t-4. 

We distinguish between the two types of estimators used for the calculation of G: 

 



61 
 

 
 

1. If we consider the  ̂    estimator, we have to compute the covariance between two 

mean estimators,  ̅  
  and  ̅  

   . We consider only the common respondents 

between the two occasions t and t-4. Therefore we have that   
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The adjusted population covariance    
   

    can be estimated from the sample 

observations: 
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Therefore we can express the covariance estimate as: 
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Alternatively, the covariance between the two quarterly estimates can be 

calculated as the product of the auto-correlations between the estimates of the two 

quarters and the square root of the product of the related quarterly estimates 

(Ceccarelli et all. 2017). In formulas: 
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where  ̂      is the partial overlap between the estimates in the two quarters. In our 

case, since the      estimator is used,  ̂        because   
      

        and there 

is complete overlap. 

2. If we consider the  ̂        estimator, we have to calculate the covariance between 

two totals estimators  ̂   
  and  ̂   

   .  We can use the formula: 
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where the covariance between the estimates is equal to the covariance between the 

residuals of the generalized regression model calculated at the occasion t on the 

set     and at the occasion t-4 on the set    .        is the overlapping of the 

respondent units between t and t-4 with respect to the numer of respondent at the 

occasion t-4 (set    ). 

The adjusted population covariance    
   

    can be estimated from the sample 

observations: 
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where  ̃ ̅   
  is the mean of     

     
  within the stratum  . Since the calculation of 

covariance only concerns the common observations to both quarters, the residuals 

are obtained from a regression model applied on the set   . In this case the 

correction factors of the initial weights corresponding to the unit “i” are the same 

in the two quarters (    
      

   )  Therefore the estimator of    ( ̂     
    ̂     

   ) is: 
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2.3.5 - The variance and covariance terms combined together 

By combining the results of the variance and covariance terms together, we obtain 

the following further results. 

 

a) The variance of the  ̂    estimator within the stratum and within the estimation 

domains is equal to 
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and its estimator is given by: 
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where  ̂      
 ̂̅  
 

 ̂̅  
     

∑  ̂̅    
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. Once calculated the variance of the  ̂   estimator 

within the generic stratum  , the calculation of the variance estimate within the 

domain   is quite simple. It is equal to 
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b) The variance of the  ̂        estimator within the strata and the estimation 

domains is: 
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and its estimator is given by: 
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As already mentioned, the relationships 
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hold true. The term     is the value of the calibration variable (annual turnover) 

for the unit   in the stratum  , and derives from the latest available Asia.    is the 

known total within the stratum   (the total annual turnover calculated from Asia). 
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To simplify formulas, we assume that within each stratum h the set of respondents 

is the same in both quarters (                ). We define also the sample 

variances and the sample covariance of  ̃   ̂ 
    within the stratum h: 
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and the estimator of the variance of  ̂        within the estimation domain becomes: 
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2.4 - When the estimator based on all respondent units is a 

better choice? 

 

2.4.1 - Estimation without calibration 

In the Chapter 1 we have seen (Qualité and Tillé, 2008) the comparison between 

the estimators  ̂  and  ̂ for the estimate of the difference between two quantities 

over time (         ), where the estimator  ̂   ̂    is the difference between 

the sample means calculated only on the overlap observations between the two 

occasions, while  ̂   ̂    is the difference between the sample means calculated on 

all observations.  

 Assuming         and  ̂  

 
  ̂  

 
   , the authors obtained: 
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where   
   

 
 and   is the correlation between    and     . From the expression 

the authors found out that: 
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and highlighting for the overlap: 
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Therefore it is clear that the estimator that uses only the overlap between the two 

sample ( ̂   ) is better than the estimator  ̂    when    
 

 
  . As we can see from 

Table 2.2, when the correlation coefficient between the variables over time is high, 

it is better to use the estimator  ̂    (that considers the data on the overlap units 

between the quarters), also with a low overlap rate (when the correlation between 

   and      is equal to 0.95, an overlap of 5% is sufficient). This is the case for the 

service turnover survey, where the correlation between the observed variable  is 

usually high (>0.9 with respect to the previous quarter of the same quarter of the 

previous year). 

 

Table 2.2 – Overlapping value over which the estimator  ̂    is better than the 

estimator  ̂   . Analysis for different correlation values between    and      

 (       ) overlapping 

0.5  1 

0.6  0.67 

0.7  0.43 

0.8  0.25 

0.9  0.11 

0.95  0.05 

 

Knottnerus (2012) in his analysis considers the estimators of the growth rate 

  
       

    
, based on the estimated total at both occasions ( ̂  and  ̂   ), without 

using calibration. We indicate the estimator based on all respondent units in both 

quarters with  ̂   , to distinguish it from the estimator  ̂       , where also the 

calibration is used. We also indicate with  ̂    the estimator of the total based on 

the overlap units between the two occasion, as in the previous sections. 
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In case of a simple random sample without replacement and assuming no 

stratification to simplify the formulas, that the estimator  ̂    is defined as 
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Furthermore, assuming also           its variance is: 
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where    
  and      

 are the adjusted population variance of the turnover at the 

occasion t and t-4 respectively,        
is the adjusted population covariance of the 

turnover between the two occasions and  ̅   
    is the population mean of the 

turnover at the occasion   4. 

Knottnerus compares    ( ̂   ) with    ( ̂   ) without assuming    

     

    . 

He finds the overlapping value ( ) for which    ( ̂   )     ( ̂   ). Above this 

value, the estimator  ̂    performs better than the estimator  ̂   , because: 
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Therefore    ( ̂   )     ( ̂   ) when: 

  
         

 

         

 

 

and    ( ̂   )     ( ̂   ) when        
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provided that        
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2.4.2 - Estimation with calibration 

When we use calibration, the procedure is the same used by Knottnerus, but the 

calculation must be made on the residuals of the generalized regression model. 

Using stratification we have: 
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Therefore, sufficient condition for which    ( ̂       )     ( ̂       ) is that  

  ̃ 
     ̃ 

    or: 

   
 
 ̃ 
    ̃ 

   
 

    ̃ 
     ̃ 

 
             

 

provided that   ̃ 
     ̃ 

    within each stratum h. 

In the next chapter, within a simulation study, we will calculate the thresholds 

overlap to understand when it is better to use all observations or only the 

overlapping observations. The test will be conducted with and without calibration, 

and will be repeated for different values of  (       ) and for different correlation 

values between the variable of interest and the calibration variable. 
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CHAPTER 3 

Simulation study 

 

3.1 - Simulation in the case of non-stratified population 

3.1.1 - Aim of the simulation 

In the previous chapter four estimators were presented for the estimate of the 

year-over-year growth rate of the turnover:  

  (
  

      )      (   )     . 

where    is the variable relative to the turnover at the quarter t and      is the 

variable concerning the turnover at the quarter t-4. The four estimators described 

are summarized in the below table: 

 

Table 3.1 – Estimators used in the simulation 

Estimator of   
All respondent 

units 

Only overlapping 

respondent units 

Ratio of sample 

means 
 ̂      ̂     

Ratio of totals 

 through calibration 
 ̂          ̂         

 

where: 

1.  ̂    is based on the ratio of the sample means calculated by using turnover 

data on the overlapping  respondent units (  ) between the two quarters: 
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 ̅  

 

 ̅  
    

2.  ̂    is based on the ratio of the sample means calculated using turnover data on 

all respondent units over the two quarters: 

 ̂     
 ̅   

 

 ̅   
    

3.  ̂         is based on the ratio of the estimated total of the turnover for the 

quarter t  and for the quarter t-4, calculated using turnover data on the 

overlapping respondent units between the two quarters and through 

calibration of the initial weights: 

 ̂          
 ̂  

 

 ̂  
   

 
∑   

       

∑   
   

      

 

4.  ̂         is based on the ratio of the estimated total of the turnover for the 

quarter    and the quarter   4, calculated using turnover data on all 

respondent units over the two quarters and through calibration of the initial 

weights: 

 ̂          
 ̂   

 

 ̂   
   

 
∑   

        

∑   
   

       

   

 

the calibrated weights (   and   )  associated with the same unit on the two 

survey occasions of investigation (  and   4) can be different due to the 

different non-response on the two occasions (the sets of respondent enterprises 

    and     are not the same). 

 

A simulation study was conducted with the aim of analyzing the performance of 

these estimators. The bias, the standard deviation and the mean squared error 

have been analyzed through 1000 different samples extracted from the population 

and considering the following elements: 

 Different values of the overlap ( ) between the units responding at the 

occasion t and the units responding at the occasion t-4. In particular, the results 

have been analyzed by considering overlapping of  5%, 10%, 15%, 20%, 25%, 

30%, 50%, 70%, 99%. 

 

 Different values of the correlation between the variable of interest and the 

calibration variable. In particular, the results have been analyzed by 

considering correlation coefficient values                                 . 
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 Different correlation values (0.97, 0.92 and 0.87) between the study variable 

on the two survey occasions   and      (as explained in Section 3.1.3). 

 

3.1.2 - Main simulation steps 

The main steps in the simulation study can be summarized in this way. 

 A population of         units has been generated with turnover possessing 

a lognormal distribution with parameters (mean and variance) able to 

reproduce the population observed in the sector of Accommodation,  in the 

size class between 2 and 5 employees. The population generated represents the 

universe at the occasion t-4. 

 

 The generation of the population data at the occasion t has been obtained 

assuming the following model: 

 

  
     

         
    

   (    ) 

 

The value of   has been fixed equal to 0.9.    is a random variable with normal 

distribution. The increase of the variance    leads to a greater data variability 

at the occasion t, and to a lower correlation between the data at the occasions t 

and t-4. 

 

 A calibration variable has been created according to the desired correlation 

with the interest variable   . The created calibration variable has the same 

values for both occasions t and t-4. This make the simulation as similar as 

possible to the estimation process used for the estimation of the change in the 

service sector turnover in Istat. In fact, in this case, for both occasions the 

calibration variable coincides with the information available from the latest 

available Asia. 

 

 The sample size is calculated from the population at the occasion t-4, by means 

of the Bethel algorithms implemented in Mauss-R (see Barcaroli et al, 2010). 

The planned coefficient of variation for the estimation of the total turnover has 

been fixed at 3%. The result is a sample size of   4   units. 
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 The sample at the occasion t-4 has been selected from the reference population. 

A random non-response of 30% of the units in the sample has been applied. 

Therefore, the size of the set of respondent units is equal to       . 

 

 The sample at the occasion t consists in the union of a random subset of the 

respondent units at the occasion t-4, with size    depending on the desired 

overlapping   (      ) and of a srswor of size       from the population 

(excluding the units in the first subset). Therefore the size of respondent units 

is the same in both occasions. 

 The estimates of the growth rate of the total turnover in the population 

between the two occasions are calculated using the four estimators above 

described. Beside, assuming normality and using Student’s t-values, a 

confidence interval at 95% level is calculated for each estimate. 

 

 The estimates are calculated on 1000 different samples selected from the 

reference populations. This allows the calculation of the bias, the standard 

deviation and the mean squared error for each estimator used. 

 

3.1.3 - Simulation results 

Three different simulations were performed, by fixing the variance parameter    

in ε at the values 0.15, 0.25 and 0.35. The   
    values are the same for the three 

different simulations, while the   
  values depend on parameter    in ε. In Figure 

3.1, 3.2 and 3.3 the graphs of the distribution of the   values at the occasion t-4 (x-

axis) and at the occasion t (y-axis) for the three different simulations are reported. 

The resulting correlation coefficients between   and      are respectively 0.97, 

0.92 and 0.86, while the true values of the growth rate to be estimated resulting 

from the simulations are -10.0%, -10.5% and -10.2% respectively (Table 3.1). 

The overlapping values for which the variance of the estimator based only on the 

overlapping units between both occasions (with or without calibration) is greater 

than the estimator that uses all available data in both occasions, have been 

calculated. As defined in the previous chapter, the calculation is performed 

according to the formula: 

    ( ̂   )     ( ̂   ) when: 

  
         
 

          
 

provided            and the calibration is not used. 
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    ( ̂       )     ( ̂       ) when: 

  
         
 

          
 

provided            and the calibration is used. 

In the first case, the calculation takes into account the values of turnover in the 

population, while in the second case it takes into account the residuals of the 

generalized regression models. The simulation is performed for different 

overlapping rates, values of the correlation between the variable of interest and 

the calibration variable and different correlations between    and     . 

 

Figure 3.1 – Plot of   
  and   

   . Simulation 1: ε ~ N(0, 0.15) 

 

 

Figure 3.2 – Plot of   
  and   

   . Simulation 2: ε ~ N(0, 0.25) 
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Figure 3.3 – Plot of   
  and   

   . Simulation 3: ε ~ N(0, 0.35)  

 

 

Table 3.1 – Correlation between the data over time and the growth rate in the 

population. Three different simulations 

Simulation    (       ) G 

percentage 

growth rate g 

1:    (      ) 0.97 0.900 -10.0 

2:    (      ) 0.92 0.895 -10.5 

3    (      ) 0.86 0.898 -10.2 

 

Table 3.2 shows the theoretical overlapping value (o) below which    ( ̂       )  

   ( ̂       ). The following remarks are drawn. 

 

 At the same rho values, when the variability of the data in the population at 

the occasion t increases (therefore decreases the correlation between   
  and 

  
   ), the overlapping value (o) below which    ( ̂       )     ( ̂       ) 

increases, as well. This is because the higher variability of    will result in a 

higher variance of the residuals    
  (see Table 3.4). At the same time, the 

correlation between      and the calibration variable decreases, because the 

calibration variable is created according to the desired correlation with the last 

available data x (  ). For this reason,  the variance of the residuals      
  also 
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increases (Table 3.3). Therefore the numerator of the o threshold value 

(         
 ) will become greater. On the other hand, the covariance between the 

residuals          remains stable (see Table 3.5). 

 

 When the correlation between the variable of interest and the calibration 

variable (rho) increases, then the overlapping value (o) below which 

   ( ̂       )     ( ̂       ) will increase too. This is because the covariance 

between the residuals of the generalized regression model (        ) at the 

denominator of the o threshold value decreases (see Table 3.5). On the other 

hand, in the numerator the decrease in the covariance of the residuals 

counterbalances the decrease in the variances of the residuals (because the 

covariance is negative). 

 

Table 3.2 – Theoretical overlapping values (o) below which    ( ̂       )  

   ( ̂       ) 

rho 

Simulation 1: 

   (      ) 

   (       )       

Simulation 2: 

   (      ) 

   (       )       

Simulation 3: 

   (      ) 

   (       )       

0 0.03 0.09 0.17 

0.5 0.04 0.11 0.22 

0.6 0.05 0.13 0.25 

0.7 0.06 0.16 0.30 

0.8 0.08 0.22 0.41 

0.9 0.15 0.40 0.74 

0.95 0.29 0.79 1 

1 1 1 1 
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Table 3.5 shows the correlation and the covariance between the residuals of the 

generalized regression model for different rho values, calculated on population 

data. As we can see from the table, when rho increases, the correlation  

   (       ) and the covariance          between the residuals of the regression 

models decreases. When rho is equal to 0, obviously    (        ) =    (       ). 

