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Abstract

Electromagnetic (EM) astronomical observations have improved the understanding of many
astrophysical phenomena, e.g. X-ray binaries, gamma-ray bursts (GRBs) among others.
These EM signals are in general incoherent and some information is lost during the propa-
gation. In contrast, gravitational waves (GW) are mostly emitted by the coherent motion of
large amounts of matter and can give the additional missing information. However, GWs
are rather weak and their detection requires great technological efforts. Since it is expected
that the GW signal is smaller than the noise in the detector, the matched-filter technique is
usually used for claiming detection and for determining the parameters of the source. This
requires knowledge of the physical signal and of the noise, the latter is usually not per-
fectly known. Numerical-relativity (NR) can provide accurate templates for binary black
hole mergers and partially accurate template for binary neutron stars or binary white dwarfs,
but currently, simulations are computationally demanding. Semi-analytical approaches to
GW can provide solution to this issue. Besides, since they are constructed following basic
principles, they provide clear physical interpretations and consistency tests to observational
results. This thesis was devoted to the development and study of semi-analytical models of
GW radiation from different astrophysical sources.

From the basic physics of black holes (BHs), this work introduced the “helicoidal drift
sequence” (HDS), which describes the dynamics of an inspiraling test particle driven by
GW emission on the Kerr spacetime. It was found that the final plunge, after the passage
of the innermost stable circular orbit (ISCO), is nearly geodesic and emits less GWs than
the amount implied by other semi-analytical approaches e.g. Ori & Thorne (2000).

Next, the HDS augmented with the Newtonian center-of-mass point of view, was used here
to construct “test particle” waveforms in order to model binary black hole (BBH) mergers
with comparable mass components. Since this work uses a Kerr “background”, even in
the case of BBHs with spin-less components, the model effectively incorporates frame
dragging due to the orbital angular momentum of the system. Test particle waveforms, up
to the frequency of the ISCO, were found to be in excellent agreement with the ones of
NR simulations. The contribution of the orbital angular momentum of the system to frame
dragging was not taken into a account by previous semi-analytical models.

This work also studied consistency between EM and GW observations. The recent GW
event GW170817, consistent with a binary neutron star (BNS) merger, was associated with
the EM counterpart GRB170817-AT 2017gfo. From the GW data, an independent calcu-
lation of the localization of the source was made in this work. It was found that the latter
localization is consistent with the one inferred from the EM data. On the other hand, the
EM counterpart is not consistent when it is compared with the prototype of known GRBs.
An alternative scenario, namely the merger of a binary white dwarf, is introduced to explain
the EM emission.

The recent classification of GRBs and the inferred observed rates given by Ruffini et al.
(2018b), were used in this work to compute the detection rate of GWs from BNS, BH-NS
and NS-WD systems, by earth-based interferometers. Namely, the inferred detection rate
of GWs from BNSs, for design sensitivity (2022+) of LIGO-Virgo detectors is � 0:1 �
0:2 yr�1, consistent with lower limits of rates found in the literature.
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In addition, two overlooked astrophysical GW sources were studied: deformed, rotating
white dwarf-like objects, called in this work chirping ellipsoids (CELs), and extreme mass-
ratio inspirals (EMRIs) composed of a planet-like object and an intermediate-mass BH. It
was found that CELs are quasi-monochromactic GW sources and individually detectable
by planned space-based missions such as LISA, TianQin and Taiji. Equally important, this
work shows that the CEL waveform is practically indistinguishable from the one the afore-
mentioned EMRIs and from the one of non-interacting double white dwarfs (DWDs). In
view of this degeneracy, the rates of these sources were estimated and it was found that
all the systems have similar rates. The kind of EMRIs studied here do not accumulate
the sufficient signal-to-noise ratio to be individually detected by future space-based inter-
ferometers, but owing to the fact that they exhibit a rate comparable to DWDs, they are
plausible stochastic GW sources. As a consequence of the similarity of the rates of CELs
and DWDs, it is expected significant source confusion between them. On the other hand,
this work found that the detection degeneracy is not present along the whole lifetime of the
systems. Namely, their phase-time evolution become different from some frequency, which
in the case of EMRIs is given by the GW frequency when the less massive component is
tidally disrupted, and in the case of a DWD by the frequency when Roche-Lobe overflow
occurs. Hence, it is possible to break the detection degeneracy.

Finally, the question of the post-merger object of BNSs is addressed by means of the laws
of energy, angular momentum and baryonic mass conservation. When there is not prompt
formation of a BH, it was found that if the total mass of the binary is lower than some
discriminant mass, the post-merger compact star does not exhibit bound matter in the form
of a disk. This post-merger object can give rise to a new kind of GRB (not yet observed):
ultra-short gamma ray flash. If a joint GW and electromagnetic observation of this kind of
event takes place, the approach presented here can be used to set a more stringent lower
limit on the critical mass of non-rotating neutron stars.
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Notation

The universal gravitation constant is G y and c is the speed of light in vacuum.

Greek indices can be any of the numbers f0; 1; 2; 3g and latin indices any of f1; 2; 3g.
The partial derivative @�A� will be denoted by A�;� and the covariant derivative r�A� by
A�I�.

The flat spacetime metric is denoted by ��� D diag.�1; 1; 1; 1/.
The spacetime signture of the spacetime g�� is .�;C;C;C/.
The Christoffel symbols are:
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Chapter 1

Introduction

1.1 Historical Context of Electromagnetic and Gravitational Wave
Astronomy

The field of astrophysics has a vast development thanks to radio, microwave, infrared, op-
tical, X-ray and  -ray astronomy. When the universe is seen in wavelengths different to
visible light, new phenomena appear which are “invisible to the eye”. From the birth of
radio astronomy with the discovery of radio waves from the Milky way by Jansky (1933),
to the discovery of pulsars by Hewish et al. (1968), new processes, confirmations and ques-
tions were brought to the field of astrophysics and gravitation. The discovery of the binary
pulsar PSR 1913+16 (Hulse & Taylor, 1975) and in special its long time observation (see
e.g. Weisberg & Taylor, 2005) constituted the first experimental evidence of the existence of
gravitational waves (GWs). On the other hand, the discovery of cosmic microwave back-
ground radiation (Penzias & Wilson, 1965) pushed forward the development of physical
cosmology. Cosmic X-ray sources (Giacconi et al., 1962; Byram et al., 1966) provided the
first hints on the existence of black holes (BHs). Cygnus-X1 is widely recognized as the
first discovered BH. In addition,  -ray bursts (GRBs) introduced the question on the origin
of one of the most luminous events in the sky (Klebesadel et al., 1973) (see also (Ruffini
et al., 2018a) for a historical review).

Subsequent electromagnetic observations gave important information on the progenitors
of GRBs. First, with the observations carried by the detector BATSE, it was introduced
the classification of GRBs according to their prompt emission duration: short GRBs with
T90 < 2 s and long GRBs with T90 > 2 s, where T90 is the time when 90% of the GRBs
counts occur in the detector (Kouveliotou et al., 1993). This implies at least two differ-
ent progenitors, however, further observations hinted towards the existence of more than
two possible progenitors (see chapter 6). GRBs are followed by an afterglow in the X-
ray, optical, microwave and radio band. When this afterglow is observed, it is possible to
determine the corresponding host galaxy and its redshift, which can give crucial informa-
tion on the environment where the GRB was produced. In addition, a supernova (SN) is
observed, when it is instrumentally possible, temporally and spatially coincident with the
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long GRB1. Some inner engines models, are the collapsar model (MacFadyen & Woosley,
1999; Woosley & MacFadyen, 1999) or the magnetar model (Usov, 1992, 1994), in which
the engine is a single object, and the induced gravitational collapse paradigm (IGC) (Rueda
& Ruffini, 2012; Fryer et al., 2014; Becerra et al., 2015), in which the engine is a binary
system. Regarding short GRBs, there is strong observational and theoretical evidence that
are originated in NS-NS or NS-BH mergers (see e.g. Eichler et al., 1989a; Paczynski, 1991;
Mészáros & Rees, 1997; Rosswog et al., 2003a; Lee et al., 2004a; Berger, 2014). A long
path followed in the understanding of GRBs progenitors. For example, from the theoretical
analysis of electromagnetic observations, the recent classification of GRBs into 9 subfami-
lies of progenitors, all of them binary systems, was presented in (Ruffini et al., 2016b). This
gives only a small picture (many important observational and theoretical advances were not
mentioned) of the great progress made in astrophysics. This new era of broadband electro-
magnetic (EM) astronomy brought a revolution in physics, possibly comparable with the
birth of modern optical astronomy, when Galilei (1610) observed for the first time the three
moons of Jupiter.

On the other hand, electromagnetic emission from astrophysical sources is in general in-
coherent and is easily absorbed and re-emitted during its path from the source to the ob-
server. In contrast, GWs which were theoretically predicted nearly 100 years ago by Ein-
stein (1916, 1918), provide information on the coherent motion of the source and prop-
agate nearly unperturbed to the observer (see e.g. Maggiore, 2008). Join electromagnetic
and gravitational observations could give additional information about astrophysical events.
Moreover, models of electromagnetic emission can be constrained with GW data, and vice
versa. Gravitational wave astronomy could bring a new astrophysical revolution. However,
GWs are very dim and hard to be directly detected. These are the “two sides” of GW as-
tronomy: it can give important information that EM astronomy can not, but it requires great
technological efforts2.

The first device to directly detect GWs was proposed by Weber (1960), which is a resonant
bar with narrow sensitivity bandwidth. Weber latter claimed its experimental discovery
(Weber, 1969), but was later discarded given its no reproducibility with other similar de-
tectors (see e.g. Amaldi & Pizzella, 1979). On the other hand, theoretical consequences
of Weber’s discovery showed inconsistency with known results. For example, assuming
isotropic radiation, this discovery implied a very short lifetime of the universe. The search
of a plausible source for this radiation (with not such a high emission) lead to the proposal
in ref. (Misner, 1972) of beamed radiation coming from a BH at the center of the galaxy.
Nevertheless, GWs from a star orbiting a supermassive BH do not exhibit beamed radiation
(Davis et al., 1971, 1972b; Detweiler, 1978; Detweiler & Szedenits, 1979), ruling out this
explanation. The search of plausible sources and theoretical consistency aided in clarifying
(discarding) this claim. Despite Weber’s discovery was neither consistent with other obser-
vational data, nor with its theoretical implications, this incident motivated the astrophysical

1For example, the first coincident GRB with a SN was GRB 980425/SN 1998bw (Galama et al., 1999), see
also (Woosley & Bloom, 2006; Della Valle, 2011; Cano et al., 2017) for a review on coincident observations
of GRB-SN.

2Even the theoretical existence of GWs was not taken as certain due to the symmetry of the theory under
gauge transformations (see sec. 2.1.1). The hard task to properly define the energy transported by GWs
induced doubtful thoughts in the scientific community (Eddington, 1922). Feynman (see e.g. foreword of
Feynman (1995)) and Bondi (1960) solved this issue with the “sticky bead” thought experiment. Doubts even
raised by Einstein & Rosen (1937) were finally cleared up in ref. (Weber & Wheeler, 1957).
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community to put effort in identifying plausible sources of GWs for the construction of
future detectors (see e.g. Thorne, 1980a, for a review).

Fortunately, GWs were later “vindicated”, with the aid of EM data, when the binary pulsar
PSR1913 + 16 was discovered in 1974 and its time evolution was observed. The emission
of GWs from a binary system, such as PSR1913 + 16, will inevitably induce energy and
angular momentum losses, and therefore the orbital period will change with time (Landau
& Lifshitz, 1951; Peters & Mathews, 1963). This orbital decay has been observed for a long
time and coincides almost perfectly with General Relativity prediction (see e.g. Taylor &
Weisberg, 1982; Weisberg & Taylor, 2005). Although this provides an indirect measure of
GWs, it is a direct consequence of the non-instantaneous propagation of the gravitational
interaction (see e.g. Damour, 2015, for a discussion on this matter).

1.2 Current Gravitational Wave Astronomy

A new era came with the propose of interferometers to detect GWs (Gertsenshteı̌n & Pus-
tovoı̌t, 1963; Weiss, 1972; Drever, 1977; Forward, 1978). This new class of detectors are
operated by large scientific collaborations, e.g. the LIGO (Barish & Weiss, 1999) or Virgo
collaborations (Accadia et al., 2012). Currently, (earth-based) interferometers are almost
two-three orders of magnitude more sensitive than resonant bars, and have wider band-
widths (10 Hz– kHz). Forthcoming space-based detectors such LISA (Amaro-Seoane et al.,
2017) or TianQin (Luo et al., 2016) will provide information on low-frequency sources.
Despite the great sensitivity of these new detectors, the gravitational wave signal may deep
inside the noise. In principle, this is not an obstacle to detect the signal. That the noise
is greater than the signal is a common problem physics, like in radio-signal processing.
The solution consists in filtering the data properly, which requires some knowledge of the
physical signal and on the noise. In fact the optimal-filter, i.e. the one which gives the
higher signal-to-noise ratio is the signal itself (Wiener, 1949) (see chapter 5). Hence, cur-
rently within the matched-filter technique3, accurate GW templates and a complete bank
are needed to claim detection.

The Einstein’s field equations are second order, non-linear partial differential equations,
few exact radiative solutions are known and they do not correspond to any physically real
system (see e.g. Einstein & Rosen, 1937; Bondi et al., 1959; also secs. 35.9-35.12 of
Misner et al., 2017 and sec. 109 of Landau & Lifshitz, 1975). The solution of Einstein’s
field equations constituted a new field called Numerical-Relativity (NR), as far as the author
knows, it began with the work of Smarr (1975) and has continued its important development
until now. For the sake of concreteness, one source of GWs is a binary system composed
of two black holes (BBH). The evolution of the last orbits, together with the merger and
ringdown of a BBH was not achieved until the work of Pretorius (2005). Currently, these
simulations are computational expensive (Lehner & Pretorius, 2014; Shibata, 2016) and
are not suitable for constructing complete template banks. However, they can be used to
construct phenomenological templates (Ajith et al., 2007, 2011; Husa et al., 2016) and
constitute the “point of reference” for approximate methods. Faster semi-analytic models

3LIGO-Virgo Collaboration also uses pipelines which do not rely on templates to claim detection (Klimenko
et al., 2008).
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are needed to construct a complete bank. Binary post-Newtonian waveforms (Blanchet,
2006) provide a solution to this issue, moreover they can be used to describe binaries with
other components such as a binary neutron stars (BNS) or a neutron star-black hole binary
(NS-BH), but are limited to the weak-field, low-velocity regime. Therefore, these templates
are suitable for describing the inspiral regime of LISA-TianQin-Taiji binaries (large total
mass, less compact binary components e.g. binary white dwarf, or very early inspiral),
or of LIGO/Virgo binaries (low total mass � 3 Mˇ). The effective one-body formalism
(see e.g. Buonanno & Damour, 1999, 2000; Damour & Nagar, 2009) combines the Post-
Newtonian approach with strong-field effects of perturbation theory, and is later calibrated
with NR. In this thesis, an alternative approach for BBHs will be presented, putting special
attention on the underlying physical principles (see below).

In addition, NR simulations of a BNS, NS-BH, binary white dwarf (WD) or WD-NS bi-
nary have been performed over the years (see e.g. Shibata & Taniguchi, 2011; Faber &
Rasio, 2012; Lorén-Aguilar et al., 2009; Paschalidis et al., 2011), and semi-analytic ap-
proximations have been also introduced (Damour & Nagar, 2010; Bernuzzi et al., 2015b).
Core collapse, another source of GWs has been simulated (see Fryer & New, 2011, for a
review), but it is a challenge to current computers to include all the physical processes in-
volved in the event (Sathyaprakash & Schutz, 2009, see also for a review on other sources
of GWs). Quoting Richard P. Feynman: “But the real glory of science is that we can find
a way of thinking such that the law is evident”, these semi-analytical methods might not
only provide a solution to the computational costs of NR but also give physical insight on
the physical processes. It is very important to focus on the physics behind approximate
methods.

Recently, on September 14, 2015 a GW event consistent with the merger of a BBH was
reported by the LIGO-Virgo Collaboration (Abbott et al., 2016a). Great enthusiasm was
held in the scientific community for the first direct detection of GWs. This event was
followed by other 10 events, 9 consistent with the merger of a BBH (Abbott et al., 2016c,
2017b,c,d, 2018b). This can open a new window to study astrophysical black holes. For
example, a new family of BH masses was found and poses questions on the formation
channels. More exactly, the inferred effective spin parameter of the BBH, for the majority
of the events4, is rather small and consistent with zero, whereas from binary evolution of
main-sequence stars, BHs are expected to be rapidly rotating. This points to Wolf-Rayet
stars as the possible progenitors of low spin BBH (Hotokezaka & Piran, 2017b), but other
issues remain (see Hotokezaka & Piran, 2017a, for a detailed discussion). The other event
GW170817, which is not consistent with a BBH merger, but with the merger of a BNS, was
announced by the LIGO/Virgo Collaboration (Abbott et al., 2017a). An EM counterpart,
the GRB 170817A (see e.g. Abbott & et al., 2017; Goldstein et al., 2017; Verrecchia et al.,
2017) and the optical transient AT 2017gfo (see e.g. Abbott et al., 2017e; Arcavi et al.,
2017; Haggard et al., 2017; Smartt et al., 2017; Troja et al., 2017) was associated with
this GW event. It is important to mention that the first GCN reported in the timeline of
events related to GRB 170817 or GW 170817, was given by the Fermi-GBM telescope,
GCN524666471 (Fermi GBM, 2017). A discussion on the consistency of GRB 170817
with other known GRBs will be presented in chapter 5.

4The 90% credible interval does not include zero for only GW151226 and GW17028 (Abbott et al., 2018b).
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1.3 Outline of the Thesis

Semi-analytical approaches to GW emission are more than mere academic exercises. They
are important, as already stated, in view of their cheap computational costs. Besides, since
they are constructed following basic principles, they can provide clear physical interpreta-
tions and consistency tests to observational results. Currently, semi-analytical methods to
GW radiation (GWR) do not fully incorporate, in the opinion of the author, crucial aspects,
such as frame dragging due to the orbital angular momentum of a BBH. On the other hand,
analytical models of detectable but overlooked sources, have not been yet fully developed.
Moreover, the aftermath of the merger of a binary neutron star is not currently known both
theoretically and observationally. Therefore, it is needed to reexamine current models, and
to construct new ones. This thesis was devoted to develop and study models of GWR from
different astrophysical sources. Consistency of the GRB emission model of ref. (Ruffini
et al., 2016b) with GWs detection is also addressed.

Chapter 2 reviews the basic principles of GWs from Einstein’s theory of General Relativity.
Chapter 3 introduces a physical framework, based on BH physics, for computing the GWR
of a test particle inspiraling into a Schwarzschild or a Kerr BH. First, it reviews the general
aspects of a test particle plunging into a BH and compares it with the case of circular orbits.
After computing the GW fluxes to infinite, the dynamical evolution of the inspiraling test
particle (GW driven) is addressed. Qualitatively speaking, the test particle evolves adiabat-
ically in quasi-circular orbits up to zone near inner-most stable circular orbit (ISCO). This
work emphasizes the nearly geodesic transition to the plunge into the BH. The form of the
effective potential implies that the transition phase must be nearly conservative, i.e. appre-
ciable GWR is not expected after the passage of the ISCO (see sec. 3.2 for more details).
This fact was also stated qualitatively on (Ori & Thorne, 2000), and was quantitatively im-
plemented via a Taylor expansion around the ISCO. However, it was extrapolated beyond
its region of validity. An alternative implementation of the nearly geodesic hypothesis is
performed here via the Hamiltonian formalism of a test particle on the Kerr spacetime,
without any series expansion (Rodríguez et al., 2018; Rodriguez et al., 2018). The plunge
of different theoretical treatments, (Ori & Thorne, 2000) or NR (SXS Catalog, 2018), is
compared with the approach presented here. The amount of radiated energy in the transi-
tion to the plunge was computed and was found to be less than the one given by the other
approaches. This higher amount of radiated energy is not physically justified from the point
of view taken here. More exactly, it was found that this discrepancy in the GWR induces
different estimations of the final mass of the BH.

In chapter 4 is presented an extrapolation of the previous work to the case of BBH with
comparable-mass components. As a working hypothesis, the mass of the test particle is
replaced by the reduced mass of the BBH, and the mass of the BH by the total mass, i.e.
the Newtonian center-of-mass point of view. The dynamics up to the ISCO, and its cor-
responding waveform were computed on a Kerr “background” augmented with the latter
assumption. In order to compare and contrast the waveforms in a gauge-invariant man-
ner, the intrinsic time-domain phase evolution, Q! , was calculated for both waveforms.
The fitting-factor was also computed (Apostolatos, 1995). BBH simulations from SXS
Catalog (2018) with equal masses and equal aligned spins, and with different mass ratios,
q D m1=m2 ¤ 1, but spinless, were compared and contrasted with “test-particle wave-
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forms”. It was found a remarkable, and at first unexpected agreement between the current
approach and NR simulations, up to the ISCO frequency. It is more important perhaps that
the Schwarzschild background augmented with Newtonian center-of-mass hypothesis does
not “reproduce” the NR waveform. In contrast, it was found that each of the studied NR
waveforms, can be reproduced by computing the augmented5 “test particle” waveform on a
Kerr background with the proper spin parameter, called the “effective” spin parameter aeff.
It was found that aeff ¤ 0, even in the case of spinless merging components. This clearly
shows the contribution of the orbital angular momentum to the BBH dynamics. This effect
was not previously taken into account by other semi-analytical models (Rodríguez et al.,
2018).

Chapter 5 first reviews some general aspects of the matched-filter technique used in GW
data analysis. Afterwards, it makes a phenomenological test-particle analysis of GW150914
that provides physical insight of the merger. The BBH derived parameters (Rodriguez et al.,
2016), are in agreement with the values given by LIGO/Virgo Collaboration. As stated be-
fore, GW170817 provides an excellent scenario to test consistency of EM emission models
and GWs. First, and independent calculation of the position from GW data is presented
here. The position was found to be consistent with the one given by the EM counterpart
(Haggard et al., 2017, e.g). However, GRB 170817A is not consistent with previously
known GRBs. More exactly, its light curve is not consistent when it is compared with the
prototype of known GRBs (Rueda et al., 2018b). This issue was also mentioned on (Abbott
& et al., 2017) and some possible scenarios were proposed to explain it. An alternative
scenario proposed by Rueda et al. (2018b), namely a WD-WD merger, will be presented
in this chapter. This kind of merger produces a kilonova emission, like the one in a BNS
merger but its GW signal is not detectable by current earth-based detectors.

Chapter 6 presents the inferred GW detection rates according to the GRB classification
introduced in (Ruffini et al., 2016b). The latter classification states that all GRB subfami-
lies have a binary progenitor, composed by different combinations of carbon-oxygen cores
(COcore), NSs, BHs and WDs. The traditional model of long bursts assumes a single BH
and consequently it is not expected to emit GWs (as a binary system). In contrast, here
long bursts are assumed to be originated in binary systems and have been sub-classified
as X-ray flashes (XRFs), binary-driven hypernovae (BdHNe), and BH-supernovae (BH-
SNe). Short bursts, are assumed to be originated in NS-NS mergers, and are sub-classified
as short gamma-ray flashes (S-GRFs) and short GRBs (S-GRBs), the latter when a BH is
formed. Two additional families are also present: ultra-short GRBs (U-GRBs) and gamma-
ray flashes (GRFs), originated in NS-BH and NS-WD mergers, respectively. The estimated
occurrence GRB rate from observations and their corresponding GW emission is presented
here in order to assess their detectability by Advanced LIGO, Advanced Virgo, eLISA,
and resonant bars (Ruffini et al., 2018b). The derived detection rate of BNS, for design
sensitivity (2022+) is � 0:1 � 0:2 yr�1, consistent with lower limits of rates found in the
literature.

Chapter 7 studies a semi-analytical model of GWR from deformed stars whose matter is
described by a polytropic EOS, namely compressible Riemann S-type ellipsoids Lai et al.
(1993). Here, it was found that the star has an early chirping-like behaviour, hereafter this
object will be called a chirping ellipsoid (CEL). The potential detection of these type of

5In the sense of the Newtonian center-of-mass.
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sources by future space-based GW observatories such as LISA, TianQin, Taiji, can reveal
previously undetected astrophysical processes in system of compact objects (eg. white
dwarf binary mergers). This work found that CELs are quasi-monochromatic sources and
can be detected during one year of observation. Moreover, it was found that the GW phase
and amplitude evolution of CELs (mass � 1 Mˇ, radius � 103 km, polytropic equation
of state with index n � 3) is almost indistinguishable from some binary systems: extreme
mass-ratio inspirals (EMRIs) composed of an intermediate-mass (e.g. 103 Mˇ) black hole
and a planet-like (e.g. 10�4Mˇ) companion, and double-detached white dwarfs Rodriguez
et al. (2018). The kind of EMRIs studied here can not be individually resolved during one
year of observation, breaking the degeneracy between CELs and EMRIs. From reasonable
astrophysical assumptions, the rate in the local Universe of CELs, EMRIs in the mass range
considered here, and DWDs are very similar. Therefore, i) EMRIs are plausible stochastic
GW sources, ii) it is expected significant source confusion between CEL-DWD. However,
the chirp epoch of each of the aforementioned systems, ends at a different frequency, and
in general it is satisfied that f end

EMRI < f end
DWD < f end

CEL, in other words, for f > f end
DWD the

only possible source of these kind of quasi-monochromatic GWs is a CEL. Hence, a partial
solution to the degeneracy CEL-DWD was found here. The frequency at the end of the
chirp is given by the value when the less-massive component is tidally disrupted, for the
case of an EMRI, and by the frequency at the onset of Roche-lobe overflow, for the case of
a DWD. It is one of the aims of this work to call attention on these type of sources in order
to break completely the detection degeneracy.

Finally, chapter 8 introduces a scheme to assess some properties of the remnant of BNS
mergers. This work is focused on BNS mergers whose remnant is a stable supramassive NS
supported by uniform rotation. The (quasi) universal relations of baryonic and gravitational
mass for rotating NSs, derived on (Cipolletta et al., 2015), together with the conservation of
baryonic mass and specific angular momentum were used to assess the mass of the remnant
NS, assumed to be in the mass-shedding sequence. In order to form a disk is necessary that
the maximum specific angular momentum at the moment of the merger, lmax

mrg , be larger
than the one of the ISCO around the newly born NS, lc;ISCO. This latter was obtained
from EOS-independent formula for the angular momentum of a test particle at the ISCO
of a uniformly rotating NS (Cipolletta et al., 2017). When the ISCO is “outside” the star,
it is possible to form a detached disk. In the opposite case, there can be stable orbits up
to surface of the star, thus the remnant configuration will be unstable and more similar to
a hypermassive NS (differentially rotating supported NS), which is outside the scope of
this work. The equations obtained by applying the above conservation laws to the BNS
merger, were solved here and it was found that the necessary condition for the formation
of a detached disk implies a discriminant total mass for the BNS, above which it is not
possible to form a disk. BNS mergers above this latter mass would lead to a new class of S-
GRF, an ultrashort GRF (U-GRF). In addition to the gamma-ray prompt emission, U-GRFs
should have an associated kilonova with only dynamical component from matter expelled
by tides, but not with disk-wind component from post-merger accretion outflows. The
discriminant BNS mass for selected EOS will be presented in this chapter, and supposing
the (future) observation of an U-SGF, a new method for constraining the NS EOS will be
also presented. The GW emission of this remnant will be estimated with the semi-analytical
method of chapter 7, together with its detectability by current GW interferometers.
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Chapter 2

Fundamentals of Gravitational
Waves

This chapter shows the classical results and discusses the basic ideas of the propagation and
generation of GWs. The physical consequences of the passing of GWs will be reviewed.
The quadrupole formula for binary systems and rotating stars will be presented.

2.1 General Relativity and Gravitational Waves

The theory of General Relativity (Einstein, 1915) constitutes one of the most elegant theo-
ries in physics. It is the standard theory describing the gravitational interaction. This theory
reconciles the idea of non-instantaneous interaction with the gravitational force. Therefore,
it is not surprising (but not trivial), that “waves of gravity” propagating with finite speed
appear within this theory. Nevertheless, due to the non-linear nature of the Einstein field
equations (EFE), the generation of gravitational waves is rather complicated. In the weak-
field limit, the EFE are linear and it turns out that in a special gauge, they correspond to a
wave equation. The existence of GWs can be also be elucidated in the asymptotic behaviour
at null infinity. The pioneer work of Bondi et al. (1962, sec. 2) states that hyperbolic equa-
tions, such EFE, allow solutions that suddenly change (“time bomb”) and these solutions
are propagated along null-congruences. The EFE are given by

R�� � 1
2
g��R D 8�G

c4
T�� : (2.1)

In the weak-field limit the spacetime metric g�� is nearly flat, more exactly, it is supposed
that there exist a coordinate system where the metric has the simple form:

g�� D ��� C h�� ; (2.2)

where jh�� j � 1. This kind of coordinate system or reference frame is called nearly
Lorentz reference frame (NLF) (Thorne, 1989). It is physically possible to construct such
a reference frame provided that gravitational fields are weak in the universe, except in the
vicinity of black holes and neutron stars, or at the beginning of the universe. When this
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last expression is substituted in the EFE, and expanded to linear order in h�� , the following
equation is obtained (see appendix A for details1):

xh ;�
��;�

C ��� xh ;˛ˇ

˛ˇ
� 2xh ;�

�.�;�/
D �16�G

c4
T�� ; (2.3)

where xh�� D h�� ����h=2 and h � h �
� . The weak-field approximation can be regarded

as a classical field theory of h�� on a flat background. To linear order in h�� , the indices
are raised and lowered with the flat metric ��� . The source can be self-gravitating but the
gravitational field inside must be weak (see e.g. (Landau & Lifshitz, 1951) or the appendix
C for details ).

2.1.1 Gauge Transformations

The form of the metric (2.2) is invariant, i.e. g�� 7! ��� C h0�� with jh0�� j � 1, under the
coordinate transformation,

x0� D x� C ��.x/; (2.4)

where �� are functions of the original coordinates that satisfy ��;� � 1. These coor-
dinate transformations are called, gauge transformations. The metric perturbation xh�� is
transformed as follows:

xh�� 7! xh 0�� D xh�� � 2�.�;�/ C ����˛;˛ : (2.5)

The existence of these transformations can lead to the claim that GWs are entirely coordi-
nate generated. Nevertheless, this assumption is not correct and as it will be shown, there
are two degrees of freedom that cannot be “gauged away”. The situation is similar to the
case of electromagnetic waves, where there are transformations of the four-potential that
leave the electric and magnetic fields invariant. The electric and magnetic field analog in
gravitation is given by the Riemann tensor, which is invariant under (2.4). The �� functions
can be chosen to satisfy,

xh ;�
�� D 0: (2.6)

This gauge, called the Lorentz gauge, imposes 4 constrains on the components of the sym-
metric tensor xh�� , leaving 6 independent ones. The EFE in this gauge are given by,

2xh�� � xh ˛
��;˛ D �

16G�

c4
T�� : (2.7)

Moreover, the condition (2.6) implies T ��;� D 0, meaning that the energy and momentum
of the source must follow the conservation laws of flat spacetime. Therefore, the system
must be closed and the back-reaction of h�� on the motion of the source is neglected. In
vacuum, eq. (2.7) is a wave propagation equation and has harmonic plane wave solutions,

xh�� D RŒA�� exp.ik�x�/�;

where k� is a constant null four-vector, k�k
� D 0 and the polarization tensor satisfy

A��k
� D 0. The perturbation field can now be regarded as a wave propagating at the

speed of light.
1Some of the appendices in this book contain simple calculations or a long expressions necessary to arrive

at the results presented. Although they are not necessary to understand the underlying physics, the author
believes that they are important if any reader wants to reproduce the results. Some appendices only constitute
a reference for the author.
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Traceless-Transverse Gauge or Frame

A new gauge transformation can be done to reduce the degrees of freedom without compro-
mising the Lorentz gauge condition. It can be seen from the eq. (2.5) that if the functions
associated with the new gauge satisfy 2�� D 0, the transformed field is still in the Lorentz
gauge. Therefore, some components of xh�� can be set to zero provided that �� satisfies
the same equation. Note that this cannot be done inside the source where T�� ¤ 0. A
(global) four-velocity u˛ is chosen and as coordinate condition, xh��u� D 0 is imposed,
i.e. the perturbation field is transverse in the new coordinates. In a Lorentz frame where
u˛ D δ˛0 , the perturbation is purely spatial. These conditions constitute only 3 constraints,
as a consequence of the Lorentz gauge, thus in addition xh �

� D 0 is required. In this gauge,
which is called traceless-transverse (TT), xh�� D h�� . The TT gauge conditions can be
summarized as,

h0� D 0; h �
� D 0; h

;j
ij D 0; (2.8)

where the last equality is a consequence of the Lorentz gauge. There are 8 conditions on
the components of h�� , thus there are only 2 degrees of freedom. The components of the
perturbation field in this particular gauge are denoted by hTT

�� .

For a plane wave solution the TT conditions read A0� D 0; A
�
� D 0; A��k

� D 0, and if
the wave is propagating along the z axis, its components are given by,

hTT
ij D

0@AC A� 0

A� �AC 0

0 0 0

1A cosŒ!.t � z=c/�: (2.9)

Since the GW in the TT gauge is two dimensional, it can be expressed in terms of 2 basis
tensors,

h D hCeCh�e�; (2.10)

where eC; e� are called the “unit” linear polarizations tensors and are given by,

eC � ex ˝ ex � ey ˝ ey ; (2.11)

e� � ex ˝ ey C ey ˝ ex : (2.12)

Once in the Lorentz gauge, the TT components of a plane wave solution, propagating in
the On D k=jkj direction, can be obtained by using the projection operator Pij ,

Pij D δij � ninj ; (2.13)

hTT
ij D PilPjmhlm �

1

2
PijPlmhlm D ƒij;lmxhlm:

The fact that these are the true degrees of freedom of the GWs can be understood by split-
ting xh�� in gauge-invariant parts. The gauge transformations introduced some ambiguity
in the physical reality of the perturbation xh�� . In order to eliminated this ambiguity the
theory must involve only gauge-invariant quantities. The transverse part PilPjmhlm is in-
variant under (2.4), consequently hTT

ij and hT
ij D .1=2/.Plmhlm/Pij are invariant. There is

another gauge invariant quantity (Misner et al., 2017),

zh0k D xh0k � r�2
�xh �

0 ;�k
C xhkl;l0

�
: (2.14)
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However, it turns out that the linearized EFE imply that botheh0k and hT
ij vanish in empty

space. The Lorentz gauge condition, implies xh0k D 0 due to the previous result and,
xh00 D 0 given that the field is dynamical. In conclusion, hTT

ij is the only the gauge invariant
part and contains the true degrees of freedom of GWs.

The physical meaning of TT gauge can be understood by studying the geodesic equation.
If a set of test masses is at rest before the arriving of a GW, dxi=d� D 0, the law of motion
is given by,

d2xi

d�2
D �� i00

�
dx0

d�

�2
: (2.15)

In this frame h0� D 0, which implies that � i00 D 0. Therefore, the test masses will remain
at rest even though the GW is passing, i.e. the spatial coordinates are co-moving. However,
this does not mean that the GW do not affect the test particles. Indeed, the proper distance
between the test particles do change by the passing of the GW. If two test masses are on
a plane perpendicular to the propagation direction, the distance to linear order in the GW
amplitude is,

L0 D
Z q

1C hTT
ij n

injd� � L
�
1C 1

2
hTT
ij n

inj
�
; (2.16)

where L is the (initial) distance in flat spacetime, and ni is the unit vector between the
two masses, niki D 0. The fractional strain .L0 � L/=L D δL=L is proportional to the
amplitude. If the masses are on a plane parallel to the propagation, hTT

ij n
inj D 0 and there

will be no displacement. A simple example is the action of a linearly polarized (A� D 0)
plane wave propagating in the z direction, on a set of test masses on the xy plane. To
linear order in the amplitude, the spatial metric can be transformed to the “cartesian” form
ds2 D dX2 C dY 2, with the change of coordinates (Hartle, 2003),

X D
�
1C a

2
sin!t

�
x; Y D

�
1 � a

2
sin!t

�
y:

The distance from the origin to the test masses is given by the usual expression in cartesian
coordinates, i.e. X and Y are physical distances. Therefore, for a circle of test masses,
x2 C y2 D 1, the GW deforms the pattern into an ellipse,

X2

A2
C Y 2

B2
D 1

where A D 1 C .a=2/ sin!t and B D 1 � .a=2/ sin!t are the semi axes. The pattern
changes periodically with the GW. If the GW is polarized in the other direction, AC D 0,
the ellipse is rotated �=4.

It is very important to study the behaviour of the GW polarizations under rotations around
the propagation direction, and under Lorentz boosts. After rotating the matrix (2.9) an
angle  around the z axis, the new polarizations are,

h0C D hC cos 2 � h� sin 2 ; (2.17)

h0� D hC sin 2 C h� cos 2 ; (2.18)

This result can be written more compactly as n D hC � ih� 7! n0 D .hC � ih�/e�i2 .
In other words, the quantity hC � ih� has a spin-weight of �2 under rotations around
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the propagation direction (see appendix B). On the other hand, the GW polarizations are
invariant under Lorentz boosts, i.e. the degrees of freedom of GW are the same in any
nearly Lorentz frame (Thorne, 1989).

Proper Reference Frame

In the TT frame the gravitational field has the simple form already presented, but this
frame is not the usually used by the experimentalist in the laboratory. The usual frame used
is called the proper reference frame (PRF). In this frame all the laboratory apparatus is at
rest, and the spatial coordinate grid is not marked by free test masses, as in TT frame. At
the origin of the frame there is a set of cartesian axes and an ideal clock. As far as the
spacetime curvature allows, a cartesian grid is constructed to give the spatial coordinates
x
Oi , and synchronized clocks are placed within this grid to mark the time coordinate x O0.

The spacetime line element is given by,

ds2 D �.1C 2aOix
Oi CROi O0 Oj O0xix

Oj /.dx
O0/2 � 2."Oi Oj Okx

Oj�
Ok C 2R

0Oi Ojk
x
Ojx
Ok=3/dx

O0dx
Oi

C .δOi Oj CR Ol OkOi Ojx
Olx
Ok/dx

Oidx
Oj : (2.19)

If the laboratory is free-falling and not rotating, aOi D 0 and �Oi D 0, the frame is a local
inertial reference frame (LIF). For simplicity, the subsequent analysis will suppose that the
laboratory is a LIF whose origin is at a test mass A. The behaviour of another test mass B,
as seen from the test mass A, is governed by the geodesic deviation equation,

D2x
Oi
B

d�2
D �ROi O0 Oj O0x

Oj
B ; (2.20)

where xOiB are the spatial coordinates of B, which on the LIF correspond to the components
of the separation vector between the two geodesics. Because the analysis is done in a LIF,
D=d� can be replaced by d=d� . It was shown previously that the spatial coordinates of the
TT frame follows the motion of free test masses, therefore there is a TT frame that moves
with the particle A. Provided that the Riemann tensor is gauge-invariant, its expression in
the proper frame, evaluated at the origin is the same as in TT frame that moves with the
particle A. Hence, the equation of motion for the test mass B is,

d2x
Oi
B

dt2
D 1

2

@2hTT
ij

@t2
x
Oj
B ; (2.21)

where t is the time coordinate of the TT frame2. The right hand side of this last equation can
be interpreted as a force acting on the test mass B due to the GW. When the reference frame
is not free-falling and is rotating, eq. (2.21) is modified by adding the terms �aOi (minus
the local acceleration of gravity), �2"Oi Oj Ok� Ojdx

Ok=dt (coriolis acceleration). On the other
hand, in eq. (2.20) the Riemann tensor can have the contributions from inhomogeneities in
the gravitational field other than from GWs, e.g. Newtonian noises. Finally, it can be seen
that the PRF metric is an expansion in powers of xOi around flat spacetime, and in order to
this expansion be valid the condition jxOi j= ��� 1 must be satisfied.

