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Abstract Motivated by the recent hints of lepton flavour
non-universality in B-meson semi-leptonic decays, we study
the constraints of perturbative unitarity on the new physics
interpretation of the anomalies in b → c�ν̄ and b → s��̄
transitions. Within an effective field theory approach we find
that 2 → 2 fermion scattering amplitudes saturate the unitar-
ity bound below 9 and 80 TeV, respectively for b → c�ν̄ and
b → s��̄ transitions. Stronger bounds, up to few TeV, are
obtained when the leading effective operators are oriented in
the direction of the third generation, as suggested by flavour
models. We finally address unitarity constraints on simpli-
fied models explaining the anomalies and show that the new
physics interpretation is ruled out in a class of perturbative
realizations.
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1 Introduction

In the recent years we have witnessed a growing pattern
of experimental anomalies in flavour physics, which can be
schematically summarized as follows:

1. Semi-leptonic B-decays in flavour changing neutral cur-
rents (FCNC) b → s��̄, suggesting a deficit of muons
compared to electrons. The main observables are: (i) the
angular distributions of B → K ∗μμ̄ [1–3], (ii) the rate
of semi-leptonic decays such as B → K ∗μμ̄ [1] and
Bs → φμμ̄ [4] and (iii) the lepton flavour universality
(LFU) violating observables RK [5] and RK ∗ [6], which
are defined by the ratios B(B → K (∗)μμ̄)/B(B →
K (∗)eē). We remark that the Standard Model (SM) the-
oretical uncertainty for RK (∗) is very small (few percent
due to QED radiative corrections [7]). Updated fits based
on effective field theory (EFT) analyses, including the
most recent RK

∗ measurement, can be found in [8–12].
2. Semi-leptonic B-decays in flavour changing charged cur-

rents (FCCC) b → c�ν̄�, suggesting an excess of taus
compared to muons and electrons. The main observables
are the LFU violating ratios RD(∗) [13–15], defined as
B(B → D(∗)τ ν̄)/B(B → D(∗)�ν̄), with � = e, μ. In
this case it is non-trivial that three different experiments
agree well among each other. A recent EFT fit of RD(∗)

can be found for instance in [16]. Very recently, there has
also been a new measurement of RD∗ by the LHCb col-
laboration [17], which is remarkably compatible with the
previous ones. However, this single measurement does
not affect much the global fit.

In both cases the statistical significance reaches the 4σ level,
while from a theoretical standpoint it is very intriguing that
both sets of anomalies can be interpreted within a coherent
framework. In particular, one can envisage two orthogonal
structures: (i) a vertical (gauge) one: global fits seem to pre-
fer effective operators featuring only SU (2)L doublets and
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(ii) a horizontal (flavour) one: data hints to violation of LFU
with a similar hierarchical pattern as in the SM, with new
physics contributions negligible in electrons (basically no
effects), sizeable in muons (observable only in b → sμμ̄)
and large in taus (effects in b → cτ ν̄τ and potentially in
b → sντ ν̄τ ). These facts motivated the community to spec-
ulate about the simultaneous explanation of these two sets
of anomalies and their connection with the origin of the SM
flavour. It is then maybe not too early to dream about new
physics and ask “what is the scale of new physics behind the
B-flavour anomalies?”

Here, we address this question by using an old tool of
theoretical physics, namely perturbative unitarity. Perhaps
most famously, constraints imposed by perturbative unitar-
ity in WW scattering have been used in the past to infer
an upper bound on the Higgs boson mass or, alternatively,
on the scale where the SM description of weak interactions
needed to be completed in the ultraviolet (UV) in terms of
some new strongly coupled dynamics [18,19]. What we are
going to consider here instead resembles in some sense the
Fermi theory of weak interactions [20]. In fact, already in the
1930s, from the low-energy measurement of GF one could
have inferred what was the scale of “new physics” behind
the Fermi theory. By looking at 2 → 2 scatterings via four-
fermion effective operators in the Fermi theory one finds that
unitarity is violated1 at energies of the order of �U = 900
GeV (see e.g. [21]). As is well known, the dynamical degrees
of freedom of the SM turned out to be weakly coupled and
hence much lighter than the unitarity bound, e.g. MW � �U .