In the extreme case that rho = 1, the correlation and the covariance between the 

residuals of the models are equal to 0. 

 

 

Table 3.3 – Variance of the residuals for      

rho Simulation 1: 
   (      ) 

Simulation 2: 
   (      ) 

Simulation 3: 
   (      ) 

0 1,712,458,364 1,712,165,298 1,712,350,443 

0.5 1,312,720,626 1,353,516,782 1,428,411,137 

0.6 1,122,304,677 1,184,301,182 1,249,845,643 

0.7 911,148,147 985,824,164 1,081,948,932 

0.8 688,393,677 776,447,713 895,087,029 

0.9 391,901,001 539,355,264 703,223,565 

0.95 253,657,697 394,235,598 571,985,065 

1 96,365,726 252,506,239 450,809,933 

 

Figures 3.4-3.7 show the regression models for different rho values in both 

occasions (t and t-4) as well as the plot of the residuals of the models obtained in 

the second simulation (ε ~ N(0, 0.25)). The regressions are computed on 

population data. As it can be seen from the graphs, when rho increases, the 

covariance between the residuals decreases. It is perfectly clear that in the case rho 

= 1, the calibration variable is perfectly “aligned” to   , while this does not happen 

for     . In fact, for      the residuals are always higher than those for   . 
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Table 3.4 – Variance of the residuals for     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.5 – Correlation and Covariance of the residuals for     and    

 
Simulation 1: 
   (      ) 

Simulation 2: 
   (      ) 

Simulation 3: 
   (      ) 

rho 
    

(       ) 
         

    

(       ) 
         

    

(       ) 
         

0 0.97 1,545,721,412 0.92 1,524,497,200 0.86 1,500,463,050 

0.5 0.96 1,164,252,656 0.90 1,147,800,874 0.83 1,151,467,642 

0.6 0.96 980,753,386 0.89 976,160,357 0.80 952,363,642 

0.7 0.95 779,560,614 0.86 772,481,286 0.76 750,725,615 

0.8 0.93 565,152,010 0.82 542,668,332 0.70 535,019,354 

0.9 0.87 283,751,417 0.73 295,323,943 0.60 295,647,544 

0.95 0.79 150,705,087 0.60 148,597,686 0.46 144,924,850 

1 0.01 0 0.03 0 0.00 0 

rho Simulation 1: 
   (      ) 

Simulation 2: 
   (      ) 

Simulation 3: 
   (      ) 

0 1,478,390,155 1,592,154,862 1,784,634,978 

0.5 1,114,379,559 1,196,564,813 1,355,677,938 

0.6 937,557,300 1,022,610,209 1,135,100,241 

0.7 745,861,203 813,614,571 892,971,191 

0.8 539,493,015 562,004,402 644,144,109 

0.9 272,432,479 303,971,319 346,183,167 

0.95 144,393,543 155,796,167 173,323,548 

1 0 0 0 



80 
 

Figure 3.4 – Regression models for    and      with the calibration variable and 

residuals plot (       ).  Case ε ~ N(0, 0.25) and rho=0 

 

 

Figure 3.5 – Regression models for    and      with the calibration variable and 

residuals plot (       ).  Case ε ~ N(0, 0.25) and rho=0.8 
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Figure 3.6 – Regression models for    and      with the calibration variable and 

residuals plot (       ).  Case ε ~ N(0, 0.25) and rho=0.95 

 

 

 

Figure 3.7 – Regression models for    and      with the calibration variable and 

residuals plot (       ).  Case ε ~ N(0, 0.25) and rho=1 
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Since we know the turnover values for each unit of the population, it is possible to 

compute the value of the standard deviation for each estimator of the growth rate. 

Since the size of the common respondents in both occasions is       , we have 

that: 

1. When we do not use calibration, we have to compute the variance of the 

turnover data in the population, therefore we have to use the following 

formulas 
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2. When we use calibration, we have to compute the variance of the residuals of 

the regression model (  
 ) for each rho value. For each overlapping level of the 

respondent units between the two occasions (o),  we have to compute: 
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Therefore, it is possible to compute the variance of the estimator  ̂        and  ̂        

through the expressions: 

   ( ̂       )  
 

    
{   ( ̂       

 )       ( ̂       
   )       ( ̂       

     ̂       
 )}   

 

   ( ̂       )  
 

    
{   ( ̂       

 )       ( ̂       
   )       ( ̂       

     ̂       
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Since   (   )     , for each estimator of g, we have that: 

   ( ̂)          ( ̂)   

Therefore from the variance of  ̂ it is possible to calculate the standard errors of 

 ̂        and  ̂        : 

  ( ̂)     √   ( ̂)   

 

In Tables 3.7-3.9, the theoretical standard deviations of the above estimators are 

shown. The computed values are obtained from the calculation on the populations 

generated in the 3 simulation exercises. Instead, in Tables 3.10-3.12 the standard 

deviations of the 1000 sample estimates are shown. These values are calculated for 

different rho values and different overlapping between the respondent units at 

both occasions. 

The standard deviations of the  ̂    and  ̂    estimators are the same for each rho 

value because they do not need calibration. However, the tables show the values 

for each rho in order to simplify the comparison of the behavior of  all estimators. 

The variable “o” in the tables shows the theoretical overlapping values for which 

the estimator using only the overlapping respondent units between both occasions 

is greater than the estimator using all respondent unit values in both occasions. Its 

value is calculated according to the formulas described above. 
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The colored parts in the tables indicate the   ( ̂       )    ( ̂       ) if we use the 

calibration estimators, or that   ( ̂   )    ( ̂   ) if we do not use the calibration 

estimators. 

As we can see from the results of the calculation of the standard deviations, when 

the overlap of the respondent units between the occasions increases, the standard 

deviation of all estimators decrease. This is in accordance with the theory in 

Chapter 1, because the variance of the change takes minimum value in the case of 

complete overlap (Kish, 1965, pp. 457-466).  

Using calibration we obtain the best results, therefore we have that   ( ̂       )  

  ( ̂   ) and that   ( ̂       )    ( ̂   ) for each       and for every overlap 

value. In particular, the greatest improvement is obtained when using the 

estimators based on all respondents ( ̂        VS  ̂   ), while we observed only a 

limited improvement when using the estimators based on the overlap respondents 

( ̂       VS  ̂   ). In this last case, the use of calibration leads to a smaller 

improvement because the calibration variable (X) is the same for both occasions (t 

and t-4). As consequence, since the initial weights   are the same for all units, if 

the variability of the correction factor (  ) between the units is small, then the 

result obtained by the  ̂        estimator is similar to the one obtained by  ̂    : 

 ̂        
∑

  
 

 
  
     

∑
  

   

   
  

   

  ̂    
∑   

   
   

∑   
     

   

   

where there is equality if the correction factor does not exhibit any variability. The 

variability of the correction factor depends on the variability of the calibration 

variable (X). We remember that the corrective factor    of the initial weight for the 

i-th unit, is given by: 

     (   ̂  ) (∑
  
 

    

 

   

)

  
  

  
   

where    is the value of the calibration variable associated with the i-th unit, X is 

the true value of its total and  ̂   is its Horvitz-Thompson estimator. As we can 

see from the standard deviation values in the tables, the improvement of  ̂        

compared to  ̂    is higher when the variability of   (and consequently of X and  ) 

increases. In fact, in the first simulation, where the variability of    is quite small, 

the standard deviation values of  ̂        and  ̂    are very often the same (see 
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Table 3.7 and 3.10). Instead, in the third simulation, where the variability of    is 

higher, the standard deviation values of  ̂        are smaller than the  ̂    estimator 

(see Table 3.9 and 3.12).Obviously, in the case of absence of correlation between 

the variable of interest and the calibration variable (     ), the results on the 

standard deviations of the estimators are the same, whether using the calibration 

or not. 

When using calibration, in addition to a smaller standard deviation, an higher 

overlap value is needed to obtain better results with the estimator that uses only 

overlapping data. As we can see from Tables 3.7-3.12, this overlap value increases 

when the rho value increases: to a higher rho value corresponds a higher overlap 

value over which   ( ̂       )    ( ̂       ). This threshold also increases when the 

correlation between   and      decreases. In fact, if we compare the just 

mentioned tables, from simulation 1 to 3, we can notice that the colored part 

becomes gradually larger. The higher threshold is observed in simulation 3 (Tables 

3.9 and 3.12). 

For the estimators  ̂    and  ̂    (without calibration), the results for the standard 

deviation are in accordance with those listed in Table 2.2 of the previous chapter, 

which provides the overlap threshold over which the estimator  ̂    is better than 

the estimator  ̂   , for different correlation values between   and     . As in Table 

2.2, the results of the three simulations show that when the correlation between    

and      decreases, there is an increase of the overlap threshold over which the 

estimator using only the overlap data is better than the estimator using all data 

available in both quarters (see Table 3.6). 

 

Table 3.6 – Overlap threshold over which the estimator   ̂    is better than  ̂   . 

Results obtained from the 3 simulations 

Simulation  (       ) Overlap 

Simulation 1: 

 ε ~ N(0, 0.15) 
0.97  > 0.03 

Simulation 2: 

 ε ~ N(0, 0.25) 
0.92  > 0.09 

Simulation 3: 

 ε ~ N(0, 0.35) 
0.86 > 0.17 
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Table 3.7 – Theoretical Standard deviation for the estimation of the growth rate g. 

Simulation 1: ε ~ N(0, 0.15), cor(x,y)=0.97 

 

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 6.6 5.1 6.6 5.2 5.8 5.0 6.6 5.2

0.10 6.4 3.7 6.4 3.6 5.5 3.6 6.4 3.6

0.15 6.3 3.0 6.3 3 5.4 2.9 6.3 3

0.20 6.1 2.6 6.1 2.6 5.3 2.6 6.1 2.6

0.25 5.9 2.3 5.9 2.3 5.1 2.3 5.9 2.3

0.30 5.7 2.1 5.7 2.1 5.0 2.1 5.7 2.1

0.50 4.9 1.6 4.9 1.6 4.2 1.6 4.9 1.6

0.70 3.8 1.4 3.8 1.4 3.3 1.4 3.8 1.4

0.99 1.3 1.1 1.3 1.1 1.3 1.1 1.3 1.1

o

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 5.3 5.0 6.6 5.2 4.7 5.0 6.6 5.2

0.10 5.2 3.6 6.4 3.6 4.6 3.6 6.4 3.6

0.15 5.0 2.9 6.3 3 4.6 2.9 6.3 3

0.20 4.9 2.5 6.1 2.6 4.4 2.5 6.1 2.6

0.25 4.8 2.3 5.9 2.3 4.3 2.3 5.9 2.3

0.30 4.6 2.1 5.7 2.1 4.1 2.1 5.7 2.1

0.50 4.0 1.6 4.9 1.6 3.5 1.6 4.9 1.6

0.70 3.1 1.3 3.8 1.4 2.8 1.3 3.8 1.4

0.99 1.2 1.1 1.3 1.1 1.2 1.1 1.3 1.1

o

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 4.0 5.0 6.6 5.2 3.0 5.0 6.6 5.2

0.10 4.0 3.6 6.4 3.6 3.0 3.6 6.4 3.6

0.15 3.9 2.9 6.3 3 2.9 2.9 6.3 3

0.20 3.7 2.5 6.1 2.6 2.8 2.5 6.1 2.6

0.25 3.6 2.3 5.9 2.3 2.7 2.2 5.9 2.3

0.30 3.5 2.0 5.7 2.1 2.6 2.0 5.7 2.1

0.50 3.0 1.6 4.9 1.6 2.3 1.6 4.9 1.6

0.70 2.4 1.3 3.8 1.4 1.9 1.3 3.8 1.4

0.99 1.2 1.1 1.3 1.1 1.1 1.1 1.3 1.1

o

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 2.3 4.9 6.6 5.2 1.1 4.9 6.6 5.2

0.10 2.3 3.6 6.4 3.6 1.1 3.5 6.4 3.6

0.15 2.2 2.9 6.3 3 1.1 2.9 6.3 3

0.20 2.1 2.5 6.1 2.6 1.1 2.5 6.1 2.6

0.25 2.1 2.2 5.9 2.3 1.1 2.2 5.9 2.3

0.30 2.1 2.0 5.7 2.1 1.1 2.0 5.7 2.1

0.50 1.8 1.6 4.9 1.6 1.1 1.6 4.9 1.6

0.70 1.6 1.3 3.8 1.4 1.1 1.3 3.8 1.4

0.99 1.1 1.1 1.3 1.1 1.1 1.1 1.3 1.1

o

overlap

rho=0 rho=0.5

rho=0.6 rho=0.7

calibration no calibration calibration no calibration

calibration no calibration calibration no calibration

rho=0.9

rho=0.95 rho=1

0.03 0.03 0.04 0.03

0.05 0.03

no calibrationcalibration no calibration calibration

0.06 0.03

0.29 0.03 1.0 0.03

overlap

overlap

overlap

0.08 0.03 0.15 0.03

calibration no calibration

rho=0.8

calibration no calibration
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Table 3.8 – Theoretical Standard deviation for the estimation of the growth rate g. 