2In the TT frame, d� D dtŒ1 � .δij C hTT
ij /.dx

i=dt/.dxj =dt/�1=2. For the test mass A, dxi=dt D 0,
therefore d� D dt .
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2.2 Gravitational Waves on Curved Spacetime

After the discussion of linear perturbations, it arises the question of whether this procedure
can be extended to higher orders. In order to answer this question, this section will review
the short-wave approximation (see e.g. Brill & Hartle, 1964; Maggiore, 2008; Misner et al.,
2017). The notion of GWs was clear in the previous section provided that the background
was flat and there was a distinction between background and perturbation. It was showed
that the EFE imply that the perturbation field in the Lorentz gauge satisfies a wave equation.
When the background is curved the notion of a perturbation becomes ambiguous.

The generation and propagation of GWs in the general case (curved background and higher
orders in h��) can be understood more easily when the space is divided into regions de-
termined by the reduced wavelength �� � �=2� , the background length scale R and the
distance to the source r (Thorne, 1980b), as shown in fig. 2.1. This procedure is similar
to the case of electromagnetic radiation (see e.g. Jackson, 1998). As usual, the near-zone,
�� > r , is the region where the retardation effects are negligible and the field can be assumed
as instantaneous. The GW generation zone comprises the inner zone of the sphere of radius
ri , whose value will be determined later. The wave-zone (radiation-zone) is characterized
by �� � r . This latter is divided in two zones, the first one is between the radius ri and
radius ro, called the local wave zone. In this zone the background (due to the source or due
to other masses) does not affect propagation of the GWs. Therefore, within this zone there
is not red shift, nor backscatter produced by the source, and the curvature due to nearby
masses is negligible r � R. This is equivalent to a GW propagating in a flat background
and the formalism of the previous section can be applied. Therefore, ri is given by the
greatest value of r for which one of the following phenomena occurs: (a) the field becomes
near-zone field, (b) there is redshift or (c) backscatter by the curvature of the source, (d)
the outer limit of the source is reached. The outer radius r > ro is determined by the
point where any of the following occurs: there is redshift and/or refraction produced by the
background (not due to the source) r � R, or the phase shift .GM=�c2/ ln.r=ri / is of the
order of ��3. This split of the space allows to separate the generation and propagation of
GWs.

The formalism to split the spacetime into background and perturbations was originally
introduced by Wheeler (1955). A priori, there is no standard criteria to separate the back-
ground and the perturbation. The short-wave formalism proposes to separate the spacetime
metric according to the frequency (or wavelength). The short-wavelength (high frequency)
component is considered to be the perturbation, whereas the background is considered to
posses a large scale length denoted by R, or a low frequency, f .B/. The order of magnitude
of the perturbation (amplitude) is denoted by A , and by ansatz is small. In other words,
h�� is a small ripple propagating in a large scale background g.B/�� ,

g�� D g.B/�� C h�� : (2.22)

First, the EFE are rewritten in the form,

R�� D 8�G

c4

�
T�� � 1

2
g��T

�
; (2.23)

3This phase shift turns out to be a coordinate effect of the harmonic coordinates (Blanchet, 2006).
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Strong Fields

Weak Fields

Local Wave Zone

Distant Wave Zone

Source

10M

�̄

ri

ro

GW generation

Nearly Lorentz Frame

Figure 2.1 Scheme (not to scale) of the important zones in the gravitational wave genera-
tion and propagation. The figure is based on the fig. 1 presented on (Thorne, 1977).

and expanded to second order in h�� (see appendix A for the corresponding expressions):

R.B/�� CR.1/�� .h/CR.2/�� .h/ D
8�G

c4

�
T�� � 1

2
g��T

�
CO.h3/: (2.24)

Now, this last equation is split according to the two length (time) scales �� and R. In order
to achieve this task, the auxiliary length scale Nl , which satisfies �� < Nl < R, is introduced.
None of the physical quantities varies with Nl . The operation hF i indicates the average of F
over a volume Nl3 and it is used to “smooth” quantities. The rapidly varying h�� is canceled
out by this average, hg�� i D g.B/�� . The part R.1/�� is linear in h�� so it varies with the scale
��, and its average is zero. On the other hand, since R.2/�� is quadratic, h�� can be combined
to give a large-scale quantity (Maggiore, 2008). The slowly varying part (length scale R)
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of eq. (2.24) is given by

R.B/�� C hR.2/�� .h/i D
8�G

c4

�
T�� � 1

2
g��T

�
: (2.25)

This last expression shows that the background curvature is due to the non-linear effect
of the perturbation and to the energy-momentum content of matter or other type of fields.
When these last are negligible, the curvature is due only to the perturbation and the scales
must satisfy ��=R � A . When the curvature is produced by matter or other fields, ��=R�
A must be satisfied. It is very important to note that once the analysis is promoted to
second order, it is inevitable that the background is curved. The linear approximation
neither exhibit self-interaction nor generation of background curvature. When the analysis
on a flat background is extended to second order, the EFE imply that A D 0. Therefore,
second order perturbation theory on a flat background has no physical sense. The long-scale
equation can be used to define the “energy-momentum” tensor of GWs.

T .GW/
�� D � c4

8�G

�
R.2/�� .h/ �

1

2
g.B/��R

.2/.h/

�
: (2.26)

The energy-momentum tensor of GWs can also be obtained from the Landau-Lifshitz pseu-
dotensor (Landau & Lifshitz, 1951) (see appendix C). Far away from the source, the back-
ground spacetime is expected to be nearly flat, i.e. there exist a NLF which covers this far
region. In the Lorentz gauge the energy-momentum tensor is reduced to,

T .GW/
�� D c4

32�G
h@�h˛ˇ@�h˛ˇ i; (2.27)

and it turns out to be gauge invariant, therefore it is convenient to use the most simple
frame, namely the TT. Hence the energy density of the GWs is given by,

�GW D T .GW/00 D c2

32�G
h PhTT
ij
PhTT
ij i D

c2

16�G
h Ph2C C Ph2�i; (2.28)

where the over dot indicates time differentiation @t (not @0 D c�1@t ), and the energy flux
S i is,

S i D T .GW/0i D c4

32�G
h@0hTT

mn@
ihTT
mni: (2.29)

For a GW propagating in the ni D xi=r direction4, the radial energy flux is Sr D niS i D
cT .GW/00. Thus, the GW luminosity, i.e. the total energy per unit time crossing the surface
of a sphere of radius r , is obtained by integrating (2.29).

LGW D
Z
dAniT

.GW/0i D c3r2

16�G

Z
d�h Ph2C C Ph2�i; (2.30)

where d� is the solid angle differential element. The spectrum of the GWs can be found
by applying Parseval’s theorem to the last expression,

dE

dfd�
D �c3

2G
f 2r2

�j QhC.f /j2 C j Qh�.f /j2�: (2.31)

4@0h
TT
mn D �ni@ihTT

mn D @rhTT
mn, to leading order in r
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The momentum flux can be obtained from …ij D T .GW/ij . Again, for a GW propagating
radially the k component of the momentum flux in the radial direction is ni…ij D T .GW/0j ,
and the total momentum per unit time carried away is,

dP i

dt
D c3r2

32�G

Z
d�h PhTT

mn@
i PhTT
mni; (2.32)

On the other hand, the short-scale or “wave” part of any quantity can be obtained by sub-
tracting the long-scale part, e.g. F short D F � hF i. Thus, the short-scale part of the EFE is
given by,

R.1/��.h/CR.2/�� .h/ � hR.2/�� .h/i D
8�G

c4

�
T�� � 1

2
g��T

�short

; (2.33)

which implies that h�� must receive corrections of second order in A . i.e to second order
in h�� , GWs not only generate background curvature but also GWs (self-interaction). The
next section will discuss this equation in vacuum.

2.2.1 Wave Propagation

This section will study eq. (2.33) in vacuum and will show that indeed it corresponds
to a wave propagation equation in curved spacetime. First, some formal results of the
propagation in the near zone will be presented. The local the wave-zone is characterized
by the absence of background effects, thus the propagation equation in the Lorentz gauge
is given by the wave equation,

2xh�� D 0: (2.34)

Recall that in the TT frame xh�� is purely spatial. “Fourier basis solutions” of the spatial
components of eq. (2.34) are given by (Thorne, 1980b),

 �!l
0lm

ij D
r
j!j
2�
e�i!th�l.!r=c/T l

0lm
ij .�; �/; ; (2.35)

where � D 1;�1 indicates ingoing or outgoing solutions respectively,

hCl D j l C iyl ; h�l D j l � iyl ; (2.36)

j l and yl are the spherical Bessel functions (Arfken & Webber, 2005), and T lmij are the ten-
sor spherical harmonics that will be discussed in appendix B. This basis solutions provide
a tensor Green’s function (Thorne, 1980b),

2xG
�.x; x0/ij �lm D �

1

2
.δilδjm C δimδjl/δ

4.x � x0/ (2.37)

G�.x; x0/ij �lm D i�
X
l 0lm

Z
d! sgn.!/ �!l

0lm
ij .x/Œˆ!l

0lm
ij .x0/�� if r > r 0; (2.38)

D i�
X
l 0lm

Z
d! sgn.!/ˆ!l

0lm
ij .x/Œ 

.��/!l 0lm
ij .x0/�� if r > r 0; (2.39)
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whereˆ!l
0lm

ij D . �!l 0lmij C .��/!l 0lmij /=2 are “standing wave” solutions. Tensor Green’s
function can be used to solve the wave equation with source as a expansion in tensor spher-
ical harmonics (see Thorne, 1980b, eqs. (5.7) and (5.8)). On the other hand, a more simple,
in the author’s opinion, general solution of (2.34) can be expressed in terms of purely spatial
symmetric trace free (STF) tensors,

xh�� D
1X
lD0

@L

�
1

r
H
��
L .u/

�
; (2.40)

where u D t � r=c, and the multi-index notation FL � Fi1i2i3:::il is used. The tensor
H
��
L is STF in the indices L. This solution will be discussed in more detail in appendix

B. As a result, (only) at linearized level, physical principles of light propagation which do
not involve polarization, such as Fermat’s principle, Huygens’ principle, interference or
scalar diffraction, also apply to the propagation of GWs. For example, when the analysis is
promoted to higher orders (or in the full non-linear analysis) GWs do not satisfy Huygens’
principle (see e.g Bondi et al., 1962).

Regarding the distant wave-zone, the propagation equation to linear order in h�� (linear
order in A ) is,

� 2R.1/�� D xh j˛

��j˛
C g.B/��

xh j˛ˇ

˛ˇ
� 2xh ˛

˛.�j �/ C 2R.B/˛�ˇ�
xh˛ˇ � 2R.B/˛�

xh ˛
� D 0; (2.41)

where xh�� � h���.1=2/g.B/�� h, and the subindex j indicates covariant differentiation with
respect to the background metric (see app. A). As in the flat background case, here there
are gauge transformations,

h0�� D h�� � 2�.�j�/; (2.42)

and it can be imposed a generalized Lorentz gauge, xh jˇ

˛ˇ
D 0. Equation (2.25) in vacuum

implies that R.B/�� � A 2= ��2, so the last term in (2.41) is � A 3= ��2 and it can be neglected
relative to the others. Finally, in the Lorentz gauge the propagation equation is,

xh ˛
��j˛ C 2R.B/˛�ˇ�

xh˛ˇ D 0; (2.43)

which is the generalization of eq. (2.34) to curved spacetime, and is independent of value
of ��=R. When the latter is� 1 (short wavelengths) the propagation equation corresponds
to a wave equation in curved spacetime, xh ˛

��j˛
D 0, and the concept of GW is clear. The

background curvature affects the propagation via the covariant derivatives and/or via the
explicit curvature coupling through the Riemann tensor.

The propagation of GWs can be studied within the approximation of geometrical optics
(see e.g. Landau & Lifshitz, 1951; Misner et al., 2017). Locally, the GWs are regarded as
plane waves, i.e, in a region j Nxi j � �� and in a time interval � � TGW, the wave vector
is nearly constant, k;i � 0, and the GW is nearly monochromatic fGW;0 D .T �1GW/;0 � 0;
the amplitude is also nearly constant H��;˛ � 0. The typical length over which these
last quantities vary is L � ��. Basically, the geometrical optics approximation is the limit
�! 0. The field xh�� is conveniently expressed as,

xh�� D R
�
H��e

i .x�/=�
� D R

�
.A�� C �B�� C �2C�� C : : : /ei .x�/=�

�
; (2.44)
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where  , called the eikonal, is a large quantity proportional to 1= ��, i.e. the eikonal is a
rapidly varying quantity whereas the amplitude is nearly constant and receives corrections
in powers of � / ��. In addition, the background curvature is R � �. The dummy
parameter � is introduced to make easier the analysis when the limit �� ! 0 is applied.
By substituting (2.44) in eq. (2.43) and grouping terms according to the order of � the
following expressions are obtained,

 ;� 
;� D k�k� D 0 (Leading order), (2.45)

2A��j˛k
˛ C A��k ˛

˛j D 0 (Next-to-leading order): (2.46)

Now, by taking the covariant derivate of (2.45) and from the fact that partial and covariant
differentiation commute for a scalar, e.g.  , the wave-vector satisfies the geodesic equation,

k�k�j� D 0: (2.47)

The rays of the GWs (curves parallel to k�) are geodesics of massless particles (gravitons).
The spatial wavefronts (space-like surfaces perpendicular to ki ) change their shape accord-
ing to the background curvature (refraction). The GW frequency, !GW D d =d� D k�u�
measured by a static observer with four-velocity u� D δ

�
0 u

0, also presents redshift due
to the background curvature. According to (2.46), the GW amplitude defined as A �
.A���A

��/1=2=2, satisfies the equation,

Aj�k� C
1

2
Ak �

�j
D 0; (2.48)

which is equivalent to .A2k�/j� D 0 and corresponds to the conservation of the number
of rays. The polarization tensor e�� � A��=A is parallel transported along the ray,

e��j˛k
˛ D 0: (2.49)

The Lorentz gauge condition implies that the polarization tensor is orthogonal to k�. In
summary, GW propagation effects due to the background include refraction (change in the
direction of the propagation) and redshift (change of wavelength). When the curvature
background is R � �� the waves are backscattered and a patron of tails appears, like the
ringing tail when a black hole is perturbed (see e.g. Press (1971) or chapter 3).

The geometrical optics approximation is not valid near caustics, i.e. the loci of the center
of curvatures of the wavefronts. In order to analyze the GW propagation near caustics, a
NLF is constructed in the near zone of the caustics so the formalism of flat spacetime can
be used, e.g. diffraction formalism. After the problem is solved in the zone around the
caustic, the solution is propagated with the geometrical optics formalism (Thorne, 1989).
The caustic region must be much smaller than the background curvature. A physical caustic
of GWs can occur in the near region of the focal point of a gravitational lens.

2.3 Weak-field and Low-velocity Approximation to Gravitational
Radiation

Having discussed the propagation of GWs, this section is dedicated to compute GWR
within the weak-field limit. In the classical theory of electromagnetism there is no radi-
ation from the electric monopole moment of the source. In GWR the monopole also does
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not contribute. In electromagnetism, the first contribution comes from the electric and the
magnetic dipole moment. However, the gravitational dipole mass moment contribution to
GWR is null because of the conservation of linear momentum. Consequently, the first con-
tribution is expected to come from the quadrupole moment. The fundamental equation to
solve is (2.7). The Green’s function G.x; x0/ of the scalar version of this equation, for
no-ingoing radiation at null infinity is given by (Jackson, 1998),

2xG.x; x
0/ D δ4.x � x0/; (2.50)

G.x; x0/ D �δŒc.t � tret/�

4�jx � x0j ; (2.51)

where tret is the “retarded time” tret D t � jx � x0j=c. Therefore, the solution of (2.7) is

xh�� D 4G

c4

Z
T��.tret; x0/
jx � x0j d3x0: (2.52)

All that remains is to solve this integral to a given precision. The system of reference is
chosen so that the spatial origin is inside the source. In the radiation zone, r � jx0jmax D
r 0, where r 0 is the largest dimension of the source, the leading term of jx � x0j�1 is 1=r ,
and the argument jx � x0j=c of T�� can be expanded in powers of r 0=r ,

jx � x0j D r
�
1 � x0 � On

r
CO

�
r 02

r2

��
; (2.53)

where On D x=r . It is important to note that the cut-off in the series depends on the time
behaviour of the source. For instance, whether the time delay x � On=c is negligible or not,
does not depend on its value relative to r=c, but on the time scale of the function T�� . The
radiation zone or wave zone is defined as the region where (i) r � r 0, (ii) r � c=! D ��
and (iii) r � !r 02 (Weinberg, 1972). Actually, these conditions are not approximations
since it is always possible to find the region where they are satisfied. Since the radiation
zone conditions are given in terms of the wavelength, it is convenient to expand the field
into its Fourier components,

hTT
ij D

4G

c4r
ƒij;lm

Z
d!

2�
QTlm.!; x0/e�i!.t�r=cCx0� On=c/d3x0: (2.54)

The retardation r=c is much larger that the period 2�!�1 and cannot be neglected in the
exponent; the terms of order r 02=r or higher, can be neglected by virtue of the last wave
zone condition. So far the only approximation that has been made is jh�� j � 1, namely
the field h�� is weak5.

On the other hand, most of the astrophysical sources have the property that their velocity is
much less than the speed of light. For a self-gravitating system the square of the velocity
is v2 � 2GM=r 0, where M is the total mass of the system. That is, the velocity is of order
of the speed of light when the typical length is of the order of the Schwarzschild radius
2GM=c2. From eq. (2.54), the frequency of the source is of the order of GW frequency,

5For self-gravitating systems, the weak-field approximation is equivalent to low-velocity approximation
(see below). When other forces are present, but the gravitational field is weak, this approximation is valid for
all velocities of the system.
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and the velocity is of the order of v � !r 0 D .c= ��/r 0. Consequently, if the velocity is
much less than the speed of light, r 0= �� � 1, and viceversa. This approximation is called
the low-velocity approximation and allows to expand the exponent inside the integral in
powers of .i!x0 � On=c/,

exp.�i!x0 � On=c/ � 1 � i!x0 � On
c

� !
2.x0 � On/2
2c2

C : : : (2.55)

Since the expansion was made in the frequency domain, it is equivalent to an expansion in
the time domain, around u D t � r=c,

Tij .tret; x0/ � Tij .u; x0/C x0 � On
c

@Tij

@t

ˇ̌̌̌
u

C .x0 � On/2
2c2

@2Tij

@t2

ˇ̌̌̌
u

C : : : (2.56)

The leading term of GWR in the weak-field and low-velocity approximation is given (in the
TT frame) by the term Tij .t

0; x0/ inside the integral of eq. (2.52). The local conservation of
energy-momentum allows to re-express this result in terms of the mass-moments as follows.
From T �� ; � D 0, it can be deduced that,

.T 00xixj /;00 D T lm;lm xixj ; (2.57)

and by integrating by parts,

1

c2
d2

dt2

Z
T 00xixjd

3x D 2
Z
Tijd

3x: (2.58)

For a non-relativistic source, the T 00 is given by the rest energy density, �c2, so the GWR
can be expressed in terms of the second mass moment of the source Iij ,

Iij D
Z
�.x/xixid

3x (2.59)

This last symmetric tensor can be split into a trace-free tensor plus a diagonal tensor con-
structed from its trace. When the second mass moment tensor is projected by means of
ƒij;lm the diagonal tensor is canceled out, thus the only part which contributes is the trace-
free part,

�I ij D
Z
�.xixj � 1

3
δij r

2/d3x; (2.60)

which is called the reduced quadrupole moment. Finally, the leading term of GWR is given
by,

hTT
ij .t � r=c; xi /

ˇ̌̌
quad
D 2G

c4r
ƒij;lm R�I lm.t � r=c/; (2.61)

and is called the Newtonian-quadrupole approximation (Einstein, 1918; Landau & Lifshitz,
1951).

2.3.1 Binary System

The low-velocity approximation has shown that in order to compute the GWR to leading
order (quadrupole) all that is needed is the quadrupole moment �I ij of the source. The
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Figure 2.2 Binary system which during the adiabatic inspiral phase can be regarded as
composed of two point-like masses. The coordinate system is chosen so that the
binary plane lies on the xy plane. The distance between the masses is denoted by a.
The total orbital angular momentum is L is in the z directions and makes an angle �
with respect the line of sight.

first astrophysical source of interest is a self-gravitating system composed of two bodies.
In reality the system can be composed of stars or black holes (or even exoplanets). The
dynamics of the system is given by Newton’s laws. The origin of the system of reference
is chosen at the center of mass. The two body problem can be converted into an equivalent
one body problem of a particle of mass � D m1m2=.m1 Cm2/, called the reduced mass,
in a external field gravitational field, Gm1m2=jrj, where a D r1 � r2 is separation radius
vector between the two bodies. The system is confined to a plane and the total angular
momentum is conserved when GWR reaction is not taken into account (see fig. 2.2). As
a first approximation, it is supposed that the system describes a circular orbit. The angular
velocity !orb is given by the Kepler’s law,

!2orb D
GM

a3
; (2.62)

where M D m1 Cm2 is the total mass, and the total energy is given by,

E D �1
2
�Pa2 D �Gm1m2

2a
: (2.63)

The coordinates are chosen so that the system moves in the xy plane and the total angular
momentum is on the z direction. The reduced quadrupole moment of this equivalent system



2.3 Weak-field Approximation 23

is given by,

�Ixx D �a2
�
1 � cos 2!orbt

2
� 1
3

�
; (2.64)

�Iyy D �a2
�
1C cos 2!orbt

2
� 1
3

�
; (2.65)

�I zz D ��r
2

3
; (2.66)

�Ixy D ��a2 sin 2!orbt

2
: (2.67)

The GW polarizations as a function of the distance to the source r and the propagation
direction .�; �/ are,

hC D 4GM

c2r
�

�
GM!orb

c3

�2=3
cos!u

�
1C cos2 �

2

�
; (2.68)

h� D 4GM

c2r
�

�
GM!orb

c3

�2=3
sin!u cos �; (2.69)

where � � �=M is the symmetric mass ratio, u D t � r=c is the retarded time, � is
the angle between the total angular momentum and the line of sight, and the GW angular
frequency is twice the orbital, ! D 2!orb. The angular distribution of the luminosity is,

dLGW

d�
D 2�2c5

�G

�
GM!orb

c3

�10=3�.1C cos2 �/2

4
C cos2 �

�
; (2.70)

and the total luminosity is given by,

LGW D 32

5

c5

G
�2
�
GM!orb

c3

�10=3
D 32

5

c5

G
�2
�
v2

c2

�5
: (2.71)

The binary system is emitting waves that carry away energy, therefore its total energy must
decrease according to the law,

� dE
dt
D LGW; (2.72)

and from the eq. (2.63) it can be seen that when the system losses energy its radius de-
creases or equivalently the angular velocity increases. For the sake of consistency the radial
velocity must be small in order to the luminosity formula, which was calculated for strict
circular orbits, be valid. In other words the orbital period must be much smaller than the
typical time of radial falling. In this way, the evolution of the system consists of a series
of quasi-static circular orbits. The above conditions are fulfilled when P!orb � !2orb, i.e.
when the system evolves adiabatically (see e.g. Landau & Lifshitz, 1969, for a definition of
adiabatic motion). The evolution law for the GW angular frequency can be deduced from
(2.72),

P! D
�
3

5

�
27=3�

�
GM

c3

�5=3
!11=3 D

�
3

5

�
27=3

�
GMc

c3

�5=3
!11=3; (2.73)

where Mc D �3=5M D �3=5M 2=5 is the chirp mass, which provides a characteristic
time scale for the evolution of binary system. The intrinsic time-domain phase evolution,
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Q! � !2= P! introduced by Damour et al. (2013), is a normalized quantity to compare the
phase of different waveforms, which for the binary system is given by,

Qbin
! D

1

�

�
5

3

�
2�7=3

�
GM

c3
!

��5=3
D
�
5

3

�
2�7=3

�
GMc!

c3

��5=3
: (2.74)

The number of GW cycles N in the frequency interval Œ!0; !1� is,

N D .2�/�1
Z !1

!0

Q!d ln!: (2.75)

The time evolution of the frequency, phase and the separation radius is found by integrating
eq. (2.73),

P̂ .t/ D !.t/ D 1

4

�
c3

GMc

�5=8� 5

tcoal � t
�3=8

(2.76)

ˆ.t/ D �2
�
c3.tcoal � t /
5GMc

�5=8
Cˆ0 D �3

5
Qbin
! Cˆ0 (2.77)

a.t/ D a0
�
tcoal � t
tcoal � t0

�1=4
(2.78)

where a0 is the (initial) separation radius at time t0, and at the coalescence time a.tcoal/ D
0. When the orbital period of a binary is known, eq. (2.76) can be used to estimated the
time to coalescence, tcoal � t ,

tcoal � t D 5

�

�
Torb

16�

�8=3�GM
c3

��5=3
: (2.79)

Formally, the frequency has a divergence at a finite time, tcoal. Nevertheless, this time
is never achieved because the two body will contact each other before this happens, or
if the components are compact enough, the system will reach before a point where the
gravitational field is so strong that they begin to plunge. This last point can be estimated
by the inner-most stable circular (ISCO) of the system, e.g. the ISCO of a Schwarszschild
black hole aISCO D 6GM=c2. As a good approximation the above formulas are valid up to
the ISCO.

Provided that the frequency changes with time, the GW polarizations for a binary evolving
under the action of GWR have increasing amplitudes and the phase is changed, according
to eq. (2.77), !u 7! ˆ.u/, i.e the GW have chirping-like behaviour. The matched-filter
technique uses the Fourier transform of the waveform to detect GWs in interferometers
(see chapter 5). The Fourier transform of the evolving GW polarizations is found by the
stationary phase method,

QhC.f / D A.f /ei‰C.f /.1C cos2 �/=2; (2.80)
Qh�.f / D A.f /ei‰�.f / cos �; (2.81)

where the fourier phase is,

‰C.f / D 2�f tcoal C 9

40
Qbin
! �ˆ0 �

�

4
D ‰� � �

2
; (2.82)
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and the amplitude,

A.f / D 2�GM
c2r

�
GM

c3
�f

�2=3 Q1=2!
f
p
2�
: (2.83)

The GW spectrum is found by substituting the above Fourier transforms in eq. (2.31),

dE

df
D 16

5
��2

GM 2

c

�
GM

c3
�f

�4=3
Q! D �2=3�

3

�
GMf

c3

��1=3GM 2

c
: (2.84)

The spectrum during this phase depends linearly on the symmetric mass ratio and has a
power law in the frequency. The total energy radiated in the frequency interval Œf0; f1� is,

�Einsp D �2=3

2G
�.GM/5=3.f

2=3
1 � f 2=30 /: (2.85)

However, a better estimate for the radiated energy up to the ISCO is given by the binding
energy of that orbit in the Schwarszchild metric,

Einsp . .1 �
p
8=9/�Mc2: (2.86)

An indirect observation of GWs can be made by measuring the change in the orbital period
Porb, which is given by eq. (2.73),

PPorb D �192�
5

�
GMc2�

c3Porb

�5=3
: (2.87)

However, this formula corresponds to the circular orbits case, when the orbits are ellipses
the above expression receives corrections in terms of the orbit eccentricity e (Maggiore,
2008),

PPorb
ˇ̌
ellip D PPorb

ˇ̌
circ

�
1C 73

24
e2 C 37

96
e4
�
: (2.88)

The continuous observation of the binary pulsar PSR B1913+16 (Hulse & Taylor, 1975)
gives a ratio between the data and the predicted value of General Relativity of (Weisberg &
Taylor, 2005),

PPexp

PPteo
D 1:0013˙ 0:0021: (2.89)

This theoretical prediction of the secular decrease of the orbital period is a direct conse-
quence of General Relativity’s prediction of GWs.

Propagation on the Friedmann-Lemaître-Robertson-Walker Background

The propagation of GWs from binary systems to cosmological distances is analyzed with
the formalism of geometrical optics. The universe is described by the Friedmann-Lemaître-
Robertson-Walker (FLRW) metric (Weinberg, 2008) whose line element is (for euclidean
space),

ds2 D a2.�/Œd�2 C dr2 C r2d�2� D a2���dx�d � ; (2.90)

where � is the conformal time. The geometrical optics limits corresponds to the case when
da=d� � !0a, where !0 is the GW angular frequency measured in the local wave zone.
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Figure 2.3 Illustration of a deformed star rotating around the z axis. The angle between
the axis of rotation and the line of sight is denoted by �

Note that the metric is conformal to Minkowski, therefore null geodesics are the same
curve in both spacetimes (Wald, 2010). The rays of GWs propagating radially outward on
the Minkowski spacetime are given by t � r=c D const, thus radial rays on the (FLRW)
metric are, � � r=c D const. The affine parameters of the two geodesics are related,
d�0=d� D ��1a.�/2, where � is a constant. Consequently, the wave-vector of GWs in the
FLRW metric is, k� D .�=a2/.!0=c; k0; 0; 0/. The GW frequency measured by a static
observer is !GW D !0=a.�/, so there is a redshift when the frequency is measured along
the same ray at two different positions,

!em
GW

!obs
GW
D a.�obs/

a.�em/
� 1C z; (2.91)

where z is the cosmological redshift. Since the number of cycles is a physical invariant
quantity, the times of arrival are also redshifted tobs=tem D .1Cz/. When this two relations
are substituted in eq. (2.76), the frequency as a function of time has the same form but with
the substitution Mc 7!Mc D .1C z/Mc . This can be seen as the redshift of the charac-
teristic unit of time. Regarding the amplitude, eq. (2.46) implies that Œ.ar/A�� �j˛k˛ D 0.
Hence the amplitude decreases / .ar/�1.

2.3.2 Rotating Star

Another astrophysical source of GWs is a rotating star. Compact stars rotating very fast
have been observed since the discovery of pulsars by Hewish et al. (1968), e.g. the GW
emission by the pulsar NP 0530 in the Crab Nebula (Lovelace et al., 1968; Cocke et al.,
1969), was first estimated in (Ferrari & Ruffini, 1969). This section will analyze the case
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of an incompressible star whose shape is an ellipsoid. The more general case of a com-
pressible star will be analyzed in the chapter 7. The star is rotating with angular velocity
�, around one of its principal axes, a3, which is aligned with the axis z, and the other axes
a1; a2 are aligned with the axes x and y of a rotating frame with the same angular velocity
of the star. The inertia tensor of a rigid body is (Landau & Lifshitz, 1969),

Qij D
Z
.r2δij � xixj /d3x; (2.92)

and it is related to the reduced quadrupole moment by, �I ij D Qδij =3 �Qij . In the frame
rotating the star appears static and the inertia tensor is diagonal Qij D diag.Q1;Q2;Q3/,

Q1 D M

5
.a22 C a23/ (2.93)

Q2 D M

5
.a21 C a23/; (2.94)

Q3 D M

5
.a21 C a22/; (2.95)

whereM is the mass of the star. The inertial (rest) frame in which the star rotates is related
to the latter frame by a rotation ˛ D �t around the z axis. After performing the change of
coordinates, the components of the inertia tensor in the rest frame are,

Q11 D Q1 CQ2
2

C Q1 �Q2
2

cos 2�t; (2.96)

Q22 D Q1 CQ2
2

� Q2 �Q1
2

cos 2�t; (2.97)

Q33 D Q3; (2.98)

Q12 D Q1 �Q2
2

sin 2�t: (2.99)

It can be seen that the trace ofQij is a time-independent number, therefore the second time
derivative of the reduced quadrupole moment is R�I ij D � RQij . The GW polarizations are
given by,

hC D 4G

c4r

M

5
.a21 � a22/�2 cos 2�u

.1C cos2 �/
2

; (2.100)

h� D 4G

c4r

M

5
.a21 � a22/�2 sin 2�u cos �; (2.101)

where u as usual, is the retarded time, and � is the angle between the line of sight and the
axis of rotation (see fig. 2.3). If the semiaxes a1 and a2 are equal, there is no GR, i.e.
axis-symmetric rotation do not emit GWs. The GW luminosity is,

LGW D 32

5

G

c5
.I11 � I22/2�6: (2.102)

The emission of GWs will induce that the star moment of inertia (shape) and angular ro-
tation change over time. The existence of these deformed stars and its evolution will be
discussed in chapter 7.
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Chapter 3

Test Particle Approach to
Gravitational Radiation

The last chapter reviewed the general principles of GWR and discussed one approximation,
namely the weak-field and low-velocity approximation. The last stages in the coalescence
of compact objects binaries are characterized by strong gravitational fields and high veloci-
ties. Hence, the problem must be analyzed using other formalisms such as BH perturbation
theory or the numerical solution of the full EFE. This last approach constituted a challeng-
ing task which was not solved successfully until the work of (Pretorius, 2005). On the
other hand, numerical relativity simulations are computational expensive and sometimes
the physics is hard to extract. Perturbation methods have been developing since the work
of Regge & Wheeler (1957) and provide physical insight in the strong-field and compara-
ble masses regime (see e.g sec.). Moreover perturbation theory constitute a semi-analytic
and computational cheap method to compute GWs. The transition zone between the ISCO
and the merger will be studied here by means of an approach different to that presented in
the literature. The energy radiated in this regime can be used to infer the final mass of the
BH formed in the merger. A comparison between the approaches will be also presented
in this chapter. It will be argued that the merger has no burst nature. Strictly speaking,
the approach presented here is only valid in the test particle limit, but as it will be shown
in the next chapter, there is good agreement with numerical-relativity (comparable masses
regime). It points to the existence of a quasi-Newtonian center-of-mass theorem1 in some
General Relativity scenarios. This motivates the comparison between the current approach
prediction of the final BH mass and the numerical relativity reported value. This chapter is
based on the publication (Rodriguez et al., 2018).

3.1 Radiation from a Test Particle Plunging into a Black Hole

This chapter will use geometrized units G D c D 1. The mathematical formalism to
analyze perturbations in the gravitational field of a Schwarzschild BH was developed by
Regge & Wheeler (1957), where they defined some tensor spherical harmonics ‰‰‰lm, ˆ̂̂lm,

1This means is the reduction of the two body problem to one body problem.
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Figure 3.1 Regimes of validity of the different approaches to GR. The post-Newtonian
formalism (PN) is valid when the velocities of the system are small compared to the
speed of light. Numerical Relativity (NR), in principle is valid in all regimes, but due
to computational reasons, far orbits, i.e. slow velocities regime are not covered by the
simulations.

���lm and showed that the Schwarzschild’s BH was stable. These spherical harmonics can
be used separate the EFE, as done by Zerilli (1970) who studied a test particle of mass �,
radially falling into a BH of mass M . The amount of radiated energy was estimated to be
�E � 0:0016.�=M/�. A brief review of the exact calculation done by Davis et al. (1971,
1972a) will be presented below. The perturbation field h�� on a Schwarzschild background
is decomposed into the Regge-Wheeler spherical harmonics (Regge & Wheeler, 1957).
After replacing this in G.1/�� .h/ D δT�� (see (A.13)), where δT�� is the energy-momentum
tensor of the test particle, it can be shown that the radial part of the perturbation is governed
by the following equation, whose Fourier transform is (Zerilli, 1970),

d2Rl

dr2�
C Œ!2 C Vl.r/�Rl.r; !/ D Sl.r; !/; (3.1)

with r� D r C 2M ln.r=2M � 1/, the “tortoise” coordinate, dr=dr� D .1 � 2M=r/. The
potential Vl is,

Vl D
�
1 � 2M

r

��
2�2.�C 1/.r=M/3 C 6�2.r=M/2 C 18.r=M/�C 18

.r=M/3.�r C 3M/2

�
; (3.2)

with � D .l � 1/.l C 2/=2, and the source is given by,

Sl.r; !/ D �
4�

�.r=M/C 3
p
l C 1=2

�
1 � 2M

r

�"r
r

2M
� 2i�

!.�.r=M/C 3/

#
ei!T .r/;

(3.3)
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where T .r/ is the time coordinate of the particle (see e.g. (Hartle, 2003) for the explicit
expression). In this case, the harmonics with m ¤ 0 vanish and the perturbation in the
radiation gauge (GW) is h�� /  .t; r/‰0m�� , where,

 l.t; r/ D
1p
2�

Z
Rl.r; !/e

�i!td!: (3.4)

The key point is to impose the correct boundary conditions to solve eq. (3.1),

lim
r�!�1

Rl!.r�/ D Ain
l!e
�i!r� ; ingoing radiation at the horizon; (3.5)

lim
r�!1

Rl!.r�/ D Aout
l!e

i!r� ; outgoing radiation at infinity (3.6)

Then, use Green’s function method to solve boundary valued problems (Arfken & Webber,
2005). The two independent solutions of the homogeneous equation that satisfy the bound-
ary conditions of ingoing and outgoing radiation are RH

l!
.r�/ and R1

l!
.r�/, respectively.

The solution of the inhomogeneous equation is given by,

Rl!.r�/ D Z1l!.r�/RHl!.r�/CZHl!.r�/R1l!.r�/; (3.7)

where

ZHl!.r�/ D
1

W

Z r�

�1

Sl!.r
0
�/R

H
l!.r

0
�/dr

0
�; (3.8)

Z1l!.r�/ D
1

W

Z 1
r�

Sl!.r
0
�/R
1
l!.r

0
�/dr

0
�; (3.9)

and W is the Wronskian of RH
l!

and R1
l!

. In the limit r� ! 1, where the GWs are
detected,the solutions become RH

l!
D ˛!e

i!r� C ˇ!e�i!r� , because of the vanishing of
potential Vl , and R1

l!
D ei!r� due to the boundary condition. In addition, Z1

l!
D 0 and

the Wronskian is i!ˇ! . Therefore, the coefficient Aout
l!

is given by,

Aout
l! D

1

i2!ˇ!

Z 1
�1

Sl!.r
0
�/R

H
l!.r

0
�/dr

0
�; (3.10)

and the energy spectrum is (see fig. 3.2),

dEl

d!
D 1

32�

.l C 2/Š

.l � 2/Š !
2jAl! j2: (3.11)

The GW is quadrupole dominant and the total energy radiated to infinity is� 0:0104�2=M ,
nearly 7 times greater than the Zerilli’s estimation. The spectrum has a peak at !M D 0:32,
after there is an exponential cut off (Davis et al., 1971). The general features of the pulse
were analyzed in (Davis et al., 1972a). The waveform is composed by a precursor which is
slowly growing and by a sharp burst of emission where most of the energy is radiated. Some
of the GW energy is store “in the resonant cavity” of the background spacetime, which is
radiated at the end as a ringing-tail whose characteristic frequency is !M � l=p27 (Press,
1971)2.

2Background GWs back-scattering.
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Figure 3.2 Left: Zerilli Potential for l D 2, it can be seen the asymptotic decay. Right:
spectrum of the GWR emitted by a test particle radially falling into a Schwarzschild
BH. The results were obtained with the Green’s function technique (for details see
e.g. Mitsou, 2011). Quadrupole emission is dominant in this high relativistic case.

The above calculation was generalized to the case of nonvanishing initial angular momen-
tum J (Detweiler & Szedenits, 1979). The spectrum has a peak near !M � 0:36 for all
the J studied. However, the spectrum has a vertical scale change which depends on the
angular momentum, thus the total energy scales with J . The following empirical law was
found �E � �EJD0Œ1C 0:11 exp.1:53J=.�M//� (Rodriguez et al., 2016). On the other
hand, when the test particle has an initial speed there is a difference in the low-frequency
spectrum and a larger emission of energy (Ruffini, 1973a), but the general features of the
waveform are maintained. The next generalization was the extension to the case of a Kerr
BH. Perturbation theory on a Kerr background is done by means of the Newman-Penrose
formalism (Newman & Penrose, 1962) (see appendix D). The energy radiated from a test
particle radially falling along the BH spin axis is �Ea¤0 � 0:0170M.�=M/ almost 1.65
times larger than the spinless case. Finally, the energy radiated by test particle plunging
into a Kerr BH with nonvanishing angular momentum was analyzed on (Kojima & Naka-
mura, 1984). The waveform in this case also presents the same nature: a precursor, a burst
and the ringdown.