In this paper, we do something similar to the unitarity anal-
ysis in the Fermi theory by considering the four-fermion oper-
ators of the d = 6 SM-invariant EFT (SMEFT) semi-leptonic
basis, under the hypothesis of a short-distance new physics
explanation of the experimental anomalies in semi-leptonic
B-meson decays.2 Note that the analysis can be indepen-
dently carried out for the b → s��̄ and b → c�ν̄ anomalies,
and we do not necessarily rely on a common explanation of
the two. In short, once the Wilson coefficient of an effective
operator is fixed by the fit to the anomaly, we can use it in
order to extract the scale of unitarity violation without the
need of passing through the ambiguous separation of mass
vs. coupling. The common lore is that on-shell new degrees of
freedom should appear below the scale of unitarity violation
(see however [22] for exceptions), with interesting conse-
quences for direct searches at LHC and future colliders.

A simple message that we would like to emphasize is
that scattering amplitudes employing SM-invariant effective
operators lead to scales of unitarity violation �U which

1 We will sometimes improperly use the term “unitarity violation”, by
which we mean perturbative unitarity (cf. the discussion in Sect. 4).
2 Unitarity bounds for the EFT interpretation of b → s��̄ anomalies
were briefly mentioned in Ref. [9].

are typically smaller than the naive dimensional analysis
(NDA) estimate of the strong coupling regime g� = 4π ,
i.e. M� = 4π�O, where �O denotes the scale of the SM-
invariant effective operator required to fit the anomaly nor-
malized to unit Wilson coefficient. This enhancement is also
in part due to the correlation of the scattering amplitudes
in the gauge group space, which is important to take into
account when thinking about the energy reach of LHC or
future colliders. A related point is the flavour structure of
the effective operators. If these are oriented along the third
generation fermion families (as motivated in various flavour
models), one typically predicts a strong enhancement of the
unitarity bound which can even reach few TeV (cf. Table 1).

Similarly to the EFT analysis, unitarity arguments can
also be used in order to set perturbativity constraints on the
parameter space of simplified models explaining the flavour
anomalies. Note, however, that in the latter case the scattering
amplitudes do not grow with the energy but reach asymptotic
values proportional to the Yukawa-like couplings of the new
mediators. It is possible then to translate the unitarity bounds
on the coupling into an upper bound on the mass of the new
states (once the ratio coupling/mass is fixed in terms of the
fit to the relevant anomaly). Remarkably, in some cases the
upper bound on the new mediators’ mass is so strong that
the perturbative interpretation of the anomaly within a given
simplified model can be ruled out, or soon tested at the LHC.

The layout of the paper is the following: in Sect. 2 we start
by introducing and comparing different kind of scales in the
EFT. After discussing in Sect. 3 motivated flavour structures
for the effective operators, we briefly introduce the partial-
wave-unitarity tool in Sect. 4. We continue in Sects. 5 and 6
where we derive the unitarity bounds respectively in the EFT
and for simplified models addressing the B-flavour anoma-
lies. We finally conclude in Sect. 7, where we also provide
a summary of our results. In Appendix A, as a paradigmatic
example, we report the details of the unitarity bound calcula-
tion in the presence of an SU (2)L triplet effective operator.