Simulation 2: ε ~ N(0, 0.25), cor(x,y)=0.92 

 

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 6.7 8.5 6.7 8.7 5.8 8.4 6.7 8.7

0.10 6.6 6.1 6.5 6.1 5.7 6.0 6.5 6.1

0.15 6.4 4.0 6.4 5.0 5.6 4.9 6.4 5.0

0.20 6.2 4.3 6.2 4.3 5.5 4.2 6.2 4.3

0.25 6.0 3.9 6.0 3.9 5.3 3.8 6.0 3.9

0.30 5.9 3.5 5.8 3.5 5.2 3.5 5.8 3.5

0.50 5.1 2.7 5.0 2.7 4.5 2.7 5.0 2.7

0.70 4.1 2.3 4.1 2.3 3.7 2.3 4.1 2.3

0.99 2.0 1.9 2.0 1.9 2.0 1.9 2.0 1.9

o

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 5.5 8.4 6.7 8.7 4.9 8.2 6.7 8.7

0.10 5.3 6.0 6.5 6.1 4.9 5.9 6.5 6.1

0.15 5.2 4.9 6.4 5.0 4.7 4.8 6.4 5.0

0.20 5.1 4.2 6.2 4.3 4.6 4.2 6.2 4.3

0.25 4.9 3.8 6.0 3.9 4.5 3.7 6.0 3.9

0.30 4.8 3.4 5.8 3.5 4.4 3.4 5.8 3.5

0.50 4.2 2.7 5.0 2.7 3.8 2.6 5.0 2.7

0.70 3.5 2.2 4.1 2.3 3.2 2.2 4.1 2.3

0.99 1.9 1.9 2.0 1.9 1.9 1.9 2.0 1.9

o

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 4.3 8.1 6.7 8.7 3.3 8.1 6.7 8.7

0.10 4.2 5.9 6.5 6.1 3.3 5.8 6.5 6.1

0.15 4.1 4.7 6.4 5.0 3.2 4.7 6.4 5.0

0.20 4.0 4.1 6.2 4.3 3.1 4.1 6.2 4.3

0.25 3.9 3.7 6.0 3.9 3.1 3.6 6.0 3.9

0.30 3.8 3.4 5.8 3.5 3.0 3.3 5.8 3.5

0.50 3.4 2.6 5.0 2.7 2.7 2.6 5.0 2.7

0.70 2.8 2.2 4.1 2.3 2.4 2.2 4.1 2.3

0.99 1.9 1.8 2.0 1.9 1.8 1.8 2.0 1.9

o

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 2.7 8.0 6.7 8.7 1.8 7.9 6.7 8.7

0.10 2.7 5.7 6.5 6.1 1.8 5.7 6.5 6.1

0.15 2.6 4.6 6.4 5.0 1.8 4.6 6.4 5.0

0.20 2.6 4.1 6.2 4.3 1.8 4.0 6.2 4.3

0.25 2.5 3.6 6.0 3.9 1.8 3.6 6.0 3.9

0.30 2.5 3.3 5.8 3.5 1.8 3.3 5.8 3.5

0.50 2.3 2.5 5.0 2.7 1.8 2.5 5.0 2.7

0.70 2.1 2.2 4.1 2.3 1.8 2.1 4.1 2.3

0.99 1.8 1.8 2.0 1.9 1.8 1.8 2.0 1.9

o

overlap

rho=0 rho=0.5

rho=0.6 rho=0.7

calibration no calibration calibration no calibration

0.09 0.09 0.11 0.09

calibration no calibration calibration no calibration

rho=0.9

rho=0.95 rho=1

0.13 0.09

no calibrationcalibration no calibration calibration

0.16 0.09

0.79 0.09 1 0.09

overlap

overlap

overlap

0.22 0.09 0.4 0.09

calibration no calibration

rho=0.8

calibration no calibration
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Table 3.9 – Theoretical Standard deviation for the estimation of the growth rate g. 

Simulation 3: ε ~ N(0, 0.35), cor(x,y)=0.86 

 

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 7 12.1 6.9 12.3 6.1 11.8 6.9 12.3

0.10 6.8 8.7 6.8 8.7 6 8.4 6.8 8.7

0.15 6.6 7.1 6.6 7.1 5.9 6.9 6.6 7.1

0.20 6.5 6.2 6.4 6.1 5.8 6 6.4 6.1

0.25 6.3 5.5 6.2 5.4 5.6 5.3 6.2 5.4

0.30 6.1 5 6.1 5 5.4 4.8 6.1 5

0.50 5.4 3.9 5.3 3.8 4.8 3.8 5.3 3.8

0.70 4.5 3.3 4.4 3.2 4.1 3.1 4.4 3.2

0.99 2.8 2.7 2.8 2.7 2.7 2.6 2.8 2.7

o

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 5.7 11.6 6.9 12.3 5.3 11.4 6.9 12.3

0.10 5.6 8.3 6.8 8.7 5.1 8.2 6.8 8.7

0.15 5.5 6.7 6.6 7.1 5.1 6.7 6.6 7.1

0.20 5.4 5.9 6.4 6.1 4.9 5.8 6.4 6.1

0.25 5.2 5.2 6.2 5.4 4.7 5.2 6.2 5.4

0.30 5.1 4.8 6.1 5 4.7 4.7 6.1 5

0.50 4.6 3.7 5.3 3.8 4.2 3.6 5.3 3.8

0.70 3.9 3.1 4.4 3.2 3.7 3.1 4.4 3.2

0.99 2.6 2.6 2.8 2.7 2.6 2.6 2.8 2.7

o

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 4.6 11.1 6.9 12.3 3.7 11 6.9 12.3

0.10 4.5 8 6.8 8.7 3.7 7.8 6.8 8.7

0.15 4.4 6.5 6.6 7.1 3.6 6.4 6.6 7.1

0.20 4.3 5.7 6.4 6.1 3.6 5.5 6.4 6.1

0.25 4.2 5 6.2 5.4 3.5 4.9 6.2 5.4

0.30 4.1 4.6 6.1 5 3.4 4.5 6.1 5

0.50 3.7 3.6 5.3 3.8 3.2 3.5 5.3 3.8

0.70 3.3 3 4.4 3.2 2.9 3 4.4 3.2

0.99 2.5 2.5 2.8 2.7 2.5 2.4 2.8 2.7

o

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 3.1 10.8 6.9 12.3 2.4 10.6 6.9 12.3

0.10 3.1 7.8 6.8 8.7 2.4 7.6 6.8 8.7

0.15 3.1 6.3 6.6 7.1 2.4 6.2 6.6 7.1

0.20 3 5.5 6.4 6.1 2.4 5.4 6.4 6.1

0.25 3 4.9 6.2 5.4 2.4 4.8 6.2 5.4

0.30 2.9 4.4 6.1 5 2.4 4.4 6.1 5

0.50 2.8 3.4 5.3 3.8 2.4 3.4 5.3 3.8

0.70 2.7 2.9 4.4 3.2 2.4 2.9 4.4 3.2

0.99 2.4 2.4 2.8 2.7 2.4 2.4 2.8 2.7

o

overlap

rho=0 rho=0.5

rho=0.6 rho=0.7

overlap

calibration no calibration calibration no calibration

calibration no calibration calibration no calibration

0.17 0.17 0.22 0.17

overlap

1 0.17

calibration no calibration

calibration

rho=0.95

overlap

0.3 0.17

0.41 0.17 0.74 0.17

1 0.17

0.25 0.17

calibration no calibration

rho=0.8

no calibration

rho=0.9

rho=1

calibration no calibration
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Table 3.10 – Standard deviation calculated on 1000 sample estimates for the 

growth rate g. Simulation 1: ε ~ N(0, 0.15), cor(x,y)=0.97 

 

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 6.7 4.8 6.6 4.8 6.0 4.7 6.8 4.7

0.10 6.5 3.5 6.3 3.5 5.9 3.6 6.6 3.6

0.15 6.4 2.9 6.2 2.9 5.5 2.8 6.2 2.8

0.20 6.3 2.5 6.1 2.5 5.5 2.6 6.1 2.6

0.25 5.9 2.4 5.7 2.4 5.0 2.2 5.8 2.2

0.30 6.0 2.2 5.8 2.2 5.0 2.1 5.6 2.1

0.50 5.0 1.6 4.9 1.6 4.3 1.6 4.8 1.6

0.70 3.9 1.4 3.8 1.4 3.5 1.4 3.9 1.4

0.99 1.3 1.1 1.3 1.1 1.3 1.2 1.3 1.2

o

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 5.5 4.9 6.5 4.9 5.3 4.8 6.7 4.8

0.10 5.4 3.6 6.6 3.6 4.9 3.4 6.1 3.5

0.15 5.3 2.9 6.4 2.9 4.8 3.0 6.2 3.0

0.20 5.1 2.5 6.3 2.5 4.7 2.7 6.1 2.7

0.25 4.7 2.3 5.6 2.3 4.6 2.2 5.8 2.2

0.30 4.6 2.1 5.5 2.1 4.4 2.1 5.6 2.1

0.50 4.0 1.5 4.8 1.5 3.9 1.6 5.0 1.6

0.70 3.3 1.3 4.0 1.3 3.1 1.4 3.8 1.4

0.99 1.3 1.2 1.3 1.2 1.3 1.1 1.4 1.1

o

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 4.8 4.9 6.8 4.9 3.8 4.9 6.8 4.9

0.10 4.6 3.5 6.5 3.6 3.5 3.6 6.6 3.6

0.15 4.4 2.9 6.3 2.9 3.3 3.0 6.1 3.0

0.20 4.3 2.5 6.1 2.5 3.3 2.5 5.9 2.6

0.25 4.1 2.2 5.8 2.2 3.2 2.2 5.8 2.2

0.30 4.0 2.0 5.8 2.0 3.3 2.1 5.7 2.1

0.50 3.4 1.5 4.7 1.6 2.7 1.6 4.7 1.6

0.70 2.7 1.3 3.8 1.3 2.3 1.4 3.8 1.4

0.99 1.2 1.1 1.3 1.1 1.1 1.1 1.3 1.1

o

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 2.9 4.9 6.7 5.0 1.1 4.7 6.6 4.8

0.10 2.9 3.4 6.4 3.5 1.1 3.4 6.3 3.5

0.15 2.6 2.9 5.9 3.0 1.1 3.0 6.0 3.0

0.20 2.7 2.5 6.1 2.5 1.1 2.5 6.1 2.5

0.25 2.5 2.3 5.7 2.3 1.1 2.2 5.8 2.2

0.30 2.5 2.0 6.0 2.1 1.1 2.1 5.6 2.1

0.50 2.4 1.6 5.1 1.6 1.1 1.6 4.8 1.7

0.70 1.8 1.4 3.8 1.4 1.1 1.3 3.9 1.3

0.99 1.1 1.1 1.3 1.1 1.1 1.1 1.4 1.1

o

overlap

overlap

overlap

0.29 0.08 1.0 0.08

rho=0.8

no calibration

calibration no calibration

calibration no calibration calibration no calibration

rho=0.9

rho=0.95 rho=1

calibration no calibration calibration

0.06 0.08

0.08 0.08 0.15 0.08

0.05 0.08

calibration no calibration

overlap

rho=0 rho=0.5

rho=0.6 rho=0.7

calibration no calibration calibration no calibration

0.03 0.08 0.04 0.08
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Table 3.11 – Standard deviation calculated on 1000 sample estimates for the 

growth rate g. Simulation 2: ε ~ N(0, 0.25), cor(x,y)=0.92 

 

 

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 7.2 8.2 7.0 8.2 5.9 8.0 6.6 8.0

0.10 6.7 5.9 6.4 5.9 5.9 6.0 6.5 6.0

0.15 6.4 4.7 6.2 4.7 5.8 4.8 6.4 4.8

0.20 6.3 4.3 6.1 4.3 5.5 4.2 6.1 4.2

0.25 6.1 3.7 5.9 3.7 5.2 3.8 5.8 3.8

0.30 6.0 3.4 5.8 3.4 5.1 3.5 5.6 3.5

0.50 5.2 2.7 5.1 2.7 4.6 2.6 5.2 2.6

0.70 4.3 2.3 4.1 2.3 3.8 2.2 4.2 2.2

0.99 2.0 1.9 2.0 1.9 2.0 1.9 2.0 1.9

o

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 5.6 8.1 6.7 8.1 5.1 8.2 6.4 8.2

0.10 5.6 5.8 6.6 5.8 5.3 5.8 6.6 5.9

0.15 5.5 4.9 6.5 4.9 5.2 4.6 6.5 4.7

0.20 4.9 4.2 5.8 4.2 4.9 4.2 6.2 4.2

0.25 5.2 3.8 6.1 3.9 4.8 3.9 6.0 3.9

0.30 5.1 3.4 5.9 3.5 4.8 3.6 6.0 3.6

0.50 4.4 2.7 5.2 2.7 4.0 2.7 4.9 2.7

0.70 3.7 2.2 4.2 2.2 3.3 2.3 4.1 2.3

0.99 1.9 1.9 2.0 1.9 2.0 2.0 2.1 2.0

o

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 4.7 8.2 6.5 8.4 4.0 7.8 6.8 8.0

0.10 4.7 6.1 6.7 6.1 4.0 5.7 6.6 5.8

0.15 4.5 4.9 6.3 4.9 3.9 4.5 6.4 4.6

0.20 4.4 4.1 6.2 4.1 3.8 4.3 6.2 4.4

0.25 4.6 3.8 6.4 3.9 3.6 3.7 6.0 3.7

0.30 4.0 3.4 5.6 3.4 3.4 3.4 5.8 3.4

0.50 3.6 2.7 4.9 2.7 3.2 2.7 5.2 2.8

0.70 3.1 2.2 4.1 2.2 2.8 2.2 4.2 2.3

0.99 1.9 1.9 2.0 1.9 1.9 1.9 2.0 1.9

o

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 3.0 7.9 6.5 8.1 1.8 7.8 7.0 8.1

0.10 3.0 6.0 6.6 6.2 1.8 5.8 6.4 6.0

0.15 3.1 4.7 6.6 4.9 1.8 4.6 6.7 4.8

0.20 3.0 4.2 6.1 4.3 1.8 4.0 6.2 4.3

0.25 2.9 3.8 6.2 3.9 1.8 3.7 6.1 3.9

0.30 2.8 3.4 5.9 3.5 1.8 3.4 5.7 3.6

0.50 2.5 2.6 5.0 2.7 1.8 2.6 5.0 2.7

0.70 2.3 2.3 4.0 2.3 1.8 2.2 4.0 2.3

0.99 1.7 1.7 1.9 1.8 1.7 1.8 2.0 1.9

o

overlap

rho=0 rho=0.5

rho=0.6 rho=0.7

calibration no calibration calibration no calibration

0.09 0.09 0.11 0.09

rho=0.8

no calibration

calibration no calibration

calibration no calibration calibration no calibration

rho=0.9

rho=0.95 rho=1

calibration no calibration calibration

0.16 0.09

0.22 0.09 0.40 0.09

0.13 0.09

calibration no calibration

0.79 0.09 1.00 0.09

overlap

overlap

overlap
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Table 3.12– Standard deviation calculated on 1000 sample estimates for the 

growth rate g. Simulation 3: ε ~ N(0, 0.35), cor(x,y)=0.86 

 

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 7.2 11.5 6.9 12.3 6.1 11.4 6.9 12.3

0.10 7.1 8.6 6.8 8.7 6.1 8.2 6.8 8.7

0.15 6.8 7.1 6.6 7.1 5.9 6.9 6.6 7.1

0.20 6.7 6.3 6.4 6.1 6 6.1 6.4 6.1

0.25 6.3 5.5 6.2 5.4 5.8 5.4 6.2 5.4

0.30 6.3 4.8 6.1 5 5.6 4.8 6.1 5

0.50 5.4 3.8 5.3 3.8 4.9 3.8 5.3 3.8

0.70 4.5 3.2 4.4 3.2 4.2 3.2 4.4 3.2

0.99 2.8 2.7 2.8 2.7 2.7 2.7 2.8 2.7

o

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 5.9 11.5 6.9 12.3 5.8 11.3 6.9 12.3