3.2 Gravitational Radiation from Circular Orbits

The GWR emitted by a test particle in a circular orbit is of great interest for astrophysical
sources. The relativistic case on Schwarzschild background was analyzed in (Davis et al.,
1972b), which was motivated by the search of a source of gravitational synchrotron radia-
tion. This radiation was calculated within the Regee-Wheeler-Zerilli formalism previously
presented and it was found that the energy spectrum is quadrupole dominant, as shown in
the fig. 3.3, and therefore has no beaming.

The next development came with computation on the Kerr spacetime. As already men-
tioned, it is convenient to analyze the problem with the Newman-Penrose formalism. This
approach, used by Teukolsky, involves curvature perturbations instead of metric perturba-
tions. It was found that scalar, vector and tensor perturbations are governed by a single mas-
ter equation, whose solution can be separated in Fourier and spheroidal harmonic modes
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Figure 3.3 Power of the gravitational waves emitted by test particle in a circular orbit in
the Schwarzschild spacetime. Selected values of the multipole are shown. The high
multipoles are subdominant are therefore the is no beaming in the emission.

(Teukolsky, 1972, 1973; Teukolsky & Press, 1974). Unfortunately, the Teukolsky radial
equation has a long-range potential and its numerical integration with boundary conditions
is difficult. A change of variable was found by Sasaki & Nakamura (1982b,a), which in-
troduces a short-range and well-behaved potential U.r/. The Sasaki-Nakamura (radial)
equation is given by,

X 00lm! � F.r/X 0lm! � U.r/Xlm! D Slm! : (3.12)

Details on the functions F , U and Slm! and their numerical solution can be found in
(Sasaki & Nakamura, 1982a) or in the appendix D (see, also (Hughes, 2000; Nakano et al.,
2016)). The task is accomplished by first solving numerically the eq. (3.12) with the suit-
able boundary conditions, and then inverting the transformation to find the original radial
function. The solution of the Eq. (3.12) is obtained by using the Green’s function technique
for boundary value problems. The two solutions of the homogeneous Sasaki-Nakamura
equation areXH

lm!
, which satisfies the boundary condition of in-going radiation at the outer

horizon, and X1
lm!

which satisfies the boundary condition of out-going radiation at1. In
the case of corotating circular orbits, the energy and angular momentum fluxes carried by
the gravitational waves to infinity are,

dE

dt
D
1X
l�2

lX
mD�l

jZH
lm!
j2

4�!2m
;

dJ

dt
D
1X
l�2

lX
mD�l

mjZH
lm!
j2

4�!3m
; (3.13)

where !m D m�, and ZH
lm!

is a complex number which depends on the orbital frequency
�. Fig. 3.4 shows the total energy flux dE=dt for selected values of the black-hole dimen-
sionless spin. The contribution of the gravitational-wave modes l � 2 to the total energy
flux at infinity is shown in Fig. 3.4. The enhancement of higher multipoles does not occur
either in the case of the Kerr metric, where also the quadrupole contribution is largely pre-
dominant. No synchrotron gravitational radiation can occur either in the Schwarzschild or
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Figure 3.4 Left: comparison of the total gravitational-wave energy flux at infinity,
PE � dE=dt , emitted by the test particle in circular orbits around the BH for se-

lected values of the black-hole dimensionless spin, as a function of the dimensionless
radial position, r=M . Center and Right: contribution of the gravitational-wave modes
l � 2 to the total gravitational-wave energy flux at infinity in the case of a test par-
ticle in circular orbits of radius r around a Kerr BH with a=M D 0:5 (center panel)
and with a=M D 0:5 (right panel). It can be seen that the quadrupole dominates the
gravitational-wave emission.

the Kerr case. The contribution of higher multipoles becomes relevant only for near-horizon
orbits around nearly extremal BHs (Gralla et al., 2016).

The behaviour of the test particle under the action of GWR reaction can be understood a
la Landau & Lifshitz by claiming energy and angular momentum conservation. The losses
by GWR induce the particle to slowly go from one circular orbit to another. This behaviour
can be visualized in terms of the effective potential given by (see fig. 3.5),

Veff D 1 � 2M
r
C l2 � a2.�2 � 1/

r2
� 2M.l � a�/

2

r3
; (3.14)

which leads to a radial equation of motion

�2 D
�
dr

d�

�2
C Veff; (3.15)

where � � E=� and l � L=� are the particle’s energy and angular momentum per unit
mass, and � is the proper time. Corotating circular orbits (obtained from the conditions
dr=d� D 0 and @Veff=@r D 0) have energy and orbital angular momentum given by
(Ruffini & Wheeler, 1969; Rees et al., 1974),

� D E

�
D r2 � 2Mr C aM 1=2r1=2

r.r2 � 3Mr C 2aM 1=2r1=2/1=2
; (3.16)

l

M
D L

�M
D r2 � 2aM 1=2r1=2 C a2
r3=4.r3=2 � 3Mr1=2 C 2aM 1=2/1=2

: (3.17)

The ISCO is given by the inflection point of the effective potential, i.e. the radius for which
@2Veff=@r

2 D 0. In the case of a=M D 0 (Schwarzschild metric), it is located at rISCO D
6M andEISCO=� D 2

p
2=3 andLISCO=.�M/ D 2p3. In the case of an extreme Kerr BH,

a=M D 1, the ISCO is located very close (but not coincident) to the black-hole horizon,
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Figure 3.5 Veff for different values of the particle angular momentum in the case of a
Schwarzschild BH (dashed curves) and a Kerr BH with a=M D 0:9 (solid curves).
The blue and red dots indicate the test particle on the minimum of the potential in the
Schwarzschild and Kerr cases, respectively.

i.e. rISCO ! rC where rC D M , and EISCO=� D
p
3=3 and LISCO=.�M/ D 2

p
3=3.

Namely, for an extreme BH there exist circular orbits up to very close to the black-hole
horizon (see e.g. ref. (Bardeen et al., 1972) for additional details). From the fig. 3.5 it
can be seen that in principle a large amount of energy can be radiated in the Schwarzschild
case. In contrast, the Kerr spacetime the flatness effective potential implies lower energy
radiation .

3.3 Helicoidal Drifting Sequence

The Hamiltonian formalism was used to analyze the dynamics of a test particle in the field
of a Kerr BH, and the trajectory that was found is called helicoidal drifting sequence (HDS).
The Hamiltonian of a test particle of mass � in the field of a Kerr BH of mass M is given
by (see e.g. ref. (Jantzen et al., 1992), and references therein)

H D �pt D �N ipi CN
q
�2 C  ijpipj ; (3.18)

where N D 1=
p
�g00, N i D �gti=gt t and  ij D gij CN iN j =N 2 D gij �gtigtj =gt t ,

and g�� are the standard contravariant components of the Kerr spacetime metric in the
Boyer-Lindquist coordinates. The latin indexes stand for the spatial Boyer-Lindquist co-
ordinates .r; �; �/. The momenta pr and p� are the radial and the angular momentum
of the particle, respectively. The Hamilton’s canonical equations for a test particle on the
equatorial plane � D �=2 under the action of radial and azimuthal dissipative effects are,

dr

dt
D @H

@pr
;

d�

dt
� � D @H

@p�
;

dpr

dt
D �@H

@r
C Fnc

r ;
dp�

dt
D Fnc

� ; (3.19)

This work only considers the gravitational-radiation-reaction part of the non-conservative
force (see e.g. ref. (Poisson et al., 2011) for a review on the subject), so the radial and
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azimuthal are given by the following non-conservative forces, Fnc
r D 0, Fnc

� D �dJ=dt ,
where J is the angular momentum carried out to infinity by the GW (3.13). This assumption
is supported from previous results that show that the linear momentum carried out by the
waves to infinity satisfies dpGW

r =dt � j@H=@r j (Fitchett & Detweiler, 1984). In the case
of purely quadrupolar waves in strict circular orbits the following equality is satisfied:

dJ

dt
D 1

�

dE

dt
: (3.20)

However, since there is radial drift and a small contribution of higher order multipoles, the
above equality must not be strictly satisfied (see eq. 3.13). The numerical computations
showed that j1��.dJ=dt/=.dE=dt/j � 10�6 during the evolution. The smallness of this
value imply that the motion is indeed quasi-circular, but it is sufficiently large (with respect
to the numerical precision of our calculations) to conclude that the equality (3.20) is not
verified in the HDS evolution, as expected.

It has been traditional to treat the evolution using the so-called adiabatic approximation that
assumes a particle moving from a circular orbit to the next (see, e.g., ref. (Finn & Thorne,
2000; Hughes, 2001)), due to the energy and angular momentum radiation. For example,
since the energy can be expressed in terms of r , a change in the energy induces a change in
r . Thus, a dynamical equation for r can be found by differentiating (3.16) and equating it
to the gravitational energy flux. The evolution is found by integrating this last equation in-
stead of solving the equations of motion (3.19). This approximation, although sufficient to
estimate some general properties of the evolution, lacks of the appropriate inclusion of the
non-zero radial motion of the particle in the equations of motion. This radial drift becomes
essential to trigger the final plunge to the BH. When the radial momentum is properly in-
cluded, the ISCO location does not represent any longer a point where the equations of
motion break down. Indeed, the conditions of “adiabaticity” are kept up to such distances
(see figure 3.7 and related discussion in Sec. 3.4). In contrast, within the adiabatic approach
it is needed the introduction of a separate treatment of the transition to the plunge phase
(see ref. (Finn & Thorne, 2000; Hughes, 2001) and Sec. 3.4 for details).

It is appropriate to mention other treatments in the literature on the problem of a bi-
nary system under the action gravitational radiation. The effective-one-body (EOB) ap-
proach was proposed in (Buonanno & Damour, 1999) to overcome the known problem of
the non-convergence of the higher-order post-Newtonian successive approximations. The
EOB treatment “maps” the post-Newtonian binary into a “Schwarzschild deformed met-
ric” which depends on the mass-ratio. In the extreme mass-ratio limit �=M ! 0, the
metric becomes the Schwarzschild one.However, the treatment of the waveform and/or
the gravitational-wave fluxes is constructed on a post-Newtonian basis. The Kerr metric,
within EOB, has been used to treat spinning merging components (Damour, 2001). How-
ever, also that EOB treatment is based on a post-Newtonian treatment for the waveforms
and/or fluxes. Thus, although they are calibrated to fit strong-field results, the EOB ap-
proach remains conditioned by the non-convergence of the post-Newtonian formalism.

The set of equations of motion (3.19) was first used in (Han & Cao, 2011), also using the
radiation-reaction term obtained from the numerical solution of the Teukolsky equation.
However, they analyze the case of intermediate mass-ratios with the conservative dynamics
given by the EOB treatment. There has been also introduced a different method to compute
the evolution of the circular orbits that is based on linking one to the next by describing
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Figure 3.6 On the left, the ratio pr=j of the radial momentum to the angular momentum
per unit mass, of a test particle around a Kerr BH with a=M D 0:9, and mass-ratio
�=M D 1=100. The plot shows the ratio from r � 4:53M up to the location of the
ISCO at r � 2:32M . The upper and lower panels on the right show the dimensionless
radial position, r=M , and dimensionless orbital angular velocity, �M , respectively.
The initial position at time t=M D 0 is r=M D 15:9. The case of a Schwarzschild
BH is shown in blue while the case of a Kerr BH with a=M D 0:9 is shown in orange.

changes in the “constants” of motion (Pound & Poisson, 2008), and finding the envelope.
Such reference circular orbits, called “osculating orbits”, with a planar force have been
applied to the inspiral of a particle in the Schwarzschild (Pound & Poisson, 2008) and in
the Kerr spacetime (Gair et al., 2011). Since here is not include the radial velocity in the
calculation of the gravitational-wave, namely we use exact circular orbits for the flux, our
scheme and the osculating orbits become equivalent under these assumptions. However, we
use the fully relativistic gravitational-wave flux instead of post-Newtonian approximations
as in (Pound & Poisson, 2008). More recently, a test particle inspiraling into a Kerr BH was
treated in the ref. (Taracchini et al., 2014), similarly as done here, but with the drawback
of incorporating the GW flux after the ISCO up to the light ring (unstable circular orbits),
even though it is given by the Teukolsky equation.

On the other hand, full numerical-relativity simulations are available only for relatively
large mass-ratios & 1=10. Therefore, it is not currently possible to perform a one-to-
one comparison between numerical-relativity simulations and the test-particle treatment.
However, a comparison of the SXS waveforms with the ones obtained, in the comparable-
mass regime (Rodríguez et al., 2018) is presented in next chapter.

3.4 Numerical Results

Equations (3.19) are numerically solved with the suitable initial conditions for quasi-circular
orbits on the equatorial plane. At the initial time t0 D 0 the initial distance is r0, and the ini-
tial phase is �.t0; r0/ D 0. The angular momentum is p�.t0; r0/ D L0, where L0 � L.r0/
is given by eq. (3.17). The initial condition for the radial momentum can be obtained from
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Figure 3.7 Ratio of the orbital to radiation-reaction timescale Torb=Trad D jPr j=.r�/ eval-
uated at the location of the ISCO, for selected mass-ratios and selected values of the
black-hole spin parameter.

the equations of motion as follows. The radiative force induces the radial velocity:�
dp�

dt

�ˇ̌̌̌
t0;r0

D
�
dp�

dr

��
dr

dt

�ˇ̌̌̌
t0;r0

D Fnc
�

ˇ̌̌
r0
: (3.21)

The non-zero radial velocity is related to pr via eqs. (3.19), and by introducing it into
the above expression a non-linear algebraic equation for pr jr0 is obtained. This equation
can be solved numerically given the above conditions and, at leading order, can be solved
analytically:

pr
ˇ̌
r0
D
s�

�2 C r20L
2
0

ƒ0

�
r20�0

ƒ0

ƒ0Fnc
�

ˇ̌
r0

dL=dr0.r
2
0 C a2/2

; (3.22)

where�0 D r20 �2Mr0Ca2 andƒ0 D .r20Ca2/2�a2�0. This equation gives the initial
condition for pr with very high accuracy and can be safely used provided that the initial
radius is sufficiently far from the ISCO. For instance, the initial position r0 D 15:9M ,
for Kerr BH with spin parameter a=M D 0:9 and a mass-ratio �=M D 1=100, gives an
initial pr accurate within nine digits. This initial radial velocity, if given at a large enough
radius r0, reduces to the “adiabatic” approximation. This can be seen from eqs. (3.21) and
(3.13), which imply dr=dt D �.dJ=dt/=.dp�=dr/. The property of a strict circular orbit,
namely eq. (3.20), is satisfied in the system by one part in a million, therefore the condition
dr=dt D �.1=�/.dE=dt/=.dp�=dr/ is approximately satisfied with the same accuracy.
Now, by replacing � via eqs. (3.19), it is obtained dr=dt D .dE=dt/=.dE=dr/, which is
the flux-balance condition of the adiabatic approximation, adopted e.g. in (Ori & Thorne,
2000).

Figure 3.6 shows the ratio of the radial momentum, pr , to the angular momentum per unit
mass, j � p�=�, during the HDS obtained for the aforementioned initial conditions. It can
be seen how the contribution of the radial momentum increases as the particle approaches
the location of the ISCO. In this example, pr becomes � 4% of the angular momentum
per unit mass. It is also shown the sharp decrease (increase) of r (�) near the location
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Figure 3.8 Trajectory of a test particle in the HDS around a Schwarzschild BH, a=M D 0
(left panel) and around a Kerr BH with a=M D 0:5 (center panel) and with a=M D
0:9 (right panel). The blue part of the trajectory goes from r D 7M up to the location
of the corresponding ISCO (marked with a gray-dashed circle), while the orange color
indicates the plunge regime. The black-hole horizon is indicated with a black-dashed
circle. The mass-ratio is �=M D 1=100.

of the ISCO, which suggests that the “adiabaticity” of the system may be loose at such
distance. The system can be considered to evolve adiabatically if the ratio of orbital to
radiation-reaction timescale is much smaller than unity. Following (Cutler et al., 1994),
Torb=Trad is defined in terms of the tangential and radial velocity, Torb=Trad � jPr j=.r�/.
Since this ratio increases for decreasing values of r , it reaches its largest value during the
HDS at the location of the ISCO. Figure 3.7 shows the above ratio evaluated at the location
of the ISCO, for selected values of �=M and black-hole spin parameters. It can be seen
that for the current example with a=M D 0:9, the timescales ratio Torb=Trad � 0:02 at
rISCO=M D 2:32. Finally, figure 3.8 shows the trajectory of the test particle in the HDS
around a Schwarzschild BH, a=M D 0 (left panel) and around a Kerr BH with a=M D 0:5
(center panel) and with a=M D 0:9 (right panel). It can be seen the effect of the black-hole
spin in the particle trajectory. The bigger a=M the more the particle rotates before reaching
the ISCO.

3.5 Plunge into the Black Hole

A physical insight of the plunge into the BH can be obtained from the radial effective poten-
tial (3.14). Figure 3.5 compares Veff with a=M D 0 (Schwarzschild) and with a=M D 0:9,
for three selected values of the orbital angular momentum of the particle, L: one larger,
one equal, and one smaller than the value at the ISCO, LISCO. For L > LISCO, a small
decrease in L due to the gravitational radiation makes the particle to go from one minimum
to the next one, namely it goes from one circular orbit to another with smaller radius. At
L D LISCO the particle reaches the ISCO and, for L < LISCO, the effective potential has
no minima, i.e. no circular orbits exist and the particle fall into the BH.

In the realistic situation, the full numerical integration of the equations of motion shows
that, indeed, when the particle passes the location of the ISCO, it possesses a large radial
momentum (see figure 3.6) and angular momentum L < LISCO, so it continues falling
towards the BH, smoothly, without any further radiation loss. Figure 3.5 shows that the
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Figure 3.9 Angular velocity of the particle, � D d�=dt after the crossing of the ISCO,
in the case of Kerr with a=M D 0:9 (green), a=M D 0:3 (orange) and in the case of
Schwarzschild (blue). The mass-ratio is �=M D 1=100. The gray-dashed horizontal
lines show the corresponding values of the angular velocity of the black-hole horizon.

plunge to the BH is markedly different in the Schwarzschild and Kerr cases. While the
effective potential for L D LISCO is zero at the horizon in Schwarzschild, it reaches a finite
non-zero value for Kerr. The flatness of the effective potential from the ISCO to the horizon,
in the Kerr case, implies a very little amount of energy and angular momentum radiated out
to infinity during the final plunge. This can be also understood from the fact that, due to
frame-dragging effect, the particle is forced to approach the Kerr black-hole horizon tidally
locked, hence it approaches the BH with non-zero angular momentum. These features were
confirmed by the numerical integration done here (see figure 3.9).

Since the plunge is (nearly) geodesic we integrate the equations of motion during this part
of the evolution without energy and momentum losses. It is worthwhile to emphasize that
there is an uncertainty in the definition of the end of the inspiral phase. It was defined
as the time when the particle, following the HDS, reaches the ISCO, but it could have
been defined, for instance, as the time when the particle angular velocity reaches the cor-
responding value of the ISCO (see e.g. (Buonanno & Damour, 2000)). Despite the fact
that these two times do not generally coincide, in both cases a region around the adiabatic
time of the ISCO is created (see figure 3.11). Within this region, extending out and in the
adiabatic time of the ISCO, the particle radiates following the radiation law of circular or-
bits (3.13). This region connects the inspiral (quasi-circular orbits) regime to the plunge
(geodesic) regime where the gravitational radiation is negligible. It is also important to
mention that in order to approach the horizon, the momentum pr� , conjugate to the tor-
toise radial coordinate r� defined by dr�=dr D .r2 C a2/=.r2 � 2Mr C a2/, was used
in the numerical integration. Figure 3.5 shows the full evolution of the test particle until it
reaches the black-hole horizon, for three selected cases: a=M D 0; 0:5; 0:9. The fact that
the particle corotates and approaches tidally locked to the BH is shown in the figure 3.9.
The angular velocity of the black-hole horizon is given by �C D a=.r2

C
C a2/ (Ruffini,

1973b), where rC D M C
p
M 2 � a2 is the BH outer horizon radius. The evolution of

the energy, the radial and angular momentum of the particle during this phase is shown in



3.5 Plunge into the Black Hole 41

figure 3.10. It can be seen that both the energy and the angular momentum are conserved,
and that the difference in the effective potential between the ISCO and outer the horizon
(see figure 3.5) is fully converted into the particle’s in-falling kinetic energy. It can see that
for non-zero BH rotation, in agreement with the effective potential shown in figure 3.9, the
difference is smaller. Consequently, the particle approaches the horizon with lower radial
velocity than in the Schwarzschild case where it tends to the speed of light.

The above results are now contrasted with the different treatments in the literature, in
particular with the approach found in (Ori & Thorne, 2000), which will be referred as
Ori-Thorne (OT). In this last treatment, approximate equations of motion and their corre-
sponding semi-analytic solutions for “the transition to plunge” regime were derived. The
approximation basically consists in a Taylor expansion of the energy and the angular mo-
mentum around the ISCO values, which is equivalent to the use of an approximate effec-
tive potential. Both the angular velocity and the energy radiated in GW, are assumed to be
equal to their values around the ISCO. The boundary conditions are set by imposing that
the solution matches the adiabatic motion before the ISCO, and after a fully geodesic (i.e.
non-radiative) plunge. From these results, semi-analytic formulas were obtained for the
particle’s energy and angular-momentum in the “transition” regime, Ef and Lf , which are
expressed as “deficits” with respect to the ISCO values,

�E � Ef �EISCO; �L � Lf � LISCO: (3.23)

Although this work agrees with general qualitative picture of OT, it can be checked from
the eq. (3.26) and table I found in the mentioned work, that the “deficits” are much larger
than the ones obtained here by the full numerical integration.

A first contrast of the two approaches, for the case of a BH with spin parameter a=M D 0:9,
is shown in figure 3.11, where it is compared the particle’s radial trajectory near the location
of the ISCO. It can be seen that the two solutions converge at a large distance from the
BH. This indicates, as mentioned in section 3.4, that these two solutions satisfy the same
initial condition set by the adiabatic approximation. In addition, figure 3.12 shows the
comparison, for the same case, of the energy and the angular momentum “deficits”, �E
and �L, obtained from the present approach, i.e. by adopting Ef � H.tplunge/ and Lf D
p�.tplunge/, with OT. The above result implies a larger amount of gravitational radiation
in the last approach. The main reason for this additional emission is the OT assumption
of keeping the particle radiating at the rate of the ISCO (which is the highest one of all
circular orbits; see figure 3.4), before and long after crossing it (T > 1 in figure 3.11).
This work found that the extrapolation of such an approximation much beyond the ISCO
is the cause of the larger discrepancy in the results. It is clear that this extra radiation is
needed under the assumption of strict circular orbits. This is due to the fact that in the
absence of such a radiation, there is no reason for the particle to plunge into the BH given
that the ISCO is stable. When the radial drift is considered, as in the HDS, there is an
increasing contribution of the radial momentum (see figures 3.6 and 3.10) that modifies
the effective potential. In this context the ISCO does not play any special role and only
assists the passing of the particle in virtue of the previously acquired radial momentum. As
a consequence, it is expected that in the HDS the test particle smoothly falls into the Kerr
BH with negligible GW emission. The only radiation comes from the non-circular plunge
trajectory followed by the particle (e.g. the orange-color trajectories in figure 3.8) which
must be much smaller than the gravitational radiation per orbit at the ISCO. This explains
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Figure 3.10 Physical properties of a test particle in the final plunging into a Schwarzschild
BH, a=M D 0 (left panel), into a Kerr BH with a=M D 0:5 (center panel) and
with a=M D 0:9 (right panel). The mass-ratio is �=M D 1=100. We show the
particle radial position, r=M (blue), dimensionless angular momentum, j=M (green),
dimensionless radial momentum, pr� (orange), and the dimensionless energy, H=�
(red).

the additional GW radiation obtained in OT with respect results found here.

This discrepancy causes differences in the estimation of the mass of the final BH. The latter
can be expressed as Mf DM C�Erad; where �Erad � Ef �� < 0, M is the total mass
of the black-hole binary and Ef is the final energy of the test particle. Thus, one can write
the energy radiated as,

�Erad D �Ead C�E; (3.24)

where �Ead � EISCO � � is the energy radiated up to the location of the ISCO within
the adiabatic strict circular motion approximation, and �E is the energy “deficit” with
respect to the approximation defined in Eq. (3.23). It can be checked that, for the case of
an equal-mass binary, the contribution of �E to Mf (in the a=M D 0:9 case) is about
10%, while in the HDS case it is only about 1% (see figure 3.12). This additional amount
of gravitational radiation in OT will lead to a more energetic gravitational waveform in the
final merging phase. It is interesting that a similarly energetic plunge leading to a burst
of radiation, is present in the numerical-relativity waveforms of the SXS Catalog. Such a
feature is also found in the binary mergers modeled via the EOB formalism which adopts
a treatment similar to the one of OT (see ref. (Buonanno & Damour, 2000) for details).

Now, the dependence of the radiated energy and angular momentum on the mass-ratio,
�=M is studied. For a given a black-hole spin, the semi-analytic treatment of OT predicts
that the above-defined energy and angular momentum “deficits” scale with the mass-ratio
as j�EjOT=� / .�=M/4=5 and j�LjOT=.�M/ / .�=M/4=5. The following empirical
laws were found from the present results, �EHDS=� / .�=M/0:72 and �LHDS=.�M/ /
.�=M/0:81. The different scaling with the mass-ratio of the radiated energy and angu-
lar momentum, within the HDS treatment, implies that the ratio �E=�L depends on the
mass-ratio. This is consistent with the fact that the particle in the HDS case does not follow
strict circular orbits, as in the case of OT. For strict circular orbits, the energy to angular
momentum ratio gives, at any radius, the value of the particle’s angular velocity which
depends only on the black-hole spin. Figure 3.12 shows explicitly these differences. It
is also interesting to compare the energy radiated predicted by the above models with the
one found in numerical-relativity simulations. The working hypothesis that the test parti-
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Figure 3.11 Comparison for the case a=M D 0:9, during the transition regime of our
treatment and the one of ref. (Ori & Thorne, 2000). The variable X is the normalized
difference between the particle’s radial position and the ISCO. The variable T is the
normalized proper time with T D 0 at r D rISCO in the strict adiabatic sequence.
The details on the normalization can be found in (Ori & Thorne, 2000). It can be
seen that near the ISCO, i.e. around X D 0 and for T < 0, the two trajectories are
similar, but for T > 0 they become separated. This is consistent with the expansion
of the effective potential around the ISCO which is expected to be valid only near
X D T D 0. The vertical dashed line corresponds to tplunge in our present HDS
approach, T � 1.

cle treatment might be a good approximation of the real two-body system of comparable
masses is applied here, in view of the agreement in the waveforms that will be presented in
the next chapter. First, from the data available in the SXS Catalog, the corresponding en-
ergy “deficit” �E=�, for different mass-ratios �=M is calculated. The procedure is done
following eq. (3.24), i.e. the value of �Ead, which depends only on the BH spin, is sub-
tracted from the difference between the mass of the final Kerr BH and the initial total mass,
M �Mf . Figure 3.12 shows the results for �=M D 0:08–0.25. It can be seen that the
value of �E=� obtained from the numerical-relativity data scales linearly with �=M . In
other words, simulations follow exactly the same scaling of the energy radiated in the case
of a purely radial plunge of a test particle into a Schwarzschild BH, i.e. �E=� / �=M

(Davis et al., 1971), and not the one expected from the particle plunge derived either in (Ori
& Thorne, 2000) or in the present work.

3.6 Conclusions

Two different cases of gravitational radiation, in the strong-field limit, from test particles
falling into an already formed BH have been considered. The first is a test particle plunging
from infinity either initially at rest or with finite kinetic energy. It leads to a gravitational
waves emission composed of three different parts: “a precursor, a main burst and a ringing
tail”. The amplitude of the burst depends on the angular momentum of the particle and of
the BH. The comparison between a Schwarzschild and a Kerr BH shows quantitative but not
qualitative differences. The structure of the multipoles can be in used principle to determine
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Figure 3.12 Left: comparison for the case a=M D 0:9, of the quantities Ef �EISCO and
Lf � LISCO obtained from our HDS, and the semi-analytic formulas of ref. (Ori &
Thorne, 2000). Right: energy “deficit”�E=� estimated from the numerical-relativity
simulations of the SXS Catalog. It is surprising that it scales in the same way as the
energy radiated in a purely radial plunge into a Schwarzschild BH (Davis et al., 1971).

the angular momentum of both the particle and the BH. The second case, a particle starting
from a finite radius in a circular orbit, leads to the HDS, smoothly merging into the BH.
The difference between the Schwarzschild and the Kerr metric is specially manifest at and
after the ISCO. When the radiation reaction is taken into account (see figure 3.8) there is
an increasing contribution of the radial momentum in the HDS as the particle approaches
the horizon (see Figs. 3.6 and 3.10). This phenomenon is further enhanced by the different
effective potential of the Schwarzschild and Kerr cases. The final phase is the one of a test
particle smoothly merging in the Kerr BH without any burst. The results were compared
and contrasted with the approach of ref. (Ori & Thorne, 2000) and it was found that in the
latter a larger amount of gravitational radiation is emitted in the transition to the plunge.
The consequences of such a difference in the estimation of the mass of the final BH formed
in the merger were calculated.

It was shown how the energy and the angular momentum radiated scale with the mass-ratio,
�=M , and it was shown the difference of the scaling with the results of ref. (Ori & Thorne,
2000). Stimulated by the agreement of the HDS and numerical-relativity waveforms in
the comparable mass regime (see next chapter), a comparison of the energy radiated and
its scaling with the mass-ratio between the two formalism was done. It was found that
�E=� scales linearly with �=M in the numerical-relativity simulations, following exactly
the scaling of a purely radial plunge of a test particle into a Schwarzschild BH (Davis
et al., 1971), but not the scaling predicted in (Ori & Thorne, 2000) nor the one of the HDS
treatment presented here. On the other hand the work of Anninos et al. (1995) showed
great agreement between test particle scaling law with �=M , for head-on BH collisions, if
the mass of the particle is replaced by the reduced mass (Newtonian-center-of-mass view).
It seems that the final plunge in the coalescence of BHs needs further investigation of the
underlying physics. Finally, ref. (Liu et al., 2018) showed a feature in the final burst
of the event GW150914 Abbott et al. (2016b) and points to the existence of an even more
energetic burst which is absent in the templates used for parameter estimation of the source.
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Chapter 4

Test Particle Waveforms

This chapter is based on the publication (Rodríguez et al., 2018). The determination of
the trajectory of a test particle around a Kerr BH allows the explicit construction of the
corresponding waveform. This chapter attempts to understand the underlying physics of
the templates publicly available from numerical-relativity simulations (see SXS Catalog
for details). The following three assumptions are adopted only as working hypothesis1,
which are not necessarily considered as valid:

1. The trajectory of a test particle is calculated following the work presented in the
previous chapter.

2. In order to step from a test particle of mass m to a binary BH of comparable masses
m1 and m2, the Newtonian center of mass description is adopted by assuming m D
�, where � D m1m2=M is the reduced mass of the binary and M D m1 C m2 is
the total mass.

3. The waveform of the HDS all the way up to the passage over the last circular or-
bit. As shown in previous chapter, it is not expect any significant gravitational-wave
emission during the final smooth merging of the particle into the Kerr BH. This final
part of the waveform needs further development and analysis.

4.1 General Considerations of the Reduced Mass

It is clear from the Newtonian center of mass approach that the dimensionless spin param-
eter, a=M , where a D J=M D �

p
r=M is the orbital angular momentum per unit mass

and r is the separation radius, is typically much larger than unity in any self-gravitating
binary system of comparable masses. For equal masses, it converges from above, namely
from a=M > 1, to a=M D 1 only when r D 16M . This implies that only massive neu-
tron stars or BHs can reach BH formation in their final merger process. Most important,
the condition of a=M D 1 under these conditions can only by reach from above, i.e. from

1This can be also motivated by the agreement between BH head-on collisions and the radially in-fall of a
test particle (Anninos et al., 1995)
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a=M > 1, and not by accretion. This gives a tangible way to see implemented, by emission
of gravitational waves, the no-hair theorem (see e.g. Ruffini & Wheeler, 1971, fig. 1).

By hypothesis, the GW emission is computed by changing in the equations of motion the
mass of the test particle by the reduced mass, and the BH mass by the total mass. The
GW radiation-reaction, after performing the same change, is included in the equations of
motion. The dynamical evolution of the system is calculated obtaining the HDS of orbits
all the way up to the final smooth merger. The background turned out to be always the Kerr
metric. This result, following similar attempts in the literature, is regarded as an effective
one body scheme to describe the merger of two BHs of comparable mass.

4.2 Waveform

During the initial phases of the HDS of the particle, the motion is quasi-circular, i.e. the
radial velocity is relatively small with respect to the tangential velocity. Thus, the gravita-
tional waveform can be, in first approximation, constructed from circular-orbit waves. The
GW can be obtained from the scalar  4 (see e.g. Detweiler (1978) or appendix D),

1

2

�
hC � ih�

� D � 1
R

X
l;m

ZH
lm

!2m
�2Slm.‚/e

imˆe�i!m.t�R
�/; (4.1)

whereR is the distance from the Kerr BH to the observer,‚ is the angle between the axis of
rotation and the observer,ˆ is the azimuthal coordinate of the orbiting body at t D 0; R� is
the Kerr “tortoise” coordinate, and �2Slm are the spheroidal harmonics of spin �2 Teukol-
sky (1973). The complex numbers ZH

lm!
that depend on !m D m!, where ! is the orbital

angular velocity, where computed in Rodriguez et al. (2017) to estimate the gravitational-
wave radiation flux, dE=dt , for a particle moving in a circular orbit on the Kerr metric.
This radiation has been computed in the Teukolsky formalism of curvature perturbations
(Teukolsky, 1973; Teukolsky & Press, 1974) with the aid of the Sasaki-Nakamura radial
equation (Sasaki & Nakamura, 1982b,a).

As the HDS of orbits progresses, the wave frequency changes with time and we evaluate the
acquisition of radial momentum. This implies that the complex numberZlm! evolves with
time, inducing a variable wave amplitude and phase shift. We also replace !m.t � R�/
in the exponential by m�.t � R�/ (see, e.g., Hughes (2001)), where � is the azimuthal
(Boyer-Linquist) coordinate of the test particle along the trajectory. As usual the waveform
is decomposed into the spin-weighted spherical harmonics sYlm.�; �/ as follows (Newman
& Penrose, 1966):

R.hC � ih�/ D
X
l;m

hlm.t �R�/�2Ylm.‚;ˆ/; (4.2)

where

hlm D �2
Qlm

!2m
e�im�.t�R

�/; Qlm D
Z
d.cos‚/

X
l 0;m0

ZHl 0m!�2Sl 0m0!.‚/�2Ylm.‚; 0/:

(4.3)
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Near the last circular orbit the radial momentum significantly grows (see fig. 3.6). The
radial motion effects are only included implicitly through the orbital phase � obtained from
the numerical integration of eqs. (3.19) which include the effects of both radial drift and
radiation-reaction.

4.3 Comparison of the Waveforms

In order to do the comparison of the treatments, the HDS was started at some large distance
r0 at time t D 0 the evolution was computed up to the passage over the last circular orbit,
at time t D tplunge. The waveform was found by using the method described in the above
section. Since the values of the initial time and phase of the two simulations are arbitrary,
a constant change of time and phase is performed which minimizes the overall differences
between the two waveforms. Furthermore, given that the comparison is done at infinity, the
two waveforms are expressed as a function of the same time coordinate.

The fitting-factor F was found to quantify the difference between the waveforms,

F � .h1jh2/=
p
.h1jh1/.h2jh2/; .h1jh2/ � 4Re

�Z 1
0

h1.f / Qh2.f /=Sn.f /df
�
;

(4.4)
where f is the GW frequency in the detector’s frame, Qhi .f / is the Fourier transform of the
waveform hi .t/ and Sn.f / is the power-spectrum density of the detector’s noise. The latter
is the Advanced LIGO noise (see, e.g., Abbott et al. (2016b)). The mismatch, M � 1�F ,
was obtained from the fitting-factor. Since the function Sn.f / is given in physical units
(Hertz) then a value for the total mass of the system has to be specified to calculate the
fitting factor. For all the examples shown below the M D 70 Mˇ was used.

Another way to quantify the difference between two waveforms is by the intrinsic time-
domain phase evolution Q! D !2= P!, where ! D d�=dt and � is the gravitational-wave
phase. The small correction in the phase from the termQlm in Eq. (4.3) was not taken into
account in order to avoid the noise arising from the interpolation of the radiation flux. The
calculation of Q! was done as stated in ref. (Damour et al., 2013), although some difficul-
ties were reported there due to the inherent oscillations present in the numerical-relativity
data. However, here is not performed any fit of the numerical-relativity Q! function.

4.3.1 Merging Black Holes of Equal Mass and Equal Aligned Spins

The comparison was done first in the equal mass and aligned spins regime. The first
numerical-relativity simulation was BBH:0230 (SXS Catalog, 2018; Chu et al., 2016):
the coalescence of two BHs with m1 D m2 D M=2 and dimensionless spin parame-
ters a1=m1 D a2=m2 D 0:8, forming a Kerr BH with dimensionless spin parameter
af =Mf D 0:907516. This system is particularly interesting since it is characterized by
equal-mass and high-spin components, properties which are in principle different from the
non-spinning, test particle domain adopted here. No agreement between the two treatments
should be a priori expected.

Fig. 4.1 shows the comparison between the two waveforms. A “test particle” of mass m D
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Figure 4.1 First comparison of the HDS and the numerical-relativity waveforms. Top
panel: the dashed orange curve is the numerical-relativity waveform BBH:0230 of
the coalescence of a binary BH with m1 D m2 and a1=m1 D a2=m2 D 0:8, forming
a Kerr BH with spin parameter af =Mf D 0:907516. The continuous blue curve is the
test-particle waveform during the HDS adopting m DM=4 and a dimensionless spin
of the Kerr BH nearly equal to the one of the newly-formed Kerr BH of the merger
simulation, 0:9075. The time is normalized to the total binary mass, M , and the
comparison is made up to the instant of passage of the test particle at the location of
the last stable circular orbit. Left lower panel: intrinsic time-domain phase difference
evolution �Q! as a function of the frequency of the l D m D 2 gravitational-wave
mode, !22 Right lower panel: phase difference �� (in radians; green curve) and
relative difference of the amplitudes of the two waveforms shown in the top panel
during the entire time of the comparison.

� D m1m2=M D M=4 was used, and a Kerr BH of mass M with spin parameter nearly
equal to the BH formed in the merger, i.e. a=M D 0:9075, was chosen. For completeness
of the comparison is shown, for this time interval, the difference between the GW phases,
�� (green curve), and the relative difference between the waveform amplitudes, �A=A
(red curve). A value F � 0:993 was obtained, so there is a mismatch M D 0:007, during
the entire time interval of the comparison, i.e. t=M � 1702:03–6182:19, corresponding
to an interval of separation distances r=M D 14:95–2:27, where the latter is the location
of the last circular orbit. It can be seen that, regardless of the Q! oscillations for the
numerical-relativity data, �Q! D jQTP

! �QNR
! j / 1. This specific simulation constitutes

the best agreement between the numerical-relativity simulations and the HDS treatment
among the cases we have studied.

Next, in Fig. 4.2 is shown the comparison with the numerical-relativity simulation BBH:0228
of the merger of two BHs with aligned spins a1=m1 D a2=m2 D 0:6 that forms a BH with
spin af =Mf D 0:857813 (SXS Catalog, 2018; Chu et al., 2016). It was found here a new
feature with respect to the previous comparison: the best matching waveform did not cor-
respond to the one generated by the HDS in a Kerr BH with (nearly) the same spin of the
newly-formed BH. Instead, the agreement was obtained for the HDS in a Kerr BH with an
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Figure 4.2 Comparison of the HDS and the numerical-relativity waveforms. Top panel:
The dashed orange curve is the numerical-relativity waveform BBH:0228 SXS
Catalog (2018); Chu et al. (2016) of the coalescence of a binary black-hole with
m1 D m2 and a1=m1 D a2=m2 D 0:6, forming a Kerr BH with spin parameter
af =Mf D 0:857813. The continuous blue curve is the test-particle waveform during
the HDS adoptingm DM=4 and a dimensionless spin of the Kerr BH aeff=M D 0:8.
We use for the HDS the same mass-ratio of the numerical-relativity simulation. Left
lower panel: intrinsic time-domain phase difference evolution �Q! D jQTP

! �QNR
! j

as a function of the frequency of the l D m D 2 gravitational-wave mode, !22. Right
lower panel: phase difference �� (in radians; green curve) and relative difference of
the amplitudes of the two waveforms.

“effective” spin parameter aeff=M D 0:8. The fitting factor for this case is F D 0:972,
which is between the final spin and the initial spins parameters.

The above result hinted to the existence of an effective spin parameter which produces
good matching with the numerical-relativity. Thus, more comparisons were performed
with other waveforms of the SXS catalog to confirm this conjecture. The results are pre-
sented in Fig. 4.3 and Table 4.1. As a conclusion, when the HDS treatment has the same
mass ratio as the one of the numerical-relativity simulation, it can always be found an ef-
fective spin of the Kerr BH of the HDS which produces excellent agreement between the
waveforms. It can be also seen from �Q! that, regardless of the oscillations inherent in
the numerical-relativity simulations, the two phase evolutions agree each other. Neverthe-
less, the agreement between the two waveforms decreases in some part of the evolution,
suggesting that the effective spin aeff might change with time.

4.3.2 Merging Black Holes with Unequal Mass and Spinless

Coalescence of spinless BHs were analyzed with different mass ratios, q D m2=m1 D
1, 1/2, 1/3, 1/4, m1 � m2 (see Fig. 4.4). The effective spin varies proportionally with the
binary mass ratio. This also shows that, although the BHs do not spin, there is some spin on
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Figure 4.3 Comparison of numerical-relativity waveform and HDS waveforms. Left
panel: BBH:0157, coalescence of a binary black-hole with m1 D m2 and a1=m1 D
a2=m2 D 0:949586, forming a Kerr BH with spin parameter af =Mf D 0:940851

SXS Catalog (2018); Hemberger et al. (2013). For the HDS treatment we find an
effective spin parameter aeff=Mf D 0:99. Right panel: BBH:0001, coalescence of
a binary black-hole with m1 D m2 and a1=m1 D a2=m2 D 1:2 � 10�7 (i.e. spin-
less case), forming a Kerr BH with spin parameter af =Mf D 0:686461 SXS Catalog
(2018); Mroue et al. (2013). For the HDS treatment we find an effective spin parame-
ter aeff=M D 0:36. Again, we found that the effective spin parameter of the Kerr BH
in the HDS treatment is neither the one of the newly-formed BH nor the one of the
merging BHs of the numerical-relativity simulation.

Table 4.1 Column 1: Code of the numerical-relativity simulation of the SXS Catalog
(2018). Column 2: Spin parameter of the merging BHs, ai=mi . Column 3: Spin
parameter of the newly-formed BH, af =mf . Column 4: Effective spin aeff=Mf of
the Kerr BH in the HDS treatment that gives good agreement with the numerical-
relativity simulation. Column 5: Fitting factor between the numerical-relativity and
HDS waveforms. All the simulations are for equal-mass binaries.

Simulation ai=mi af =Mf aeff=Mf F
BBH:0001 1:209309 � 10�7 0.686461 0.36 0.96
BBH:0157 0.949586 0.940851 0.99 0.93
BBH:0228 0.600000 0.857813 0.80 0.972
BBH:0230 0.800000 0.907516 0.9075 0.993

the background spacetime even before the formation of the final spinning BH. The effective
spin turned out to be always less than the spin of the newly formed BH.

The formation of the Kerr BH from binaries of BHs of comparable masses occurs from
above, namely from a=M > 1 at larger distances to a=M . 1 as the objects approach each
other. Only in the case of binaries with extreme mass-ratios �=M � 1, the merger leads
to a slowly-rotating BH, and, only when �=M ! 0, the formation of a Schwarzschild BH
can be approached. This is consistent with our results above of an effective spin of the BH
proportional to the mass ratio, so that we expect a vanishing spin, i.e. a Schwarzschild BH,
only in the limiting case of a vanishing mass ratio.
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Figure 4.4 Comparison of three numerical-relativity simulations of spinless merging bi-
nary BHs with the current HDS approach. Top left panel: BBH:0169 numerical-
relativity waveform of mass ratio q D 1=2 SXS Catalog (2018); Buchman et al.
(2012). The effective spin for this case is aeff=Mf D 0:33 and the fitting factor
between the two waveforms is F D 0:95. Top right panel: BBH:0030 numerical-
relativity waveform of mass ratio q D 1=3 SXS Catalog (2018); Mroue et al. (2013).
The effective spin is aeff=Mf D 0:29 and the fitting factor F D 0:965. Bottom
panel: BBH:0182 numerical-relativity simulation of mass ratio q D 1=4 SXS Cat-
alog (2018); Blackman et al. (2015). The effective spin is aeff=Mf D 0:25 and the
fitting factor F D 0:963.

4.4 Mass of the Newly Formed Black Hole

In the previous chapter was argued that no significant gravitational radiation is expected
after the passage of the test particle over the last circular orbit. Thus, the mass of the
newly-formed BH is expected to be

MBH DM ��Erad; (4.5)

�Erad D m �Hplunge; (4.6)

where Hplunge � H.t D tplunge/ is the value of the Hamiltonian (energy) of the par-
ticle (3.18) during the final smoothly merging into the BH. Due to the radial drift and
the radiation-reaction, when the particle passes over the location of the last circular orbit,
Hplunge is smaller than the energy of that circular orbit in the Kerr geometry. This facilitates
the smooth merging of the particle to the Kerr BH and constitutes the extra radiation of the
transition to the plunge. It is expected that before the passing of the ISCO the background
spin parameter changes toward the value of the newly formed BH. Figure 4.5 shows that
the energy radiated is a monotonically increasing function of a=M , therefore if the spin
of the final BH is used to calculate �rmrad , this constitutes an upper limit on the energy
radiated and a lower limit on the final mass, within the present formalism.

Figure compares the (lower limit) mass of the newly-formed BH predicted by the test par-
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Figure 4.5 Left: Energy radiated in HDS up to the ISCO as a function of the spin pa-
rameter of background BH. Curves for different symmetric mass ratio are shown.
All the curves increase monotonically with a=M . Right: comparison of the mass
of the newly-formed BH predicted by the HDS and numerical-relativity simula-
tions of binary BH mergers. Blue curve: test particle prediction by eq. (4.5) with
�Erad D m � EISCO. Orange curve: test particle prediction by eqs. (4.5) and (4.6).
The mass of the particle, m, is equal to the binary reduced-mass, �, and the spin of
the Kerr BH is equal to spin of the newly-formed BH in the merger. Green dots: data
from the SXS Catalog (2018) of numerical-relativity simulations with spinless initial
BHs.

ticle treatment (4.5) and by the numerical-relativity simulations SXS Catalog (2018). The
numerical-relativity data in this plot refer to all the available simulations of the waveform
catalog of coalescences of binary BHs with non-spinning components. These simulations
correspond to different values of the mass-ratio q D m2=m1 (we adopt m1 � m2), thus
different values of the ratio �=M D q=.1 C q/2. In the case of the above simulations of
non-spinning components, the spin parameter of the newly-formed Kerr BH ranges from
� 0:3 (for �=M � 0:1) to� 0:7 (for �=M D 1=4). Recall that in the comparison the spin
of the HDS Kerr BH is equal to spin of the newly-formed BH in the numerical-relativity
merger. Despite the agreement in the waveforms, the mass of the newly-formed BH in
numerical-relativity simulations is smaller than the one from the HDS of the test particle. It
implies the existence in the numerical-relativity simulations of an additional gravitational
radiation after the passage of the particle over the last circular orbit, in contrast with the
expectations. From the point of view adopted here, there is no physical reason that explains
such an extra loss of gravitational energy at expenses of the BH mass. Numerical calcula-
tions of the GW emission from the solution of the Teukolsky partial differential equation
adopting the actual plunge trajectory into the Kerr BH are needed to understand and to pos-
sibly answer this questioning. This task epresent a important future work, some very early
advance is shown in D.

4.5 Discussion

The numerical-relativity simulations of the coalescence of two BHs can gain physical in-
sight with the use of the current approach. In the author’s opinion, if developed further, this
formalism can be used to construct complete GW templates with a very low computational
cost. Furthermore, it is based on a strong-field exact solution of the EFE, the Kerr solution
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(Kerr, 1963), which captures the frame-dragging due to the rotation of the source. The
agreement between the two treatments, with and without considering the intrinsic spins of
the merging BHs, appears to be due to the dominating value of the binary angular momen-
tum over the one of the individual spins of the merging BHs. What clearly stands from this
work is a call for attention to the non-applicability of relativistic orbits in the Schwarzschild
metric and the neglect of the total binary angular momentum which needs to be taken to
the general attention.
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Chapter 5

Gravitational Wave Events

Since GWs have been proposed to exist, they seemed very hard to be detected. The classic
textbook of Landau & Lifshitz (1951) stated: “. . . radiation of gravitational waves is a fifth
order effect in 1/c. Together with the smallness of the gravitational constant k, makes the
usual effects extremely small.” In fact, for a 4 km length interferometer and a typical GW
strain h0 � 10�21, the displacement of the mirrors is δL � 10�18 m, a thousandth of the
radius of the atomic nucleus. This establish a challenge to experimentalists. Some early
claims of the detection of GWs (Weber, 1969) were later shown not to be true, in the sense
that they could be reproduced with similar detectors, see e.g Amaldi & Pizzella (1979).
On the other hand, theoretical implications of the result lead to inconsistencies, e.g. such
a frequent radiation implies a very small life time of the universe. Fortunately, indirect
detection of GW by its effect on the orbits of a binary system was announced in (Taylor
et al., 1979), and the existence of GWs was experimentally shown. Long effort took until
the announcement of the first direct detection of GWs consistent with the merger of two
BHs (Abbott et al., 2016a). Other 5 GW events have been announced (Abbott et al., 2016c,
2017b,c,d,a). Five of them are consistent with the merger of binary black hole, and the last
with the merger of a binary neutron star. This chapter will analyze some features of first
binary black event and of the binary neutron star.

5.1 Matched-Filter

The GW wave signal can be inside the noise, but this does not imply that it can not be
detected. In order to extract the signal, similar to the case of radio signals, the matched-
filter technique is used (see e.g. Maggiore, 2008, for a review). A brief review will be
presented. The Fourier transform, Qh.f / D Ffh.t/g, is defined by,

Qh.f / D
Z 1
�1

h.t/e�i2�f tdt (5.1)

h.t/ D
Z 1
�1

Qh.f /ei2�f tdf (5.2)

Within this work it is supposed that the detector noise n.t/ is gaussian and stationary. The
expected value of the correlation of the noise at two different times only depends on the
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time difference:
hn.t C �/n.t/i D R.�/; (5.3)

and therefore the Fourier components obey the following relation:

h Qn.f / Qn�.f 0/i D 1

2
δ.f � f 0/Sn.f /: (5.4)

The function Sn.f / is the power spectrum density of the noise which gives the energy
content of the noise as a function of the frequency. When the signal is smaller than the
noise, it can be “extracted” by using a (linear) filter. The output of a linear filter M.t/
acting on the data s.t/ D n.t/C h.t/, which may have the (gravitational wave) signal h.t/
is:

Os D
Z 1
�1

s.t/M.t/dt D
Z 1
�1

Qs.f / QM.f /df: (5.5)

The matched filter K.t/ is defined as the filter which gives the maximum signal-to-noise
ratio (SNR) �, defined as the ratio between the expected output when the signal is present
and the standard deviation data output when there is no signal:

h�i2 D hOsi2jh¤0
hhOs2i � hOsi2ijhD0

(5.6)

It is convenient to define the inner product of two real functions f and g:

.gjh/ D R

Z 1
�1

Qh.f / Qg�.f /
.1=2/Sn.f /

df D 4R
Z 1
0

Qh.f / Qg�.f /
Sn.f /

df: (5.7)

The matched-filter is
QK.f / D const. � Qh.f /=Sn.f /; (5.8)

and the expected SNR can be written in terms of the inner product defined in eq. (5.7),

h�i D .hjh/1=2 (5.9)

5.2 Projection onto the detector frame

The gravitational radiation in the TT frame is usually decomposed into spin-weighted
spherical harmonics of spin s D �2 (see appendix B),

hC � ih� D
1X
lD2

mDlX
mD�l

hlm.T;R/�2Ylm.‚;ˆ/ D AGWe
�iˆGW (5.10)

where R is the distance from the source to the observer. The angles ‚ and ˆ are polar and
azimuthal angles of the unit vector from the source to observer, with respect to the source
frame. For a binary it is customary to choose the z axis of the source frame parallel to the
orbital momentum of the binary. The detector frame is chosen so that the arms are along
the x and the y axes. The response of the interferometer to the GW is denoted by h.t/.
The GW passing changes the length of the arms and induces a interference pattern. The
behaviour of the length of the arms L, in the limit L � �GW, is given by the geodesic
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deviation (2.21). Therefore the detector response is h.t/ D .hTT
xx � hTT

yy/=2. Recall that the
polarizations hC and h� are defined in the plane perpendicular to the propagation direction,
which does not coincide in general with the detector frame z axis. Consequently, a rotation
has to be done in order to find hTT

xx; h
TT
yy in the detector frame (Maggiore, 2008). After the

rotation is done it is found that,

h.t/ D FC.�; �;  /hC C F�.�; �;  /h�; (5.11)

where (Forward, 1978),

FC D 1

2

�
1C cos2 �

�
cos 2� cos 2 � cos � sin 2� sin 2 ; (5.12)

F� D 1

2

�
1C cos2 �

�
cos 2� sin 2 C cos � sin 2� cos 2 ; (5.13)

are called the antenna patterns. The angles � and � are the polar and azimuthal angles
of the unit vector from the source to the detector, respect to the detector frame, and  is
the polarization angle which represents a rotation around the direction of propagation, see
fig. 5.1. Usually the position of the source is given in celestial coordinates. The correct
expression for the antenna patterns in terms of the right ascension and declination of the
source, and the earth localization of the detector can be found in the Ref. (Schutz, 2011).

From the Eqs. (5.10) and (5.11), the detector response h.t/ can be written as

h.t/ D A cosŒˆGW � ˛�; (5.14)

where A D AGW.F
2
C
C F 2�/1=2 and tan˛ D F�=FC. If there are two or more detectors

the amplitude ratio A1=A2 can be used to infer the position. The angles ‚;ˆ are given by
the direction from the source to a fixed frame on the earth (the celestial coordinate frame)
relative to the frame system. Therefore on both detectors AGW and ˆGW are the same.
The antenna patterns depend on the celestial coordinates of the source; on the longitude,
latitude, and arms orientation of the detector; and on the GPS time. Thus the amplitude
ratio depends only on the antenna patterns,

A1

A2
D
"
F 2
C;1 C F 2�;1
F 2
C;2 C F 2�;2

# 1
2

(5.15)

The GW spectrum can be used to estimate the SNR of astrophysical sources. For a general
source it is given by,

�2 D 4
Z 1
0

jFC QhC C F� Qh�j2
Sn.f /

df: (5.16)

The orientation and localization of the source is not known a priori, thus the SNR is av-
eraged in order to assess the detectability. The averages of the detector pattern functions
satisfy hF 2

C
i D hF 2�i and hFCF�i D 0. Consequently, the averaged �2 is,

h�2i D 4hF 2Ci
Z 1
0

hˇ̌ QhC.f /ˇ̌2 C ˇ̌ Qh�.f /ˇ̌2i
Sn.f /

df

D 4G
c3

hF 2
C
i

2�2d2

Z 1
0

1

f 2Sn.f /

dE

df
df: (5.17)
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Figure 5.1 Illustration of the angles involved in the projection of the GW onto the detector
frame. The angles �; � are the spherical polar and azimuthal angles of the source, with
respect to the detector frame. The unit vector from the source to the detector is n. The
intersection of the plane perpendicular to the propagation direction (TT plane) and the
plane xy is called the TT-detector line of nodes. A triad is constructed to describe the
GW in the TT frame, n D p�q. The arbitrariness in the choice of p;q is given by the
polarization angle  , defined as the angle between the TT-detector line of nodes and
q, tan D z �q=z � p. This last angle corresponds to a rotation around the propagation
direction (see eq. (2.18)). Another coordinate frame is constructed in the source. The
zs axis is in the same of the total angular momentum of the system. The intersection
of the plane perpendicular to zs and the TT plane is called the TT-source line of nodes.
The corresponding triad zs D xs � ys is constructed so that ys lies in the TT-source
line of nodes. The spherical polar and azimuthal angles of the propagation direction
n with respect the source frame are ‚ and ˆ, respectively.

This last equation allows to define the characteristic strain hc.f / as,

hc.f / � 1

�d

s
hF 2
C
i

2

G

c3
dE

df
D
q
hF 2
C
ihˇ̌ QhCˇ̌2 C ˇ̌ Qh�ˇ̌2if: (5.18)

When the detector is an interferometer, hF 2
C
i D 1=5 and this last expression reduces to the

definition given in (Kobayashi & Mészáros, 2003).

As stated before, the averaged h�2i is useful to estimate the signal-to-noise ratio when
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the exact localization of the source is not known, but is not useful for calculating rates of
detection. For this task it is introduced the range of the detector. The range R is related
(not equal) to the maximum possible distance dGW (horizon distance) at which some GW
source will produce � D �0 D 8. Since not all the sources are optimally located and
oriented, there is some probability that inside a sphere of radius dGW there will be a source
inducing � D 8. For an arbitrary located and oriented binary, the signal-to-noise ratio is
given by (Maggiore, 2008):

�2 D 4A2‚
2

d2

Z 1
0

f �7=3

Sn.f /
df; (5.19)

where

‚2 D F 2
C
.1C cos2 �/2 C 4F 2� cos2 �

4
; (5.20)

and the pattern functions are given by eqs. (5.12) and (5.13). The binary is optimally
oriented when � D � D � D 0, i.e., ‚2opt D 1. Hence, the distance to a binary optimally
oriented, that will induce a signal-to-noise ratio equal to the threshold is,

dGW D 2A

�0

�Z 1
0

f �7=3

Sn.f /
df

�1=2
; (5.21)

where A D 5=.24�4=3/1=2.GMc=c
3/5=6c (Allen et al., 2012). On the other hand, if some

source has .d2=‚2/ < d2GW, it will be detected given the threshold �0. Thus, the prob-
ability of detection depends on probability that ‚2 > d2=d2GW Finn & Chernoff (1993).
This latter is related to ratio of the number of detected sources Ndet to the total number of
sources Ntot within a sphere of radius dGW:

F3 D Ndet

Ntot
D 3 � 1:84

43
; (5.22)

which defines the detector’s range, R D FdGW.

5.3 GW150914 phenomenological analysis

This section will show how the Newtonian center of mass view can be used to make a
phenomenological analysis of GW150914 Rodriguez et al. (2016). It is worthwhile say-
ing that this procedure does not intend to make an strict map between the real problem
(two comparable mass objects) with the problem of a test particle. In the same spirit of
EOB (Buonanno & Damour, 1999), this analysis is an effective method which gives phys-
ical insight of the problem. Indeed, this work was done before the other more elaborated
approaches presented in the two previous chapters. This analysis hinted (as well as other
works in the literature e.g. (Anninos et al., 1995)) the possibility that a test particle properly
analyzed can be used to “understand” the merger of two BHs.

5.3.1 Binary evolution

Following the same framework previously presented in chapter 3, the black hole binary
(BHB) evolution is divided into four phases. The first one is the adiabatic inspiral phase
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in which the binary follows quasi-circular orbits. The GW energy spectrum in this phase
can be estimated from the traditional formula of the quadrupole emission within the classic
point-like approximation a la Landau-Lifshitz given by eq. (2.84). When the quasi-circular
dynamics breaks down, the final plunge begins and its corresponding frequency is denoted
by fplunge. The above adiabatic dynamics breaks down when:

1. The velocity of the radial separation, Pr D vr , becomes of the order of the tangential
velocity v' D !orbr . The condition for the validity of quasi-circular motion vr � v'
can be translated into P!orb � !2orb, from the fact that !2orb D GM=r3. In terms of
the GW frequency,

fplunge � c3

G

.5=96/3=5

�8=5Mchirp
� c3

G

0:027

Mchirp
: (5.23)

For a symmetric binary (m1 D m2 DM=2,Mchirp DM=43=5), the above frequency
becomes

fplunge � c3

G

0:062

M
� 12:6Mˇ

M
kHz: (5.24)

2. Finite-size effects become important. Since the above plunge frequency was com-
puted within a point-like approximation, it does not incorporate the fact that at a
very short separation the two objects could have already merged. For BHB, such
a separation is approximately given by the sum of the two Schwarzschild radii, i.e
r � 2GM=c2, then

fplunge � c3

G

1

43=2�M
� 8:1Mˇ

M
kHz; (5.25)

This frequency is lower than the one given by eq. (5.24). This implies that the merg-
ing process naturally introduces a cutoff in the increasing frequency.

3. The strong-field region is reached, i.e. the flat-background approximation is no
longer valid. In Newtonian gravity there is no restriction to the existence of stable
circular orbits. When relativistic and strong-field effects are taken into account, there
is limit, an inner-most stable circular orbit, the ISCO. For the gravitational field of a
Schwarzschild BH the ISCO is at r D 6GmBH=c

2. Moreover, after this point there
are no circular orbits, a small perturbation will induce the particle’s infall, i.e, the
plunge is a strong-field effect. The extrapolation to the case of comparable masses
(m! � and mBH !M ) leads to r D 6GM=c2, and thus to a GW frequency,

fplunge � fISCO D c3

G

1

63=2�M
� 4:4Mˇ

M
kHz: (5.26)

This latter frequency value is still lower than the one given by eq. (5.25). Most of the
scientific literature on binaries uses the above expression (5.26) to estimate the frequency
at which the final merger process starts. There are other corrections coming from the finite-
mass and post-Newtonian effects, but for the present analysis fISCO is frequency of the
plunge.
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An upper limit of the total energy emitted during the inspiral phase can be computed by
integrating eq. (2.84) from the frequency at infinite separation, i.e. f D 0, up to the plunge
frequency,

�Einspiral D .�G/2=3

2

� �
M

�
M
5=3
chirpf

2=3
plunge: (5.27)

If plunge frequency for the all cases presented before is expressed as fplunge D c3�=.GM/,
where � is a numerical value, the above energy output becomes,

�Einspiral D .��/2=3

32
Mc2 � 0:067�2=3Mc2; (5.28)

which for the frequency (5.25) gives �Einspiral D 0:008Mc2 and using the more accurate
frequency (5.26),�Einspiral D 0:005Mc2. Moreover, the total energy radiated can be better
estimated by noticing that the binding energy of the ISCO of the test-particle m around a
Schwarzschild BH is Eb � 0:057mc2 (Landau & Lifshitz, 1951; Rees et al., 1974). The
center of mass extrapolation for comparable masses gives,

�Einspiral D 0:057�c2; (5.29)

which for a symmetric binary is �Einspiral D 0:014Mc2.

Plunge, merger and ringdown

At the end of the adiabatic evolution the final phase composed by the plunge, merger and
ringdown phases. As already mentioned, it was shown by Davis et al. (1971, 1972a) that
the spectrum in this phase is dominated by the l D 2 multipole (quadrupole). There was
also shown that the peak of the GW spectrum occurs when the test-particle falls below the
maximum of the effective potential (3.2) and is located at,

fpeak D 0:32

2�

c3

GM
: (5.30)

The above energy peak was shown to be associated with the 2l -pole normal-mode vibra-
tions of the BH excited by the GW train produced by the in-falling body (Press, 1971). The
GW spectrum in this phase has a peaked form (see sec. 3.1 for details), first raising with a
power-law behavior. This can be understood in the context of perturbation theory on a flat
background, i.e. by using Newtonian equations of motion, the low-frequency spectrum is
(Rees et al., 1974; Maggiore, 2008),�

dE

df

�
plunge

� 2� � 0:18G�
2

c

�
4�GMf

c3

�4=3
: (5.31)

The spectrum raises following approximately (5.31) until it reaches a maximum at the peak
frequency (5.30), then falls off following an approximate (phenomenological) form�

dE

df

�
ringdown

� 2�G�
2

c
exp.�9:9 � 2�GMf=c3/: (5.32)
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The spectrum of the l D 2 multipole radiation obtained numerically is shown in figure 3.2.
It is clear that an approximate analytic formula of the spectrum can be obtained from the
interpolation function,

dE

df
�
�

1

.dE=df /plunge
C 1

.dE=df /ringdown

��1
: (5.33)

The total energy radiated to infinity in GWs during this plunge-merger-ringdown phase is
(Davis et al., 1971),

�Emerger D
X
l�2

Z
df

�
dE

df

�
2l�pole

� 0:01�
2

M
c2: (5.34)

The above analysis implies that for BHB: i) the final GW frequency of the inspiral phase,
fISCO, is lower than the peak frequency, fpeak; ii) the energy emitted in GWs during the
total inspiral phase is larger than the energy emitted in the final plunge-merger-ringdown
phase; iii) the merger point can be set as the point where the GW spectrum reaches the
maximum value,

fmerger � fpeak; (5.35)

where fpeak is given by equation (5.30).

5.3.2 Effect of the angular momentum in the merger phase

The energy emitted during the plunging of a test particle into a BH was shown to be affected
by the initial angular momentum of the particle in (Detweiler & Szedenits, 1979). The total
energy output in form of GWR was there computed for selected initial angular momenta of
the particle (which correspond to start the plunge of the particle from different orbits). The
results of the numerical integration by Detweiler & Szedenits (1979) are approximately
fitted (with a maximum error of � 10%) by the phenomenological function,

�Emerger � �EJD0mergerŒ1C 0:11 exp.1:53j /�; (5.36)

where j � cJ=.G�M/ and �EJD0merger is the energy radiated by a particle falling radially
given by equation (5.34). Thus, from the knowledge of the orbital angular momentum of
the last orbit of the adiabatic quasi-circular phase, the amount of energy emitted during the
final merger phase (upper limit) can be inferred.

5.3.3 Mass and spin of the merged object

Energy and angular momentum conservation laws are used to estimate the parameter of the
BH formed in the merger. Namely, the angular momentum of the final BH will be given by,

JBH D JISCO ��Jmerger; (5.37)

where JISCO is the angular momentum of the system at start of the plunge (ISCO), and�J
is the angular momentum lost by GW emission in the final plunge. The amount of energy
emitted in the plunge was used to estimate �J ,

�Jmerger D
�Emerger

�fISCO
: (5.38)
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Figure 5.2 Left panel: spectrogram of the gravitational-wave event GW 150914 obtained
from the signal observed at the H1. Right panel: spectrogram of the gravitational-
wave event GW 150914 obtained from the signal observed at the L1. Both spectro-
grams are found bu using a window of 1/8 of a second and an overlap of 93.8%.

The energy loss during the total merger phase, according to eqs. (5.34), (5.36) is approxi-
mately,

�Emerger � 0:24�
2

M
c2: (5.39)

Since the frequency at the ISCO is fISCO � 0:02c3=.GM/, the angular momentum lost
during the merger is,

�Jmerger � 3:81G�
2

c
: (5.40)

The above implies that the dimensionless angular momentum of the newly formed BH is,

˛ � cJBH

Gm2BH
� 2
p
3
�M

m2BH
� 3:81

�
�

mBH

�2
; (5.41)

and from conservation of energy the mass is mBH � Mˇ.�/, where the expression (5.39)
was used and the function ˇ is,

ˇ.�/ �
h
1 �

�
1 � 2

p
2=3

�
�M � 0:24�2

i
: (5.42)

Consequently, the dimensionless BH spin parameter is

˛ � 1

ˇ.�/2

h
2
p
3� � 3:81�2

i
: (5.43)

5.3.4 Parameters Estimation

In order to extract more information from the signal it is necessary to make an analysis
on the frequency-time domain, i.e., find the spectrogram of the signals. Following the
procedure shown on The Gravitational Wave Open Science Center (2018) (the author is
not a data analyst expert), the spectrograms of the event are shown on figure 5.2. It is not
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Figure 5.3 The maximum frequency on each bin is ploted as a function of time

intended to perform a complete data analysis, but only a qualitative analysis. The chirp
mass of the binary can be extracted from the adiabatic part of the spectrogram,

Mchirp D c3

G

 
5

96�8=3

Pf
f 11=3

!3=5
: (5.44)

The evolution is shown in figure 5.3 and an empirical fit was done to obtain the chirp mass,
MH1

chirp � 30:5 Mˇ and M L1
chirp � 43 Mˇ. The chirp mass obtained from the data of the

detector H1 is in agreement with the reported value. The total mass of the system can be
inferred from eq. (5.30), i.e. the quasinormal frequency of the 22 mode. However, the
newly formed black is expected to the be rotating, so the following fitting formula for the
quasinormal modes of a Kerr BH must be used (Echeverria, 1989),

fpeak D 1 � 0:63.1 � a/3=10
2�mBH

: (5.45)

On the other hand, the observed least damped mode of the ringdown is fpeak D 251˙8 Hz
(Abbott et al., 2016e). Hence, eqs. (5.43) and (5.45), together with Mc D 30:5 D �3=5M ,
fix the symmetric mass ration �, the mass of the final BH and its spin parameter ˛,

� D 0:24; mBH D 71:5 Mˇ; ˛ D 0:65: (5.46)

From the last value the mass-ratio was obtained,

q D m2

m1
D 4��

1Cp1 � 4��2 � 0:69; (5.47)

the LIGO-Virgo analysis value is q D 0:79C0:18
�0�19 (Abbott et al., 2016d), therefore the

estimate is accurate within an error of 12.7%. The individual masses are,

mobs
BH;1 D

Mobs

.1C q/ � 42:4 Mˇ; (5.48)

mobs
BH;2 D

q

1C qMobs � 29:2 Mˇ; (5.49)
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Figure 5.4 Waveform in the frequency domain (right) generated by a Spin-TaylorT4 ap-
proximant.

to be compared with the values mBH;1 D 39:4C5:5
�4:9 Mˇ, mBH;2 D 30:9C4:8

�4:4 Mˇ (Abbott
et al., 2016d). The above estimates indicate that the newly born BH, not only conserves
almost the total mass of the binary, but also that it is rotating fast. Due to the closeness of
the results, it can be said that this BHB merger can be easily modeled via the Newtonian
center of mass view. In other words, the merger can be viewed as a test particle first in-
spiraling up to ISCO, then plunges into a rotating BH, which is perturbed and emits GWs
to reach a stationary state. Of course, this does not replace coherent Bayesian analysis to
extract the parameters, and constitutes one example of its applicability.

5.4 GW170817 analysis

The gravitational wave event called GW 170817 was reported to be consistent with the
merger of binary neutron star (Abbott et al., 2017a). It is interesting that the GRB 170817,
first reported at the GCN524666471 (Fermi GBM, 2017), was latter associated with GW
170817. The bright optical transient SSS17a/AT 2017gfo (Abbott et al., 2017e) was world-
wide observed. A brief time line of the first Gamma-Ray Coordinates Network (GCN)
related with GRB 170817 or GW179817 is:

1. The Fermi Gamma-ray Burst Monitor (GBM) trigger of a GRB at 12:41:20 GMT,
GCN524666471, Fermi GBM telescope (Fermi GBM, 2017).

2. “The online CBC pipeline (gstlal) has made a preliminary identification of a GW
candidate associated with the time of Fermi GBM trigger 524666471/170817529
at gps time 1187008884.47”. GCN21505, LIGO-Virgo telescope (LIGO Scientific
Collaboration et al., 2017a).

3. “ The on-board trigger time of Fermi GBM trigger 170817.529 524666471 at 12:41:06.47
UT is approximately 2 seconds after the single interferometer LIGO trigger reported
in GCN 21505”. GCN21506, Fermi GBM telescope, (Connaughton et al., 2017).
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4. The effective distance of the source inferred from only the date of H1 LIGO detector
is � 58 Mpc, GCN21509, LIGO-Virgo telescope (LIGO Scientific Collaboration
et al., 2017b).

5. Updated localization, data from the three detectors, GCN21513, LIGO-Virgo tele-
scope (LIGO Scientific Collaboration et al., 2017c).

6. Triangulation between Fermi GBM and Integral, GCN21515, IPN (Svinkin & Hur-
ley, 2017).

The complete time line can be found in tab. 6 of (Abbott et al., 2017e). During the GW
event there was a glitch at LIGO-Livingston detector (Abbott et al., 2017a).

5.4.1 Matched-Filter

The complete bayesian analysis will not be done here, only a preliminary analysis in order
to infer the localization of the source and to compare it with the EM localization. LIGO-
Virgo Collaboration used in the analysis the frequency domain post-Newtonian waveform
which includes tidal interactions and spin effects (Abbott et al., 2017a). The SNR of this
event is 18.8 and 26.4 for LIGO-Hanford (H1) and LIGO-Livingston (L1), respectively.
The exact parameters corresponding to this SNR were not reported there.

The value of chirp mass in the detector frame to Mc D 1:197Mˇ was fixed, and the
mass ratio was varied, q D m1=m2 with m1 > m2. The frequency domain template was
generated by the approximant SpinTaylorF2 using the pycbc package (Nitz et al.,
2018). The spin was chosen, �1 D �2 D 0 and the tidal parameters are ƒ1 D 300 and
ƒ2 D 15. These parameters are related to the quadrupole moment induced on the stars by
an external tidal potential:

ƒ D 2

3
k2

�
R

m�

�5
; (5.50)

where k2 is the second love number, R and m� are the radius and the mass of the star,
respectively. Thus, this number depends on the equation of state. The numbers chosen for
this template do not come from a physical integration of the structure of the stars. The
total lambda parameter for this template is 249.61, consistent with reported tidal parameter
Qƒ � 800 (low spin priors).

The procedure to calculate the SNR amplitude follows the technique presented on the
LOSC website (The Gravitational Wave Open Science Center, 2018) and on the Ref. (Allen
et al., 2012). The complex template, Qhtemplate.f / D QhC.f /C i Qh�.f /, is used to find the
complex SNR zm.t/ defined by (Allen et al., 2012):

zm.t/ D 4
Z 1
0

Qs.f / Qh�template.f /e
i2�f t

Sn.f /
df; (5.51)

where Qs.f / is the fourier transform of the LIGO data. In order to find the Fourier transform
of the data 64 s around 1187008882 GPS time were taken with a tukey window and then
FFT was performed. The SNR amplitude �m.t/ is given by:

�m.t/ D jzm.t/j
�m

(5.52)
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Figure 5.5 SNR amplitude on both LIGO detectors.

where

�2 D 4
Z 1
0

j Qhtemplate.f /j2
Sn.f /

df (5.53)

The quantity �m.t/ correspond to the SNR value once it is maximized over A and ˛ (see
Eq. (5.14)). The maximum �m.t/ is 19.460 and 25.083, at GPS time (see fig. 5.5),

tmax;H1 D 1187008882:447021 tmax;L1 D 1187008882:443604: (5.54)

The time delay δt D tHevent � tLevent D 0:003418 s. On the other hand, if the position of
the source is taken to be given by the EM counterpart (LIGO-Virgo Collaboration, 2017;
Haggard et al., 2017), RA = 13h09m48s and declination = 23ı2205300, the time delay is
δt D 0:003293 s. Therefore, the localization is consistent with the EM data.

5.4.2 Localization

The maximum SNR and time delay obtained in the last section were used to calculate to
estimate the position of the source. The methodology used is similar to BAYESTAR and
is described in ref. (Chen & Holz, 2017). Basically, the distribution of the declination and
RA, δ; ˛ is constructed from three observables (data): the SNR, the time delay and the
phase difference. Bayes theorem states,

P.δ; ˛jy/ D P.yj˛; δ/P.˛; ˇ/
P.y/

; (5.55)

i.e., the probability of the template with parameters 1 δ; ˛ (hypothesis), given the data
(observables) y, is proportional to the probability (the likelihood) of the data given the

1All the other parameters of the template such as the masses are held fixed
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Figure 5.6 Probability distribution of the localization of the source of GW170817 by
using only GW data. Left: timing contribution; center: SNR contribution, i.e. the
localization was found from the relative amplitude projection weighted by the corre-
sponding detector noise at the time of the event; right: contribution from timing and
SNR (see eq. (5.56) and below). The red cross marks the position obtained from the
EM data, which is consistent with localization from GW data.

template with δ; ˛. The output of the detector s.t/ contains the signal plus the noise, if the
template is subtracted, only the “noise” is left n.t/ D s.t/ � h.t/. Each template leaves a
different “noise”, i.e. is a different realization of the noise. The probability of observing
such a noise provides a probability of the parameters characterizing the template. When
the noise is Gaussian, it is proportional to expŒ�. Qnf j Qnf /�. For this particular case,

P.yj˛; δ/ / exp.��2.˛; δ/=2/; (5.56)

where��2 D �2.˛; δ/��2min.˛; δ/ can be found in (Chen & Holz, 2017). The chi-squared
function is split into two contributions �2t;δ�.˛; ˇ/ C �2�.˛; δ/, where the first come from
the time delay and phase difference, and the latter from the SNR. Figure 5.6 shows the
result using data from H1 and L1, with different observable contribution: time delay, SNR
(amplitude) and SNR + time delay. The EM localization given by (Haggard et al., 2017) is
shown with a red cross. It can be seen that the GW localization is consistent with the EM
data.

5.4.3 Electromagnetic Counterpart

On the other hand, GRB 170817A is sub-luminous compared to other observed S-GRB,
for example, in the (1-10000) keV band GRB 170817A is 2-3 orders of magnitude less en-
ergetic than GRB 15101B (previously the weakest GRB). Four possible explanations were
given in ref. (Abbott & et al., 2017). The first explanation proposes off-axis observation of
the jet and, the second the existence of a structured jet. The third explanation proposes a
different mechanism of emission in which the tail of emission is originated from the inter-
action of the jet with the surrounding material, i.e. “cocoon” emission. The last one asserts
that the luminosity of the system is intrinsically low.

An independent analysis based on a comparison of GRB 170817A with other observed
GRBs was done by Rueda et al. (2018b). The lack of any similarities with any known
GRB source has led there to a new explanation: the EM emission GRB 170817A has been
originated in the merger of two white dwarfs (WDs). The comparison and contrast was
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Figure 5.7 Characteristic strain (5.18) for a symmetric BWD with mWD D 0:6 Mˇ (con-
tinuous) and for a symmetric BNS withmNS D 1:36 Mˇ (dashed) during the inspiral
phase at 40 Mpc (similar to GW170817). The ASD for the aLIGO O2 detectors L1,
H1 is also shown (blue and orange curves), and the expected sensitivities of AdV
and aLIGO (green and red). It can be seen that the BWD is outside the detectors
sensitivity band.

done with GRBs 060614, 090510A, 130603 which are the prototypes of three of the fami-
lies according to the classification given in (Ruffini et al., 2016b). Before continuing with
the comparison, it is important to mention that from the analysis of the observational data
obtained by the satellites Swift (Gehrels et al., 2004), Fermi and Fermi-LAT (Atwood et al.,
2009), it was shown in (Ruffini et al., 2018c) that the GeV emission is a necessary and suffi-
cient condition to indicate the formation of a BH in S-GRBs. The GRB 061614 progenitor
is a BNS, and the observational absence of GeV emission implies that the remnant is a
newly formed NS; GRB 090510A progenitor is also a BNS but GeV emission indicates
that the remnant is a BH; GRB 060614 progenitor is a NS-WD binary. Regardless the dif-
ferent isotropic energy released in the (10 - 1000) keV band, the latter three GRBs converge
to the same luminosity in the X-ray band, but GRB170817 does not. GRB 170817 is not
consistent with any progenitor subclass of (Ruffini et al., 2016b). This led to the idea that
it may have been originated in a different system. It is worthwhile saying that this analysis
is based only on the EM data requiring consistency with previous observations.