0.10 5.8 8.4 6.8 8.7 5.8 8.4 6.8 8.7

0.15 5.8 6.8 6.6 7.1 5.4 6.6 6.6 7.1

0.20 5.7 6.1 6.4 6.1 5.2 5.7 6.4 6.1

0.25 5.4 5.3 6.2 5.4 5 5.4 6.2 5.4

0.30 5.5 5 6.1 5 5.1 4.8 6.1 5

0.50 4.7 3.8 5.3 3.8 4.3 3.9 5.3 3.8

0.70 3.8 3 4.4 3.2 3.8 3.2 4.4 3.2

0.99 2.6 2.6 2.8 2.7 2.8 2.7 2.8 2.7

o

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 5.2 11.8 6.9 12.3 4.5 11.3 6.9 12.3

0.10 4.8 8 6.8 8.7 4.4 8.2 6.8 8.7

0.15 4.8 6.9 6.6 7.1 4.1 6.7 6.6 7.1

0.20 4.9 5.9 6.4 6.1 4.2 5.8 6.4 6.1

0.25 4.8 5.1 6.2 5.4 4 5.4 6.2 5.4

0.30 4.6 4.9 6.1 5 3.8 4.7 6.1 5

0.50 4.3 3.8 5.3 3.8 3.6 3.8 5.3 3.8

0.70 3.6 3.3 4.4 3.2 3.2 3.2 4.4 3.2

0.99 2.5 2.5 2.8 2.7 2.4 2.4 2.8 2.7

o

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 3.7 11.1 6.9 12.3 2.4 10.8 6.9 12.3

0.10 3.5 7.9 6.8 8.7 2.4 8 6.8 8.7

0.15 3.6 6.7 6.6 7.1 2.4 6.1 6.6 7.1

0.20 3.5 5.8 6.4 6.1 2.4 5.4 6.4 6.1

0.25 3.3 5.1 6.2 5.4 2.5 4.7 6.2 5.4

0.30 3.6 4.8 6.1 5 2.5 4.7 6.1 5

0.50 3.3 3.6 5.3 3.8 2.5 3.4 5.3 3.8

0.70 3 3.1 4.4 3.2 2.5 2.9 4.4 3.2

0.99 2.5 2.5 2.8 2.7 2.4 2.4 2.8 2.7

o

overlap

rho=0 rho=0.5

rho=0.6 rho=0.7

rho=0.8

overlap

overlap

calibration no calibration calibration no calibration

calibration no calibration calibration no calibration

0.17 0.17 0.22

0.30 0.17

0.41 0.17 0.74 0.17

0.25 0.17

1.0 0.17

calibration no calibration calibration no calibration

no calibration

0.17

overlap

rho=0.95

rho=0.9

rho=1

calibration no calibration

1.0 0.17

calibration
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For each overlap and rho value, empirical bias, mean squared error have been 

computed, and confidence intervals for the estimates of g obtained.  

The empirical bias is computed as the difference between the mean of the growth 

rate obtained from the 1000 estimates of g and his true value. The results are 

showed in the Appendix (Tables 1-3). The absolute bias calculated from the 1000 

estimates is very small. In fact, for most cases the bias is approximately equal to 0. 

For each estimate, a t-Student distribution was used, and the corresponding 95% 

confidence intervals were calculated, according the following formulas 

 

 ( ̂       )   ̂             
       ( ̂       ) 

 

 ( ̂       )   ̂             
       ( ̂       ) 

 

 ( ̂   )   ̂         
       ( ̂   ) 

 

 ( ̂   )   ̂         
       ( ̂   )  

 

The actual coverage probability of such confidence intervals is computed via 

simulation as the proportion of simulated confidence intervals that contain the 

true value of the growth rate g. The results are shown in Appendix (Tables 7-9). As 

expected, the actual coverage probability is close to its nominal value, i.e. 95%. 

However, smaller values are obtained if the  ̂    and the  ̂        estimators are 

used. In this case, especially for small overlap levels (5-10%), the coverage 

probability is approximately 90%. This is due to the fact that with low levels of 

overlap, the estimates were calculated on a small number of units (  ). For 

example, with an overlap of 5%, only 15 units were used for the estimation. 

Finally, in Tables 10-15 in the Appendix are shown the coefficients of variation for 

the estimates of the totals     and      obtained using calibration. As expected, for 

each simulation, the coefficients of variation for the totals are always smaller using 

the  ̂        estimator rather than the  ̂        estimator. 
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3.2 - Simulation in the case of stratified population 

 

3.2.1 - Aim and main steps of the simulation study 

This paragraph focuses on the estimate of the change in case of a stratified 

population. The main step followed in this simulation exercise are: 

 A population of           units has been generated with the turnover 

having a lognormal distribution with parameters (mean and variance) that  

reproduce the population observed within each stratum in the sector of 

Accommodation. The population is divided into four strata based on the 

size of the company. The population in the previous simulation and the 

population within the stratum 1 in this simulation are generated according 

the same distribution and parameters. 

 

 The sample size is calculated by means of the Bethel algorithms 

implemented in Mauss-R (see Barcaroli et al, 2010). The planned coefficient 

of variation for the estimation of the total turnover is fixed at 3% for the 

estimation domain. The sample size (n) obtained within the estimation 

domain is 388 units, with a sampling fraction of 2%. 

 

 For the generation of the population at the next occasion (t) it has been 

assumed the following behavior: 

 

  
     

         
    

   (      ) 

 

As in previous paragraph, the value of   has been fixed at 0.9 and    is a 

random variable having a normal distribution.  

 

 The sample at the occasion t-4 is extracted from the reference population. A 

random non-response of 30% of the units in the sample is applied. As a 

consequence, the size of the set of respondent units for the estimation 

domain is equal to       . 

 

 The sample at the occasion t consists in the union of a random subset of the 

respondent units at the occasion t-4, with size    depending on the desired 
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overlapping   (      ) and of a srswor of size       from the 

population (units in the first subset are excluded). Therefore the size of 

respondent units is the same for both occasions. In this simulation the value 

of the overlap   is fixed to 0.7. 

 

 The estimates of the growth rate of the total turnover in the population 

between the two occasions are estimated by using the four estimators 

described.  

 The estimates are computed on 300 different samples extracted from the 

reference population. This allows the calculation of the bias, the standard 

deviation and the mean squared error for each estimator used. 

 

Table 3.13 contains the summary statistics about the generated population for the 

occasion t and t-4. There is a strong correlation between    and      (0.98 within 

the estimation domain). 

 

 

Table 3.13 – Summary statistics of the simulation exercise in case of  

stratification of the population 

Strata N n 
Sampling 

fraction% 
   o       (       ) 

percentage 

 rowth 

rate g 

1 8,413 30 0.4 21 0.7 14 0.98 -10.1 

2 9,885 140 1.4 98 0.7 69 0.97 -9.8 

3 1,456 83 5.7 58 0.7 41 0.98 -9.6 

4 135 135 100 95 0.7 66 0.95 -9.2 

Tot. 19,889 388 2.0 272 0.7 190 0.98 -9.7 

 

 



95 
 

 
 

3.2.2 - Results of the simulation 

 

The bias, the standard deviation and the mean squared error within strata were 

calculated using the same methodology of the simulation described in Section 3.1.  

The results obtained within the stratum 1 in the current simulation may be 

compared with those obtained in the previous simulation (where ε ~ N(0, 0.15), 

overlap=0.7 and rho=0.95) because the populations are generated according to the 

same distribution and parameters. It is seen that both bias and standard deviation 

in stratum 1 are larger than those obtained in the previous simulation. This is 

because in the present case the sample error was set at 3% on the entire estimation 

domain. Consequently, the sample size in stratum 1 is considerably smaller than 

the one obtained in the previous simulation (30 vs 417). 

The  ̂      and  ̂      estimators were calculated using the methodology described 

in the Section 2.2.1. Therefore, we have  

 ̂  ∑  ̂   

 

   

 

 ̂       
 ̂ 
 

  
     

The strata indices referring to the first occasion have been set equal to 100, while 

the strata weights were computed from the Istat Statistic Register of active firms 

(ASIA), used also to compute the lognormal distribution parameters for the 

generation of the population. 

As we can see from Tables 3.14, 3.15 the estimators have a strong bias and 

standard deviation within the strata. Stratum 4 is an exception, because it is a 

census stratum. Instead, within the estimation domain the bias is nearly 0 for all 

the estimators except for the estimator      (1.1 p.p.). Standard deviations within 

the estimation domain are smaller than the ones within the strata. 

The best estimators are  ̂        and  ̂   . For these estimators, the mean squared 

error within the estimation domain is the same. This is probably due to the low 

variability of the calibration variable within the strata, which makes the calibrated 

weights very similar each other. Therefore we have that  ̂         ̂   . 
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Table 3.14 –  Bias (p.p) calculated on 300 sample estimates for the growth rate g.  

Simulation: ε ~ N(0, 0.15), o=0.7, rho=0.95 

Stratum/ 

Domain 

calibration no calibration 

Gall.cal Golp.cal Gall 
Golp 

Stratum 1 1.5 -0.4 4.7 -0.5 

Stratum 2 0.1 -0.2 0.7 -0.2 

Stratum 3 0.4 0.1 1.6 0.2 

Stratum 4 0 0 0 0 

Domain 0.2 -0.1 1.1 -0.2 

 

 

 

 

Table 3.15 – Standard deviation calculated on 300 sample estimates for the 

growth rate g. Simulation: ε ~ N(0, 0.15), o=0.7, rho=0.95 

Stratum/ 

Domain 

calibration no calibration 

Gall.cal Golp.cal Gall Golp 

Stratum 1 
14.7 5.7 26.2 5.9 

Stratum 2 
4.2 2.7 8.7 2.8 

Stratum 3 5.4 3.1 11.2 3.2 

Stratum 4 
2.2 1.8 5.2 1.8 

Domain 2.8 1.5 5.4 1.5 
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Table 3.16 – Mean squared error calculated on 300 sample estimates for the 

growth rate g. Simulation: ε ~ N(0, 0.15), o=0.7, rho=0.95 

Stratum/ 

Domain 

calibration no calibration 

Gall.cal Golp.cal Gall 
Golp 

Stratum 1 
219.5 32.7 708.9 35.0 

Stratum 2 17.9 7.4 76.2 7.9 

Stratum 3 
29.5 9.8 128.0 10.3 

Stratum 4 
4.7 3.3 27.0 3.2 

Domain 
8.1 2.3 30.4 2.3 

 

From the present simulation study we can deduce that for the sector of 

Accommodation, in the case of: 

 a very high correlation between    and     , 

 an overlap between the two occasions near to 0.7,  

 a correlation between    and the calibration variable near to 0.95, 

the best estimators for the growth rate are the estimators  ̂        and  ̂   . As a 

consequence, for the growth rate estimation it is better to use only the overlapping 

respondent units than all the respondent units of the two reference quarters. 

In the next chapter we will see an application to real data for different estimation 

domains. 

 

 

 

 

 

 

 



98 
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CHAPTER 4 

Application to real data 

 

4.1 - An application to the service turnover survey data 

This chapter describes an application performed on real data using information 

from the quarterly service turnover survey. The application was performed on 2 

different domains of the Nace Rev.2 Classification (two-digit numerical code). 

The first domain (D1) consists of four different estimation domains (G1, G2, G3, 

G4) that match with the groups of the Nace Rev.2 Classification  (three-digit 

numerical code). The second domain (D2) consists of two different estimation 

domains (G5 and G6), where G5 is a group of the Nace Rev.2 classification while 

G6 is an aggregation of the other groups within the domain D2. 

Each domain estimation (G1, G2, G3, G4, G5 and G6) is divided into four 

independent strata according to the class of employees, with the exception of one 

estimation domain (G1), which is instead divided into three independent strata. 

The stratum with more than 100 employees within each estimation domain is the 

self-representative stratum. The application has been conducted on a given 

estimation quarter (which is not specified here). 

The estimators used for the growth rate estimation are those described in the 

previous chapter ( ̂       ̂           ̂         ). Since, as seen from the simulation 

study, the estimator  ̂      gives the worst results in terms of standard error of the 

growth rate estimation, it has not been used in the present application.  Therefore, 

in the application are used the same estimators of the service turnover survey 

( ̂       ̂         ) and the estimator  ̂          (non currently used in the service 

turnover survey). 

The results for the growth rate estimations are showed in Table 4.1. As already 

mentioned in Chapter 2, the sample size n is calculated by means of the Bethel 

algorithm using the software Mauss-R and with the planned coefficient of 

variation fixed at 3% for the total estimation within each estimation domain. In 

Table 4.1 the following quantities are shown. 
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 Weight (w) of each group within the domains of the Nace Rev.2 

Classification, in terms of turnover. It is calculated from the Istat Statistic 

Register of Active Firms (ASIA) and it is necessary for the calculation of the 

growth rate and standard error estimation when the estimator  ̂      is 

used (as showed in the chapter 2). 

 

 Number of units in the population (N), theoretical sample size calculated 

using the software Mauss-R (n), and corresponding percentage sampling 

fraction. 

 

 Average response rate of the units in the quarters t and t-4. 

 

Table 4.1 - Growth rate estimation for some estimation domains of the turnover 

service survey using different estimators. 

Group/

Domain 
w N n 

Sampling 

fraction% 

Resp. 
rate% 

 ̂       ̂           ̂          

G1 0.68 3,538 270 7.6 80% 14.2 12.7 13.3 

G2 0.13 39,817 522 1.3 77% -2.0 -1.8 -2.1 

G3 0.16 8,763 532 6.0 75% 2.6 2.7 2.5 

G4 0.03 2,835 381 13.4 71% 2.3 3.8 2.6 

D1 1 54,953 1,705 3.1 76% 9.9 8.9 9.1 

G5 0.83 19,887 475 2.4 67% 3.2 3.7 3.3 

G6 0.17 8,135 444 5.5 69% 7.1 7.6 7.2 

D2 1 28,022 919 3.3 68% 3.9 4.5 4.2 
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As we may see from Table 4.1, the sampling fraction at domain level (D1 and D2) 

is just over 3%. The percentage response rate is around 70%, (this motivated the 

choice to apply a 30% of  non-response in the simulation study of the previous 

chapter). 

The growth rate estimates performed with the three different estimators vary 

between 8.9% and 9.9 for the domain D1 and between 3.9% and 4.5% for the 

domain D2. As mentioned in the chapter 2, when the estimator  ̂          and 

 ̂          are used, the calibration variable used for the calculation of the totals  ̂  

and  ̂    is the annual turnover deriving from the last Asia available. The sample 

correlation between the variable of interest and the calibration variable (rho) is 

very high (0.99 for the domain D1 and 0.96 for the domain D2). 

In the next section we evaluate the standard errors associated with the different 

estimates. 

 

4.2 - Standard error using the Taylor series approximation 

and a comparison with the bootstrap method  

Standard errors have been calculated using the Taylor series approximation. When 

the calibration was used ( ̂           ̂         ), the results for the standard errors 

obtained through the Taylor series approximation were compared with those 

obtained using the bootstrap method (see Efron B. 1982; Rao and Wu 1988; 

Holmberg A. 1998; Antal and Tillé 2012; Quatember A. 2014). 

Using the method proposed by Holmberg (1998), three artificial stratified 

populations (  
 ,       

  and     
 ) were created, by replicating for a certain number 

of times (    ,) the value collected on each respondent unit ( ) in the quarters t and 

t- 4 (   and     ). The artificial populations   
  and     

  were created by 

replicating the values on the units responding only to one of the two quarters (t 

and t-4 respectively), while the population       
  was created by replicating the 

values on the overlapping respondent units to both quarters. 

The number of times that the value of a unit needs to be replicated is given by: 
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where      is the integer part of the inverse of the probability of inclusion for the 

units k belonging to the stratum h (    ) and      is the realization of a random 

variable with Bernoulli distribution. The Bernoulli distribution parameter is given 

by the difference between the inverse of the inclusion probability and its integer 

part (    ): 

     ⌊    
  ⌋  ⌊

  

  
⌋ 

         
        

        (    )  

Since in these estimation domains a stratified srswor is used, the inclusion 

probabilities (    ) are the same for each unit belonging to the same stratum h. 

300 bootstrap samples were generated from the artificial resampling populations 

in such a way that the overlapping of the units between the two quarters is the 

same as the parent sample, within each stratum. For each stratum (h) we have: 

 a number of units equal to the number of respondent units only in the quarter 

t-4 (the units in     ) has been extracted from the population     
 . These 

extracted bootstrap units are represented by   
    in the figure 4.1. 

 a number of units equal to the number of respondent units only in the quarter t 

(the units in   ) has been extracted from the population   
 . These extracted 

bootstrap units are represented by   
  in the figure 4.1. 

 a number of units equal to the number of respondent units in both quarters 

(the units in       ) has been extracted from the population       
 . These 

extracted bootstrap units are represented by   
      in the figure 4.1. 

 

The bootstrap sample units in the quarter t-4 were constituted by the union of 

  
   and   

      while the bootstrap sample units in the quarter t were constituted 

by the union of   
      and   

   (see figure 4.1). 

For each of the 300 bootstrap samples, an estimate of the growth rate of the 

turnover was computed, using the estimators  ̂        and  ̂       . Afterwards, for 

the estimation of the standard error was used the Monte Carlo bootstrap variance 

estimator, obtained by the following formula: 
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 ̂    
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where B = 300 and: 

 ̅̂  
 

 
∑ ̂ 

 

 

   

 

 

Figure 4.1 – Creation of the bootstrap sample from the parent sample 

 

 

 

 

 

 

 

 

 

The results for the standard error are showed in Table 4.2. Observing the results 

obtained through the Taylor series approximation, the best results are obtained 

with the use of the estimator  ̂       . Therefore, the use of the calibration only on 

the respondent units to both quarters gives the best results in terms of the 

standard error: 

 

 The reason for which   ( ̂       )    ( ̂       ) is that the overlapping rate of 

the respondents between the two quarters is very high (over 70%), as well as 

the sample correlation between the variable of interest of the units in the same 

stratum in the two different occasions (   (       )      ). In fact, as seen in 

the previous chapter, in our simulation study we have already remarked that 

at higher correlation levels between    and      there is a lower overlapping 

value (o) over which   ( ̂       )    ( ̂       ). In our simulation study, in the 

Artificial Population 

𝑠𝑡 𝑠𝑡 𝑡   

𝑠𝑡 𝑡   𝑠𝑡   

𝑠𝑏
𝑡  𝑠𝑏

𝑡 𝑡   

𝑠𝑏
𝑡 𝑡   

t 

t-4 

t 

𝑠𝑏
𝑡   

t-4 

𝑈𝑡
  𝑈𝑡 𝑡  

  𝑈𝑡  
  

Parent Sample 

Bootstrap Sample 



104 
 

case of    (       )       and a correlation between    and the calibration 

variable (rho) equal to 0.95, the overlapping value (o) over which   ( ̂       )  

  ( ̂       ) is equal to 29%. These results also show that the difference 

  ( ̂       )    ( ̂       ) is larger within the D2 domain. This probably 

happens because the overlapping between the respondents in the two 

occasions within the D1 domain, is very high. In fact, as we approach the case 

of full overlapping the results on standard errors tend to converge. 

 

 The reason for which   ( ̂       )    ( ̂   ) it is probably due to the fact that 

the calibration improves the precision of the estimates thanks to the high 

correlation between the variable of interest and the calibration variable. This is 

true especially within the D1 domain, where the correlation with the 

calibration variable is higher. 

 

By comparing the standard error of the estimators currently used in the service 

turnover survey  ( ̂    and  ̂       ) we may see that 

 

   ( ̂       )    ( ̂   ) within the domain D1  

 

   ( ̂       )    ( ̂   ) within the D2 domain.  

 

This could depend on the fact that the correlation with the calibration variable is 

greater within the D1 domain than within the D2 domain.  Therefore, within the 

D1 domain, the loss of precision in the use of an estimator based on all 

respondents rather than an estimator based only on the overlapping respondents 

is compensated by the use of the calibration with a variable highly correlated to 

that of interest.  

Since in some strata of the domain G5 and G6, the estimation of the covariance 

term of the Taylor series approximation led to a negative value of  ̂  ( ̂       ), the 

covariance term estimation for these domains were made in the following way: 

 ̂  ( ̂         
     ̂         

 )   

  ̂  ((    
     

   ̃ ̅   
 )(    

       
     ̃ ̅   

   ))√ ̂  ( ̂       
   ) ̂  ( ̂       

 ), 

instead of: 
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   ( ̂         
     ̂         

 )    
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)    

    
    

 

The results obtained with the bootstrap method in terms of standard errors are 

quite close to those obtained with the Taylor series approximation. The main 

difference is obtained for the estimate of the standard error when the estimator 

 ̂    is used. In fact, the standard error values for the estimates obtained using the 

 ̂    estimator, through the bootstrap method, are smaller than those  obtained 

through the Taylor Series Approximation and they are also closer to those 

obtained with the use of the  ̂        estimator. 

 

Table 4.2 – Standard error of the growth rate estimation for some estimation 

domains of the service turnover survey (three-digit numerical code of the Nace 

Rev.2 classification). 

Domain

/Group 
Overlap 

Taylor series 

Approximation 
Bootstrap method 

 ̂  
( ̂   ) 

 ̂  
( ̂       ) 

 ̂  
( ̂       ) 

 ̂  
( ̂   ) 

 ̂  
( ̂       ) 

 ̂  
( ̂       ) 

G1 0.84 1.4 1,3 1,2 1.1 1,1 1,0 

G2 0.78 1.4 1,3 1,3 1.3 1,2 1,3 

G3 0.82 1.1 1,0 0,7 0.8 0,7 0,7 

G4 0.74 1.2 1,3 1,0 1.1 1,2 1,1 

D1 0.79 1.0 0,9 0,8 0.8 0,8 0,7 

G5 0.72 0.9 1,9 0,9 0.8 1,7 0,9 

G6 0.70 0.7 1,7 0,7 0.6 1,4 0,7 

D2 0.71 0.8 1,5 0,7 07 1,4 0,7 
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However, both methods would seem to suggest that at these levels of sample 

overlap and correlation with the calibration variable, the best results in terms of 

standard error are obtained with the use of the  ̂        estimator. 

 

4.3 - A comparison with the Knottnerus and Van Delden 

results about the standard error of the turnover growth rate 

in Dutch supermarkets 

As mentioned in Chapter 1, Knottnerus and Van Delden (2012) gave the results 

about the growth rates and their confidence interval at 95% level, of monthly 

turnover (compared to 12 months previous) in the dutch supermarket, between 

the years 2003 and 2004. In table 4.3 are showed their results. The confidence 

intervals are given between parantheses. 

Table 4.3 – Estimated growth rates and their 95% margins. Results obtained by 

Knottnerus and Van Delden for Dutch Supermarkets. 

t  ̂ 

16     (    ) 

17     (    ) 

18    (    ) 

19     (    ) 

20    (    ) 

21     (    ) 

22     (    ) 

23  (    ) 

24     (    ) 

 

As we can see in the above table, the 95% margins vary between 0.7 and 1.0 per 

cent point. We compare now these results with those obtained for the D1 and D2 

domains in the application described in the previous paragraphs. The results are 
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showed in the table 4.4. The 95% margins, vary between 1.4 and 1.6 per cent point. 

Compared to the results for monthly turnover in Dutch supermarkets, the 

standard errors calculated for the turnover within the two domains (D1 and D2) 

are higher. However, we need to consider the different sampling rates of the two 

surveys. The sample for the turnover survey in Dutch Supermarkets consists in 

900 units out of a population of 3,500 units. Therefore the sampling fraction is of 

26%, much higher than the one for the D1 and D2 domains within the Italian 

turnover (about 3%). This may explain the larger margins obtained for the D1 and 

D2 domains. 

 

Table 4.3 – Estimated growth rates and their 95%  margins within the domain D1 

and D2 (two-digit numerical code of the Nace Rev.2 classification)  

t  ̂ 

D1    (    ) 

D2  4  (   4) 

 

. 
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Conclusions 

 

The aim of this work was to compute the variance of the estimators currently used 

in the service turnover survey for the quarterly estimation of the turnover growth 

rate. 

The survey currently uses two indicators for the estimation of the growth rate. The 

first one is a ratio between two mean estimators (one for quarter t and one for 

quarter t-4) and is calculated on the set of respondents common to both quarters 

(this estimator is indicated with  ̂   ). The second estimator is instead the ratio 

between two totals (one for quarter t and one for quarter t-4), calculated using the 

calibration estimator. This second estimator is applied to the whole set of 

respondents in both periods, t and t-4 (this estimator is indicated with  ̂       ). 

This work had also the purpose to determine which is the best estimator in terms 

of standard error. Since both estimators are non-linear functions of linear 

estimators, the first-order Taylor approximation was used to compute the 

variance. Therefore, it was possible to find the formulation of the variance of these 

estimators, both at stratum and at domain level. 

A simulation study has been conducted: two populations referred to two different 

occasions (t and t-4) were generated with turnover values at the occasion t-4 

possessing a lognormal distribution with parameters (mean and variance) able to 

reproduce the population observed in the sector of Accommodation. 1,000 samples 

were extracted from the generated population. Therefore, it was possible to 

compute the bias, the standard deviation and the mean squared error for the 

estimation of the turnover growth rate. The analysis was performed for different 

sample overlapping values between the two reference quarters (t and t-4) and 

different correlation values between the variable of interest and the calibration 

variable, together with different correlations between    and     . Both estimators 

used in the service turnover survey were applied, as well as two additional 

estimators: the  ̂        estimator, that was computed on the respondent units 

common to the two reference quarters using the calibration estimator; and the  ̂    

estimator which uses the set of all respondent units at the two occasions and is 

computed on the ratio between the two sample means in two different quarters, 

like the  ̂    estimator. The simulation study was carried on in case of simple 

random sampling design and in case of stratified sampling design. The study 
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highlighted that to all estimators, at a higher overlap level between the respondent 

units for the two occasions, correspond a smaller standard error. For the estimator 

using calibration ( ̂        e  ̂       ), at a higher value of correlation between the 

variable of interest and the calibration variable, the standard errors are smaller, 

while the overlap threshold over which   ( ̂       )    ( ̂       ) is higher. 

The study shows that, with the same set of respondents, the results obtained 

through the use of calibration are better than the ones obtained by using the mean 

estimators (we have that   ( ̂       )    ( ̂   ) and   ( ̂       )    ( ̂   )). 

Moreover, the simulation study in case of stratified population shows  that, at a 

level of overlap between the two occasions of about 70%, a correlation between the 

variable of interest and the calibration variable equal to 0.95 and a very high 

correlation between the observations in the two different occasions,  ̂        is the 

estimator with the smaller mean squared error associated to the estimation (the 

results are very similar to the ones obtained with the estimator  ̂   ) 

In the last part of the work has been conducted an application performed on real 

data, using information from the quarterly service turnover survey. The 

confidence intervals associated with the year-over-year variation of the quarterly 

service turnover were calculated for some estimation domains. The standard 

errors obtained by using Taylor first-order series approximation were compared 

with the ones obtained with the bootstrap method. The comparison shows similar 

results, although it appears that the results obtained with the Taylor series 

approximation are more conservative, as they are wider. The smallest standard 

errors were obtained through the use of the  ̂        estimator. 

In conclusion, the simulation study and the application show that, given the 

characteristics of the service turnover survey, the estimator with the smallest 

standard errors is the calibration estimator calculated only on the overlapping 

sample units in both quarters ( ̂       ). The above mentioned characteristics are: a 

high overlapping level (above 70%), a high correlation between the variable of 

interest and the calibration variable (greater than 0.95) and a very high correlation 

between the observations in the two occasions. 

Results discussed in the thesis refer to srswor and stratified srswor. Nonetheless, 

in future research, it may be interesting to extend the approach to more complex 

sampling designs. Furthermore, possible future developments of the work could 

be to analyze how the estimators perform for different levels of variation between 

the two survey occasions; what are the effects on them, on their bias and validity 
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of the corresponding expressions of variance of small sample sizes in the strata 

and how different non-response mechanisms can influence the choice between 

them, above all the choice between the use of calibration or not. 
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Appendix 

 

Table 1  – Bias (p.p) calculated on 1000 sample estimates for the growth rate g. 