The optical and infrared band of all the four GRBs converge to a common kilonova be-
haviour (see fig. 4 in (Rueda et al., 2018b)). The X-ray, optical and infrared emission can
be explained with the remnant of a binary WD (BWD) merger. Since no supernova was
observed the post-merger object must be a WD. The emission of the kilonova in the BWD
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scenario is not explained by r-process after the merger (Metzger et al., 2010), but by the
fallback of the ejecta (Rueda et al., 2018b,a). The GRB prompt emission can be generated
by magnetic stresses during the merger (this emission will be further investigated). Finally,
the GW signal is not consistent (detectable) with the merger of two WD given its low fre-
quency cut off, see fig. 5.7. For example, for symmetric BWD with m D 0:6, the end of
the merger is approximately at the contact point whose frequency is fmerger � 0:04 Hz ,
The radius of the WD components is� 1�109 cm assuming a Feynman-Metropolis-Teller
equation of state (Rotondo et al., 2011). It is hope that more join GW-EM detections will
provide additional information on the progenitor of S-GRBs and answer the issue on the
low luminosity of GRB 170817A.
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Chapter 6

 -ray Bursts and Gravitational
Waves Rates

The observations by  -ray telescopes, such as BATSE, Fermi, INTEGRAL, and Swift, has
improved the understanding of the progenitor of long and short gamma-ray burst (GRB),
which according to some models is a binary system. This has led also to a vast literature on
their relative occurrence rates, all in general agreement. For long bursts see, e.g., (Soder-
berg et al., 2006; Guetta & Della Valle, 2007; Wanderman & Piran, 2010; Guetta et al.,
2011; Kovacevic et al., 2014); for short bursts see, e.g., (Virgili et al., 2011; Wanderman &
Piran, 2015); and for both long and short bursts see, e.g., (Sun et al., 2015; Ruffini et al.,
2016b). This gives an extraordinary scenario to test models with data coming from differ-
ent channels, namely the electromagnetic (GRBs, X-ray, optical, infrarred) and gravitatinal
(GWs) channel.

This chapter is dedicated to establish the relation between GRBs and GWs within the
paradigm that both long and short GRB progenitors are binaries. More exactly, the GRB
occurrence will be used to assess the detectability of GW emission by the ground-based
and space-based interferometers Advanced LIGO, Advanced Virgo, eLISA, as well as by
the resonant bars. In order to do this it is needed to identify the different kinds of GRB pro-
genitors. Recently, a new classification of both long and short GRBs has been introduced,
in which all the GRBs progenitors are merging and/or accreting binary systems (Ruffini
et al., 2016b). For each system the initial state and the final state are respectively referred
to as “in-state” and “out-state”. For long GRBs, the induced gravitational collapse (IGC)
paradigm (Ruffini et al., 2006, 2007, 2008; Izzo et al., 2012; Rueda & Ruffini, 2012; Fryer
et al., 2014) proposes as in-state a tight binary system composed of a carbon-oxygen core
(COcore) undergoing a supernova (SN) explosion and a companion compact object, e.g. a
neutron star (NS) or a black hole (BH). The SN explosion triggers hypercritical accretion
onto the companion. On the other hand, the associated GW detection rate inferred from
GRBs has been already calculated but at a time when binaries were considered the progen-
itors of only short GRBs, see e.g. (Wanderman & Piran, 2015). The electromagnetic data
can be used to constraint GW emission models and vice versa. This chapter is based on the
publication (Ruffini et al., 2018b).
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Sub-class In-state Out-state Ep;i Eiso Eiso;X Eiso;Gev zmax �GRB
(MeV) (erg) (erg) (erg) (Gpc�3yr�1)

I XRFs COcore-NS �NS-NS . 0:2 � 1048–1052 � 1048–1051 � 1:096 100C45
�34

II BdHNe COcore-NS �NS-BH � 0:2–2 � 1052–1054 � 1051–1052 . 1053 9:3 0:77C0:09
�0:08

III BH-SN COcore-BH �NS-BH & 2 > 1054 � 1051–1052 & 1053 9:3 . 0:77C0:09
�0:08

IV S-GRFs NS-NS MNS . 2 � 1049–1052 � 1049–1051 � 2:609 3:6C1:4
�1:0

V S-GRBs NS-NS BH & 2 � 1052–1053 . 1051 � 1052–1053 5:52
�
1:9C1:8
�1:1

� � 10�3
VI U-GRBs �NS-BH BH & 2 > 1052 � � � & 0:77C0:09

�0:08

VII GRFs NS-WD MNS � 0:2–2 � 1051–1052 � 1049–1050 � 2:31 1:02C0:71
�0:46

Table 6.1 Summary of the astrophysical aspects of the different GRB sub-classes and of
their observational properties. In the first four columns we indicate the GRB sub-
classes and their corresponding in-states and the out-states. In columns 5–8 we list
the ranges of Ep;i and Eiso (rest-frame 1–104 keV), Eiso;X (rest-frame 0:3–10 keV),
and Eiso;GeV (rest-frame 0:1–100 GeV). Columns 9 and 10 list, for each GRB sub-
class, the maximum observed redshift and the local observed rate �GRB obtained in
(Ruffini et al., 2016c).
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6.1 Gamma Ray Burst Classification

Long GRBs, according to the IGC paradigm (Ruffini et al., 2015a), are classified into three
sub-classes (Ruffini et al., 2016b):

I. X-ray flashes (XRFs) with isotropic energy Eiso . 1052 erg and rest-frame spectral
peak energy Ep;i . 200 keV. This class occurs in COcore–NS binaries when the
hypercritical accretion onto the NS companion is not enough to induce gravitational
collapse into a BH (Becerra et al., 2016, 2015). Thus, the out-states of XRFs are
binaries composed of a newly-formed � 1:4–1:5 Mˇ NS (hereafter �NS) born in
the SN explosion, and a massive NS (MNS) which accreted matter from the SN
ejecta. Their occurrence rate is �XRF D 100C45

�34 Gpc�3 yr�1 (Ruffini et al., 2016c),
which is in agreement with those for low-luminous long GRBs (Liang et al., 2007;
Virgili et al., 2009; Sun et al., 2015).

II. Binary-driven hypernovae (BdHNe) with Eiso & 1052 erg and Ep;i & 200 keV.
BdHNe occur in more compact COcore–NS binaries which leads to a more massive
hypercritical accretion onto the NS, hence leading to BH formation. Therefore, the
out-states of BdHNe are �NS-BH binaries (Becerra et al., 2016; Fryer et al., 2015;
Becerra et al., 2015). Their occurrence rate is �BdHN D 0:77C0:09

�0:08 Gpc�3 yr�1

(Ruffini et al., 2016c), which is in agreement with those for high-luminous long
GRBs (Wanderman & Piran, 2010; Sun et al., 2015).

III. BH-SN with Eiso & 1054 erg and Ep;i & 2 MeV. BH-SN occur in close COcore-
BH binaries (Ruffini et al., 2001) in which the hypercritical accretion produces, as
out-states, a more massive BH and a �NS. Such BH-SN systems correspond to the
late evolutionary stages of X-ray binaries, as Cyg X-1 and Cyg X-3 (Giacconi &
Ruffini, 1978), or microquasars (Mirabel & Rodríguez, 1998). These systems are
here considered a sub-set of the BdHNe. Therefore, in the following we assume the
rate of BdHNe as an upper limit to the rate of BH-SNe, i.e. �BH�SN . 0:77C0:09

�0:08

Gpc�3 yr�1 (Ruffini et al., 2016c).

Short GRBs, which also within the traditional models (see, e.g., Goodman, 1986; Paczyn-
ski, 1986; Eichler et al., 1989b; Narayan et al., 1991; Meszaros & Rees, 1997; Rosswog
et al., 2003b; Lee et al., 2004b; Berger, 2014) originate from NS-NS or NS-BH binaries,
are divided into three sub-classes (Fryer et al., 2015; Ruffini et al., 2015b, 2016c):

IV. Short gamma-ray flashes (S-GRFs), with Eiso . 1052 erg and Ep;i . 2 MeV, oc-
cur when no BH is formed in the NS-NS merger, i.e. they lead to a MNS. Their
occurrence rate is �S�GRF D 3:6C1:4

�1:0 Gpc�3 yr�1 (Ruffini et al., 2016c), which is
in agreement with the estimates obtained from the whole short burst population re-
ported in the literature (Wanderman & Piran, 2015; Sun et al., 2015).

V. Authentic short GRBs (S-GRBs), with Eiso & 1052 erg and Ep;i & 2 MeV, occur
when a BH is formed in the NS-NS merger. Their occurrence rate is �S�GRB D�
1:9C1:8
�1:1

� � 10�3 Gpc�3 yr�1 (Ruffini et al., 2016c).
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VI. Ultra-short GRBs (U-GRBs), a new sub-class of short bursts originating from �NS-
BH merging binaries. Such systems are yet unobserved and present a great challenge
not only in the present case of high-energy but also possibly in the radio band where
they would manifest themselves as pulsar-BH binaries (see, e.g., Tauris et al., 2015,
and references therein). They can originate from BdHNe (see II above) or from BH-
SN events (see III above). We recall that in (Fryer et al., 2015) it is shown that
the majority of BdHN out-states remain bound. We thus assume as an ansatz that
�U�GRB � �BdHN D 0:77C0:09�0:08 Gpc�3 yr�1 (Ruffini et al., 2016c).

VII. Gamma-ray flashes (GRFs) have 1051 . Eiso . 1052 erg and 0:2 . Ep;i . 2 MeV.
This sub-class of sources originates in NS-WD mergers (Ruffini et al., 2016c). These
binaries are notoriously very common astrophysical systems (Cadelano et al., 2015)
and possible evolutionary scenarios leading to such mergers have been envisaged
(see, e.g., Lazarus et al., 2014; Tauris et al., 2000). GRFs form a MNS and not
a BH (see Ruffini et al., 2016c, for details). Their rate of occurrence is �GRF D
1:02C0:71

�0:46 Gpc�3 yr�1 (Ruffini et al., 2016c).

Interestingly, it has been shown in (Ruffini et al., 2016c; Fryer et al., 2015; Becerra et al.,
2015) that the out-states of long GRBs can become the in-states of short GRBs. Since
�XRF > �S�GRF and �XRF > �S�GRB, the out-states of XRFs (�NS-NS) could be the in-
states of S-GRFs (NS-NS mergers leading to a MNS) and S-GRBs (NS-NS mergers leading
to a BH).

There is also an additional evolutionary scenario concerning the NS-WD merger, namely
that they are produced from an S-GRF (Ruffini et al., 2016c). The merger of a mass-
asymmetric NS-NS binary with total massm1Cm2 smaller thanMcrit can produce a MNS
with a low-mass WD companion (see Bildsten & Cutler, 1992, and references therein), a
type of binary of great current interest (see, e.g., Lazarus et al., 2014; Tauris et al., 2000).

The rate of occurrence of the above GRB sub-classes has been recently estimated in (Ruffini
et al., 2016b) assuming the absence of beaming. Table 6.1 shows a summary of the astro-
physical aspects related to the GRB sub-classes and their observational properties.

6.2 Gravitational Wave Emission and Detectability

In order to assess the detectability, it is assumed that the binary evolution is only driven
by GW emission, despite the gravitational energy of the system in the merger phase is
dominated by the X, gamma-ray and GeV emission (see Table 6.1). This assumption is
made with the only aim of establishing an absolute upper limit to the GW emission and its
detectability under the most optimistic conditions according to the model.

The minimum GW frequency detectable by the broadband aLIGO interferometer is f aLIGO
min �

10Hz (LIGO Scientific Collaboration et al., 2015). Since during the binary inspiral the GW
frequency is twice the orbital one (see below Sec. 6.2.2), the above implies a binary is in-
side the aLIGO band for orbital periods Porb . 0:2 s. Thus, COcore-NS binaries, in-states
of XRFs and BdHNe, and COcore-BH binaries, in-states of BH-SN, are not detectable by
aLIGO since they have orbital periods Porb & 5 min� 0:2 s. Concerning their out-states
after the corresponding hypercritical accretion processes, namely �NS-NS, out-states of
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XRFs, and �NS-BH, out-states of BdHNe and BH-SNe, they are not detectable by aLIGO
at their birth but only when approaching the merger. In the case of NS-WD binaries, the
WD large radius and its very likely tidal disruption by the NS make their GW emission hard
to be detected (see, e.g., Paschalidis et al., 2009). Thus, we do not consider NS-WD bina-
ries in the following discussion. The analysis of GW emission during the final coalescence
and merger of the �NS-NS binaries produced by XRFs is included in the analysis of the
S-GRF and S-GRB sub-classes, and the merger of �NS-BH binaries produced in BdHNe
and BH-SNe is included in the one of U-GRBs.

The NS structure is needed in order to define the possible masses of the components of the
binary systems. In particular, the maximum stable NS mass is required, i.e., the critical
mass for gravitational collapse to a BH. The critical mass lies within the range 2:2–3:4 Mˇ
depending on the equation of state (EOS) and on the NS angular momentum (see Cipolletta
et al., 2015; Becerra et al., 2015; Belvedere et al., 2014 for details). These values corre-
spond to EOS based on relativistic nuclear mean-field models (in this case the NL3, TM1
and GM1 models) and to a NS angular momentum from J D 0 up to Jmax � 0:7GM 2=c

(Cipolletta et al., 2015). Hereafter, the stiffest model is used, namely the NL3 EOS, which
leads to the largest NS critical mass: from Mcrit � 2:7 Mˇ at J D 0, that, as expected, is
lower than the non-rotating critical mass upper limit of 3:2 Mˇ established by (Rhoades &
Ruffini, 1974), toMcrit � 3:4 Mˇ at Jmax (Cipolletta et al., 2015). For S-GRFs, the simple
case of symmetric binary (NS-NS) mergers, m1 D m2 D m, is considered. The precise
value of the merging NS masses leading to a BH is still poorly known, thus roughly half
the maximum NS critical mass is chosen for the NSs. For the sake of completeness, mass
values from m � 1 Mˇ to m � 1:7 Mˇ are also explored. For S-GRBs, non-spinning
symmetric binary components are considered with values starting from the upper edge of
the S-GRF progenitors, i.e. m � 1:7 Mˇ, up to the maximum non-rotating stable mass,
i.e. m � 2:8 Mˇ. For the U-GRBs which are out-states of BdHN, m1 D 1:5 Mˇ is cho-
sen for the �NS mass andmBH D 2:7–3:4Mˇ for the BH mass. For the U-GRBs which are
out-states of BH-SN , m1 D 1:5 Mˇ is adopted for the �NS mass and mBH D 3:4–10 Mˇ
for the BH mass.

6.2.1 Signal-to-noise Ratio

Since the GW signal might be deep inside the noise, the signal-to-noise ratio, �, is usually
computed using the matched filter technique (Flanagan & Hughes, 1998) (see previous
chapter). In the detector’s frame the GW frequency is redshifted by a factor 1 C z with
respect to the one in the source’s frame, fs , i.e. f D fs=.1C z/. The exact position of the
binary relative to the detector and the orientation of its rotation plane are usually unknown,
thus it is a common practice to estimate the signal-to-noise ratio averaging over all the
possible locations and orientations. The average is given by eqs. (5.17) and (5.18), but this
time characteristic amplitude receives corrections from the propagation over cosmological
distances (Flanagan & Hughes, 1998),

hc D .1C z/
�dl

s
hF 2
C
i

2

G

c3
dE

dfs
Œ.1C z/f �; (6.1)
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where,

dl D
.1C z/c
H0

Z z

0

Œ�M .1C x/3 C�ƒ��1=2dx; (6.2)

is the source luminosity distance. The cosmological model used in the calculation of dl is
ƒCDM, with paramaters H0 D 71 km s�1 Mpc�1, �M D 0:27 and �ƒ D 0:73 (Rigault
et al., 2015).

6.2.2 Gravitational Wave Energy Spectrum

A binary system which emits GWs, evolves in time through two different regimes: the
first is the inspiral regime and the second, here referred as the merger regime, is composed
in the most general case of the final plunge, the merger, and the ringdown (oscillations)
of the newly formed object. During the inspiral regime the system trajectory is a series
of quasi-circular orbits and it is well described by the point-like Newtonian quadrupole
approximation (Peters & Mathews, 1963; Peters, 1964; Landau & Lifshitz, 1951). The
GW frequency is twice the orbital frequency (fs D 2forb) and grows monotonically. Recall
from section 2.3.1 that the energy spectrum during the inspiral regime is,

dE

dfs
D 1

3
.�G/2=3M 5=3

c f �1=3s : (6.3)

The total energy emitted during this regime can be estimated as the binding energy of the
binary at the ISCO. For a test-particle in the Schwarzschild background, the ISCO is located
at rLSO D 6GM=c2 and the binding energy is,

�Einsp D
�
1 � 2

p
2=3

�
�c2: (6.4)

The GW spectrum of the merger regime is characterized by a GW burst (see, e.g., Davis
et al., 1971; Shibata & Taniguchi, 2011; Bernuzzi et al., 2015a). Thus, to estimate whether
this part of the signal contributes to the signal-to-noise ratio, it is sufficient to estimate the
location of the GW burst in the frequency domain and its energy content. The frequency
range spanned by the GW burst is �f D fqnm � fmerger, where fmerger is the frequency at
which the merger starts and fqnm is the frequency of the ringdown. The typical value of the
merger regime spectrum can be estimated as,�

dE

dfs

�
merger

� �Emerger

�f
; (6.5)

where �Emerger is the energy emitted during the merger regime.

6.2.3 Binary Neutron Star Merger

Numerical relativity simulations (e.g. Shibata & Taniguchi, 2011; Bernuzzi et al., 2015a)
show that finite size effects might end the inspiral regime before the ISCO. After this point,
the GW spectrum damps exponentially. For the case of binary neutron star the merger starts
at an orbit larger than the ISCO, and for the case of a NS-BH, the merger can occur below
the ISCO making the spectrum similar to a BH-BH merger. When the merger occurs long
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before the ISCO, there is no plunge. Therefore, the emitted energy will be less than the case
when the plunge is present. Therefore, if the energy emitted in the merger is adopted as the
one of a binary BH merger, �Emerger constitutes an upper limit (Detweiler & Szedenits,
1979; Nagar et al., 2007),

�Emerger � 0:5�2Mc2: (6.6)

In order to complete the estimate of the merger spectrum, the actual value of�f is needed.

Table 6.2 Properties of the GW emission of S-GRFs, S-GRBs and U-GRBs. Column
1: GRB sub-class. Column 2: energy emitted in GWs during the inspiral regime
�Einsp given by Eq. (6.4). Column 3: energy emitted in GWs during the merger
regime (plunge+merger+ringdown) �Emerger given by Eq. (6.6). Columns 4: GW
frequency at merger. Column 5: GW frequency of the ringdown regime. Column 6:
lowest cosmological redshift value zobs

min at which each sub-class has been observed.
Column 7: luminosity distance corresponding to zobs

min, dlmin , estimated from Eq. (6.2).
Columns 8 and 9: GW horizon calculated with the sensitivity of the first run of aLIGO
(O1) and the expected final sensitivity (2022+), respectively. We have used for S-
GRFs (1.4+1.4) Mˇ, for S-GRBs (2.0+2.0) Mˇ and, for U-GRBs (1.5+3.0) Mˇ and
(1.5+10.0) Mˇ respectively for the out-states of BdHNe and of BH-SN. Even if no
U-GRB has yet been identified, we use here the values of zobs

min and dlmin corresponding
to the closest BdHN observed.

�Einsp �Emerger fmerger fqnm zobs
min dlmin dGW (Mpc)

(erg) (erg) (kHz) (kHz) (Mpc) O1 2022+
S-GRF 7:17 � 1052 1:60 � 1053 1.20 3.84 0:111 508.70 168.38 475.61
S-GRB 1:02 � 1053 2:28 � 1053 1.43 2.59 0:903 5841.80 226.71 640.29
U-GRB 1:02 � 1053 2:03 � 1052 0.98 2.30 0:169 804.57 235.62 665.72
BH-SN 1:34 � 1053 1:35 � 1053 0.38 0.90 0:169 804.57 362.27 1023.43

The approach to the merger point, r D rmerger, depends on the nature of the binary neutron
star. Typically, the merger is assumed to start at the point of maximum GW strain (see, e.g.,
Bernuzzi et al., 2015a, and references therein). However, since the transition from a binary
system to a single merged object is not sharp, different definitions of the merger point can
be found in the literature (see, e.g., Kawaguchi et al., 2015). For the present calculation it
is sufficient to estimate the frequency at “contact”, i.e. the frequency at a binary separation
rcontact � r1 C r2 where ri is the radius of the i -component. This certainly sets a lower
limit to the frequency at maximum strain at merger, i.e. rcontact & rmerger. The frequency of
merger for a NS-NS system is taken as,

f NS�NS
merger � f NS�NS

contact D
1

�

c3

GM

�C1C2.1C q/
C1 C qC2

�3=2
; (6.7)

where q D m2=m1 is the mass-ratio which is related to the symmetric mass-ratio parameter
by � D q=.1 C q/2, and Ci � Gmi=c

2ri is the compactness of the i -component. For a
symmetric binary neutron star, f NS�NS

contact � .1=�/.c3=G/C3=2NS =M , where CNS � C1 D C2
is the compactness parameter of the initial NS. For example, a NS described by NL3 EOS
has compactness which lies in the range CNS � 0.14–0.3 with mass range 1.4–2:8 Mˇ
(see, e.g., Cipolletta et al., 2015). Thus, a binary with M D .1:4C 1:4/ Mˇ D 2:8 Mˇ,
with the same EOS, has f NS�NS

contact � 1.34 kHz, and for M D .2:0C 2:0/ Mˇ D 4:0 Mˇ,
f NS�NS

contact � 1.43 kHz.
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In the merger regime either a BH or a MNS can be formed. If a BH is formed, the l D 2

multipole (quadrupole) quasi-normal oscillations lead to a spectrum that peaks at a fre-
quency (Davis et al., 1971, 1972a)

f BH
qnm �

0:32

2�

c3

GM
; (6.8)

i.e. fqnm � 3:4 kHz for a Schwarzschild BH of 3 Mˇ. In the case of a rotating BH, namely
a Kerr BH, the peak frequency shifts to higher values (Detweiler, 1980). Thus, the value of
f BH

qnm for a non-rotating BH can be considered as a lower bound to the peak frequency.

When the merger does not lead to a BH, the merger frequency is dominated by the oscilla-
tions of a MNS. This last frequency is of the order of

f MNS
qnm � 1

�

�
GM

R3

�1=2
D 1

�

�
c3

G

� C3=2MNS

M
; (6.9)

where R is the radius of the MNS and CMNS � GM=.c2R/ its compactness. In both cases
of BH or MNS formation, it is satisfied fqnm > fcontact. The above frequency estimates
are consistent with values obtained from full numerical relativity simulations (see, e.g.,
(Anninos et al., 1995; Bernuzzi et al., 2015a)).

6.2.4 Neutron-Black Hole Merger

For a NS-BH merger, the approach to the merger is different since general relativistic effects
induce the end of inspiral before the “contact”. As as example, a NS-BH system with
m1 D mBH � 3 Mˇ and m2 D MNS � 1:5 Mˇ, M D 1:5 C 3:0 Mˇ D 4:5 Mˇ
will be analyzed below. In this case r1 D 2GmBH=c

2 (for a Schwarzschild BH) and
r2 D Gm2=.c

2C2/, so rcontact � 3:3GM=c2. Within the test-particle limit, the ISCO
around a Schwarzschild BH occurs at rISCO D 6GmBH=c

2 � 6GM=c2 > rcontact. Thus,
rcontact < rISCO which suggests that a NS-BH binary, similar to a binary BH, can pass from
the inspiral regime to the plunge at rplunge D rISCO, then to the merge at rmerger � rcontact,
to final formation of the BH which settles down during the ringdown. At rplunge, the GW
frequency is,

f NS�BH
plunge � 1

�

 
GM

r3ISCO

!1=2
D 1

�63=2

�
c3

GM

�
: (6.10)

As in the previous case of BH formation from a binary neutron star merger, the NS-BH
post-merger GW spectrum will be dominated by frequencies given by eq. (6.8). Namely,
for the present example f NS�BH

plunge � 980 Hz and f BH
qnm � 2:3 kHz. Hence, in the class of

U-GRBs �fU�GRB is,

�fU�GRB D f BH
qnm � f NS�BH

plunge � 0:092 c3

�GM
: (6.11)

The above analysis neglected the possibility that the NS can be tidally disrupted by the
BH before it reaches the ISCO. The NS is disrupted by the BH if rISCO < rtd, where rtd
is the tidal disruption radius. Numerical simulations of NS-BH binary mergers suggest
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rtd � 2:4q�1=3RNS and rISCO � 6GM=c2Œ1�0:44q1=4.1�3:54CNS/�
�2=3 (see Shibata &

Taniguchi, 2011 and references therein), where q � m2=m1 � 1 is the binary mass-ratio
RNS the NS radius, and CNS its compactness. It can be seen that the ratio of the tidal to
the ISCO radius is a decreasing function of the BH mass keeping constant the NS mass,
but it is always close to unity. In the range mBH D 3 � 10 Mˇ and mNS D 1:5 Mˇ, with
NL3 EOS, the NS is tidally disrupted when mBH . 6 Mˇ. It remains to investigate the
dependence of tidal disruption on the EOS through CNS, which can only be answer by a
vast range of simulations. However, for the mass range of the system in consideration, it
turns out that rtd � rISCO, so in order to avoid uncertainties, the end of inspiral is chosen to
be at the frequency given by (6.10).

6.2.5 Characteristic Strain and Detectors Sensitivity

The characteristic strain (6.1) is now estimated from the information given above. This
is used to assess the detectability by comparing and contrast with the strain noise of the
different detectors. Figure 6.1 shows characteristic strain (6.1) corresponding to S-GRFs,
S-GRBs and U-GRBs. In this figure the following masses are chosen: .1:4C1:4/Mˇ �NS-
NS merger for S-GRFs, a .2:0C 2:0/ Mˇ �NS-NS merger for S-GRBs, a .1:5C 3:0/ Mˇ
�NS-BH merger for U-GRBs produced by out-states of BdHNe, and a .1:5 C 10:0/ Mˇ
�NS-BH merger for U-GRBs produced by out-states of BH-SNe. This plot assumes that
these sources are located at the closest luminosity distance dl at which each sub-class has
been observed (see Table 6.2 for details). It is also shown the strain noise of aLIGO (for the
O1 and expected 2022+ runs), of Advanced Virgo (expected), of NAUTILUS bar detector,
and the expected strain noise curve of the space-based interferometer eLISA (see, e.g.,
Klein et al., 2016). Narrow-band resonant bar detectors such as ALLEGRO, AURIGA,
EXPLORER, NAUTILUS and NIOBE are sensitive within a bandwidth of � 1–10 Hz
around the resonant frequency which is typically f0 � 1 kHz (see, e.g., Table 2 in Camp
& Cornish, 2004, for a summary of the properties of the bar detectors). The bar detector
with the wider bandwidth is NAUTILUS with a minimum strain spectral noise

p
Sn D

10�21 Hz�1=2 at f0 D 935 Hz and
p
Sn � 10�20 Hz�1=2 in a bandwidth � 30 Hz around

f0 (Astone et al., 2008). This implies that a 1 ms GW burst would be detected by this
instrument if it has a strain amplitude h & 3 � 10�19 (Astone et al., 2006, 2008).

From this figure it can be concluded: i) before the merge all the systems transit, during
their inspiral regime which spans the frequency range f < fmerger=.1 C z/, first in the
eLISA frequency band to then enter the aLIGO one in the final circular orbits (when Porb <

0:2 s). The narrow bandwidth of the bar detectors does not cover these frequencies. For
the adopted distances the characteristic strain generated by all these sources is below the
sensitivity of eLISA. S-GRBs are also below the aLIGO sensitivity. S-GRFs and U-GRBs
are marginally inside aLIGO and AdV noise curve. ii) The merger regime, which expands
frequencies from fcontact=.1 C z/ to fqnm=.1 C z/ (see in Table 6.2 the frequencies and
redshift), is outside the eLISA frequency band but inside the aLIGO and bar detectors ones.
The characteristic strain in this final merger phase h � 10�24–10�23 is unfortunately well
below the sensitivity of both aLIGO (see also Kobayashi & Mészáros, 2003 for similar
conclusions) and bar detectors.
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Figure 6.1 Comparison of the characteristic strain hc of S-GRFs, S-GRBs and U-GRBs
with the strain noise (i.e.

p
fSn.f /. The cosmological redshift and corresponding

luminosity distance of the closest observed source of each sub-class was used (see
Table 6.2). The following three curves correspond to the inspiral regime of the coa-
lescence: S-GRFs with .1:4C 1:4/ Mˇ (solid curve), S-GRBs with .2:0C 2:0/ Mˇ
(short-dashed curve), U-GRB with .1:5C 3:0/ Mˇ, (dotted curve) and U-GRB (BH-
SN) with .1:5C 10:0/ Mˇ (long dashed curve). The dot, star, triangle and diamond
correspond to the typical hc after the merger, for S-GRF, S-GRB, U-GRB and U-GRB
(BHSN), respectively. The first point is located at fmerger=.1C z/ and the second at
fqnm=.1C z/ for the configuration. The green lines, from top to bottom, are the sen-
sitivity curves of the N2A1, N2A2 and N2A5 configurations of eLISA (Klein et al.,
2016). The dashed and continuous blue lines correspond to the sensitivity curves of
aLIGO O1 (2015/2016) and aLIGO 2022+ runs (Abbott et al., 2016b), respectively.
The filled square indicates the sensitivity of the NAUTILUS resonant bar. The green
and blue filled areas correspond to the regions of detectability of eLISA and aLIGO,
respectively. The red filled area indicates the region of undetectability by any of the
above instruments.

6.3 Gravitational Wave Detection Rate

As usual, the threshold �0 D 8 (Abbott et al., 2016b) for single detector was used to
calculate the detection rate. This minimum �0 defines a maximum detection distance or
GW horizon distance, denoted by dGW and given by (5.21). Gravitational wave horizons
for S-GRFs, S-GRBs and U-GRBs are shown in table 6.1. Since not all the sources are
optimally aligned with the detector, the number of detected sources inside a sphere of
radius dGW will be a fraction F3 of the total. This fraction determines the range of the
detector R D FdGW, with F�1 D 2:2627 (Finn & Chernoff, 1993). In order to give
an estimate of the annual number of detectable binaries associated with GRBs, the search
volume was computed as described in ref. (Abbott et al., 2016b), Vs D V GW

max T , where
V GW

max D .4�=3/R3 and T is the observing time. The lower and upper values of Vs for
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Figure 6.2 Expected annual GW upper and lower bounds (the solid and the dashed
lines, respectively) for the detections expected from S-GRFs (left panel), S-GRBs
(middle panel), and U-GRBs (right panel), for three selected observational cam-
paigns: 2015/2016 (O1: green curves with circles), 2017/2018 (O3: orange curve
with squares), and 2022C (gray curve with triangles). The vertical blue dashed line
in the plot of U-GRBs separates �NS-BH binaries produced by BdHN (BH masses
equal to the NS critical mass) and BH-SN (BH masses larger than the NS critical
mass).

a (1.4+1.4) Mˇ NS binary for the different observational campaigns reported in (Abbott
et al., 2016b) are: 2015/2016 (O1) with T D 4 months, VS D .0:5–4/ � 105 Mpc3 yr, and
the one by the entire network including LIGO-India at design sensitivity (2022+) with T D
1 yr, VS D 2 � 107 Mpc3 yr. The maximum possible sensitivity reachable in 2022+ leads
to dGW � 0:2 Gpc, hence V GW

max � 0:033 Gpc3, for such a binary. The information for a
(1.4+1.4)Mˇ binary was used to extrapolate it to other binaries with different masses since
the dGW scales with the chirp mass as M 5=6

c (see Fig. 6.2). From the inferred occurrence
rates �GRB (not to be confused with signal-to-noise ratio �) summarized in tab 6.1, fig. 6.2
shows the expected number of GW detections by aLIGO,

PNGW D �GRBV
GW

max ; (6.12)

The expected GW detection rate by aLIGO given by above equation, PNGW; the inferred oc-
currence rate of GRBs, PNGRB; and the observed GRB rate from  -ray telescopes (AGILE,
BATSE, BeppoSAX, Fermi, HETE-II, INTEGRAL, Konus/WIND and Swift) are compared
and contrasted in tab. 6.3. This last rate was simply estimated as PN obs

GRB D N obs
GRB=Tobs

where N obs
GRB is the number of GRBs detected in the observing time Tobs. The rate PNGRB

is obtained from the GRB specific rate through the reconstruction of the GRB luminosity
function and the study of its evolution with the redshift (Ruffini et al., 2016b). This esti-
mate, therefore, is larger than PN obs

GRB which is limited to those events beyond the detector
sensitivity threshold, falling inside its field of view and within its operational time.

6.4 GW170817 event

Meanwhile the present work was submitted to publication, the GW170817 (Abbott et al.,
2017a) was announced by the LIGO-Virgo Collaboration, which is consistent with a binary
neutron star merger. This might be seen in tension with the above rates corresponding to
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Table 6.3 Column 1: GRB sub-class. Column 2: inferred number of GRBs per year in
the entire Universe, PNGRB, for each GRB sub-class (see also Fig. 6 in Ruffini et al.,
2016c). Column 3: number of GRBs observed per year, PN obs

GRB, obtained from the ob-
servations of  -ray telescopes such as AGILE, BATSE, BeppoSAX, Fermi, HETE-II,
INTEGRAL, Konus/WIND and Swift, in the indicated years of observations (see also
Tables 2–6 in Ruffini et al., 2016c). Column 4: expected rate of GW detections by
aLIGO of all the GRB sub-classes, computed for three selected observational cam-
paigns: 2015/2016 (O1), 2017/2018 (O3) and the one by the entire network including
LIGO-India at design sensitivity, 2022+. The typical masses used here are the same
of Table 6.2.

GRB sub-class PNGRB (yr�1) PN obs
GRB (yr�1) PNGW (yr�1)

XRFs 144–733 1 (1997–2014) undetectable
BdHNe 662–1120 14 (1997–2014) undetectable
BH-SN . 662–1120 . 14 (1997–2014) undetectable
S-GRFs 58–248 3 (2005–2014) O1: (0.1–2)�10�3

O2: 0.2–1�10�2
O3: 0.8–5�10�2
2022+: 0.1–0.2

S-GRBs 2–8 1 (2006–2014) O1: (0.1–3.1)�10�6
O2: (0.1–1.6)�10�5
O3: (0.6–7.8)�10�5
2022+: (0.78–3.12)�10�4

U-GRBs 662–1120 – O1: .0:36–3:6/ � 10�3
O3: 0:008–0:032
2022+: 0:076–0:095

U-GRBs (BH-SN) . 662–1120 – O1: 0.0016–0.016
O3: . 0:029–0.12
2022+: . 0:3–0.36

GRFs 29-153 1 (2005–2014) undetectable

O2. First, the energetics of this event must be analyzed in order to deduce its implications.
The associated GRB called GRB 170817A, has an isotropic energy emitted in gamma rays,
Eiso � 5 � 1046 erg (Goldstein et al., 2017) and a peak luminosity .1:7˙ 0:1/ � 1047 erg
s�1 (Zhang et al., 2018), thus it belongs to the S-GRF subclass. On the other hand, the local
density rate from ref. (Ruffini et al., 2016b) is valid for GRBs with higher luminosity than
the lowest one in each subclass. More exactly, the lowest luminosity GRB of the S-GRF
subclass was GRB 050509B with Eiso � 8:5� 1048 erg and peak luminosity .1:1˙ 0:5/�
1051 erg s�1. Therefore, the aforementioned rate is not applicable to GW170817. This new
event will increase the local density rate and consequently the GW detection rate. The new
local density rate for S-GRF including GW170817 was calculated by Zhang et al. (2018) is
increased to 30–630 Gpc�3 yr�1. This implies a GW detection rate of 0.1–1 yr�1 for the
O2 run, in agreement with the observation. This is also consistent with the characteristic
strain shown in fig. 6.1.
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6.5 Discussion

According to ref. (Ruffini et al., 2016b) short and long GRBs are divided into 7 sub-classes,
all with binary progenitors. The main physical properties characterizing the outcome of X-
rays, gamma-rays, high-energy and ultra high-energy detectors, as well as their occurrence
rate, are shown in tab. 6.1. The key point is the specification of the in-states and out-states
of the GRB progenitors, in order to associate GRBs with GW emission.

This allowed to infer for each GRB sub-class the general properties of the GW emission
during the inspiral and merger regimes of the evolution. It was shown that S-GRFs, S-GRBs
and U-GRBs are the GRB sub-classes relevant for the GW analysis, due to their nature. It
is manifest that according to the classification, the release of the gravitational energy of the
system in the merger phase is dominated by the X-rays, gamma-rays and GeV emission
(see Table 6.1). However, here the GW emission was calculated with the assumption that
the binary evolution is only driven by GW emission. This assumption gives an absolute
upper limit and to the GW emission. The GW characteristic strain amplitude produced
by the inspiral and merger regimes, was compared with the strain noise of the detectors
eLISA and aLIGO, as well as of the narrow-band resonant bar NAUTILUS. This was done
by using the cosmological redshift and corresponding luminosity distance of the closest
observed source of each sub-class (see Table 6.2). It was shown that the inspiral regime is
possibly detectable only by aLIGO (see Table 6.2 and Fig. 6.1) and the merger regime is
undetectable by any of these instruments.

For each GRB sub-class it can be concluded that:

I. XRFs: their �NS-NS out-states transit, during the inspiral, first the eLISA frequency
band to then enter the aLIGO one in the final orbits prior to the merging process (i.e.
when Porb < 0:2 s). Resonant bar detectors are not sensitive in this inspiral regime
frequency range. The characteristic strain generated by these sources in the inspiral
regime is below the sensitivity of eLISA. The merger regime, (see Table 6.2), is
outside the eLISA frequency band but inside the frequency band of aLIGO and bar
detectors. These �NS-NS mergers can lead either to S-GRFs or S-GRBs (see in IV
and V below the conclusion about their GW detectability).

II. BdHNe: their �NS-BH out-states transit, during the inspiral, first the eLISA fre-
quency band to then enter the aLIGO one in the final orbits prior to the merging
process (i.e. when Porb < 0:2 s). Resonant bar detectors are not sensitive in this
inspiral regime frequency range. The characteristic strain generated by these sources
in the inspiral regime is below the sensitivity of eLISA. The merger regime is outside
the eLISA frequency band but inside the frequency band of aLIGO and bar detectors.
See Fig. 6.1 for details. These �NS-BH mergers lead to U-GRBs (see in VI below
the conclusion about their GW detectability).

III. BH-SN: their �NS-BH out-states transit, during the inspiral first the eLISA fre-
quency band to then enter the aLIGO one in the final orbits prior to the merging
process (i.e. when Porb < 0:2 s). Resonant bar detectors are not sensitive in this
inspiral regime frequency range. The characteristic strain generated by these sources
in the inspiral regime is below the sensitivity of eLISA. The merger regime, which
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expands frequencies from fcontact=.1C z/ to fqnm=.1C z/ (see Table 6.2), is outside
the eLISA frequency band but inside the frequency band of aLIGO and bar detectors.
See Fig. 6.1 for details. These �NS-BH mergers lead to U-GRBs (see in VI below
the conclusion about their GW detectability).