Simulation 1: ε ~ N(0, 0.15),    (       )       

 

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0,05 0,5 -0,2 0,5 -0,2 0,6 -0,1 0,6 -0,1

0,10 0,2 0,1 0,2 0,1 0,0 -0,1 0,0 -0,1

0,15 0,4 -0,1 0,3 -0,1 0,0 0,0 0,1 0,0

0,20 -0,2 0,0 -0,2 0,0 0,3 0,1 0,5 0,1

0,25 0,1 0,1 0,1 0,1 0,1 0,0 0,1 0,0

0,30 0,0 0,0 0,0 0,0 0,3 0,1 0,4 0,1

0,50 0,1 -0,2 0,1 -0,2 0,2 0,0 0,2 0,0

0,70 -0,1 0,0 -0,1 0,0 0,1 0,0 0,1 0,0

0,99 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0,05 0,1 0,0 0,2 0,0 0,2 -0,2 0,3 -0,1

0,10 0,5 0,1 0,6 0,1 0,0 -0,1 0,1 -0,1

0,15 0,2 0,1 0,3 0,1 0,0 0,0 0,1 0,0

0,20 0,1 -0,1 0,0 -0,1 0,0 0,0 0,1 0,0

0,25 0,0 -0,1 0,2 0,0 -0,1 0,0 -0,1 0,0

0,30 0,3 -0,1 0,5 -0,1 0,2 -0,1 0,4 -0,1

0,50 0,1 0,0 0,0 0,0 0,1 0,0 0,2 0,0

0,70 0,1 0,1 0,1 0,1 0,0 -0,1 0,1 -0,1

0,99 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0,05 0,2 -0,2 0,2 -0,2 0,0 0,0 0,2 0,1

0,10 0,3 0,2 0,4 0,3 0,0 0,0 0,2 0,0

0,15 0,1 0,0 0,3 0,0 0,1 -0,1 0,2 0,0

0,20 0,0 0,0 0,0 0,0 0,1 -0,1 0,3 -0,1

0,25 -0,1 0,0 -0,1 0,0 0,1 -0,1 0,3 0,0

0,30 0,0 0,0 0,4 0,0 0,0 0,0 0,3 0,0

0,50 -0,1 -0,1 -0,1 -0,1 0,2 0,0 0,4 0,0

0,70 0,0 0,0 0,0 0,0 0,1 0,1 0,1 0,1

0,99 -0,1 -0,1 0,0 -0,1 0,0 -0,1 0,0 -0,1

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0,05 -0,1 -0,2 0,1 -0,2 -0,1 -0,3 0,2 -0,2

0,10 0,0 0,0 0,2 0,1 0,0 -0,1 -0,1 -0,1

0,15 0,0 0,2 0,1 0,2 0,0 0,1 0,4 0,1

0,20 0,1 0,0 0,4 0,0 0,0 0,0 0,2 0,0

0,25 0,0 -0,3 0,2 -0,3 -0,1 0,0 0,2 0,0

0,30 0,1 -0,1 0,3 -0,1 0,0 0,0 0,2 0,0

0,50 0,1 0,0 0,2 0,0 0,0 -0,1 0,2 0,0

0,70 0,0 0,0 0,1 0,0 -0,1 -0,1 0,0 0,0

0,99 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

overlap

rho=0.6 rho=0.7

calibration no calibration calibration no calibration

overlap

rho=0 rho=0.5

calibration no calibration calibration no calibration

overlap

rho=0.95 rho=1

calibration no calibration calibration no calibration

overlap

rho=0.8 rho=0.9

calibration no calibration calibration no calibration
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Table 2  – Bias (p.p) calculated on 1000 sample estimates for the growth rate g. 

Simulation 1: ε ~ N(0, 0.25) ,    (       )       

 

 

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 0.5 -0.5 0.5 -0.5 0.0 0.1 0.2 0.1

0.10 0.1 -0.1 0.0 -0.1 0.1 -0.5 0.2 -0.5

0.15 0.3 -0.2 0.3 -0.2 0.2 -0.1 0.2 -0.1

0.20 0.2 0.2 0.2 0.2 0.0 0.0 0.0 0.0

0.25 -0.1 -0.1 -0.1 -0.1 0.2 0.0 0.4 0.0

0.30 0.0 -0.1 0.0 -0.1 0.2 -0.1 0.1 -0.1

0.50 -0.3 -0.1 -0.3 -0.1 0.2 0.0 0.3 0.0

0.70 0.0 -0.1 0.0 -0.1 0.1 0.0 0.1 0.0

0.99 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.1

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 -0.2 -0.1 -0.2 0.0 -0.4 -0.1 -0.5 -0.1

0.10 0.2 0.0 0.2 0.0 0.3 0.0 0.5 0.0

0.15 -0.2 -0.3 -0.2 -0.3 0.0 0.0 0.0 0.0

0.20 0.5 0.0 0.6 0.0 0.0 0.1 0.0 0.1

0.25 0.1 0.0 0.1 0.0 -0.1 -0.1 -0.1 -0.1

0.30 0.0 -0.2 -0.1 -0.2 0.1 0.0 0.2 0.0

0.50 0.2 -0.1 0.3 -0.1 0.4 0.1 0.5 0.1

0.70 0.0 -0.1 0.1 -0.1 0.0 0.0 0.0 0.0

0.99 -0.1 -0.1 0.0 -0.1 -0.1 -0.1 -0.1 -0.1

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 0.0 -0.8 0.1 -0.8 0.0 -0.1 0.1 0.0

0.10 0.3 -0.3 0.3 -0.3 -0.1 -0.1 0.0 -0.1

0.15 -0.2 -0.1 -0.2 -0.1 0.2 0.0 0.3 0.1

0.20 0.1 0.0 0.1 0.0 -0.1 -0.2 -0.1 -0.1

0.25 0.3 0.1 0.4 0.1 -0.1 -0.1 -0.1 -0.1

0.30 0.2 -0.2 0.4 -0.1 0.3 0.2 0.5 0.2

0.50 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1

0.70 -0.1 -0.1 -0.1 0.0 0.0 0.0 0.1 0.1

0.99 0.0 0.0 0.0 0.0 -0.1 -0.1 -0.1 -0.1

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 -0.1 0.1 0.1 0.2 0.5 -0.5 0.5 -0.5

0.10 -0.1 -0.2 0.0 -0.1 0.1 -0.1 0.0 -0.1

0.15 -0.1 -0.2 0.0 -0.1 0.3 -0.2 0.3 -0.2

0.20 -0.1 -0.1 0.1 -0.1 0.2 0.2 0.2 0.2

0.25 -0.1 0.0 0.0 0.0 -0.1 -0.1 -0.1 -0.1

0.30 0.0 0.1 0.3 0.1 0.0 -0.1 0.0 -0.1

0.50 -0.2 -0.1 0.0 -0.1 -0.3 -0.1 -0.3 -0.1

0.70 -0.2 -0.1 -0.1 -0.1 0.0 -0.1 0.0 -0.1

0.99 -0.1 -0.1 -0.1 -0.1 0.0 0.0 0.0 0.0

calibration no calibration calibration no calibration

overlap

rho=0 rho=0.5

calibration no calibration calibration no calibration

overlap

rho=0.6 rho=0.7

overlap

rho=0.8 rho=0.9

calibration no calibration calibration no calibration

overlap

rho=0.95 rho=1

calibration no calibration calibration no calibration
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Table 3  – Bias (p.p) calculated on 1000 sample estimates for the growth rate g. 

Simulation 3: ε ~ N(0, 0.35) ,    (       )       

 

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 0.5 0.3 0.5 0.3 0.1 0.4 0.1 0.4

0.10 0.4 0.4 0.3 0.4 0.0 0.1 0.1 0.1

0.15 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.1

0.20 0.3 -0.2 0.3 -0.2 0.4 -0.1 0.4 -0.1

0.25 0.3 0.0 0.2 0.0 0.0 0.1 0.0 0.1

0.30 0.2 0.0 0.2 0.0 0.2 0.1 0.2 0.1

0.50 0.1 -0.1 0.1 -0.1 0.3 0.2 0.3 0.2

0.70 0.2 0.1 0.2 0.1 0.0 -0.1 0.0 -0.1

0.99 0.0 0.0 0.0 0.0 -0.1 -0.1 -0.1 -0.1

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 0.0 0.7 0.1 0.7 0.2 0.5 0.2 0.6

0.10 0.3 -0.2 0.4 -0.2 0.5 -0.2 0.6 -0.2

0.15 0.4 0.2 0.4 0.2 -0.1 0.0 0.0 0.1

0.20 0.0 -0.2 0.1 -0.1 0.1 0.1 0.2 0.1

0.25 0.1 -0.1 0.1 -0.1 -0.1 -0.3 -0.1 -0.3

0.30 0.2 0.0 0.1 0.0 0.1 -0.3 0.3 -0.2

0.50 0.0 -0.1 0.0 0.0 0.1 0.0 0.2 0.0

0.70 0.2 0.1 0.2 0.1 0.1 0.0 0.1 0.0

0.99 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 0.2 -0.2 0.2 -0.1 -0.1 -0.2 0.1 -0.1

0.10 0.2 -0.1 0.3 0.0 0.1 -0.1 0.3 -0.1

0.15 0.4 0.0 0.5 0.1 0.0 0.1 0.1 0.2

0.20 0.1 0.1 0.1 0.2 0.2 -0.2 0.4 -0.1

0.25 0.0 0.3 0.1 0.4 0.2 0.2 0.3 0.3

0.30 0.3 0.0 0.6 0.0 0.0 -0.1 0.1 -0.1

0.50 0.1 0.0 0.3 0.0 -0.1 -0.1 0.0 -0.1

0.70 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0

0.99 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 0.1 0.1 0.5 0.1 0.0 0.4 0.3 0.3

0.10 0.0 -0.2 -0.1 0.0 0.0 0.2 0.3 0.2

0.15 0.2 -0.3 0.5 -0.2 0.0 0.0 0.5 0.2

0.20 0.0 -0.1 0.2 0.0 0.0 0.0 0.0 0.1

0.25 0.3 -0.1 0.6 -0.1 -0.1 -0.1 0.2 0.0

0.30 0.0 0.0 -0.1 0.0 0.0 0.2 0.2 0.2

0.50 0.0 0.0 0.2 0.0 0.2 0.3 0.3 0.3

0.70 0.0 0.0 0.1 0.0 -0.1 -0.1 -0.3 -0.1

0.99 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1

overlap

rho=0.6 rho=0.7

calibration no calibration calibration no calibration

overlap

rho=0 rho=0.5

calibration no calibration calibration no calibration

overlap

rho=0.95 rho=1

calibration no calibration calibration no calibration

overlap

rho=0.8 rho=0.9

calibration no calibration calibration no calibration
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Table 4  – Mean squared error calculated on 1000 sample estimates for the growth 

rate g. Simulation 1: ε ~ N(0, 0.15) ,    (       )       

 

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 45.1 23.1 43.8 23.1 36.4 22.1 46.6 22.1

0.10 42.3 12.3 39.7 12.3 34.8 13.0 43.6 13.0

0.15 41.1 8.4 38.5 8.4 30.3 7.8 38.5 7.8

0.20 39.7 6.3 37.3 6.3 30.3 6.8 37.5 6.8

0.25 34.8 5.8 32.5 5.8 25.0 4.8 33.7 4.8

0.30 36.0 4.8 33.6 4.8 25.1 4.4 31.5 4.4

0.50 25.0 2.6 24.0 2.6 18.5 2.6 23.1 2.6

0.70 15.2 2.0 14.5 2.0 12.3 2.0 15.2 2.0

0.99 1.7 1.2 1.7 1.2 1.7 1.4 1.7 1.4

o

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 30.3 24.0 42.3 24.0 28.1 23.1 45.0 23.1

0.10 29.4 13.0 43.9 13.0 24.0 11.6 37.2 12.3

0.15 28.1 8.4 41.1 8.4 23.0 9.0 38.5 9.0

0.20 26.0 6.3 39.7 6.3 22.1 7.3 37.2 7.3

0.25 22.1 5.3 31.4 5.3 21.2 4.8 33.7 4.8

0.30 21.3 4.4 30.5 4.4 19.4 4.4 31.5 4.4

0.50 16.0 2.3 23.0 2.3 15.2 2.6 25.0 2.6

0.70 10.9 1.7 16.0 1.7 9.6 2.0 14.5 2.0

0.99 1.7 1.4 1.7 1.4 1.7 1.2 2.0 1.2

o

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 23.1 24.1 46.3 24.1 14.4 24.0 46.3 24.0

0.10 21.3 12.3 42.4 13.1 12.3 13.0 43.6 13.0

0.15 19.4 8.4 39.8 8.4 10.9 9.0 37.3 9.0

0.20 18.5 6.3 37.2 6.3 10.9 6.3 34.9 6.8

0.25 16.8 4.8 33.7 4.8 10.3 4.9 33.7 4.8

0.30 16.0 4.0 33.8 4.0 10.9 4.4 32.6 4.4

0.50 11.6 2.3 22.1 2.6 7.3 2.6 22.3 2.6

0.70 7.3 1.7 14.4 1.7 5.3 2.0 14.5 2.0

0.99 1.5 1.2 1.7 1.2 1.2 1.2 1.7 1.2

o

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 8.4 24.1 44.9 25.0 1.2 22.2 43.6 23.1

0.10 8.4 11.6 41.0 12.3 1.2 11.6 39.7 12.3

0.15 6.8 8.5 34.8 9.0 1.2 9.0 36.2 9.0

0.20 7.3 6.3 37.4 6.3 1.2 6.3 37.3 6.3

0.25 6.3 5.4 32.5 5.4 1.2 4.8 33.7 4.8

0.30 6.3 4.0 36.1 4.4 1.2 4.4 31.4 4.4

0.50 5.8 2.6 26.1 2.6 1.2 2.6 23.1 2.9

0.70 3.2 2.0 14.5 2.0 1.2 1.7 15.2 1.7

0.99 1.2 1.2 1.7 1.2 1.2 1.2 2.0 1.2

o

overlap

rho=0 rho=0.5

calibration no calibration calibration no calibration

0.03 0.08 0.04 0.08

overlap

rho=0.6 rho=0.7

calibration no calibration calibration no calibration

0.05 0.08 0.06 0.08

overlap

rho=0.8 rho=0.9

calibration no calibration calibration no calibration

0.08 0.08 0.15 0.08

overlap

rho=0.95 rho=1

calibration no calibration calibration no calibration

0.29 0.08 1.0 0.08
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Table 5  – Mean squared error calculated on 1000 sample estimates for the growth 

rate g. Simulation 2: ε ~ N(0, 0.25) ,    (       )       

 

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 52.1 67.5 49.3 67.5 34.8 64.0 43.6 64.0

0.10 44.9 34.8 41.0 34.8 34.8 36.3 42.3 36.3

0.15 41.1 22.1 38.5 22.1 33.7 23.1 41.0 23.1

0.20 39.7 18.5 37.3 18.5 30.3 17.6 37.2 17.6

0.25 37.2 13.7 34.8 13.7 27.1 14.4 33.8 14.4

0.30 36.0 11.6 33.6 11.6 26.1 12.3 31.4 12.3

0.50 27.1 7.3 26.1 7.3 21.2 6.8 27.1 6.8

0.70 18.5 5.3 16.8 5.3 14.5 4.8 17.7 4.8

0.99 4.0 3.6 4.0 3.6 4.0 3.6 4.0 3.6

o

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 31.4 65.6 44.9 65.6 26.2 67.3 41.2 67.3

0.10 31.4 33.6 43.6 33.6 28.2 33.6 43.8 34.8

0.15 30.3 24.1 42.3 24.1 27.0 21.2 42.3 22.1

0.20 24.3 17.6 34.0 17.6 24.0 17.7 38.4 17.7

0.25 27.1 14.4 37.2 15.2 23.1 15.2 36.0 15.2

0.30 26.0 11.6 34.8 12.3 23.1 13.0 36.0 13.0

0.50 19.4 7.3 27.1 7.3 16.2 7.3 24.3 7.3

0.70 13.7 4.9 17.7 4.9 10.9 5.3 16.8 5.3

0.99 3.6 3.6 4.0 3.6 4.0 4.0 4.4 4.0

o

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 22.1 67.9 42.3 71.2 16.0 60.9 46.3 64.0