IV. S-GRFs: the final orbits of the inspiral regime (when Porb < 0:2 s) fall inside the
frequency band of aLIGO and bar detectors. However, the GW energy output in the
merger regime and distance leads to a characteristic strain which is not sufficient to
be detectable either by aLIGO or bar detectors. See Fig. 6.1 for details. The inspiral
regime is detectable for sources located at distances smaller than 168 Mpc for the O1
aLIGO run and smaller than 476 Mpc for the 2022+ run (see Table 6.2). The closest
S-GRF observed up to now is, however, located at 509 Mpc. See Table 6.3 for the
GW detection rate.

V. S-GRBs: the final orbits of the inspiral regime (when Porb < 0:2 s) fall inside the
frequency band of aLIGO and bar detectors. Again, its characteristic strain is not
sufficient to be detectable either by aLIGO or bar detectors. See Fig. 6.1 for de-
tails. The inspiral regime is detectable for sources located at distances smaller than
227 Mpc for the O1 aLIGO run and smaller than 640 Mpc for the 2022+ run (see Ta-
ble 6.2). The closest S-GRB observed up to now is, however, located at 5842 Mpc.
See Table 6.3 for the GW detection rate.

VI. U-GRBs: the final orbits of the inspiral regime (when Porb < 0:2 s) fall inside the
frequency band of aLIGO and bar detectors. However, they are detectable by aLIGO
or bar detectors. See Fig. 6.1 for details. In the case of U-GRBs originating from
the BdHN out-states, the inspiral regime is detectable for sources located at distances
smaller than 235 Mpc for the O1 aLIGO run and smaller than 666 Mpc for the 2022+
run (see Table 6.2). In the case of U-GRBs originating from the BH-SN out-states,
the inspiral regime is detectable for sources at distances smaller than 362 Mpc for
the O1 aLIGO run and smaller than 1023 Mpc for the 2022+ run (see Table 6.2). No
U-GRB has yet been electromagnetically identified. The closest distance at which is
located its possible progenitor, namely a BdHN, is 805 Mpc.

VII. GRFs: The tidal disruption of the WD by the NS produces a not detectable GW
emission (see, e.g., Paschalidis et al., 2009).

The most favorable case for GW detection, with a rate of PNGW D 0:1–0.2 yr�1, is that of
S-GRFs (see Table 6.3). In such systems however no BH is formed. The merger of the two
NSs will instead lead to a MNS. Among those producing a BH, the most favorable cases
are that of U-GRBs from BdHNe with a rate PNGW D 0:076–0:095 yr�1 and those from
BH-SN with PNGW D 0:3–0:36 yr�1 (see Table 6.3). Realistic PNGW values will need the
assessment of the GW to electromagnetic energy ratio which is necessarily smaller than
unity from energy conservation.
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Chapter 7

Gravitational Waves from Ellipsoidal
Figures of Equilibrium

Nowadays, the post-merger remnant of a BNS coalescence is not certainly known both
theoretically and experimentally. The search of remnant GW signal of GW170817 (Abbott
et al., 2017f) could give only upper limits on the emission of the post-merger object. The
possible outcomes of a NS-NS merger are the prompt formation of a BH, a unstable NS or
a stable NS. Regarding WDs mergers the remnant can be a NS or a WD. In either cases,
when there is no prompt formation of a BH, the post-merger object is a highly deformed
object which here will be modeled as a compressible ellipsoidal figure of equilibrium. This
object can be a NS or a WD. The scenario of a MNS will be studied in the next chapter
together with the necessary conditions for disk formation.

In addition, it will be shown that a highly deformed WD-like objects can exhibit a chirping
behaviour (similar to binaries), hereafter chirping ellipsoids (CELs) Rodriguez et al. (2018),
and they will be studied in the context of space-based interferometers. Space-based, grav-
itational wave (GW) interferometers, such as LISA, TianQin, Taiji open the window to the
GW low-frequency region and thus to a different set of astrophysical objects with respect to
the ones detectable by Earth-based interferometers (eg. LIGO/Virgo). Specifically, LISA is
sensitive to the frequency range 10�5–1 Hz Barack & Cutler (2004); Amaro-Seoane et al.
(2012).

7.1 Equilibrium Sequences

The deformed, rotating star is modeled as a compressible ellipsoidal star with polytropic
EOS, following the work of Lai et al. (1993). A NS star is modeled with polytropic index
n D .0:5�1/whereas a WD with n D .1:5�3/. The equations derived there have basically
the same form of those derived by Chandrasekhar (1963). The unit length used in this sec-
tion is the radius R0 of the non-rotating polytropic spherical star with same mass M of the
ellipsoid. When the ellipsoid whose principal axes are .a1; a2; a3/ is incompressible, R0 is
equal to the mean radius NR D .a1a2a3/1=3. For a compressible star, NR is not constant and
it should not be used for defining units (Lai et al., 1993). The unit of time is .G� N�0/�1=2,
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Figure 7.1 Maclaurin and Jacobi sequences for a compressible star with polytropic index
n D 1. It can be the bifurcation point.

where N�0 is the mean density of the non-rotating star, for example, the normalized angular
velocity and vorticity are N� D �=p�G N�0, N� D �=p�G N�0, respectively. The EOS of the
ellipsoidal star is also polytropic. The parameters characterising a polytropic star are shown
in the table 7.1. The evolution of an ellipsoidal star driven by GWR follows a sequence of
Riemann ellipsoids.

7.1.1 Maclaurin spheroids

A Maclaurin spheroid is a self-gravitating Newtonian star that rotates about one of its prin-
ciple axes. The axis of rotation is chosen to be the axis a3. The other axes are equal
a1 D a2 and greater than a3, a1 � a3. The equilibrium configurations can be labeled
by the angular velocity of rotation �, and the ratio of a3 with a1, �3 D a3=a1. It was
shown that the relation between � and the eccentricity e2 D 1 � �23 for an incompressible
and for a compressible ellipsoid have the same form (Lai et al., 1993), if the following
transformation is done N� 7! O� D pqn Q� D pqn�=

p
G� N�

O�2 D 2
�
.1 � e2/1=2

e3
.3 � 2e2/ sin�1 e � 3.1 � e

2/

e2

�
(7.1)

It should be noted that when the stars is incompressible (n D 0), q0 D 1 and N� D Q� D O�.

The Maclaurin spheroids become (dynamical) unstable against perturbations at �3 D 0:2838,
where there is a maximum in the angular velocity Q�. If some dissipation mechanism is
present, e.g. gravitational radiation, the Maclaurin spheroids become (secular) unstable at
�3 D 0:5827. It is interesting that at the onset of secular instability, the fundamental modes
(f-modes) are neutralized, i.e. there is a nontrivial perturbation independent of time. There-
fore the spheroid can be deformed into a new equilibrium figure with a1 ¤ a2. This point
constitutes a bifurcation point, and in fact from this point bifurcates two equilibrium se-
quences called the Jacobi and Dedekind ellipsoids. The criteria for stability for differently
rotating star is strongly related with ˇ D T=jW j, where T is the kinetic energy and W the
gravitational potential energy.
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7.1.2 Jacobi and Dedekind ellipsoids

The equilibrium sequence for the Jacobi ellipsoids is determined by the equation:

a21a
2
2A12 D a23A3; (7.2)
O�2 D 2B12; (7.3)

where the functions A12; B12 are defined in terms of the potential integrals A1; A2; A3
found on (Chandrasekhar, 1963). The Dedekind ellipsoids are “adjoint” configurations
to the Jacobi ellipsoids. They are non-rotating ellipsoids that maintain its shape due to
internal motions with vorticity �. The Dedekind sequence is obtained by changing O� 7!
a1a2 O�=.a21 C a22/, according to Dedekind’s theorem (Chandrasekhar, 1963).

7.1.3 Riemann-S type ellipsoids

The f-mode of a Maclaurin spheroid can be neutralized we viewed from a rotating coordi-
nate system. Therefore, every point of the Maclaurin sequence can be seen as a bifurcation
point of a new type of ellipsoids called Riemann ellipsoids (see fig 7.3). These ellipsoids
constitute a solution of the Dirichlet’s problem. There is a subset of Riemann ellipsoids
called of S-type, whose vorticity � is parallel to the angular velocity �, which is chosen to
lie along the a3 axis. The configuration of a Riemann S-type ellipsoid, satisfy the equations
(Chandrasekhar, 1963; Lai et al., 1993):

O�2 � a21a
2
2

.a21 C a22/2
O�2 � 2B12 D 0; (7.4)

a21a
2
2

.a21 C a22/
O� O� � a21a22A12 C a23A3 D 0; (7.5)

where O� D pqn�=
p
�G N�. When the ellipsoid evolves in time driven by GWR (see next

sec.), the circulation around the equator of the star C is conserved and is given by

C

2�
D a1a2.� C 2�/: (7.6)

The equilibrium sequence with constant circulation parametrized by �2 is constructed by
selecting some circulation and solving the system of equations for . O�; O�; �3/, shown in fig.
7.2.

7.1.4 Quasi-static Evolution driven by Gravitational Radiation

The evolution of an ellipsoid driven by gravitational radiation moves towards a lower en-
ergy and lower angular momentum state. Here it is considered, as in the case of a binary
system, the adiabatic evolution of equilibrium states with decreasing energy. It was found
by Miller (1974) that the circulation is conserved along the evolution (GW driven) of a
self-gravitating rotating object, thus one possible evolution path is the Riemann S-type
equilibrium sequence. This quasi-static evolution is shown in the figures 7.3 and. The
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Figure 7.2 Riemann-S type sequences with constant circulation. The blue, orange and
green curves correspond to an ellipsoid with polytropic index n D 1:0; 2:0; 2:7, re-
spectively. The continuous, dashed and dotted lines show different values of circula-
tion for each polytropic index. It is also shown the parameter ˇ.�2 D 1/ D f̌ .

Dedekind theorem implies that there are two types of sequences, with the same circulation,
that branch off the Maclaurin sequence. One sequence with j�j < 2j�j which is called
Jacobi-like and the other with j�j > 2j�j called Dedekind-like. The Jacobi-like evolution
is characterized by dJ=d� < 0, so along this sequence the angular velocity increases
(spin-up). In contrast, along the Dedekind-like sequence the angular velocity decreases
(spin-down). A chirping-like evolution can be found only on the Jacobi-like sequences,
where the ellipsoid moves towards a Maclaurin (axis-symmetric) state with the same cir-
culation. The final point of the evolution depends on value of ˇ at the Maclaurin state.
If ˇ < 0:1375 at the Maclaurin point, the spheroid is stable and the evolution driven by
gravitational radiation ends. Otherwise, the Maclaurin spheroid may leave its equilibrium
state along the decreasing-energy Dedekind-like sequence ending at a Dedekind ellipsoid
with � D 0.

The quasi-static sequence is confirmed by the numerical integration of the dynamical equa-
tions governing a compressible ellipsoid (Lai et al., 1994). The numerical solution shows
evolving perturbations oscillating around the constant circulation sequence. These pertur-
bations correspond to f-modes (bar-modes). The dynamical equations are,

N�0 D 2
�

˛1˛2

˛21 � ˛22

�"� N�
˛2
C
Nƒ
˛1

�
˛01 �

� N�
˛1
C
Nƒ
˛2

�
˛02 C

G

5c5

�I .5/12
�G N�0

�
˛21 C ˛22
˛1˛2

�#
;

(7.7)

Nƒ0 D 2
�

˛1˛2

˛21 � ˛22

�"� N�
˛1
C
Nƒ
˛2

�
˛01 �

� N�
˛2
C
Nƒ
˛1

�
˛02 C

2G

5c5

�I .5/12
�G N�0

#
; (7.8)
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Figure 7.3 Secular quasi-static evolution of a compressible Riemann-S ellipsoid with
polytropic index n D 1, driven by GR, calculated a la Landau-Lifshitz. The ver-
tical line at �2 D 0 corresponds to the Maclaurin sequence from which other
equilibrium sequences branch off. The black continuous curve on the left is the
Dedekind sequence and on the right the Jacobi sequence. The long-dashed, dot-
ted and dashed curves are the Riemann-S type sequences with constant circulation
C=.2�/ D 1:94; 2:39; 2:92, respectively.

˛001 D . N�2 � Nƒ2/˛1 � 2˛2 N� Nƒ �
2

qn

A1

˛2˛3
r30 C

GM

qnc2R0˛1

�
r30
V

�1=n
� 2G
5c5

�I .5/11 ˛1
�G N�0

;

(7.9)

˛002 D . N�2 � Nƒ2/˛2 � 2˛1 N� Nƒ �
2

qn

A2

˛1˛3
r30 C

GM

qnc2R0˛2

�
r30
V

�1=n
� 2G
5c5

�I .5/11 ˛2
�G N�0

;

(7.10)

˛003 D �
2

qn

A3

˛1˛2
r30 C

GM

qnc2R0˛3

�
r30
V

�1=n
; (7.11)

where the natural unit length is lu D c.G� N�0/�1=2, and ˛n D an=lu, r0 D R0=lu,
V D ˛1˛2˛3. Prime denotes differentiation with respect to Nt D Œ.G� N�0/1=2t �. The GWR
reaction terms �I .5/ij are the fifth time derivative of �I ij (2.60) to lowest order in Pan. The
evolution is shown in fig. 7.4 together with the quasi-static sequence with constant circula-
tion. It can be seen that the evolution follows the corresponding Riemann-S type sequence
shown as a dashed line.
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Figure 7.4 Dynamical evolution of a compressible (blue) and incompressible (orange)
ellipsoid with polytropic index n D 1, M D 2:54 and R0 D 14:5 km. Left: Angular
frequency of rotation as a function of time. It can be seen that the dynamical evolution
follows this sequence which is shown as a dashed line. Right: dynamical evolution of
the axis ratios �2 and �3.

7.2 Gravitational Waves

Following the same approach of binary systems, the leading-order of the gravitational
waveform evolution is obtained by substituting the quasi-static evolution in the expres-
sion for a rotating deformed star. In the weak-field and low-velocity approximation the
GW polarizations are given by eqs. (2.100) and (2.101) (also see sec. 2.3.2). From the GW
luminosity (2.102) the typical time scale can be obtained,

�GW D f

Pf D f
ˇ̌̌̌
dE

df

�
dt

dE

�ˇ̌̌̌
: (7.12)

The GW amplitude h0,

h0 D 4G

c4D
�2.I11 � I22/; (7.13)

with Ii i D �nMa
2
i =5, as a function of the frequency can be easily calculated from the

equilibrium sequence (see fig. 7.5). The GW has an early period when both the frequency
and the amplitude increase, i.e. a chirping-like period, hence this object is called a chirping
ellipsoid (CEL). Different circulations converge during this early period which is charac-
terized by axes ratios �2; �3 . 0:7. It was found that the smaller the polytropic index is,
the more deformed the star is during the chirping period. In fact, for n < 1 the axes ratios
�2; �3 � 10�3.

In order to compare and contrast a CEL with a binary , h0.f / and �GW were found for
the case of a binary system (sec. 2.3.1) whose chirp mass is of the order of the mass of the
ellipsoid. It can be seen in Fig. 7.5 that the time-scale and amplitude evolution of the binary
system is of the same order of magnitude thana CEL. This suggests that the two signals can
have similar waveforms that sweep the same frequency interval at the same time. In order
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Figure 7.6 Intrinsic phase variation for a Riemann-S type spinning-up ellipsoid for poly-
tropic indices n D 2:7; 2:8; 2:95. The different colors represent different compactness
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to make a quantitative study of the waveforms, the non-dimensional parameter Q! (2.74)
was found,

Q! D !2

P! D 2�
2

ˇ̌̌̌
dE

d�

�
dt

dE

�ˇ̌̌̌
; (7.14)

where ! D 2� is the angular frequency of the GW. Recall that Q! is an intrinsic measure
of the phase-time evolution (Damour et al., 2013). An empirical fit is then done to the cal-
culated curves ofQ! for a CEL with different polytropic indexes n, and assuming different
values of the compactness parameter. The general mathematical form of the fitting function
is:

Q
ellip
! � An

C5=2
�

!p
�G N�0

�˛
D An

Cm
�
2GM!p
3c3

�˛
; (7.15)

where m D .5C 3˛/=2. The values of An and ˛ are shown in table 7.1.

The function Q! of both, the CEL and the binary, has a power-law behavior, but with dif-
ferent exponent. The negative exponent implies that both have a monotonically increasing
behavior in frequency. The behavior in the CEL can be understood from compressibility,
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Table 7.1 Polytropic structure constants (n; �n; k1; k2; k3) and the Q! power-law empir-
ical fitting parameters.

n �n k1 k2 k3 An ˛

0.3 0.88562 0.13139 0.90949 2.8656 2.65 �0:926
0.5 0.81482 0.22933 0.87777 2.6594 2.55 �0:973
1.0 0.65345 0.5 0.81289 2.2472 2.68 �1:081
1.5 0.51149 0.79586 0.76077 1.9252 3.753 �1:087
2.0 0.38712 1.1078 0.71618 1.6562 4.003 �1:222
2.5 0.27951 1.4295 0.67623 1.4202 4.060 �1:447
2.7 0.24109 1.55971 0.66110 1.33194 5.926 �1:365
2.8 0.22286 1.62502 0.65367 1.28882 5.632 �1:464
2.9 0.20530 1.69038 0.64630 1.24621 4.940 �1:571
2.95 0.19676 1.72309 0.64265 1.22511 4.369 �1:614
2.97 0.19340 1.73617 0.64119 1.21669 3.760 �1:640
2.99 0.19005 1.74925 0.63973 1.20829 3.817 �1:652

vorticity and conservation of circulation. Riemann S-type ellipsoids have internal motions
with uniform vorticity that contributes to the total angular momentum. In spin-up configu-
rations, the radiation of angular momentum induces a vorticity loss. But, since the circula-
tion is constant, this loss must be compensated with a change in the angular velocity and in
the axes a1; a2. Thus, the spin-up of a CEL has two “components”: one due to the change
in geometry that depends on the compressibility, and the other one due to the decrease of
vorticity. The compressibility of the object changes with the polytropic index, inducing the
behaviour seen in Table 7.1 (e.g. when n ! 3 ˛ ! �5=3). The compressibility of the
object changes with the polytropic index, reducing the extra spin-up of the ellipsoid by a
change in the moment of inertia. This effect can be seen in Table 7.1 (e.g. when n ! 3

˛ ! �5=3).

The empirical power-laws can be used to compute the phase-time evolution of the GW. The
angular wave frequency as function of time is in this case given by,

! D
"

An
Cm.1 � ˛/

�
4

3

�˛=2�GM
c3

�˛�1
�

�#1=.1�˛/
; (7.16)

where � D tend�t , tend is the asymptotic end of the chirping epoch. As in the case of an ideal
inspiraling binary, the frequency formally diverges at tend. In a real CEL this conditions is
never achieved since the objects “leaves” the power-law regime at a time t1 with a finite
angular frequency, let’s say !1, which is shown in Fig. 7.6 as the dashed vertical line. The
phase evolution is given by,

�GW D
 
˛˛�1

Cm
An

"
.1 � ˛/c3�p
4=3GM

#˛!1=.˛�1/
C �end; (7.17)

where �end is the phase when ! !1. The Fourier transform of the GW polarizations are
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obtained with the stationary phase method (see e.g. Maggiore (2008)):

QhC.f / D A.f /ei‰C.f /.1C cos2‚/=2; (7.18)
Qh�.f / D A.f /ei‰�.f / cos‚; (7.19)

where

A.f / D h0

2

Q
1=2
!

f
p
2�
D 2G

c4D
.�f /2.I11 � I22/ Q

1=2
!

f
p
2�
; (7.20)

and

‰C.f / D 2�f tend C Q!

˛.˛ � 1/ � �end � �=4; (7.21)

‰�.f / D ‰C.f /C �=2: (7.22)

It should be noticed that the “intrinsic phase evolution” enters explicitly in the Fourier
amplitude A.f / and in the Fourier phase ‰C;�.

7.2.1 Detectability

The frequency of these CELs lies in the range f � 0:1� 100 mHz, making them plausible
targets of space-borne GW detectors such as LISA or TianQin. The typical timescale of
CELs (7.12), was found to be much greater than the observation time, Tobs, of detectors,
�GW � Tobs � .t � t0/. Therefore, a CEL is quasi-monochromatic, and its phase can be
expanded in powers of � D .t � t0/=�GW,

ˆ D ˆ0 C 2�Œ�f .t � t0/C 1

2
�2 Pf .t � t0/2 C : : : �; (7.23)

where as usual � is a dummy parameter to keep track of the relative strength of the terms.
To first order in � the GW is regarded as monochromatic.

The analysis will be illustrated with the LISA mission, which consist of three spacecrafts
in a equilateral triangle array of length L D 5 � 106 km, orbiting around the sun. Each
spacecraft can be regarded as a test mass. The passing of a GW will change the distance
between the spacecrafts .δL1; δL2; δL3/. The array is equipped with laser beams along the
sides of the triangle array in order to construct a two-arm interferometer. A pair of two-arm
interferometers will be constructed with 6 laser beams. Two time series of data sI;II.t/ will
be obtained from the interferometers, which may contain the GW signals hI;II.t/,

hI;II.t/ D
p
3

2

�
FCI;II.t/hC.t/C F �I;II.t/h�.t/

�
; (7.24)

where FC;�I;II are the antenna patterns of an interferometer which depend on the source
angular position and polarization angle (5.12) (5.13). The GW polarizations, including the
Doppler phase-shift ˆD.t/ due to the proper detector motion, can be obtained from eqs.
(2.100) and (2.101), the quasi-monochromatic approximation (7.23),

hC.t/ D h0 cos
�
ˆ0 C 2�f .t � t0/C � Pf .t � t0/2 CˆD.t/

��
1C . OL � On/2�=2; (7.25)

h�.t/ D h0 sin
�
ˆ0 C 2�f .t � t0/C � Pf .t � t0/2 CˆD.t/

� OL � On; (7.26)
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where OL is the unit vector in the same direction of the total angular momentum of the CEL
and On the unit vector from the source to the detector (see fig. 5.1). Note that the form of
these pattern functions depend on the source position with respect a coordinate system in
the detector. Owing to the detector motion, it is convenient to express all the angles with
respect to a coordinate system tied with the ecliptic, denoted with an overbar following the
notation of Cutler (1998) (see also the aforementioned ref. for the explicit expressions).
The polar and azimuthal angles of the source are . N�s; N�s/ and the same angles of the unit
vector OL are . N�L; N�L/, with respect the ecliptic coordinate system.

As a result, the parameters characterizing the template (observables) of a CEL1 are 8 in
total: f , Pf , �0, h0, N�s , N�s , N�L, N�L. The phase �0 constitutes a time shift and is not an
intrinsic parameter. The intrinsic parameters of the source are f , Pf , h0, this last is quasi-
intrinsic because of the fact that it involves the distance to the source. The subsequent
analysis will concentrate on these latter parameters. As usual, the characteristic amplitude
for a CEL is,

hc � f
q
2
�j QhCj2 C j Qh�j2�ˇ̌̌̌

opt
D h0

s
dN

d lnf
; (7.27)

where the second identity is true when the CEL is optimally oriented. The expected (angle
averaged) SNR is related to the latter characteristic amplitude,

h�2i D 6

25

Z f1

f0

h2c
f 2Sn.f /

df: (7.28)

Since these CELs are quasi-monochromatic, the expected SNR can be readily estimated
with the “reduced” characteristic amplitude Qhc ,

Qhc.f / D h0.f /
p
N D h0.f /

p
f Tobs;�

S

N

�2
/
Qh2c.f0/

f 2Sn.f0/
(7.29)

which is shown in fig 7.7 for a CEL with n D 2:95 and MCEL D 1:0Mˇ. Furthermore, in
order to illustrate the frequency-time evolution of this latter CEL, it is shown in the same
figure, a chart of the time to reach the of the chirp, �end D tend � t , i.e at �end D 0 this CEL
reaches the GW frequency of� 9:20 mHz and after this point the amplitude decreases.

For the used Galactic distance, Qhc is well above the LISA noise curve, at least near the end
of the chirping regime, and is in principle detectable. The typical value of !=.�G N�0/1=2
during the chirping phase is � 10�5–10�1. For typical densities of a white dwarf � 106–
109 g cm�3, the frequency is � 10�6–10 Hz, well inside the LISA sensitivity band. De-
tectability CEL properties obtained from eqs. (7.27) and (7.28) are tabulated in the last
column of tab. 7.2.

In addition, these CELs can be regarded as monochromatic in some part of their existence.
Figure 7.6, shows that the evolution is rather slow at low frequencies, and becomes slower
when n! 3, thus CELs are expected to be monochromatic at those regions.

1The observables are the same for any quasi-monochromatic GW
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Figure 7.7 Reduced characteristic amplitude, Qhc , of a CEL with MCEL D 1:0 Mˇ and
C � 2:5�10�4 (blue), according to the relativistic Feynman-Metropolis-Teller equa-
tion of state Rotondo et al. (2011). The polytropic index is n D 2:95, and the distance
is D D 1 kpc. The observation time is Tobs D 2 yr. The blue dot at fend � 9:20 mHz
marks the end of the chirp. A chart showing the time to reach the end of the chirp,
�end, is shown in the middle. In addition, the characteristic amplitude of an EMRI
composed of m1 D 1940:62 Mˇ, m2 D 0:0001 Mˇ, D D 1:29 kpc, up to tidal-
disruption frequency (green), and compact star binary composed of m1 D 0:45 Mˇ,
m2 D 0:18 Mˇ D D 1:20 kpc, up to RLOF frequency (orange). For more details see
tab. 7.2. Fits of the amplitude spectral density (ASD) of LISA including galactic WD
binaries, are shown as purple continuous lines with decreasing intensity for configu-
rations N2A1L4, N2A2L4 and N2A5L4, top to bottom respectively (see (Klein et al.,
2016) for the explicit form of the fits and conventions meaning). In addition is shown
the ASD of TianQin project as a black continuous line (Luo et al., 2016)

.

More exactly, whether a GW is monochromatic or not depends on the frequency resolution
or frequency bin of the detector, T �1obs , SNR, and on the frequency evolution of the CEL. The
errors in the estimation of the frequency and its rate of change by using matched-filtering
are (Takahashi & Seto, 2002),

�f D 0:22
�
S=N

10

��1
T �1obs ; (7.30)

� Pf D 0:43
�
S=N

10

��1
T �2obs ; (7.31)

which are frequency independent for Tobs & 2 yr. The ratio of the error in Pf , to the rate of
change of the frequency of a CEL can be used to determine its monochromaticity Takahashi
& Seto (2002),

F � � Pf
Pf (7.32)

i.e, a source is monochromatic for the detector if F > 1. We show this criteria for different
polytropic indices in fig. 7.8, and confirm that in some part of the sensitivity band CELs
are monochromatic.
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Figure 7.8 Ratio of � Pf , error in estimating the time derivative of the frequency, to the
value Pf of CELs with different polytropic indices, F D � Pf = Pf . The ratio was
obtained assuming S=N D 10 and Tobs D 2 yr. When R > 1 the error in the esti-
mation of the frequency is greater than the theoretical value of the CEL, i.e., the time
derivative of f is inside the error and the system can be regarded as monochromatic
(Takahashi & Seto, 2002). For f . 3mHz CELs are monochromatic for the assumed
detection values.

Given the estimations, CELs are detectable for 1 yr of observation, in the frequency band
where they are monochromatic, as well in the band where they are not. At very low fre-
quencies, f < 1 mHz, the system is monochromatic, but unfortunately its GW amplitude
(at D D 1 kpc) is not high enough to accumulate the sufficient signal-to-noise ratio during
1 yr in order to be detected.

7.2.2 Degeneracy between CELs and binaries

Next, the above results were compared with the ones of a binary. In the quasi-circular
orbits approximation, the intrinsic phase-time parameter of a binary has a power-law expo-
nent equal to �5=3. For a CEL whose EOS is modeled as an ultra-relativistic degenerate
electron gas (n D 3), the intrinsic-phase has the same exponent than the binary. There-
fore, there exist a binary system, with the some chirp mass, that matches the phase-time
evolution of the CEL. When ˛ D �5=3 the dependence on the compactness in Eq. (7.15)
disappears. It is interesting that in a compact star like a white dwarf this behavior finds a
physical explanation: the ultra-relativistic limit for a Newtonian self-gravitating star made
of fermions is approached when � ! 1, namely when R ! 0. In this limit, when the
critical mass is reached, the star properties become radius-independent.

More exactly, for each CEL at a given frequency there exist a binary system with the same
intrinsic phase-time evolution parameter Q! . Hereafter, the analysis is illustrated with a
CEL whose polytropic index is n D 2:95. The chirp mass of the equivalent binary system
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Figure 7.9 Chirp mass of the binary system which has the same intrinsic phase-time evo-
lutionQ! of a CEL, n D 2:95, at a GW angular frequency !. The value has been nor-
malized by C1:4 � C=20�10�4 and �1:4 � .�G N�0= N�1:4/�1=2, where N�1:4 is the mean
density of a non-rotating WD with mass 1:4Mˇ and radiusRWD � 1000 km, accord-
ing to the mass-radius relation obtained from the relativistic Feynman-Metropolis-
Teller equation of state (Rotondo et al., 2011). Therefore, the values shown in this
plot correspond to CEL with MCEL D 1:4Mˇ, C D 20 � 10�4 and values for other
compactness parameters can be easily inferred.

to this CEL is shown in fig. 7.9. It can be seen that at !=
p
�G N�0 � 10�3 the chirp mass

is � 0:4 Mˇ and scales with the compactness, C3=21:4 , where C1:4 � C=20 � 10�4.

In addition, in order to give a more complete vision of the degeneracy, we plot in fig. 7.10
the chirp mass of the equivalent binary as a function of the observed frequency and the
mass of the CEL (n D 2:95). This mass can be interpreted as a “CEL chirp mass”, but
in contrast to the pure GW-driven binary chirp mass, it changes (very slowly) during the
CEL evolution. The mass-radius relation of the non-rotating white dwarf-like object was
obtained from the uniform distribution approximation, fully degenerate, free electron gas
described by Fermi-Dirac statistics (Rotondo et al., 2011).

As a result of the intrinsic known degeneracy in the chirp mass, many combinations of m1
and m2 are equivalent to a CEL, this feature is illustrated in fig. 7.11. The Two types of
equivalent binary systems studied here are: detached DWDs and EMRIs composed of an
IMBH and an exoplanet. It is worthwhile to mention that the chirp mass of detached DWD,
with currently known parameters, ranges from 0.23 to 0.61Mˇ (Rebassa-Mansergas et al.,
2017). For the sake of example, some equivalent binary systems to a CEL, n D 2:95, were
calculated and the results are tabulated in tab. 7.2.

When n is close to 3 and the chirp mass has been matched, the two systems have nearly
equal phase-time evolution and are practically indistinguishable in their phases. This fea-
ture can be appreciated in fig. 7.12, where the intrinsic phase-time evolution of a CEL
and binary systems were compared and contrasted, with matching and non-matching (but
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Figure 7.10 Contour plot of the chirp mass of the equivalent binary system as function of
the mass of the CEL and the observed frequency. More exactly, the chirp mass of the
equivalent binary depends on the compactness, mass of the CEL, and on the observed
frequency, but once the equation of state is selected, the mass-radius relation is fixed
implying that Mchirp depends only on MCEL and f . For the present case we used
the “Chandrasekhar” equation of state. However, as shown in (Rotondo et al., 2011),
differences between EOSs are neglegible.

close) chirp mass. Some typical LISA targets: EMRI with a supermassive black hole, e.g.
m1 D 105 Mˇ and m2 D 1 Mˇ, or a binary neutron star, e.g. m1 D m2 D 1:3Mˇ, have
chirp masses which do not match the phase-time evolution of a CEL. However, a binary
white dwarf (also a LISA target) like J0651, the second shortest orbital period, GW emitter,
has a chirp mass close to the matching one, thus its phase-time evolution around 1 mHz is
nearly equal to the CEL under consideration (see fig. 7.12).

It can be argued that the match does not stay constantly perfect. However, it must be
noted that differences between the evolution parameters appear when the systems change
appreciably their frequency. Since Q! � 1013, the evolution is rather slow and they
become out phase only when the observation is performed over very long periods of time.

In a pure theoretical context, the amount the systems get out of phase was found by inte-
grating �Q! D jQCEL

! �Qbin
! j, during 1 yr,

��1y D
Z !1y

!0

�Q!d ln!; (7.33)

where !0 is the initial observed GW angular frequency and !1y is the GW angular fre-
quency after 1 y. Phase differences, tabulated in tab. 7.2, are extremely small. At very low
frequency the systems (CEL and binary) are monochromatic and completely degenerated.

Regarding the GW amplitude it was found that hc / f �1=5 and this holds almost for
any n, thus h0 / f �1=5�˛=2. Despite that in the limit n ! 3 the intrinsic phase-time
evolution of the CEL and the binary tend to follow the same power-law exponent, the CEL
amplitude h0 / f 0:63 grows with a different (but nearly equal) exponent. Once the phase
has been matched by some chirp mass, for example, the distance to the source can be
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Figure 7.11 Contour plot of the chirp mass of binary systems in the mass range of DWDs.
Detached DWD with currently known parameters (Rebassa-Mansergas et al., 2017)
are shown as orange circles. The continuous white contour lines correspond a binary
withMchirp D .0:41; 0:48/ Mˇ, which matches theQ! of the CEL, C D 20:0�10�4,
at f D .9:00; 0:05/ mHz, respectively. The dashed white contour lines correspond
to a binary with Mchirp D .0:24; 0:32/ Mˇ, which matches the Q! of the a CEL,
C D 2:5 � 10�4, at f D .3:00; 0:05/ mHz, respectively.

chosen to match the GW amplitudes. It was found that the distances must have the same
order and not highly tuned distances differing by many orders of magnitude. Again, since
the exponents are nearly equal and the evolution during observing times is slow, the GW
amplitudes remain nearly equal, as shown in the examples of tab. 7.2 and fig. 7.12.

On the other hand, a crucial attribute of these sources is their quasi-monochromaticity.
As already mentioned, the intrinsic observables are the f; Pf ; h0. Suppose that a quasi-
monochromatic GW has been detected, so its “generalized chirp mass” was measured
through,

M
gen
chirp �

c3

G

�
5

96

�3=5 Pf 3=5
�8=5f 11=5

: (7.34)

If the value lies in the range shown in the fig. 7.10, at first this system can be equally
identified as a CEL or a binary.

In order to distinguish between these two systems it is important to discuss their intrinsic
physical properties, such as the end of the chirp. For the case of a DWD, this is generally
given by the Roche-lobe overflow (RLOF) (Postnov & Yungelson, 2014). The frequency at
this point was obtained from the approximate formula for the effective Robe-lobe radius,
given in ref. (Eggleton, 1983), and the radii of the components were found from a poly-
tropic equation of state with n D 1:5 (Chandrasekhar, 1967), due to the fact that this match-
ing binary has low-mass components. RLOF frequencies for selected DWDs are tabulated
in tab. 7.2. For the case of an EMRI, the limit is due to the tidal disruption of the less mas-
sive component. The GW frequency at tidal disruption is ftd � .Gm2=R32/1=2=.2:43=2�/,
where R2 is the radius of the (less massive) component m2, and the tidal radius is rtd �
2:4q�1=3R2 (Chandrasekhar, 1963) (see also tab. 7.2).
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Figure 7.12 Comparison and contrast of the GW evolution, phase (top) and amplitude
(bottom), of a CEL, n D 2:95, MCEL D 1:0 Mˇ, C D 2:5 � 10�4 with a binary
system, Mchirp D 0:24 Mˇ, which exactly matches the Q! of the latter CEL at f D
3 mHz (blue), and with the non-interacting DWD system J0651, Mchirp D 0:31 Mˇ
(orange). Both binaries are located at the same distance from the detector, and the
ratio of the distances is Dbin=DCEL D 1:2.

The above detection degeneracy might be broken since the chirping phase of the CEL and
of the binary, owing to RLOF or tidal disruption, end at different frequencies. It would be
then possible to discriminate between systems by observing above some frequency. For
instance, if a quasi-monochromatic GW is detected at a higher frequency than the RLOF
one, this will rule out a detached DWD as the source. In addition, degeneracy between an
EMRI and a CEL is broken, owing to the fact the former can not be individually detected
by currently planned space-borne detectors.

Finally, recall that in the low-velocity, weak-field limit, any monochromatic GW can be
regarded as being radiated from a deformed (not axially symmetric) rotating star. Equiv-
alently, any monochromatic GW can be thought as a GW from a circular binary. The
correspondence between monochromatic GWs and sources is not one-to-one. The proper
identification of the source (if possible) relies on the astrophysical implications of the char-
acterizing parameters, and/or on other data.

The previous results showed that given a CEL in the limit n ! 3, a binary system can
be found whose GW chirping evolution during observational times matches the one of the
CEL, and vice versa. When this evolution is not observable, on account of slow intrinsic
evolution, short periods of observation or both, the true nature of the system is highly
uncertain.

As already stated, CELs can be monochromatic, thus detection degeneracy extents to even
more systems. Namely, in the monochromatic regime there exist degeneracy between
CELs, or between CELs and binaries with parameters different from those found previ-
ously. This kind of degeneracy will be addressed elsewhere.
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7.3 Chirping Ellipsoids and Inspiral Rates

In view of the aforementioned degeneracy between CELs and EMRIs-DWD, it is manda-
tory to estimate rates for each system in order to evaluate the real impact of the degeneracy.
Since this work is interested in DWDs which can enter the interferometer frequency band,
only DWDs which can merge within a Hubble time are considered. The DWD merger rate
in a typical galaxy is estimated to be .1–80/�10�13 yr�1M�1

ˇ
(at 2� ) Maoz & Hallakoun

(2017); Maoz et al. (2018). Thus, using M D 6:4� 1010 Mˇ for the Milky Way Kalogera
et al. (2001),

RDWD D 0:0064 � 0:512 yr�1: (7.35)

Regarding CELs, can be the result of mass transfer from a companion. The rate at which
these events occur could be close to that of novae, i.e. RCEL � 10�80 yr�1. But excitation
of a white dwarf during a nova could be of one of many types. If we assume that a fraction
ˇ of all white dwarfs potentially becoming novae undergone a spin-up transition, then the
rate of chirping ellipsoids may be as high as:

RCEL D .10 � 80/ˇ yr�1 (7.36)

Another mechanism is the merging of white dwarfs in compact binaries. Numerical simula-
tions show that, in the case of mergers not leading to a type Ia supernovae, the merged con-
figuration possesses three regions (Benz et al., 1990; Guerrero et al., 2004; Lorén-Aguilar
et al., 2009; Longland et al., 2012; Raskin et al., 2012; Zhu et al., 2013; Dan et al., 2014): a
rigidly rotating, central white dwarf, on top of which there is a hot, differentially-rotating,
convective corona, finally surrounded by a rapidly rotating Keplerian disk. The corona
comprises about half of the mass of the totally disrupted secondary star, while the rest of
the secondary mass belongs to the disk, since a small mass (� 10�3Mˇ) is ejected. The
rigid coreCcorona configuration may have the appropriate structure that resemble our CEL.
Depending on the merging components masses, the central remnant can be a massive (1:0–
1:5 Mˇ), fast rotating (P D 1–10 s) white dwarf (see e.g. Rueda et al. (2013); Becerra
et al. (2018)).