0.10 22.2 37.3 45.0 37.3 16.0 32.5 43.6 33.7

0.15 20.3 24.0 39.7 24.0 15.3 20.3 41.1 21.2

0.20 19.4 16.8 38.5 16.8 14.5 18.5 38.5 19.4

0.25 21.3 14.5 41.1 15.2 13.0 13.7 36.0 13.7

0.30 16.0 11.6 31.5 11.6 11.7 11.6 33.9 11.6

0.50 13.0 7.3 24.0 7.3 10.3 7.3 27.1 7.9

0.70 9.6 4.9 16.8 4.8 7.8 4.8 17.7 5.3

0.99 3.6 3.6 4.0 3.6 3.6 3.6 4.0 3.6

o

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 9.0 62.4 42.3 65.7 3.5 61.1 49.3 65.9

0.10 9.0 36.0 43.6 38.5 3.3 33.7 41.0 36.0

0.15 9.6 22.1 43.6 24.0 3.3 21.2 45.0 23.1

0.20 9.0 17.7 37.2 18.5 3.3 16.0 38.5 18.5

0.25 8.4 14.4 38.4 15.2 3.3 13.7 37.2 15.2

0.30 7.8 11.6 34.9 12.3 3.2 11.6 32.5 13.0

0.50 6.3 6.8 25.0 7.3 3.3 6.8 25.1 7.3

0.70 5.3 5.3 16.0 5.3 3.2 4.9 16.0 5.3

0.99 2.9 2.9 3.6 3.3 2.9 3.2 4.0 3.6

o

overlap

rho=0 rho=0.5

calibration no calibration calibration no calibration

0.09 0.09 0.11 0.09

overlap

rho=0.6 rho=0.7

calibration no calibration calibration no calibration

0.13 0.09 0.16 0.09

overlap

rho=0.8 rho=0.9

calibration no calibration calibration no calibration

0.79 0.09 1.00 0.09

0.22 0.09 0.40 0.09

overlap

rho=0.95 rho=1

calibration no calibration calibration no calibration
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Table 6  – Mean squared error calculated on 1000 sample estimates for the growth 

rate g. Simulation 3: ε ~ N(0, 0.35) ,    (       )       

 

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 52.1 132.3 47.9 151.4 37.2 130.1 47.6 151.5

0.10 50.6 74.1 46.3 75.9 37.2 67.3 46.3 75.7

0.15 46.3 50.5 43.6 50.5 34.8 47.6 43.6 50.4

0.20 45.0 39.7 41.1 37.3 36.2 37.2 41.1 37.2

0.25 39.8 30.3 38.5 29.2 33.6 29.2 38.4 29.2

0.30 39.7 23.0 37.3 25.0 31.4 23.1 37.3 25.0

0.50 29.2 14.5 28.1 14.5 24.1 14.5 28.2 14.5

0.70 20.3 10.3 19.4 10.3 17.6 10.3 19.4 10.3

0.99 7.8 7.3 7.8 7.3 7.3 7.3 7.9 7.3

o

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 34.8 132.7 47.6 151.8 33.7 127.9 47.7 151.7

0.10 33.7 70.6 46.4 75.7 33.9 70.6 46.6 75.7

0.15 33.8 46.3 43.7 50.5 29.2 43.6 43.6 50.4

0.20 32.5 37.3 41.0 37.2 27.1 32.5 41.0 37.2

0.25 29.2 28.1 38.5 29.2 25.0 29.3 38.5 29.3

0.30 30.3 25.0 37.2 25.0 26.0 23.1 37.3 25.0

0.50 22.1 14.5 28.1 14.4 18.5 15.2 28.1 14.4

0.70 14.5 9.0 19.4 10.3 14.5 10.2 19.4 10.2

0.99 6.8 6.8 7.9 7.3 7.8 7.3 7.8 7.3

o

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 27.1 139.3 47.7 151.3 20.3 127.7 47.6 151.3

0.10 23.1 64.0 46.3 75.7 19.4 67.3 46.3 75.7

0.15 23.2 47.6 43.8 50.4 16.8 44.9 43.6 50.5

0.20 24.0 34.8 41.0 37.3 17.7 33.7 41.1 37.2

0.25 23.0 26.1 38.5 29.3 16.0 29.2 38.5 29.3

0.30 21.3 24.0 37.6 25.0 14.4 22.1 37.2 25.0

0.50 18.5 14.4 28.2 14.4 13.0 14.5 28.1 14.5

0.70 13.0 10.9 19.4 10.2 10.2 10.2 19.4 10.2

0.99 6.3 6.3 7.8 7.3 5.8 5.8 7.8 7.3

o

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 13.7 123.2 47.9 151.3 5.8 116.8 47.7 151.4

0.10 12.3 62.5 46.3 75.7 5.8 64.0 46.3 75.7

0.15 13.0 45.0 43.8 50.5 5.8 37.2 43.8 50.5

0.20 12.3 33.7 41.0 37.2 5.8 29.2 41.0 37.2

0.25 11.0 26.0 38.8 29.2 6.3 22.1 38.5 29.2

0.30 13.0 23.0 37.2 25.0 6.3 22.1 37.3 25.0

0.50 10.9 13.0 28.1 14.4 6.3 11.7 28.2 14.5

0.70 9.0 9.6 19.4 10.2 6.3 8.4 19.5 10.3

0.99 6.3 6.3 7.8 7.3 5.8 5.8 7.9 7.3

o 1.0 0.17 1.0 0.17

0.41 0.17 0.74 0.17

overlap

rho=0.95 rho=1

calibration no calibration calibration no calibration

0.25 0.17 0.30 0.17

overlap

rho=0.8 rho=0.9

calibration no calibration calibration no calibration

0.17 0.17 0.22 0.17

overlap

rho=0.6 rho=0.7

calibration no calibration calibration no calibration

overlap

rho=0 rho=0.5

calibration no calibration calibration no calibration
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Table 7  – Percentage of times that the confidence interval of the estimates 

contains the true value of the population. Simulation 1: ε ~ N(0, 0.15) , 

   (       )       

 

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 95.5 92.5 95.6 92.5 95.3 90.5 95.0 90.5

0.10 96.1 93.5 95.1 93.6 93.8 91.4 93.1 91.4

0.15 95.3 94.1 95.9 94.2 94.1 94.4 94.3 94.5

0.20 94.0 94.1 93.9 94.1 93.9 93.4 94.9 93.4

0.25 93.8 92.8 94.6 92.9 95.2 93.7 94.5 93.7

0.30 94.1 91.3 93.3 91.4 95.6 94.9 95.3 94.9

0.50 95.6 93.3 94.6 93.3 94.9 95.2 94.2 95.2

0.70 94.1 94.9 94.1 94.8 95.1 94.9 95.2 94.9

0.99 96.1 96.1 95.9 96.1 94.1 93.9 95.0 93.9

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 94.6 88.5 95.2 88.7 95.4 90.3 95.4 90.6

0.10 94.8 92.6 94.7 93.1 95.0 94.1 94.5 94.4

0.15 94.3 93.4 93.2 93.6 95.7 91.6 95.6 91.7

0.20 94.6 93.9 92.9 93.9 95.6 92.9 94.8 93.2

0.25 96.0 93.6 96.9 93.6 94.9 94.7 94.9 94.9

0.30 95.3 92.7 95.7 92.7 95.2 93.9 95.5 93.8

0.50 94.1 95.2 94.0 95.4 94.0 93.8 93.4 94.0

0.70 94.7 94.4 93.4 94.5 95.0 93.2 95.5 93.4

0.99 95.3 94.6 94.6 94.6 93.1 95.4 94.4 95.4

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 93.4 90.2 93.5 90.8 94.3 90.0 93.4 90.5

0.10 94.8 92.3 95.2 92.5 95.5 92.4 94.4 92.6

0.15 95.6 92.8 95.2 93.0 95.6 92.6 95.1 93.1

0.20 94.9 93.9 95.6 94.2 95.3 92.8 95.0 93.2

0.25 94.9 95.0 94.7 95.3 95.1 93.6 94.6 93.7

0.30 95.1 93.5 94.6 93.3 95.1 93.1 94.9 93.3

0.50 94.8 94.7 95.3 94.7 95.8 94.0 95.6 94.3

0.70 95.9 94.9 95.3 95.1 94.3 94.4 96.0 94.3

0.99 95.6 95.0 95.0 95.2 95.6 95.0 95.4 95.0

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 94.9 90.2 94.9 90.6 95.6 89.8 95.4 91.1

0.10 95.1 92.8 94.7 92.9 94.3 92.2 95.0 93.0

0.15 95.8 93.0 96.7 93.8 94.4 90.7 95.9 91.4

0.20 94.2 92.2 94.7 92.4 95.1 93.2 94.9 93.9

0.25 96.0 93.5 96.0 93.3 94.1 94.1 94.6 94.7

0.30 94.9 94.4 94.8 94.9 93.5 93.0 95.5 93.3

0.50 94.3 94.7 93.6 95.0 95.0 92.9 95.0 92.9

0.70 94.7 94.3 95.7 94.1 94.9 94.1 94.0 95.1

0.99 94.5 94.7 95.1 95.1 94.0 94.0 93.8 94.3

overlap

rho=0 rho=0.5

calibration no calibration calibration no calibration

calibration no calibration

no calibration

overlap

rho=0.8 rho=0.9

calibration no calibration

overlap

rho=0.6 rho=0.7

calibration no calibration calibration

overlap

rho=0.95 rho=1

calibration no calibration calibration no calibration
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Table 8  – Percentage of times that the confidence interval of the estimates 

contains the true value of the population. Simulation 2: ε ~ N(0, 0.25) , 

   (       )       

 

 

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 94.4 91.1 94.2 91.4 95.0 90.9 95.6 91.2

0.10 95.6 91.4 95.8 91.7 94.9 92.2 95.5 92.7

0.15 95.0 94.3 95.1 94.4 94.8 94.9 95.0 94.9

0.20 95.6 92.9 95.6 93.0 95.5 94.6 94.6 94.7

0.25 94.6 95.3 95.7 95.3 95.4 93.4 96.0 93.4

0.30 95.6 94.0 95.7 94.0 94.9 94.4 95.5 94.4

0.50 94.3 93.8 94.5 93.8 94.6 95.1 94.1 95.1

0.70 95.1 94.4 95.1 94.4 95.4 95.3 94.5 95.3

0.99 95.1 94.0 95.3 94.0 95.5 94.7 95.0 94.8

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 94.8 91.4 94.9 92.2 95.7 91.7 95.1 91.8

0.10 94.7 93.0 94.7 93.0 94.1 92.9 94.7 93.1

0.15 95.3 93.1 94.5 93.3 94.2 95.2 94.3 95.6

0.20 96.6 94.2 95.7 94.2 94.6 93.6 94.9 94.0

0.25 93.9 93.2 94.1 93.3 94.7 94.3 95.3 94.5

0.30 94.1 94.6 94.2 94.7 94.2 92.9 93.7 92.8

0.50 94.4 94.4 94.0 94.4 95.4 94.2 95.8 94.3

0.70 93.6 94.8 94.5 95.0 95.3 94.1 94.6 93.9

0.99 95.6 95.3 95.6 95.6 93.9 94.4 94.0 94.3

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 96.0 90.3 95.9 91.2 95.2 90.8 95.0 91.2

0.10 94.6 92.1 94.0 92.5 93.9 93.1 94.4 93.7

0.15 95.0 92.7 95.1 93.2 94.4 94.9 94.1 95.2

0.20 95.5 94.3 95.0 95.0 94.9 92.6 94.3 93.0

0.25 93.3 91.6 93.7 91.6 94.6 94.7 94.0 94.8

0.30 96.1 94.7 96.0 95.0 95.3 93.5 95.1 93.6

0.50 94.8 94.2 95.1 94.2 93.9 93.0 92.8 93.1

0.70 95.2 93.6 94.8 93.8 94.8 94.2 94.7 94.2

0.99 93.9 94.1 94.1 93.8 94.7 94.2 95.3 94.2

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 95.7 92.3 95.7 92.6 94.7 88.5 94.6 90.0

0.10 94.4 90.9 94.3 91.4 94.7 90.7 95.5 92.0

0.15 93.8 92.7 93.3 92.8 94.9 93.5 93.7 94.2

0.20 94.3 93.0 95.1 93.6 94.3 92.6 94.8 93.5

0.25 95.3 92.8 94.5 93.2 94.9 92.5 94.3 92.8

0.30 94.7 94.2 95.3 94.2 94.7 93.1 95.3 93.6

0.50 95.0 94.6 94.6 94.6 94.9 93.4 94.8 93.9

0.70 95.1 93.0 94.8 93.7 93.5 94.4 95.9 94.5

0.99 96.0 95.9 96.6 96.4 96.2 95.7 95.2 95.5

overlap

rho=0 rho=0.5

calibration no calibration calibration no calibration

calibration no calibration

no calibration

overlap

rho=0.8 rho=0.9

calibration no calibration

overlap

rho=0.6 rho=0.7

calibration no calibration calibration

overlap

rho=0.95 rho=1

calibration no calibration calibration no calibration
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Table 9  – Percentage of times that the confidence interval of the estimates 

contains the true value of the population. Simulation 3: ε ~ N(0, 0.35) , 

   (       )       

 

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 94.3 91.5 94.8 91.7 95.1 91.4 95.1 91.5

0.10 95.2 92.4 94.2 92.6 93.4 93.3 94.6 93.2

0.15 94.7 92.6 94.9 92.5 95.2 91.6 94.9 91.7

0.20 94.5 92.5 94.3 92.5 94.4 92.6 94.9 92.6

0.25 95.8 93.6 95 93.6 94 93.5 93.7 93.4

0.30 95.2 95.4 94.3 95.4 94.4 94.7 93.7 94.6

0.50 94.4 94.3 94.6 94.3 94.5 94 94.6 94.2

0.70 94.8 94.1 94.5 94.1 95.1 93.8 94.8 93.9

0.99 94.1 94.8 94.1 95 95 95.4 94.9 95.2

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 95.5 91.4 95.5 91.6 94.9 91.2 94.4 91.3

0.10 95.2 92.8 94.6 93 93.7 91.7 94.4 91.7

0.15 94.4 92.9 94.4 93.1 94.3 94.3 94.6 94.5

0.20 95 93.2 94.9 93.1 96 94.8 96 95.1

0.25 95.1 93.9 94.4 93.6 95.1 93.5 94.5 93.8

0.30 93.4 94.3 92.9 94.2 94.9 94 94.4 94.1

0.50 94.5 93.6 95.5 93.6 96.5 93 96 93

0.70 95.3 95.2 95.6 95.2 95.3 95.3 94.7 95.5

0.99 95.5 94.6 95.5 94.9 94.4 94.1 94.7 94

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 94.8 90.8 94.7 90.7 94.4 90.8 93.8 91.5