The white dwarf binary merger rate in a typical galaxy is estimated to be .1–80/ � 10�13
yr�1 M�1

ˇ
(at 2� ) and .5–9/� 10�13 yr�1 M�1

ˇ
(at 1� ) Maoz & Hallakoun (2017); Maoz

et al. (2018). On the other hand, the type Ia supernova rate is about .12–22/% of the above
rate (see e.g. Ruiter et al. (2009)). Therefore, even requiring the white dwarf binary merger
channel to cover the entire supernovae Ia population, a lower limit to the population of
deformed white dwarfs from these mergers, potentially observable as a CEL only within
the Milky Way, M D 6:4 � 1010 Mˇ Kalogera et al. (2001), at a 2� level, will be:

RCEL D 0:005 � 0:5 yr�1; (7.37)

The equivalent EMRIs found for the CEL considered in table 7.2 are formed by an IMBH
with a mass in the range m1 D 500–3000 Mˇ and a substellar, planet-like object m2 �
�m1 D .0:7–4/�10�3Mˇ. The latter mass range corresponds approximately to masses be-
tween the one of Saturn (MSat D 3�10�4 Mˇ) and the one of Jupiter (MJup � 10�3 Mˇ).
The inferred rate turns out to be,

REMRI D 0:02 � 0:5 yr�1; (7.38)
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which is similar to RCEL.

7.4 Discussion

Compressible, Riemann S-type ellipsoids with a polytropic index n & 2:7, emit quasi-
monochromatic GWs with a frequency that fall in the sensitivity band of planned space-
borne detectors (eg. LISA and TianQin; see Fig. 7.5). Inside the sensitivity band, CELs
slowly evolve so they hold quasi-monochromatic during the planned observation times.
These sources exhibit a chirp behaviour like the one of binary systems. In the limit n! 3,
as inferred from empirical fits shown in Table 7.1, both systems have the same intrinsic
phase-time evolutionQ! . This behaviour is due to the change in the compressibility of the
CEL with n.

CELs located at galactic distances are detectable by planned space-borne detectors during
one year of observation (see last column of tab. 7.2). It was found that within the detectors
sensitivity band, CEL (3 > n & 2:9) intrinsic, quasi-monochromatic parameters, h0; f; Pf ,
or equivalently h0;Q! can have the same values of those of a binary system, see fig. 7.9
and tab. 7.2. More exactly, given a quasi-monochromatic binary characterized by its fre-
quency, chirp mass and distance, it can be found a CEL mass and distance, whose waveform
at the same frequency has the same Pf (or Q!) and amplitude of the binary. Hence, CEL
and quasi-monochromatic binaries are degenerated. Two kinds of quasi-monochromatic
binary families degenerated with CELs were found and studied here: DWD and EMRI
composed of a IMBH and a planet-like object.

On the other hand, the physical nature of CELs and binaries is completely different and
it principle is possible to distinguish between them. Namely, the final frequency of the
quasi-monochromatic, GW-driven chirp of a binary is given by the tidal disruption, in the
case of EMRIs (IMBH-exoplanet), or by RLOF in the case of a DWD. The tidal disruption
frequency of the IMBH-exoplanet system is � 10�5 Hz. This system cannot be detected
individually by space-borne detectors (see tab. 7.2) and the degeneracy is broken. For
the systems considered here, the following relation is in general satisfied, ftd < fRLOF <

f CEL
end . Consequently, the observation of a quasi-monochromatic GW (with “chirp mass”
� 0:5 Mˇ) above the RLOF will point towards a CEL. Below frequencies � 10�2 Hz,
CELs and binaries are degenerated and cannot be distinguished by using GW data alone.
Electromagnetic data, if any, can be used to infer the real nature of the GW source.

In view of the great relevance of this result for space-borne detectors estimates of the oc-
currence rate of these kind of systems were addressed. For deformed white dwarfs this
work adopted the view that they can be formed either by accretion from a companion or by
binary white dwarf mergers. Surprisingly, rates of EMRIs, DWD and CELs, appear to be
comparable. Despite EMRIs cannot be individually resolved, their occurrence rate make
them a plausible stochastic source and will be addressed in a future work. In conclusion,
there will be great GW source confusion, for individually resolved events, in the frequency
range f . 10 mHz, between DWDs and CELs.

Despite this issue the author thinks it is possible to do science with these sources. Indeed
it is presented here some possible solutions for the detection-degeneracy problem. One of
the main goals of this work is to encourage the scientific community to explore additional
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solutions.
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Table 7.2 Parameters of a CEL with n D 2:95 and equivalent binaries. The CEL is char-
acterized by the mass and the compactness C obtained from the relativistic Feynman-
Metropolis-Teller equation of state Rotondo et al. (2011). The frequency at the end of
the chirping phase of the CEL is denoted by f CEL

end , i.e. when the CEL reaches its max-
imum GW amplitude. For each CEL, the “matching” binary chirp mass and the mass
components are shown in fourth, fifth and sixth columns, respectively. The frequency
at the end of the binary chirping regime, f bin

end , is tabulated in the seventh column. This
value is given by the point when one of the stars fills its Roche-lobe, for the case of
a DWD, and by point of tidal disruption, where we have assumed R2 � 70; 000 km
for the radius of the less massive component m2, for the case of an EMRI. The type
of binary is shown in the eighth column. When the system is a DWD, the name of the
most similar observed system is shown. For more details on the DWD systems see
e.g. Rebassa-Mansergas et al. (2017) and references therein. The initial observing
frequency f0, is shown in the ninth column. The phase difference and the relative
amplitude difference between the two system after 1 yr are shown in the next two
columns. The ratio of the distance of both systems, assuming optimal orientations
is shown in the twelfth column. The corresponding signal-to-noise ratio of the CEL
located at D D 1 kpc, for 1 yr of observation from f0 is shown in the last column.

MCEL C f CEL
end Mchirp m1 m2 f bin

end Type-like
f0

��1y
�h0
h0

ˇ̌
1y

DCEL
Dbin

SNR
.Mˇ/ .10�4/ (mHz ) .Mˇ/ .Mˇ/ .Mˇ/ (mHz) (mHz)

1.0 2.5 9.20 0.32 1940.62 0.0001 0.053 EMRI 0.05 3:631 � 10�10 5:937 � 10�13 0.778 und.
0.28 0.35 0.30 13.38 PG1101+364 1.0 5:004 � 10�5 2:515 � 10�9 0.773 0.687
0.2 4 0.45 0.18 7.76 J0106-1003 3.0 5:018 � 10�3 6:455 � 10�8 0.835 9.079

1.4 20.0 148.70 0.48 2916.81 0.0015 0:064 EMRI 0:05 5:521 � 10�10 9:322 � 10�13 0.808 und.
0.45 0.59 0.45 19.92 WD0028-474 1.0 3:868 � 10�5 3:106 � 10�9 0.776 1.511
0.43 0.52 0.47 21.30 WD0135-052 3.0 2:660 � 10�3 6:344 � 10�8 0.766 23.88
0.42 0.51 0.45 20.25 WD1204-450 6.0 4:148 � 10�2 4:377 � 10�7 0.763 119.89
0.41 0.47 0.47 21.48 WD1704-4812 9.0 2:135 � 10�1 1:375 � 10�6 0.764 145.73
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Chapter 8

Central Remnant of a Binary
Neutron Star Merger and Disk
Formation

An accretion disk around the central remnant of a BNS merger, i.e. a newborn NS or
a BH, is an important ingredient in models of short-duration gamma-ray bursts (GRBs;
see e.g. Berger, 2014 and references therein). The classification mentioned in chapter 6
introduced two subclasses of short GRBs from BNS: short gamma-ray flashes (S-GRFs)
and authentic short GRBs (S-GRBs), depending on whether the central remnant is a NS or
a BH, respectively (see Ruffini et al., 2016b, and sec. 6.1 for details). This chapter analyzes
the case of S-GRFs produced in BNS mergers, using conservation laws and quasi-universal
laws for fast uniformly rotating NSs. In particular the necessary conditions on the binary
mass in order to form a disk will be studied: the specific angular momentum must be larger
than the one of the ISCO of the newborn NS, in order to form a disk. Three physically
representative EOSs are used in this chapter. Further analysis with more EOSs will be
performed in the future.

In U-GRFs the gamma-ray emission is expected to occur in a prompt short radiation phase.
The post-merger radiation is drastically reduced in view of the absence of baryonic matter
to power an extended emission. A kilonova can still be observed days after the merger,
in the infrared, optical and ultraviolet wavelengths, produced in the radioactive decay of
r-process material (Li & Paczyński, 1998; Metzger et al., 2010; Tanvir et al., 2013; Berger
et al., 2013). In general, theoretical models of kilonovae discriminate between a “dynamical
ejecta” composed of matter expelled by tides prior or during the merger, and a “disk-wind
ejecta” composed of matter expelled from post-merger outflows in accretion disks (see e.g.
Metzger, 2017, and references therein). It is clear that kilonova ejecta from U-GRFs are
characterized by having only dynamical and no disk-wind component.
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Figure 8.1 Left: inferred mass of the remnant NS as a function of the mass of the BNS
components for selected values of mother. All the remnant NS masses are smaller
than the critical for the maximally rotating configurations. Right: relative variation
of the remnant NS mass with respect to the symmetric case mc.q D 1/ D mc;s ,
Œmc.q/ �mc;s�=mc;s , for constant total binary mass mtot D 2:66 Mˇ.

8.1 Inferences from conservation laws

Conservation laws of baryon number, energy and angular momentum are used in order to
analyze the properties of the central remnant NS. For uniformly rotating NSs, the relation
among the baryonic mass,mb , the gravitational mass,m�, and the angular momentum J is
well represented by the following simple equation (Cipolletta et al., 2015):

mb

Mˇ
D m�

Mˇ
C 13

200

�
m�

Mˇ

�2�
1 � 1

137
j 1:7

�
; (8.1)

where j � cJ=.GM 2
ˇ
/. This formula fits, with a maximum error of 2%, the results

of the numerical integration of the axially-symmetric Einstein equations for a variety of
nuclear EOS. Thus, Eq. (8.1) is a nearly universal, EOS-independent formula. Another
EOS-independent property of rotating NSs is the angular momentum of the maximally
rotating configurations, i.e. the one of the NS rotating at the maximum rate given by
the Keplerian/mass-shedding limit. Along this sequence the gravitational and centrifugal
forces are equal, so for faster rotation rates the star sheds mass from its equator (Ster-
gioulas, 2003). The full numerical integration of the Einstein equations show that the an-
gular momentum along the Keplerian sequence satisfies the approximate relation (see, e.g.,
Cipolletta et al., 2015)

J � 0:7Gm
2
�

c
; (8.2)

For simplicity, the BNS components are assumed to have equal gravitational mass, m1 D
m2 D m, and no spin, J1 D J2 D 0. The analysis can be extended to different mass
ratios q � m2=m1 < 1. The total mass of the binary will denoted by mtot D m1 C m2.
The corresponding baryonic masses, mb1 D mb2 D mb , are given by Eq. (8.1). The
orbital angular momentum at the merger exceeds the maximum angular momentum a NS
can support given by eq. (8.2) (see below in sec. 8.3). This implies that the newly-formed,
stable fast rotating NS starts at the Keplerian sequence, characterized by the dimensionless
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Figure 8.2 Ratio of the discriminant angular momentum j out
max, to angular momentum of

the remnant NS at the Keplerian sequence, jc;kep as a function of the binary total
mass. The continuous, dashed and dotted curves denote mother D 0; 0:01; 0:15 Mˇ,
respectively in all panels. The left panel shows the results for NL3 (blue), center GM1
(orange) and right TM1 (green). It can be seen that is not possible to form a detached
disk for NL3 and GM1.

angular momentum,

jc;kep D
cJc;kep

GM 2
ˇ

� 0:7
�
mc

Mˇ

�2
: (8.3)

The baryonic mass of the central remnant NS mb;c is found by inserting eq. (8.3) into
Eq. (8.1),

mb;c

Mˇ
D mc

Mˇ
C 13

200

�
mc

Mˇ

�2�
1 � 0:54

137

�
mc

Mˇ

�3:4�
: (8.4)

The total number of baryons of the binary are redistributed among the central remnant NS,
the ejected matter (of mass mej), and the matter kept bound to the system (e.g. in form of a
disk of mass md ), i.e.,

Mb D mb;c Cmej Cmd : (8.5)

It is clear that by replacing the corresponding expressions for Mb and mb;c in eq. (8.5),
this last becomes an algebraic (but non-linear) equation for mc as a function of mej and
md , once the BNS masses are specified. Figure 8.1 (left) shows the remnant NS mass,
mc , for symmetric BNS and for some selected values of disk and ejecta, mother D md C
mej D 0:0; 0:01; 0:15 Mˇ. The value of the mass components is chosen in the range
.1:24–1:42/ Mˇ, that corresponds to one–� interval of the galactic observed BNSs. All the
expressions used to this moment are EOS-independent. When the binary is not symmetric
the effect of q is negligible, as it can seen on the right of fig. 8.1

8.1.1 Absence of surrounding disk

This study will focus on the formation of supramassive NSs. By disk it is meant bounded
matter and detached from the star, i.e. the radius of the ISCO must be larger than the radius
of the star. Since the presence of a disk would necessarily lead to an observable emission,
e.g. via an accretion process onto the central remnant, the concept of U-GRF requires that
such structure is absent. The first thing to check is whether the ISCO outside the star. The
mass of a rotating NS at the Keplerian sequence, for which the equatorial radius is equal to
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the radius of the ISCO was found in (Cipolletta et al., 2017). Corresponding to this mass
there is a discriminant angular momentum j out

max, i.e. if the angular momentum of the NS
is greater than this value, the ISCO is bigger than the equatorial radius. Figure 8.2 shows
the ratio of j out

max to the angular momentum of the remnant NS at the Keplerian sequence,
jc;kep as function of mtot, selected values of mother and three different EOSs. It can be seen
a monotonically increase of the ratio j out

max=jc;Kep with mtotal. Therefore, the larger the disk
mass, the less possible is the ISCO outside the star. As a matter of fact, it can be seen
that is only possible for the TM1 EOS to form a detached disk (among the studied EOSs).
This result can be understood as follows. The mass contribution from the disk and ejecta
decreases the mass available for the remnant NS core. Since at the Keplerian sequence the
angular momentum follows the quasi-universal law (8.2), when the remnant is less massive,
the angular momentum jc;kep is smaller, which in turn makes the equatorial radius closer to
the ISCO (the remnant is less compact). This analysis can be used to discriminate between
EOSs which form a supramassive NS with a detached disk.

Once it is guaranteed that the equatorial radius less or at most equal to the ISCO, and
by assuming conservation of the specific (i.e. per-unit-mass) angular momentum, a suffi-
cient condition for the absence of matter circulating around the newly-formed NS is that
the largest specific angular momentum at the merger, lmax

mrg , must be less than the specific
angular momentum of the ISCO around remnant NS,

lmax
mrg < lc;ISCO: (8.6)

The material with l D lmax
mrg is located at interception of the equatorial/orbital plane with the

stellar surfaces. The extreme case when lmax
mrg D lc;ISCO corresponds to the case of bound

matter in form of a shell of a disk. Thus, by assuming the point of contact as the merger, i.e.
rmrg D R1 C R2 D 2R where R1 D R2 D R are the NS radii, the following expression
was obtained,

lmax
mrg D r2mrg�mrg D 2mC�1=2; (8.7)

where C � Gm=.c2R/ is the compactness of the BNS components, and�mrg D .GM=r3mrg/
1=2

is the orbital angular velocity at the merger. The formula derived in (Cipolletta et al., 2017)
was used to calculate the value of the specific angular momentum of the ISCO (in corota-
tion),

lc;ISCO D mc
"
2
p
3 � 0:37

�
jc

mc=Mˇ

�0:85#
; (8.8)

which fits the numerical results for any NS rotation rate with a maximum error of 0.3%. The
expression for lc;ISCO as a function of mc was obtained by replacing jc from eq. (8.3) into
eq. (8.8). As previously shown, the remnant NS mass mc depends on the mass of the BNS
components, m, and on the disk+ejecta mass, mother. NL3 and GM1 have configurations
without an ISCO, so it will be analyzed only TM1. The ratio of lmax

mrg to lc;ISCO, as a function
of m for selected values of mother is shown in fig 8.3. There are two main opposing effects
controlling the formation of a disk: the existence of an ISCO is favored by massive NS,
but high massive rotating NS at the keplerian sequence implies higher lISCO. Hence, if the
mass of the NS is reduced by assigning some mass to the disk, the angular momentum of
the ISCO is reduced reinforcing the its formation, but if the disk is very massive, the NS
expands and “absorbs” the disk. From some value of disk and binary mass, the formation
of the disk is no longer possible. In addition, fig. 8.3 shows the curve for which tthe final
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Figure 8.3 Ratio of the angular momentum per-unit-mass at the merger point, lmax
mrg to

the angular momentum per-unit-mas of the ISCO, lc;ISCO of a NS rotating at the Ke-
plerian rate (8.3) with interior matter described by the EOS TM1. Different values
of mother are shown. The region below the red curve corresponds to the zone where
the remnant NS has an ISCO larger than the equatorial radius. The region above the
green curve lmax

mrg =lc;ISCO D 1 correspond to the zone where there is enough angular
momentum to form a disk, the region in green correspond to the zone where there is
not enough angular momentum. The zone inside the continous black, red and green
curves correspond to the detached-disk zone (red zone). When m . 1:33 Mˇ is not
possible to form a detached-disk.

NS was an ISCO (red). The discriminant mass of the binary, mdiscr D 1:33 Mˇ, is located
at the intersection of this last curve with the curve lmax

mrg =lc;ISCO for mother D 0 (continuous
black), and with the horizontal line at 1 (green). For larger binary masses it is possible to
form a detached disk, which corresponds to the zone between the red and greeen curves.
In the above analysis only general conservation laws were used, but mdiscr depends on the
EOS. The analysis for a wider set of EOSs will be done in the future. From this partial
analysis some general features can be inferred. For example, when the m is much larger
than mdiscr (and if there is and ISCO) the mass assigned to disk must be also large in order
to form it.

The zonem < mdiscr represents configurations where the disk is not detached from the star.
In these cases, the final configuration is more similar to that of a hypermassive NS (see
e.g. Shibata & Taniguchi, 2006, fig. 10), which is short-lived and could rapidly collapse
to a BH in . 1 s (Hotokezaka et al., 2013). Therefore, here it is considered that when
these last configurations lead to a long-lived supramassive NS, it could only exist without
a surrounding disk.

8.2 Constraining the NS EOS with U-GRFs

The NS critical mass is defined by the secular axis-symmetric limit in which the star be-
comes unstable respect to axially-symmetric perturbations. This instability sequence can
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Table 8.1 Critical mass in the non-rotating case, M JD0
crit , and in the rotating case, M J¤0

max ,
obtained in Cipolletta et al. (2015) for the NL3, GM1 and TM1 nuclear EOS. We
recall that M J¤0

max is the maximum critical mass value, namely the value of Mcrit (see
Eq. 8.9) for the highest possible angular momentum. This corresponds to the config-
uration at the intersection between the secular instability sequence and the Keplerian
sequence, so with an angular momentum value (8.2).

EOS M JD0
crit =Mˇ M

J¤0
max =Mˇ k p

NL3 2:81 3:38 0:006 1:68

GM1 2:39 2:84 0:011 1:69

TM1 2:20 2:62 0:017 1:61

be constructed following the turning-point method by Friedman et al. (1988). Namely, they
showed that in a constant angular-momentum sequence with increasing central density, �c ,
the turning point, i.e. where @M=@�c D 0, separates secularly stable from secularly un-
stable configurations. For example, a fitting formula with a maximum error of 0.45%, was
obtained by Cipolletta et al. (2015) from numerical simulations of rotating NSs with NL3,
GM1 and TM1 EOS,

Mcrit DM JD0
crit .1C kjp/; (8.9)

where k and p are parameters that depend on the EOS, and M JD0
crit is the critical mass of

the non-rotating (spinless) case. See Table 8.1 for additional details.

The value of the critical mass in both the non-rotating case, M JD0
crit , and in the maximally

rotating case, M Jmax
crit , depends on the EOS. Interestingly, the ratio of these two quantities is

nearly EOS-independent (see, e.g., Cipolletta et al., 2015; Breu & Rezzolla, 2016),

M
Jmax
crit � 1:2M JD0

crit : (8.10)

More exactly, the maximum increase in the mass by rotation is of 20% and is independent
of the EOS (see also Table 8.1). This result can be used to constrain the M JD0

crit from the
observation of an U-GRB produced by a BNS merger.

It was argued before that if the central remnant in a BNS merger is a NS, then it must be ini-
tially at the Keplerian limit. Consequently, given that the Keplerian sequence is nearly flat
(as a function of the central density) in the high mass region, the mass of the central remnant
NS, mc , must be very close to the maximum value of the NS critical mass, M Jmax

crit . This
value is located at the crossing between the secular axis-symmetric instability sequence and
the Keplerian sequence. Since mc � M

Jmax
crit , otherwise the merger would have formed a

BH, we use Eq. (8.10) to set a lower limit in the critical mass of a non-rotating NS,

M JD0
crit &

mc

1:2
: (8.11)

The above reasoning is general and, in principle can be applied for a central remnant NS
with or without an accretion disk. However, in the case with a disk, the uncertainty in
the estimate of the disk mass, which is not expected to be negligible with respect to the
NS mass, introduces an uncertainty in the determination of mc , as it can be seen from
the conservation equation (8.5). Only if the remnant NS is bare, namely in the case of an
U-GRF, the estimate of mc can be estimated under the above considerations.
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Figure 8.4 Constraints on the NS mass-radius relation imposed by the observation of an
U-GRF. It is shown the lower limit to the critical mass of non-rotating NS given by
Eq. (8.12) for selected BNS component masses m D 1:38 Mˇ and m D 1:4 Mˇ.

If it is assumed that an U-GRF have been observed, then by definition md D 0. Since
the expelled/unbound matter in BNS mergers is only 1% (or less) of the remnant NS mass,
we can neglect its contribution to the total baryonic mass with � 99% of accuracy. With
these two assumptions, the conservation of baryon number, Eq. (8.5), leads toMb � mb;c ,
where the baryon mass of the central remnant NS,mb;c , is related to its gravitational mass,
mc , by Eq. (8.4). The mass mc is obtained as described before, and is shown in Fig. 8.1
(see blue curve). This relation is well fitted in the relevant range of merging masses by
the linear law, mc � 1:9m which, combined with Eq. (8.11), imply the lower limit to the
critical mass,

M JD0
crit &

1:9

1:2
m � 1:58m : (8.12)

For example, assuming m � 1:33 Mˇ (see e.g. Özel & Freire, 2016), the request that
this BNS produces an U-GRF implies via Eq. (8.12) that M JD0

crit & 2:10 Mˇ. This is
more stringent than the current critical mass value set by the mass of PSR J0348+0432,
2:01 Mˇ, the heaviest NS observed (Antoniadis et al., 2013). U-GRFs from BNS mergers
with higher components could potentially constrain even more tightly the EOS: a BNS with
m D 1:4 Mˇ would lead to a U-GRF if the NS critical mass is M JD0

crit & 2:21 Mˇ, this
would rule out for example TM1. Conversely, an unambiguous determination of the exis-
tence of post-merger accretion without collapse to a BH from a binary withm � 1:33 Mˇ,
would rule out GM1 and NL3.
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8.3 Limits on the gravitational wave emission

The conservation of mass-energy applied to the systems prior and after the merger can be
written as,

�E D �EGW C�Eother D
�
mtot � .mc Cmej Cmd /

�
c2; (8.13)

wheremtot D m1Cm2 is the total mass of the binary, which in the symmetric case ismtot D
2m. Namely, the energy emitted should be equal to the mass defect of the system. The
energy radiated in GWs, �EGW D �E

insp
GW C �Epm

GW, includes the inspiral regime, E insp
GW ,

and the merger/post-merger regime, Epm
GW. The quantity �Eother is the energy radiated in

channels different to GW emission, e.g. electromagnetic (photon) and neutrino emission.

For the sake of example we adopt here the above 1:33C 1:33 Mˇ BNS and the NS struc-
ture obtained for the NL3 EOS. The inspiral phase emits E insp

GW � Gm1m2=.2rmrg/ D
CMc2=8 � 0:0165Mc2 � 0:033mc2 � 7:86� 1052 erg in gravitational waves. The mass
defect in the case of an U-GRF isM �mc�mej �M �mc � 0:1m. The upper limit to the
gravitational waves energy emitted in the post-merger phase can be obtained by switching
off the additional losses, i.e. assuming Eother D 0. Under this assumption, one obtains
E

pm
GW � .M �mc/c2 �E insp

GW � 0:067mc2 � 2E insp
GW .

On the other hand, the angular momentum of the binary can be estimated by adopting a
rigid rotation with the Keplerian angular velocity, �,

J D 2
�
mr2 C 2

5
� mR2

�
�: (8.14)

where � is the ratio between the moment of inertia of the components and that of a homo-
geneous sphere, .2=5/mR2. The angular momentum at the merger is

Jmrg D Jcont D G

c

�
1C 2

5
�

�
m2C�1=2: (8.15)

From Eqs. (8.3) and (8.15) we estimate the excess between the angular momentum of the
central remnant NS, Jc , and the one at the merger. This last depends on the EOS via the
compactness C and the moment of inertia parameter �. For the present example parameters
we have Jmrg � 6:58GM 2

ˇ
=c and Jc � 4:52GM 2

ˇ
=c. Therefore, an amount of angular

momentum, �J � 2:1GM 2
ˇ
=c � 0:28GM 2=c, must be removed from the system by

gravitational waves, the ejecta, the surrounding matter and/or by any other channel of an-
gular momentum losses (e.g. neutrino emission). Since the ejecta expansion is nearly radial
and for an U-GRF there is no surrounding disk, the above amount of angular momentum
should be remove mostly via gravitational radiation.

These gravitational waves are mainly generated by the transitional non-axisymmetric object
(e.g. triaxial ellipsoid), formed immediately after the merger, and their emission ends when
the stable remnant NS is finally formed. Such a rotating object can be modeled as a com-
pressible ellipsoidal figure of equilibrium, whose internal matter can be approximately de-
scribed by a polytropic EOS of index n D 0:5–1 (Lai & Shapiro, 1995). This object exhibits
a spin-up behavior with typical high frequency values of 1:4–2:0 kHz. It is interesting that
the above estimates of energy and angular momentum radiated leads to an estimate of the
gravitational wave radiation in the post-merger phase, f pm

GW � Epm
GW=.2��J / � 1:48 kHz.
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As usual, in order to estimate the detection efficiency we find the root-sum-squared strain
of the signal,

hrss D
sZ

2
�j QhCj2 C j Qh�j2�df ; (8.16)

where QhC and Qh� are the Fourier transform of the gravitational wave polarizations. These
signals are expected to be detected with a 50% of efficiency by the LIGO/Virgo pipelines
(Abbott et al., 2018a) when hrss � 10�22 Hz�1=2 (Abbott et al., 2017f). The hrss depends
on the mean frequency, on the emitted energy and on the distance to the source. Thus, for
the aforementioned energy release in the post-merger phase, Advanced LIGO/Virgo could
detect these gravitational waves for binaries located up to � 10 Mpc. If the matched-
filtering technique is used to detect this type of signals, the gravitational-wave horizon is of
the order of 19 Mpc, at design sensitivity.

8.4 Discussion and Future Work

The conservation laws of baryon number, energy and angular momentum were used to
study disk formation in BNS mergers. The mass of the BNS components for which the
central remnant can have a surrounding accretion disk was found. This value was computed
when the component masses are equal, m1 D m2 D m, and when the remnant is a NS
(not a BH), namely for the S-GRF subclass of short GRBs (Ruffini et al., 2016b). When
the BNS is not symmetric, 0:8 < q < 1, the results are basically the same. For mass
ratios q < 0:8, the tidal disruption of the less massive component is highly probable,
favoring disk formation. This scenario will be studied in a future work. The range of
masses chosen lie between 1� interval of the observed galactic BNS (Özel & Freire, 2016).
Within this interval the EOS TM1 and NL3 do not exhibit an ISCO, therefore do not lead to
a supramassive remnant NS with a surrounding disk. Regarding the EOS GM1 it was found
that it is possible to form a disk if the mass of the BNS is larger than mcrit D 1:33 Mˇ.
The role of the unbound ejected and disk mass is to favor the disk formation if the binary
components satisfy this last condition.

BNS mergers withm > mdiscr produce a final merged configuration of massmc , composed
of a fast rotating, massive NS, which can have surrounding matter. However, when the
binary mass is much larger than mcrit, the condition of disk formation requires a large
amount of mass. This implies that is highly unlikely to form a disk in very massive BNS
mergers. It is advanced here that such BNS mergers lead to a new subclass of bursts, the U-
GRFs, where the only high-energy electromagnetic radiation occurs in a prompt emission
with a short timescale dominated by the dynamical merger timescale. The X and gamma-
rays post-merger emission is expected to be drastically reduced in view of the absence of
baryonic matter to power it, e.g., through an accretion process around the newborn NS.
Optical, infrared and ultraviolet emission can still be observed from an r-process powered
kilonova (Li & Paczyński, 1998; Metzger et al., 2010). Such an emission should emerge
on the timescale of a day after the merger (Li & Paczyński, 1998; Metzger et al., 2010;
Tanvir et al., 2013; Berger et al., 2013). The imprint of the kilonova associated with an
U-GRF is that it contains only dynamical ejecta from matter expelled by tidal interactions
prior and/or during the merger. In BNS mergers with a central remnant surrounded e.g. by
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an accretion disk, the accretion outflows (wind-ejecta) add to the dynamical ejecta.

The limits to the energy and angular momentum that can be carried out by gravitational
radiation in the post-merger phase of U-GRFs were obtained in this chapter. This informa-
tion was used to infer that current detectors, e.g. LIGO, could detect these radiation only
up to a maximum distance 10–20 Mpc at design sensitivity. Assuming as an upper limit
to the occurrence rate of U-GRFs the one of S-GRF, 2:6–5:0 Gpc�3 yr�1 (Ruffini et al.,
2018b), the above implies an approximate upper limit of gravitational wave detection rate
of 0:1–1:0 per century.

The method outlined in this work for the analysis of the properties of the central remnant
of mass-symmetric BNS mergers can be extended to a variety of mass-ratios and EOS.
This analysis can be also extended to S-GRBs, namely to BNS mergers leading to a BH. S-
GRBs show a 0:1–100 GeV emission (Ruffini et al., 2018c) in agreement with the presence
of baryonic matter interacting with the newly-formed BH e.g. via accretion (Aimuratov
et al., 2017; Ruffini et al., 2016a). Therefore, this kind of analysis can be used to infer
the mass of the merging components needed to have 1) BH formation and 2) surrounding
matter bound to the BH. This result can be compared with the independent result of the
GeV emission analysis to constrain the NS nuclear EOS. This is an ongoing work whose
results are going to be presented in a forthcoming publication.
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Appendix A

Metric Perturbation

This appendix shows the derivation of the formulas involving the perturbations of the met-
ric. It is supposed that the spacetime metric g�� can be expressed as follows:

g�� D g.B/�� C h�� ; (A.1)

with jh�� j � 1. The inverse of the metric defined by g��g�� D δ �
� , can be expanded as

a power series in h�� D g.B/�˛h˛� :

Œg
.B/
��
C h���Œg.B/�� � h�� C h�˛h˛� � h�ˇhˇ˛h˛� CO.h4/� D δ �

� (A.2)

The difference of the Christoffel symbols derived from the metric g�� and the background
metric g.B/�� is a tensor denoted by S��� . This can be shown by first computing the differ-
ence of the covariant derivative of a vector A�:

C�� D A�.���� � ��.B/��
/: (A.3)

Since the left hand side is a tensor, S�
��
D ��

��
� ��.B/

��
must be a tensor. In order to

calculate S�
�ˇ

we choose a LIF in the background metric, ��.B/
��

ˇ̌
LIFD 0 :

S
�

�ˇ

ˇ̌
LIF D

1

2
g��jLIF

�
h�ˇ;� C h��;ˇ � h�ˇ;�

�
; (A.4)

and transform to a general frame by means of the covariance principle, ��� 7! g
.B/
�� ; @� 7!

r�:

S
�

�ˇ
D 1

2
g��

�
h��jˇ C h�ˇ j� � h�ˇ j�

�
; (A.5)

where the subindex “j” denotes covariant differentiation with respect to the background
metric. This last expression is valid to all orders in h�� . The difference of the connections
to linear order in h�� is denoted by W �

�ˇ
, and it is obtained from (A.5) by replacing

g�� 7! g.B/�� :

W˛�� D
1

2

�
h˛�j� C h˛�j� � h��j˛

�
: (A.6)
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A.1 Ricci and Riemann Tensor Perturbations

The difference of the Riemann tensor it is obtained similarly by performing the calculation
in a LIF of the background metric:

R
�

˛�ˇ
�R.B/�

˛�ˇ
D S�

˛ˇ;�
� S�

˛�;ˇ
C ��

��
��˛ˇ � ���ˇ��˛� : (A.7)

In the LIF the tensor S�
˛ˇ
jLIF D �

�

˛ˇ
. Therefore, after transforming to a general frame,

the Riemann and the Ricci tensors are given by

R
�

˛�ˇ
�R.B/�

˛�ˇ
D S�

˛ˇ j�
� S�

˛�jˇ
C S�

��
S�˛ˇ � S��ˇ S�˛� ; (A.8)

R˛ˇ �R.B/˛ˇ D S
�

˛ˇ j�
� S�

˛�jˇ
C S�

��
S�˛ˇ � S��ˇ S�˛� : (A.9)

The Ricci tensor can be expanded according to the order of h�� :

R˛ˇ D R.B/˛ˇ CR
.1/

˛ˇ
.h/CR.2/

˛ˇ
.h/CO.h3/; (A.10)

where the linear part in h˛ˇ is

R
.1/

˛ˇ
.h/ D W �

˛ˇ j� �W �
˛�jˇ ;

D �1
2

�
h �
˛ˇ j� C g.B/�� h��j˛ˇ � h �

�˛jˇ � h �
�ˇ j˛

�
; (A.11)

and the quadratic part is

R
.2/
˛ˇ
.h/ D .�h��W�˛ˇ /j� C .h��W�˛�/jˇ CW �

�� W
�
˛ˇ �W �

ˇ� W
�
˛� ;

D h�� .W�˛�jˇ �W�˛ˇ j�/ �
�
h��
j� �

1

2
hj�
�
W�˛ˇ

C 1

4
h��
jˇh��j˛ C

1

2
h
� j�

ˇ

�
h˛� j� � h˛�j�

�
: (A.12)

The Ricci scalar to linear order isR.1/.h/ D h j˛ˇ

˛ˇ
�h �
j�

and the Einstein tensor to linear
order is

G.1/�� .h/ D h �
�.�j�/ �

1

2

�
h �
��j� C h �

j� g.B/�� � hj�� � h j˛ˇ

˛ˇ
g.B/��

�
: (A.13)

By substituting h�� D h�� � hg.B/�� =2, and changing to a flat background, the left hand
side of eq. (2.3) is obtained.
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Appendix B

Multipole expansions

This appendix although can be regarded as mathematical, gives a small review on the tools
to systematically compute the multipoles of GR. Moreover, it is an adequate formalism to
express the GW field in the local wave zone independent of the technique used to compute
the radiation. This appendix is mostly based on the work of Thorne (1980b). The symme-
tries of the equations play a major role in the laws of physics. The fact that the Laplace,
the Poisson and the wave equation are invariant under rotations implies that the most gen-
eral solution of these equation is expressed in terms of the spherical harmonics, Y lm.�; �/.
These last provide a complete set of representations of the rotation group SO.3/,

Y lm.� 0; �0/ D
lX

m0D�l

Amm0Y
lm0.�; �/: (B.1)

The set of spherical harmonics is an orthogonal basis and any function defined on the sphere
can be expanded in terms of them. Since both the spherical harmonics and the STF tensors,
which will be denoted by calligraphic capital letters, provide irreducible representations of
the rotation group, there is a map between the two sets. The cartesian components of the
unit vector can be expressed as nx C iny D ei� sin �; nz D cos � . This allows to express
the spherical harmonics as,

Y lm.�; �/ D YLNL; (B.2)

where NL D ni1ni2 : : : nil . For example, the STF tensor corresponding to the spherical
harmonic Y 2m is given by,

Y 2m.�; �/ D Y2mij ninj : (B.3)

Since m D �l;�l C 1; : : : ; l , there are 5 symmetric trace-free constant matrices Y2mij (see
Maggiore (2008) for explicit expressions), which are linearly independent and thus form a
base for STF tensors of rank 2 . These matrices satisfy,

Y2mij
�
Y2m0ij

�� D 15

8�
δmm0 ; (B.4)

thus any STF rank 2 tensor Bij can be expanded as,

Bij D
2X

mD�2

BmY2mij ; (B.5)
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whereBm are the spherical components of the tensor Bij . The reduced quadrupole moment
can be expressed in terms of spherical harmonics with l D 2 through the following relation,

r2
�
ninj � 1

3
δij

�
D r2

2X
mD�2

8�

15

�
Y2mij

��
Y 2m.�; �/: (B.6)

Hence, if the source is spherically symmetric the reduced quadrupole moment is zero,
provided that

R
d�Y 2m D 0. Moreover, for an axially symmetric rotating source, the

quadrupole moment is constant and there is no GW emission. The relation between the
spherical harmonics and STF tensors is summarized as,

TLNL D
lX

mD�l

TlmY
lm.�; �/: (B.7)

Recall that Y lm.�; �/ are the eigenfunctions of the following operators constructed from
the orbital angular momentum operator L D �ir � rrr,

LzY
lm.�; �/ D mY lm.�; �/; (B.8)

L2Y lm.�; �/ D l.l C 1/Y lm.�; �/: (B.9)

B.1 Vector and Tensor Spherical Harmonics

Just as any scalar function defined on the sphere can be decomposed into spherical har-
monics, a vector or a tensor function can be decomposed in terms of vector and spherical
tensors, which will be constructed from the (scalar) spherical harmonics. Vector spherical
harmonics are constructed by combining scalar spherical harmonics with the basis vectors,

���
˙1 D �.Ox˙ i Oy/; ���

0 D Oz; (B.10)

which represent the spin wavefunction of a vector particle with spin (helicity) s D 1, and
its projection along the z axis is given by the superindex. The procedure is done by follow-
ing the quantum mechanics formalism for expressing states of total angular momentum,
J D LC S, with quantum numbers, jj; jzi, in terms of states with spin js; szi and orbital
angular momentum jl; mi,

Yl;jjz D
1X

szD�1

lX
mD�l

h1lszmjjjzi���szY lm.�; �/; (B.11)

with l D j �1; j; jC1 and where h1lszmjjjzi are the Clebsch-Gordan coefficients. These
vector spherical harmonics are eigenfunctions of the orbital angular momentum operator
L2, and are called “pure orbital” vector spherical harmonics. However, they are neither
purely transverse nor purely radial, and therefore are not convenient for describing vector
radiation. Instead, the following combinations called “pure spin” vector harmonics, are
introduced (see Thorne (1980b) for the value of the coefficients),

YE;lm D a11Yl�1;lm C a12YlC1;lm D
p
l.l C 1/rrrrY lm.�; �/ (B.12)

YR;lm D a21Yl�1;lm C a22YlC1;lm D Y lm.�; �/n; (B.13)

YB;lm D iYl;lmi D iLY lm.�; �/: (B.14)
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Note that the “electric” and “magnetic” vector spherical harmonics YE;lm and YB;lm are
orthogonal to n. Both the pure orbital and pure spin vector spherical harmonics are or-
thonormal, Z

Y
F;lm
i Y

F 0;l 0m0

i d� D δFF 0δl l 0δmm0 ; (B.15)

where F D l � 1; l; l C 1 for pure orbital and F D E;B;R for pure spin, therefore both
sets can be used to expand a vector function on the sphere.

Now, the wavefunction of total spin 2 is formed with the tensor product of the spin 1
wavefunctions1,

tm D
X
m1;m2

h11m1m2j2mi���m1 ˝ ���m2 ; (B.16)

Then, tensor spherical harmonics are constructed in the same way,

Tl
0;lm D

2X
m00D�2

l 0X
m0D�l 0

h2l 0m0m00jlmitm00Y l 0m0.�; �/; (B.17)

with l 0 D l � 2; l � 1; : : : l C 2. These tensors are pure orbital and are eigenfunctions of
L2 and Lz , again they are neither transverse nor radial. The following pure spin tensor
harmonics are defined,

T
S0;lm
ij D .ninj � δij =3/Y

lm.�; �/; (B.18)

T
E1;lm
ij D 2

r

�
2

l.l C 1/
�1=2

.ni@j C nj @i /Y lm.�; �/; (B.19)

T
B1;lm
ij D 2

r

�
2

l.l C 1/
�1=2

.niLj C njLi /Y lm.�; �/; (B.20)

T
E2;lm
ij D

�
2.l � 2/Š
.l C 2/Š

�1=2
r2ƒij;mn@m@nY

lm.�; �/; (B.21)

T
B2;lm
ij D ir

2

�
2.l � 2/Š
.l C 2/Š

�1=2
ƒij;lm.@mLn C @nLm/Y lm.�; �/; (B.22)

note that TE2;lm and TB2;lm are TT symmetric tensors. The pure orbital and pure spin
tensor spherical harmonics are orthonormalZ

T
F;lm
ij T

F 0;l 0m0

ij d� D δFF 0δl l 0δmm0 ; (B.23)

but the pure spin are more convenient to expand the gravitational field in the local wave
zone (to leading term in r),

hTT
ij .t; r; �; �/ D

G

rc4

1X
lD2

lX
mD�l

�
ulm.u/T

E2;lm
ij .�; �/C vlm.u/T B2;lmij .�; �/

�
: (B.24)

1Tensor wavefunction with total spin 1 or 0 can be constructed but they are not symmetric nor trace-free.
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Figure B.1 Spin-weighted Spherical Harmonic with s D �2, m D 2 for selected val-
ues of l . It is shown only the part that depends on polar the angle, sYlm.�; �/ D
eim� sYlm.�/.

In the weak-field and low-velocity approximation, the coefficients ulm D d lIlm=dt
l and

vlm D d lSlm=dt l are related to source mass and moment by (Maggiore, 2008),

Ilm D
1

cl

16�

.2l C 1/ŠŠ

s
.l C 1/.l C 2/
2l.l � 1/

Z
r lT 00.Y lm/�d3x; (B.25)

Slm D
1

cl

32�

.2l C 1/ŠŠ

s
.l C 2/
2.l � 1/

Z
r lT i0.Y

B;lm
i /�d3x: (B.26)

These three last expression are the ultimate relations to calculate the all the multipoles of
GR in the weak-field and low-velocity approximation.

B.2 Spin-weighted Spherical Harmonics

The behaviour of GW polarizations hC and h� under a rotation  around the propagation
direction can be summarized as,

� D hC � ih� 7! �0 D e�i2 .hC � ih�/: (B.27)

The function � is said to have spin-weight˙2. A scalar function defined on the sphere has
spin-weight 0, because it is invariant under rotations around the radial direction. In con-
trast, the polarizations of spherical GWs change under rotation around the radial direction.
A mathematical formalism to study spin-weighted quantities was developed by Newman
& Penrose (1966). They found a base for spin-weighted functions called spin-weighted
spherical harmonics sY lm.�; �/. These latter are the eigenfunctions of the operator ð, put
operator, and can be constructed iteratively from the spherical harmonics (spin weight 0)
(see e.g. Hughes, 2000, appendix 2). For example, spin-weighted spherical harmonics with
s D �2 are shown in fig. B.1, for more details see (Goldberg et al., 1967). Since the GWs
polarization have spin-weight�2, (B.27) can be decomposed into spin-weighted spherical
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harmonics components. For GR propagating radially, following the convention of Kidder
(2008), a TT coordinate frame is chosen with triad .n;p;q/,

n D p � q; n D Oer ; p D Oe� ; q D Oer ; (B.28)

so the GW polarizations are given by,

hC D 1

2
.pipj � qiqj /hTT

ij ; (B.29)

h� D 1

2
.piqj C qipj /hTT

ij : (B.30)

The pure spin tensor spherical harmonics are related to the spin-weighted spherical har-
monics via (Thorne, 1980b),

TE2;lm D 2�1=2. �2Ylmm˝mC 2Ylmm� ˝m�/; (B.31)

TB2;lm D �i2�1=2. �2Ylmm˝m � 2Ylmm� ˝m�/; (B.32)

where m D 21=2.Oe� C i Oe�/, which implies that,

hC � ih� D
1X
lD2

lX
mD�l

hlm.t; r/�2Ylm.�; �/: (B.33)

This last eq. expresses the fact that a function of spin-weight -2 is decomposed in terms of
�2Ylm, and shows that the components hlm depend on the moments of the source,

hlm.t; r/ D
G

rc4
Œulm.u/ � ivlm.u/�: (B.34)

Usually, the GWs from numerical relativity simulations are given in terms of hlm. In
addition the post-Newtonian and EOB approaches are more easily developed in terms of
these components.

B.3 STF Tensors and the Wave Equation

The most general solution of the scalar wave equation is expressed in terms of STF tensors
(Pirani, 1965) ,

 .t; r; �; �/ D
1X
lD0

�
r�1AL.u/

�
;L
; (B.35)

where AL depends only the retarded time and the angular dependency comes from the
repeated application of the partial derivative @ir D ni . Each term of the sum, the 2l -pole,
is a solution of the wave equation. That this is a solution of the wave equation follows
from 2.AL.u/=r/ D 0 and from the commutativity between the d’Alembertian and partial
differentiation. For a compact source S.t; x/, each multipole is obtained by integration,

AL D
Z
d3y OyL

Z 1

�1

d˛δl.˛/S.uC ˛jyj=c; y/; (B.36)



124 B. Multipole expansions

where δl.˛/ � .2l C 1/ŠŠ.1 � ˛2/l=.2lC1l/, and OyL denotes the symmetric and trace-free
part of the tensor xL. The same procedure can be applied to the vector or tensor wave equa-
tion. At linearized level, in principle, the solution depends on the tensor H��

L (see (2.40)),
which has 10 free indices. After performing a gauge transformation which preserves the
Lorentz gauge condition, the solution can be expressed in terms of two families of STF
tensors ML;SL. This is related to the fact that GWs have only two degrees of freedom and
its physical components are given by (Damour & Iyer, 1991),

xh00 D 4G

c2

1X
lD0

.�1/l
lŠ
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r

�
; (B.37)
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l C 1@m
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�mn.iS
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j /nL�2
.u/

��
;

where the explicit expressions for ML and SL can be found in Maggiore (2008) sec. 3.5.1.
The components of the GWs in the TT frame are found by projecting the purely spatial
part of (2.40) withƒij;mn. It is important to mention that this latter projection still depends
on the above mentioned tensors (the degrees of freedom cannot be further reduced). This
formalism can be promoted to the non-linear level in the local wave zone, and it is called
the multipolar post-Minkowskian expansion (see e.g. Blanchet, 2006).
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Appendix C

Relaxed Einstein Equations

The relaxed Einstein field equations were presented for the first time by Landau & Lifshitz
(1951). This derivation was motivated by the search of an energy-momentum tensor for
the gravitational field. A brief outline will be shown here. This particular form of the EFE
constitutes the starting point for post-Minkowskian formalism and helps to understand the
applicability of the quadrupole formula to weak-field, self-gravitating systems.

C.1 Energy-Momentum Pseudotensor

The local conservation of energy and momentum in flat spacetime can elegantly be written
as T ��;� D 0. By means of the covariance principle this law can be extended to the case
when gravitational fields are present, T ��I� D 0. However, this expression does not repre-
sent a conservation law (Landau & Lifshitz, 1951), in the sense that Gauss theorem cannot
be applied. The first aim is to rewrite the local conservation of energy-momentum in curved
spacetime in such a way that Gauss theorem can be applied. The Equivalence Principle for-
bids the definition of local gravitational energy or momentum: the gravitational interaction
can be eliminated locally by a change of coordinates. Thus, the “local conservation” law
expresses how the energy and momentum of matter change when gravity is present (Hartle,
2003). The covariant four-divergence of T �� can be written as,

1p�g
@.T �

�

p�g/
@x�

� 1
2
T ˛ˇ

@g˛ˇ

@x�
D 0: (C.1)

In a LIF, i.e. g��;˛ D 0, this last expression becomes .T �
�

p�g/;� D T �
� ;� D 0.

Now, if by definition T �� D h
���

;�
, and if this last tensor is antisymmetric in the last

two indices h��� D �h��� , then trivially T ��;� D 0. On the other hand, from the EFE,
T �� D .c4=8�G/.R�� � g��R=2/, and from the expression of R�� in the LIF,

R�� D 1

2
g��g��g˛ˇ

�
g˛�;�ˇ C g˛�;�ˇ � g˛ˇ;�� � g��;˛ˇ

�
; (C.2)

it can be obtained that,

T �� D @

@x�

�
c4

16�G

1

.�g/
@

@x�

�
.�g/.g��g�� � g��g��/�� D 1

.�g/
@

@x�
h���; (C.3)
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where

h��� D @

@x�

�
c4

16�G
.�g/.g��g�� � g��g��/

�
D @

@x�
H����; (C.4)

which is antisymmetric in � and � and consequently h���
;�
D 0, satisfying the desired

conservation equation. Hence, the expression of the T �� in the LIF, in terms of g�� was
obtained. However this expression is valid only in the LIF. In a general coordinate system
corrections, represented by the tensor t��LL , arrive from the first derivatives of g�� . This last
tensor can be obtained from the EFE through,

.�g/.T �� C t��/ D H����

;��
; (C.5)

with,

H���� D c4

16�G

�
g��g�� � g��g��

�
; (C.6)

where g�� � .�g/1=2g�� , which implies that (Landau & Lifshitz, 1951),

t
˛ˇ
LL D

c4

16�G

�
g
˛ˇ

;�
g��;� � g˛�;�g

ˇ�
� C .1=2/.g˛ˇg��g��;�g��;�/

� g˛�g��gˇ�;�g��;� � gˇ�g��g˛�;�g
��

;�
C g��g��g˛�;�gˇ�;�

C .1=8/.2g˛�gˇ� � g˛ˇg��/.2g��g�� � g��g�� /g��;�g��;�
�
: (C.7)

The equation (C.5) is not more than a recast of the EFE. The right hand side of eq. (C.5) by
construction (C.4) satisfy H����

;���
D 0, consequently Œ.�g/.T �� C t��LL /�;� D 0. This

last tensor can be regarded as the energy-momentum tensor of gravity. It is worthwhile
saying that t��LL , called the Landau-Lifshitz pseudo tensor, is not a general tensor, because
it is expressed in terms of the first derivatives of the metric (Christoffel symbols), but it is
a tensor under linear transformations of coordinates, e.g. Lorentz transformations (Landau
& Lifshitz, 1951). It vanishes in a LIF in accordance with the Equivalence Principle.

C.2 Relaxed Equations

This particular form of the EFE can be used to study post-Minkowskian expansion of the
gravitational field. The field quantity h�� defined as,

h�� � g�� � ��� ; (C.8)

is replaced in the right hand side of the EFE (C.5), and terms of second order in h�� are
brought to the left. Afterwards, the De Donder or harmonic gauge is imposed,

h��;� D 0; (C.9)

which implies that the EFE take the form (Blanchet, 2006; Maggiore, 2008),

2h�� D 16�G

c4
��� ; (C.10)
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where,

��� D .�g/.T �� C t��LL / �
c4

16�G

�
h��h�� � h��h��

�
;��
; (C.11)

the last term comes from the non-linear part in h�� of eq. (C.6). This form of the EFE
has conveniently been expressed as an inhomogeneous wave equation in flat space, whose
general solution in vacuum is given by (2.40). The EFE are equivalent to the pair of eqs.
(C.9) and (C.10), this last one is called the relaxed EFE. The de Donder gauge is equivalent
to ���;� D 0, which is equivalent to T ��I� D 0. Both equations must be satisfied in order
to be equivalent EFE (2.1).

Now, when perturbation theory is performed, i.e. g�� D ����h�� , with jh�� j � 1, (C.8)
takes the form, h�� D .1=2/���h � h�� D �xh�� , which is the same field presented in
chapter 2. From here it is clear that to first order in h�� , the EFE are reduced to eq. (2.3).
The non-linear part represents the contribution of the internal gravity of the source, which
at first order for a weak-field, self-gravitating system can be neglected. In addition, when a
post-Minkowskian expansion in h�� is done,

h�� D
1X
nD1

Gnh��n ; (C.12)

and replaced in (C.10), the EFE can be solved iteratively in vacuum by equating terms of
the same order in G (see e.g. Blanchet, 2006, for details).
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Appendix D

Teukolsky Equation

The study of perturbation theory by means of curvature invariants brought the great oppor-
tunity to compute the GWR from a test particle in the field of a Kerr BH. This appendix
will briefly discuss general aspect of this formalism and some details on the computation
of the GWR presented in chapters 3 and 4. Hereafter geometrized units, G D c D 1, will
be used and over-bar denotes complex conjugation.

D.1 Newman-Penrose Formalism

The line element of the Kerr spacetime in the Boyer-Linquist coordinates is given by,

ds2 D �dt2C†
�
dr2

�
Cd�2

�
C�r2Ca2/ sin2 �d�2C 2Mr

†

�
dt�a sin2 �d�/2; (D.1)

where� D r2�2MrCa2 and† D r2Ca2 cos2 �. The Newman-Penrose (NP) formalism
(Newman & Penrose, 1962) is based on the choice of a null-tetrad, i.e., `�`� D n�n

� D
m�m

� D Nm� Nm� D 0 and `�n� D 1;m� Nm� D �1. In the case of Kerr, the following set
(among others) is selected,

`� D �.r2 C a2/��1; 1; 0; a��1�; (D.2)

n� D �r2 C a2;��; 0; a�.2†/�1 (D.3)

m� D �ia sin �; 0; 1; i.sin �/�1
��p

2.r C ia cos �/
��1

; (D.4)

Nm� D ��ia sin �; 0; 1;�i.sin �/�1
��p

2.r � ia cos �/
��1

; (D.5)

and the metric (D.1) can be expressed as,

g�� D 2`.�n�/ � 2m.� Nm�/: (D.6)

The following covariant derivative operators along the null-tetrad are defined,

OD � `�r�; O� � n�r�; Oδ � m�r�: (D.7)

and the 12 Ricci rotation coefficients are found. In addition, the Weyl and Ricci tensors
are projected onto the null-tetrad. The full set of quantities are called the Newman-Penrose
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quantities. The field equations are obtained from the Ricci and second Bianchi identities,
together with the EFE, R�� D 8�ŒT�� � .1=2/g��T �. The explicit form of the NP quan-
tities and the full set of equations can be found in (Pirani, 1965). The NP quantities of the
Kerr spacetime that will be used in the computations are given by,

� D �.r � ia cos �/�1; ˇ D � N� cot �=.2
p
2/; (D.8)

� D ia�2 sin �=
p
2; � D ia� N� sin �=

p
2; (D.9)

� D �2 N��=2;  D �C � N�.r � �/=2; (D.10)

˛ D � � Ň;  A2 DM�3; (D.11)

The most important thing to mention is that GR is encoded in NP quantities  0 and  4,

 0 D �C˛ˇ��l˛mˇ l�m� ;  4 D �C˛ˇ��n˛ Nmˇn� Nm� : (D.12)

For example, in the weak-field limit, radially out-going GWs imply  4 D �. RhC� i Rh�/=2.

D.2 Teukolsky Formalism

The NP formalism can be used to describe the behaviour of perturbations in Kerr spacetime.
The perturbation is done as follows. Each member of the null-tetrad is perturbed, e.g.
`̀̀ D `̀̀

A C `̀̀B , where the indices A and B denote the unperturbed and perturbed parts,
respectively. In this way, the NP quantities are also perturbed (see Teukolsky, 1973, for
details), and terms to linear order in “B” are kept in the field equations. Teukolsky showed
that the equation governing the perturbation  B4 is given by,h� O�C 3 � N C 4�C N��� OD C 4� � ��

� �ONδ � N� C Ň C 3˛ C 4��� Nδ � � C 4ˇ� � 3 A2 i B4 D 4�T4; (D.13)

where,

T4 D . O�C 3 � N C 4�C N�/
�
.ONδ � 2 N� C 2˛/Tn Nm � . O�C 2 � 2 N C �/T Nm Nm

�
C �ONδ � N� C Ň C 3˛ C 4���. O�C 2 C 2 N�/Tn Nm � .ONδ � N� C 2 Ň C 2˛/Tnn�: (D.14)

Since the NP field equation are invariant under lll $ nnn, mmm $ Nmmm, the equation governing
 0 can be obtained from (D.13).

This formalism also describes the behaviour of scalar and vector perturbations, Teukolsky
derived a single master equation for all of them,
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where ‰ is classified according to the spin and T is related to the different projections
of the energy-momentum tensor onto the Newman-Penrose null-tetrad (see table 1 of Ref.
Teukolsky (1973)).

D.2.1 Frequency Domain Solution

It was demonstrated on (Teukolsky, 1973) that eq. (D.15) can be separated, in particular
for s D �2 the separation is given by,

‰ D .r � a cos �/4 4 D
Z
d! e�i!t

X
lm

sSlm!.�/e
im�Rlm!.r/; (D.16)

4�†T D
Z
d!e�i!t

X
lm

sSlm!.�/e
im'Tlm!.r/: (D.17)

where  4 without B , for notational ease, denotes the Newman-Penrose scalar perturbation.
The equation governing the radial part is,

�2
d

dr

� 1
�

Rlm!

dr

�
� V.r/Rlm! D Tlm! ; (D.18)

where

V D K2 C 4i.r �M/K

�
C 8i!r C Elm � 2am! C .a!/2: (D.19)

And the polar equation is,

1

sin �
@�
�
sin �@� .sSlm!/

� � � m2

sin2 �
C s2 C 2ms cos �

sin2 �
� .a!/2 cos2 �

C 2a!s cos � � Elm
�
sSlm! D 0: (D.20)

The solution of the last equation was found following the procedure described in appendix
A of (Hughes, 2000). These solutions sSlm! , called spin-weighted spheroidal harmonics,
are crucial for the subsequent computation given that the radial equation depends on deter-
mination of the eigenvalues Elm! . The solution for s D �2, a=M D 0:9, !M D 0:1 and
its comparison with the spin-weighted spherical harmonics is shown in fig. D.1

The NP scalar  0 also describes a tensor perturbation but with spin s D 2. The choice of
studying  4 comes from the fact that  0 diverges at the horizon, whereas  4 is bounded
at the horizon and at1 (Krivan et al., 1997). However, the potential of the radial equation
does not decay rapidly enough making the numerical integration difficult. A change of vari-
ables, found by Sasaki & Nakamura (1982b), introduces a new the short-ranged potentials
F.r/ and U.r/,

X 00lm! � F.r/X 0lm! � U.r/Xlm! D 0; (D.21)

where prime denotes differentiation with respect to

r� D r C 2MrC

rC � r�
ln
.r � rC/
2M

� 2Mr�

rC � r�
ln
.r � r�/
2M

; (D.22)
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Figure D.1 Spin-weighted spheroidal harmonics with s D �2 and for a=M D
0:9; !M D 0:1 and selected values of l; m. Comparison with spin-weighted spher-
ical harmonics is shown. It can be seen that the correction is small even though the
BH is rotating fast.

and r˙ D M ˙
p
M 2 � a2 are the outer and inner horizons. The potential F is given by

(see e.g. Mino et al., 1997),

F D �;r

�

�

r2 C a2 ; � D c0 C c1=r C c2=r2C c3=r3 C c4=r4; (D.23)

where

c0 D �12i!M C �.�C 2/ � 12a!.a! �m/; (D.24)

c1 D 8iaŒ3a! � .a! �m/�; (D.25)

c2 D �24iaM.a! �m/C 12a2Œ1 � 2.a! �m/2�; (D.26)

c3 D 24ia3.a! �m/ � 24Ma2; (D.27)

c4 D 12a4; (D.28)

with � D Elm! � 2am! C a2!2. The potential U ,

U D �U1

.r2 C a2/2 CG
2 C �G;r

r2 C a2 � FG; (D.29)

where

G D �2.r �M/

r2 C a2 C
r�

.r2 C a2/2 ; (D.30)

U1 D V C �2

ˇ

�
.2˛ C ˇ;r=�/;r � .�=�;r/.2˛ C ˇ;r=�/

�
; (D.31)

˛ D �iKKˇ
�2
C 3iK;r C �6�

r2
; (D.32)

ˇ D 2�.�iK C r �M � 2�=r/: (D.33)
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The solution of the original radial equation (D.18) was found with the same procedure im-
plemented for the Zerilli equation, reviewed in chapter 3.1. However this time the homo-
geneous solution was not found from the original equation, but from the Sasaki-Nakamura
homogeneous equation (D.21). Following the same notation, the change of variables im-
plies that the in-going and out-going solutions are given by Hughes (2001),

R
H;1
lm!

D 1

�

��
˛ C ˇ;r

�

�
�
H;1
lm!
� ˇ
�
�
H;1
lm!

�
; (D.34)

where �H;1
lm!

D XH;1�=.r2 C a2/1=2, and XH
lm!

; X1
lm!

are the solutions satisfying the
in-going and out-going boundary conditions, respectively. The in-going solution has the
following asymptotic form,

XHlm! D Ain
lm!e

�i!r� C Aout
lm!e

i!r� ; r� !1; (D.35)

XHlm! D e�ikr
�

; r� ! �1; (D.36)

where k D ! � ma=.2MC/. The function ZH
lm!

(in the limit r� ! 1) was found from
eqs. (3.10), by changing Sl! 7! Tlm!=�

2 and ˇ! 7! Ain
lm!

. The explicit form of Tlm! is
given by (Mino et al., 1997; Hughes, 2001),

Tlm! D
Z
dtei.!t�m�0/�2

˚
ŒAnn0 C An Nm0 C A Nm Nm0�δ.r � r0/

C Œ.A Nmn1 C A Nm Nm1/δ.r � r0/�;r C ŒA Nm Nm2δ.r � r0/�;rr
	

(D.37)

where �0; r0 are the coordinates of the particle trajectory and � is the mass of test particle.
The explicit form of the coefficients can be found in appendix B of (Drasco & Hughes,
2006) and in (Drasco & Hughes, 2014). Finally, in the case of circular orbits, ! ; !m D
m�, the NP scalar at1 is given by,

 4.t; r; �; �/ D 1

r

X
lm

ZH
lm!mp
2�

�2Slm.�/e
im�e�i!m.t�r

�/ D �1
2
. RhC � i Rh�/: (D.38)

From this expression, the GW luminosity can be found from eq. (2.31), and from the fact
that spheroidal harmonics �sSlm! are “l-orthonormal”, the expression (3.13) was obtained.
The numerical solution of eq. (D.21) was implemented in python using the packages
Numpy and SciPy.

D.2.2 Time Domain Solution

This subsection will show some progress on the solution of the partial differential equation
(D.15), i.e. the time-domain solution. During the plunge phase it is expected that cor-
rections from deviations of circular orbits can arise. The trajectory of the particle in the
plunge is given by the HDS and its Fourier transform is not trivial, in contrast, for circular
orbits, (D.15) is easily separated in the frequency-domain. This motivated the search of
the solution in the time-domain. First, the homogeneous equation was solved following the
methodology described in (Krivan et al., 1997) and (Pazos-Ávalos & Lousto, 2005). The
field variable used in the calculations is given by (Krivan et al., 1997),

ˆ.t; r; �; z�/ � emi z�r3‰.t; r; �/; (D.39)
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Figure D.2 Three dimensional snapshots of ˆ, with l D m D 2, at two different times,
t=M D 120; 175, left and right, respectively. It can be seen the outward propagation
of the pulse and the formation of the ringing modes.
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Figure D.3 Slice at � D �=2 of the real part of ˆ extracted at r�=M D 20. The damped
oscillations are clearly visible with ˆ / e�0:078t (orange dashed line).

where z� is the Kerr coordinate, d z� D d� C adr=�. The Lax-Wendroff method for
hyperbolic partial differential equations (see e.g. Press et al., 1992) was used to solve the
equation. The solution for a=M D 0:7 and l D m D 2 for selected times of integration is
shown in fig. D.2. The propagation outward is clearly seen and the formation of the ringing
tail. The behaviour of the ringing tail is shown in detail in fig. D.3. In order to proceed
to the solution of the equation with source, and as test of the method, the standard normal
modes of a Kerr BH must be reproduced. Different parameters for a=M have been studied
and the results agree with (Kokkotas, 1991). Then next step is currently under development.
On the hand, due to the fact that the system after the passage of the ISCO does not suddenly
stop satisfying the adiabatic condition Pr � r�, circularized waveforms (B.4) can describe
approximately the radiation during this part. However, in order to confirm this conjecture,
effects coming from the radial velocity must be calculated, e.g. by solving the time-domain
Teukolsky equation.



135

Bibliography

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016a, Phys. Rev. Lett., 116, 061102

—. 2016b, Living Reviews in Relativity, 19, 1

—. 2017a, Phys. Rev. Lett., 119, 161101

Abbott, B. P., & et al. 2017, ApJ, 848, L13

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016c, Phys. Rev. Lett., 116, 241103

—. 2016d, Phys. Rev. Lett., 116, 241102

—. 2016e, Phys. Rev. Lett., 116, 221101

—. 2017b, Phys. Rev. Lett., 118, 221101

—. 2017c, ApJ, 851, L35

—. 2017d, Phys. Rev. Lett., 119, 141101

—. 2017e, ApJ, 848, L12

—. 2017f, ApJ, 851, L16

—. 2018a, Classical and Quantum Gravity, 35, 065009

—. 2018b, arXiv e-prints, arXiv:1811.12907

Accadia, T., Acernese, F., Alshourbagy, M., et al. 2012, Journal of Instrumentation, 7, 3012

Aimuratov, Y., Ruffini, R., Muccino, M., et al. 2017, ApJ, 844, 83

Ajith, P., Babak, S., Chen, Y., et al. 2007, Classical and Quantum Gravity, 24, S689

Ajith, P., Hannam, M., Husa, S., et al. 2011, Phys. Rev. Lett., 106, 241101

Allen, B., Anderson, W. G., Brady, P. R., Brown, D. A., & Creighton, J. D. E. 2012,
Phys. Rev. D, 85, 122006

Amaldi, E., & Pizzella, G. 1979, in Relativity, Quanta and Cosmology in the Development
of the Scientific Thought of Albert Einstein, 9–139

Amaro-Seoane, P., Audley, H., Babak, S., et al. 2017, arXiv e-prints, arXiv:1702.00786



136 Bibliography

Amaro-Seoane, P., Aoudia, S., Babak, S., et al. 2012, Classical and Quantum Gravity, 29,
124016

Anninos, P., Hobill, D., Seidel, E., Smarr, L., & Suen, W.-M. 1995, Phys. Rev. D, 52, 2044

Antoniadis, J., Freire, P. C. C., Wex, N., et al. 2013, Science, 340, 448

Apostolatos, T. A. 1995, Phys. Rev. D, 52, 605

Arcavi, I., McCully, C., Hosseinzadeh, G., et al. 2017, ApJ, 848, L33

Arfken, G. B., & Webber, H. J. 2005, Mathematical Methods for Physicist, burlington,
USA, Elsevier Academic Press. (2005)

Astone, P., Ballantini, R., Babusci, D., et al. 2006, Classical and Quantum Gravity, 23, S57

—. 2008, Classical and Quantum Gravity, 25, 114048

Atwood, W. B., Abdo, A. A., Ackermann, M., et al. 2009, ApJ, 697, 1071

Barack, L., & Cutler, C. 2004, Phys. Rev. D, 69, 082005

Bardeen, J. M., Press, W. H., & Teukolsky, S. A. 1972, ApJ, 178, 347

Barish, B. C., & Weiss, R. 1999, Physics Today, 52, 44

Becerra, L., Bianco, C. L., Fryer, C. L., Rueda, J. A., & Ruffini, R. 2016, ArXiv e-prints,
arXiv:1606.02523

Becerra, L., Cipolletta, F., Fryer, C. L., Rueda, J. A., & Ruffini, R. 2015, ApJ, 812, 100

Becerra, L., Rueda, J. A., Lorén-Aguilar, P., & García-Berro, E. 2018, ApJ, 857, 134

Belvedere, R., Boshkayev, K., Rueda, J. A., & Ruffini, R. 2014, Nuclear Physics A, 921,
33

Benz, W., Cameron, A. G. W., Press, W. H., & Bowers, R. L. 1990, ApJ, 348, 647

Berger, E. 2014, Annual Review of Astronomy and Astrophysics, 52, 43

Berger, E., Fong, W., & Chornock, R. 2013, ApJ, 774, L23

Bernuzzi, S., Dietrich, T., & Nagar, A. 2015a, Phys. Rev. Lett., 115, 091101

Bernuzzi, S., Nagar, A., Dietrich, T., & Damour, T. 2015b, Phys. Rev. Lett., 114, 161103

Bildsten, L., & Cutler, C. 1992, ApJ, 400, 175

Blackman, J., Field, S. E., Galley, C. R., et al. 2015, Phys. Rev. Lett., 115, 121102

Blanchet, L. 2006, Living Reviews in Relativity, 9, 4

Bondi, H. 1960, Nature, 186, 535

Bondi, H., Pirani, F. A. E., & Robinson, I. 1959, Proceedings of the Royal Society of
London Series A, 251, 519



Bibliography 137

Bondi, H., van der Burg, M. G. J., & Metzner, A. W. K. 1962, Proceedings of the Royal
Society of London Series A, 269, 21

Breu, C., & Rezzolla, L. 2016, MNRAS, 459, 646

Brill, D. R., & Hartle, J. B. 1964, Physical Review, 135, 271

Buchman, L. T., Pfeiffer, H. P., Scheel, M. A., & Szilagyi, B. 2012, Phys. Rev., D86,
084033

Buonanno, A., & Damour, T. 1999, Phys. Rev. D, 59, 084006

—. 2000, Phys. Rev. D, 62, 064015

Byram, E. T., Chubb, T. A., & Friedman, H. 1966, AJ, 71, 379

Cadelano, M., Pallanca, C., Ferraro, F. R., et al. 2015, ApJ, 812, 63

Camp, J. B., & Cornish, N. J. 2004, Annual Review of Nuclear and Particle Science, 54,
525

Cano, Z., Wang, S.-Q., Dai, Z.-G., & Wu, X.-F. 2017, Advances in Astronomy, 2017,
8929054

Chandrasekhar, S. 1963, Ellipsoidal Figures of Equilibrium (New Haven: Dover Publica-
tions)

Chandrasekhar, S. 1967, An introduction to the study of stellar structure

Chen, H.-Y., & Holz, D. E. 2017, ApJ, 840, 88

Chu, T., Fong, H., Kumar, P., et al. 2016, Class. Quant. Grav., 33, 165001

Cipolletta, F., Cherubini, C., Filippi, S., Rueda, J. A., & Ruffini, R. 2015, Phys. Rev. D, 92,
023007

—. 2017, Phys. Rev. D, 96, 024046

Cocke, W. J., Disney, M. J., & Taylor, D. J. 1969, Nature, 221, 525

Connaughton, V., et al. 2017, GCN, 21506

Cutler, C. 1998, Phys. Rev. D, 57, 7089

Cutler, C., Kennefick, D., & Poisson, E. 1994, Phys. Rev. D, 50, 3816

Damour, T. 2001, Phys. Rev. D, 64, 124013

—. 2015, Classical and Quantum Gravity, 32, 124009

Damour, T., & Iyer, B. R. 1991, Phys. Rev. D, 43, 3259

Damour, T., & Nagar, A. 2009, Phys. Rev. D, 79, 081503

—. 2010, Phys. Rev. D, 81, 084016



138 Bibliography

Damour, T., Nagar, A., & Bernuzzi, S. 2013, Phys. Rev. D, 87, 084035

Dan, M., Rosswog, S., Brüggen, M., & Podsiadlowski, P. 2014, MNRAS, 438, 14

Davis, M., Ruffini, R., Press, W. H., & Price, R. H. 1971, Phys. Rev. Lett., 27, 1466

Davis, M., Ruffini, R., & Tiomno, J. 1972a, Phys. Rev. D, 5, 2932

Davis, M., Ruffini, R., Tiomno, J., & Zerilli, F. 1972b, Physical Review Letters, 28, 1352

Della Valle, M. 2011, International Journal of Modern Physics D, 20, 1745

Detweiler, S. 1980, ApJ, 239, 292

Detweiler, S. L. 1978, ApJ, 225, 687

Detweiler, S. L., & Szedenits, Jr., E. 1979, ApJ, 231, 211

Drasco, S., & Hughes, S. A. 2006, Phys. Rev. D, 73, 024027

—. 2014, Phys. Rev. D, 90, 109905

Drever, R. W. P. 1977, Quarterly Journal of the Royal Astronomical Society, 18, 9

Echeverria, F. 1989, Phys. Rev. D, 40, 3194

Eddington, A. S. 1922, Proceedings of the Royal Society of London Series A, 102, 268

Eggleton, P. P. 1983, ApJ, 268, 368

Eichler, D., Livio, M., Piran, T., & Schramm, D. N. 1989a, Nature, 340, 126

—. 1989b, Nature, 340, 126

Einstein, A. 1915, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. ), 1915, 844

—. 1916, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften
(Berlin), 688

—. 1918, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften
(Berlin), 154

Einstein, A., & Rosen, N. 1937, Journal of The Franklin Institute, 223, 43

Faber, J. A., & Rasio, F. A. 2012, Living Reviews in Relativity, 15, 8

Fermi GBM. 2017, GCN, 524666471

Ferrari, A., & Ruffini, R. 1969, ApJ, 158, L71

Feynman, R. P. 1995, Feynman lectures on gravitation

Finn, L. S., & Chernoff, D. F. 1993, Phys. Rev. D, 47, 2198

Finn, L. S., & Thorne, K. S. 2000, Phys. Rev. D, 62, 124021



Bibliography 139

Fitchett, M. J., & Detweiler, S. 1984, MNRAS, 211, 933

Flanagan, É. É., & Hughes, S. A. 1998, Phys. Rev. D, 57, 4535

Forward, R. L. 1978, Phys. Rev. D, 17, 379

Friedman, J. L., Ipser, J. R., & Sorkin, R. D. 1988, ApJ, 325, 722

Fryer, C. L., & New, K. C. B. 2011, Living Reviews in Relativity, 14, 1

Fryer, C. L., Oliveira, F. G., Rueda, J. A., & Ruffini, R. 2015, Physical Review Letters,
115, 231102

Fryer, C. L., Rueda, J. A., & Ruffini, R. 2014, ApJ, 793, L36

Gair, J. R., Flanagan, É. É., Drasco, S., Hinderer, T., & Babak, S. 2011, Phys. Rev. D, 83,
044037

Galama, T. J., Vreeswijk, P. M., van Paradijs, J., et al. 1999, A&AS, 138, 465

Galilei, G. 1610, Sidereus Nuncius (Italy: Thomas Baglioni)

Gehrels, N., Chincarini, G., Giommi, P., et al. 2004, ApJ, 611, 1005

Gertsenshteı̌n, M. E., & Pustovoı̌t, V. I. 1963, Soviet Journal of Experimental and Theoret-
ical Physics, 16, 433

Giacconi, R., Gursky, H., Paolini, F. R., & Rossi, B. B. 1962, Phys. Rev. Lett., 9, 439

Giacconi, R., & Ruffini, R., eds. 1978, Physics and astrophysics of neutron stars and black
holes

Goldberg, J. N., Macfarlane, A. J., Newman, E. T., Rohrlich, F., & Sudarshan, E. C. G.
1967, Journal of Mathematical Physics, 8, 2155

Goldstein, A., Veres, P., Burns, E., et al. 2017, ApJ, 848, L14

Goodman, J. 1986, ApJ, 308, L47

Gralla, S. E., Hughes, S. A., & Warburton, N. 2016, Classical and Quantum Gravity, 33,
155002

Guerrero, J., García-Berro, E., & Isern, J. 2004, A&A, 413, 257

Guetta, D., & Della Valle, M. 2007, ApJ, 657, L73

Guetta, D., Pian, E., & Waxman, E. 2011, A&A, 525, A53

Haggard, D., Nynka, M., Ruan, J. J., et al. 2017, ApJ, 848, L25

Han, W.-B., & Cao, Z. 2011, Phys. Rev. D, 84, 044014

Hartle, J. B. 2003, Gravity: An Introduction to Einstein’s General Relativity (San Fran-
cisco: Addison Wesley)



140 Bibliography

Hemberger, D. A., Lovelace, G., Loredo, T. J., et al. 2013, Phys. Rev., D88, 064014

Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F., & Collins, R. A. 1968, Nature, 217,
709

Hotokezaka, K., Kiuchi, K., Kyutoku, K., et al. 2013, Phys. Rev. D, 88, 044026

Hotokezaka, K., & Piran, T. 2017a, arXiv e-prints, arXiv:1707.08978

—. 2017b, ApJ, 842, 111

Hughes, S. A. 2000, Phys. Rev. D, 61, 084004

—. 2001, Phys. Rev. D, 64, 064004

Hulse, R. A., & Taylor, J. H. 1975, ApJ, 195, L51

Husa, S., Khan, S., Hannam, M., et al. 2016, Phys. Rev. D, 93, 044006

Izzo, L., Rueda, J. A., & Ruffini, R. 2012, A&A, 548, L5

Jackson, J. D. 1998, Classical Electrodynamics, 3rd Edition

Jansky, K. G. 1933, Nature, 132, 66

Jantzen, R. T., Carini, P., & Bini, D. 1992, Annals of Physics, 215, 1

Kalogera, V., Narayan, R., Spergel, D. N., & Taylor, J. H. 2001, ApJ, 556, 340

Kawaguchi, K., Kyutoku, K., Nakano, H., et al. 2015, Phys. Rev. D, 92, 024014

Kerr, R. P. 1963, Physical Review Letters, 11, 237

Kidder, L. E. 2008, Phys. Rev. D, 77, 044016

Klebesadel, R. W., Strong, I. B., & Olson, R. A. 1973, ApJ, 182, L85

Klein, A., Barausse, E., Sesana, A., et al. 2016, Phys. Rev. D, 93, 024003

Klimenko, S., Yakushin, I., Mercer, A., & Mitselmakher, G. 2008, Classical and Quantum
Gravity, 25, 114029

Kobayashi, S., & Mészáros, P. 2003, ApJ, 589, 861

Kojima, Y., & Nakamura, T. 1984, Progress of Theoretical Physics, 71, 79

Kokkotas, K. D. 1991, Classical and Quantum Gravity, 8, 2217

Kouveliotou, C., Meegan, C. A., Fishman, G. J., et al. 1993, ApJ, 413, L101

Kovacevic, M., Izzo, L., Wang, Y., et al. 2014, A&A, 569, A108

Krivan, W., Laguna, P., Papadopoulos, P., & Andersson, N. 1997, Phys. Rev. D, 56, 3395

Lai, D., Rasio, F. A., & Shapiro, S. L. 1993, ApJS, 88, 205



Bibliography 141

—. 1994, ApJ, 420, 811

Lai, D., & Shapiro, S. L. 1995, ApJ, 442, 259

Landau, L. D., & Lifshitz, E. M. 1951, The Classical Theory of Fields (Cambridge, Mass.:
Adisson-Wesley)

—. 1969, Mechanics (Oxford: Pergamon Press)

—. 1975, The classical theory of fields (4th edition) (Oxford, UK: Butterworth-Heinemann)

Lazarus, P., Tauris, T. M., Knispel, B., et al. 2014, MNRAS, 437, 1485

Lee, W. H., Ramirez-Ruiz, E., & Page, D. 2004a, ApJ, 608, L5

—. 2004b, ApJ, 608, L5

Lehner, L., & Pretorius, F. 2014, Annual Review of Astronomy and Astrophysics, 52, 661
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