0.10 95 92.4 95.2 93 94.3 91.2 94.8 91.7

0.15 95.7 92.4 94.6 92.9 96 93.2 95.5 93.8

0.20 94.9 92.6 93.9 92.6 93.4 93.8 94.1 93.9

0.25 93.7 94.3 93.2 94.5 95 92.8 94.9 93.4

0.30 94.8 93.8 94.8 94.4 95.6 93.9 95.4 93.8

0.50 94.1 94.6 94.7 94.6 95 94.1 95.5 94.6

0.70 95.2 92.7 95.1 92.8 94 93.3 94.3 93.5

0.99 94.4 95.3 94.7 95.2 96.7 96.3 96.5 96.7

Gall.cal Golp.cal Gall Golp Gall.cal Golp.cal Gall Golp

0.05 94.6 90.8 94.3 91.7 95.2 88.5 94.6 91

0.10 95.1 93.5 95.9 93.7 95.3 91.1 94.9 93

0.15 94.9 93.1 93.7 93.6 93.9 92.6 94.9 93.5

0.20 94.6 93 95.2 93.5 95.1 93.9 95.3 94.2

0.25 95.6 95.2 95.3 95.2 92.7 93.6 94.3 94.7

0.30 92.4 93.5 93.8 93.8 92.8 92.5 93.9 93.2

0.50 93.5 94.9 95.3 95.1 94.2 94.5 94.6 94.8

0.70 94.7 95.2 94.8 95.3 94.5 94.7 94.4 94.5

0.99 95.4 95.5 95.5 95.3 96.3 95.4 95.1 95.2

overlap

rho=0.95 rho=1

calibration no calibration calibration no calibration

calibration no calibration

no calibration

overlap

rho=0.8 rho=0.9

calibration no calibration

overlap

rho=0.6 rho=0.7

calibration no calibration calibration

overlap

rho=0 rho=0.5

calibration no calibration calibration no calibration
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Table 10 – Coefficients of variation calculated on 1000 sample estimates for the 

total estimation of     ,  using calibration. Simulation 1: ε ~ N(0, 0.15) 

 

 

Table 11 – Coefficients of variation calculated on 1000 sample estimates for the 

total estimation of   , using calibration. Simulation 1: ε ~ N(0, 0.15) 

 

Gall.cal Golp.cal Gall.cal Golp.cal Gall.cal Golp.cal Gall.cal Golp.cal

0.05 5.1 23.1 4.5 20.1 4.4 19.2 4.0 18.0

0.10 5.2 17.0 4.6 14.2 4.4 14.0 3.9 13.1

0.15 5.2 14.1 4.7 12.2 4.4 11.0 4.0 10.9

0.20 5.2 12.1 4.5 9.9 4.3 9.4 4.0 9.2

0.25 5.1 10.7 4.5 9.2 4.2 8.6 4.1 8.5

0.30 5.3 9.7 4.6 8.7 4.4 8.0 4.0 7.4

0.50 5.3 7.9 4.7 6.6 4.4 6.0 4.2 5.7

0.70 5.4 6.3 4.7 5.4 4.2 5.1 3.9 4.7

0.99 5.4 5.4 4.6 4.6 4.2 4.2 4.1 4.1

Gall.cal Golp.cal Gall.cal Golp.cal Gall.cal Golp.cal Gall.cal Golp.cal

0.05 3.8 16.5 2.9 12.8 2.3 10.3 1.2 5.5

0.10 3.7 11.6 3.0 9.2 2.4 7.5 1.3 3.9

0.15 3.5 9.4 2.9 7.9 2.4 6.1 1.3 3.4

0.20 3.6 8.1 3.0 6.6 2.4 5.6 1.2 2.8

0.25 3.7 7.5 2.8 5.9 2.3 4.7 1.3 2.5

0.30 3.6 6.4 3.1 5.1 2.3 4.3 1.3 2.3

0.50 3.6 5.2 2.9 4.1 2.4 3.3 1.2 1.8

0.70 3.6 4.3 3.0 3.5 2.3 2.9 1.2 1.5

0.99 3.8 3.8 2.9 2.9 2.2 2.3 1.2 1.3

rho=0.6 rho=0.7
overlap

rho=0 rho=0.5

rho=0.95 rho=1rho=0.8 rho=0.9
overlap

Gall.cal Golp.cal Gall.cal Golp.cal Gall.cal Golp.cal Gall.cal Golp.cal

0.05 5.2 23.9 4.8 20.3 4.3 19.6 4.2 17.9

0.10 5.5 17.7 4.8 14.8 4.2 14.4 4.2 13.4

0.15 5.5 14.6 4.7 12.4 4.5 11.3 4.3 11.0

0.20 5.3 12.6 4.7 10.3 4.3 9.7 4.2 9.4

0.25 5.6 11.2 4.7 9.5 4.2 8.9 4.2 8.6

0.30 5.5 10 4.7 8.9 4.2 8.3 4.1 7.7

0.50 5.6 8.2 4.8 6.8 4.3 6.2 4.2 5.9

0.70 5.4 6.5 4.6 5.6 4.4 5.3 4.1 4.8

0.99 5.6 5.6 4.7 4.7 4.3 4.3 4.2 4.2

Gall.cal Golp.cal Gall.cal Golp.cal Gall.cal Golp.cal Gall.cal Golp.cal

0.05 3.7 16.8 3.0 12.8 2.3 10.0 0.1 0.7

0.10 3.7 12.0 2.8 9.1 2.3 7.1 0.1 0.5

0.15 3.8 9.6 2.8 7.8 2.2 5.9 0.1 0.4

0.20 3.6 8.2 2.8 6.5 2.2 5.3 0.1 0.3

0.25 3.7 7.6 2.9 5.8 2.3 4.5 0.1 0.3

0.30 3.7 6.5 2.8 5.1 2.3 4.1 0.1 0.2

0.50 3.7 5.2 2.9 4.1 2.2 3.1 0.1 0.2

0.70 3.6 4.4 2.8 3.5 2.3 2.8 0.1 0.1

0.99 3.8 3.8 2.9 2.9 2.1 2.1 0.1 0.1

rho=0.95 rho=1

overlap
rho=0 rho=0.5

overlap
rho=0.8 rho=0.9

rho=0.7rho=0.6
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Table 12 – Coefficients of variation calculated on 1000 sample estimates for the 

total estimation of     ,  using calibration. Simulation 2: ε ~ N(0, 0.25) 

 

 

Table 13 – Coefficients of variation calculated on 1000 sample estimates for the 

total estimation of   , using calibration. Simulation 2: ε ~ N(0, 0.25) 

 

Gall.cal Golp.cal Gall.cal Golp.cal Gall.cal Golp.cal Gall.cal Golp.cal

0.05 5.4 23.9 4.6 20.2 4.3 19.2 4.2 18.0

0.10 5.3 16.5 4.6 14.8 4.5 14.0 4.1 13.4

0.15 5.1 13.8 4.6 12.3 4.3 11.3 4.1 11.2

0.20 5.1 11.5 4.6 10.5 4.4 10.1 4.1 9.8

0.25 5.3 10.5 4.5 9.4 4.4 8.8 4.3 8.5

0.30 5.3 9.8 4.7 8.8 4.5 8.3 4.3 7.8

0.50 5.5 7.5 4.7 6.9 4.4 6.2 4.1 6.0

0.70 5.3 6.5 4.6 5.4 4.3 5.2 4.2 5.1

0.99 5.4 5.5 4.7 4.8 4.5 4.5 4.1 4.2

Gall.cal Golp.cal Gall.cal Golp.cal Gall.cal Golp.cal Gall.cal Golp.cal

0.05 3.6 17.1 3.2 15.0 2.6 12.5 2.0 9.1

0.10 3.7 12.3 3.2 10.3 2.6 8.5 2.1 6.6

0.15 3.8 9.7 3.2 8.4 2.7 6.6 2.0 5.2

0.20 3.8 8.7 3.1 7.1 2.7 6.0 2.0 4.6

0.25 3.8 7.3 3.3 6.5 2.5 5.1 2.0 4.2

0.30 3.7 6.9 3.1 5.9 2.7 4.8 2.0 3.8

0.50 3.7 5.2 3.2 4.6 2.5 3.6 2.0 2.9

0.70 3.6 4.4 3.2 3.8 2.7 3.2 2.0 2.4

0.99 3.7 3.7 3.3 3.3 2.5 2.5 1.9 2.0

overlap
rho=0.8 rho=0.9 rho=0.95 rho=1

overlap
rho=0 rho=0.5 rho=0.6 rho=0.7

Gall.cal Golp.cal Gall.cal Golp.cal Gall.cal Golp.cal Gall.cal Golp.cal

0.05 5.8 25.1 5.0 20.9 4.7 20.7 4.2 18.4

0.10 5.6 17.9 5.1 15.7 4.6 15.0 4.4 13.6

0.15 5.6 14.3 4.9 12.6 4.6 12.2 4.4 11.4

0.20 5.5 12.3 4.9 11.2 4.4 10.8 4.3 9.9

0.25 5.7 11.2 4.8 10.0 4.6 9.4 4.4 8.8

0.30 5.5 10.3 4.8 9.1 4.7 8.6 4.4 8.0

0.50 5.6 8.1 5.0 7.2 4.7 6.6 4.4 6.3

0.70 5.9 6.9 4.9 5.8 4.6 5.4 4.4 5.4

0.99 5.9 5.9 5.0 5.0 4.7 4.7 4.3 4.4

Gall.cal Golp.cal Gall.cal Golp.cal Gall.cal Golp.cal Gall.cal Golp.cal

0.05 3.8 16.8 3.2 14.1 2.2 10.7 0.0 0.0

0.10 3.8 12.7 3.2 9.8 2.3 7.1 0.0 0.0

0.15 3.8 10.1 3.2 8.1 2.3 5.8 0.0 0.0

0.20 3.8 8.9 3.3 7.0 2.2 5.0 0.0 0.0

0.25 4.0 7.4 3.1 6.4 2.2 4.5 0.0 0.0

0.30 3.8 7.1 3.1 5.8 2.2 4.2 0.0 0.0

0.50 3.7 5.4 3.2 4.4 2.2 3.1 0.0 0.0

0.70 3.7 4.4 3.2 3.8 2.1 2.6 0.0 0.0

0.99 3.7 3.7 3.2 3.2 2.1 2.1 0.0 0.0

overlap
rho=0.8 rho=0.9 rho=0.95 rho=1

overlap
rho=0 rho=0.5 rho=0.6 rho=0.7
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Table 14 – Coefficients of variation calculated on 1000 sample estimates for the 

total estimation of     ,  using calibration. Simulation 3: ε ~ N(0, 0.35) 

 

 

Table 15– Coefficients of variation calculated on 1000 sample estimates for the 

total estimation of   ,  using calibration. Simulation 3: ε ~ N(0, 0.35)

 
  

Gall.cal Golp.cal Gall.cal Golp.cal Gall.cal Golp.cal Gall.cal Golp.cal

0.05 5.5 24.0 4.5 19.6 4.2 19.6 4.2 19.5

0.10 5.2 17.3 4.4 14.5 4.5 14.3 4.4 13.7

0.15 5.3 13.9 4.8 11.9 4.4 11.5 4.3 10.6

0.20 5.2 12.1 4.7 10.7 4.6 10.3 4.1 9.7

0.25 5.2 10.7 4.6 9.6 4.3 9.3 4.2 8.8

0.30 5.2 9.6 4.7 8.6 4.5 8.5 4.2 7.8

0.50 5.0 7.4 4.7 6.7 4.5 6.4 4.1 6.0

0.70 5.1 6.2 4.8 5.6 4.5 5.3 4.4 5.2

0.99 5.1 5.2 4.7 4.7 4.5 4.5 4.5 4.5

Gall.cal Golp.cal Gall.cal Golp.cal Gall.cal Golp.cal Gall.cal Golp.cal

0.05 4.0 17.4 3.5 15.4 3.0 13.9 2.7 12.6

0.10 3.7 12.5 3.5 10.8 3.0 9.6 2.7 9.2

0.15 3.9 10.2 3.5 9.3 3.1 8.1 2.7 7.0

0.20 4.1 8.7 3.3 7.8 3.0 7.1 2.7 6.1

0.25 3.8 7.8 3.5 7.2 3.0 6.1 2.8 5.3

0.30 3.9 7.2 3.5 6.4 3.2 5.7 2.8 5.2

0.50 4.1 5.7 3.5 5.1 3.2 4.4 2.8 3.8

0.70 3.8 4.7 3.4 4.2 3.1 3.6 2.8 3.3

0.99 4.0 4.1 3.6 3.6 2.9 2.9 2.6 2.7

overlap
rho=0 rho=0.5 rho=0.6 rho=0.7

overlap
rho=0.8 rho=0.9 rho=0.95 rho=1

Gall.cal Golp.cal Gall.cal Golp.cal Gall.cal Golp.cal Gall.cal Golp.cal

0.05 5.8 26.7 5.2 22.2 4.9 21.8 4.6 20.7

0.10 6.0 19.2 5.2 15.9 5.0 15.7 4.6 14.9

0.15 5.9 15.6 5.2 13.4 5.0 12.4 4.6 12.0

0.20 6.1 13.8 5.4 12.0 5.0 11.1 4.6 10.5

0.25 5.9 12.3 5.3 10.7 5.0 10.2 4.6 9.6

0.30 5.9 10.8 5.2 9.7 5.0 8.9 4.9 8.7

0.50 6.0 8.4 5.1 7.4 5.0 7.0 4.5 6.3

0.70 6.0 7.1 5.2 6.3 4.7 5.6 4.7 5.6

0.99 6.0 6.0 5.2 5.2 5.0 5.1 4.8 4.8

Gall.cal Golp.cal Gall.cal Golp.cal Gall.cal Golp.cal Gall.cal Golp.cal

0.05 4.0 18.0 3.4 15.0 2.7 12.6 0.0 0.0

0.10 4.2 12.8 3.4 10.7 2.6 8.7 0.0 0.0

0.15 4.0 10.8 3.5 9.2 2.7 7.0 0.0 0.0

0.20 4.0 9.4 3.4 7.9 2.7 6.1 0.0 0.0

0.25 4.3 7.9 3.4 7.0 2.6 5.4 0.0 0.0

0.30 4.2 7.7 3.2 5.9 2.7 4.9 0.0 0.0

0.50 4.1 5.8 3.4 4.9 2.7 3.9 0.0 0.0

0.70 4.1 4.9 3.4 4.1 2.6 3.2 0.0 0.0

0.99 4.2 4.2 3.4 3.5 2.7 2.7 0.0 0.0

overlap
rho=0 rho=0.5 rho=0.6 rho=0.7

overlap
rho=0.8 rho=0.9 rho=0.95 rho=1
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