2 A tale of scales

In what follows we will focus for simplicity on purely left-
handed operators, since they provide the best fit for both
anomalies in b → sμμ̄ and b → cτ ν̄ transitions. The anal-
ysis can easily be generalized to scenarios including more
operators by using the results given in Sect. 5. In order to
start the discussion it is useful to identify and compare four
(conceptually different) scales in the EFT:3

3 Some of the results presented here will be derived in the following
sections.
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Table 1 Summary of the different new physics scales associated with
the B-flavour anomalies in the EFT analysis: �A is the scale of the
effective operator needed to fit the low-energy observable, �O is that
required by a SMEFT, �U is the scale of unitarity violation and M� is
the NDA mass scale of the operator in the strongly coupled regime. O
denotes the flavour structure of the triplet operator in Eq. (4), while FSQ

and FSL are flavour suppression factors in the quark and lepton sector
which rescale the aligned entries (those corresponding to FSQ,L = 1)
by a factor

√
FSQ × FSL . The cases marked by ‡ and ∗ correspond

respectively to the ansatz of left-right symmetric partial compositeness
and minimal flavour violation in the charged lepton sector (see Sect. 3
for details)

Anomaly O FSQ FSL �A (TeV) |�O| (TeV) �U (TeV) M� (TeV)

b → cτ ν̄ Q23L33 1 1 3.4 3.4 9.2 43

b → cτ ν̄ Q33L33 |Vcb| 1 3.4 0.7 1.9 8.7

b → sμμ̄ Q23L22 1 1 31 31 84 390

b → sμμ̄ Q33L22 |Vts | 1 31 6.2 17 78

b → sμμ̄ Q33L33 |Vts | ‡mμ/mτ 31 1.5 4.1 19

b → sμμ̄ Q33L33 |Vts | ∗(mμ/mτ )
2 31 0.4 1.0 4.7

1. �A: the “Fermi constant” of the process.
This is the scale required to explain the anomaly, to be
evaluated at the typical energy of the process which is
fixed by the B-meson mass. The low-energy EFT descrip-
tion is based on SU (3)C ×U (1)EM invariant operators.
The index A on �A runs over the anomalies, schemati-
cally A = {RD(∗) , RK (∗)}, and the EFT Lagrangian fea-
turing purely left-handed operators reads

Leff ⊃ − 1

�2
RD(∗)

2 cLγ μbLτ LγμνL

+ 1

�2
RK (∗)

sLγ μbLμLγμμL + h.c., (1)

where we assumed alignment with the phases of the CKM
elements that appear in the corresponding SM operators.
Note that the fit of the RD(∗) and RK (∗) anomalies requires
an opposite sign interference with the SM contribution.
We also included an extra factor of 2 in the definition
of the charged-current operator, so that the latter has the
same normalization of the neutral-current operator when
considering a SMEFT. The best fit values of the RD(∗)

[23] and RK (∗) [10] anomalies yield respectively

�RD(∗)
= 3.4 ± 0.4 TeV, (2)

�RK (∗)
= 31 ± 4 TeV, (3)

where the errors are at 1σ . In the following we will only
consider central values.

2. �O: the scale of the SMEFT operator.
This is the scale required to explain the anomaly using
an EFT at higher energies4 (SU (3)C × SU (2)L ×U (1)Y
invariant), with Wilson coefficient normalized to one.

4 QCD running effects on the Wilson coefficients are of the order of
1 + αs

4π
× log �O

mb
. For �O = 1 TeV, this corresponds to an O(5%)

correction that will be neglected in the following.

The index O on �O is associated with an operator of the
SMEFT semi-leptonic basis and runs over all the possi-
ble Lorentz and flavour structures. For definiteness we
will consider here an SU (2)L triplet operator (Q and L
denoting SU (2)L doublets)

LSMEFT ⊃ 1

�2
Qi j Lkl

(
Q̄iγ

μσ AQ j

) (
L̄kγμσ ALl

)

+h.c., (4)

and two reference flavour structures such that the oper-
ator is aligned in the direction of the flavour eigenstates
responsible for the anomalies, namely O = Q23L33 (for
b → cτ ν̄ transitions) and O = Q23L22 (for b → sμμ̄

transitions). The matching with Eq. (1) yields

∣∣�Q23L33

∣∣ = �RD(∗)
= 3.4 TeV, (5)

∣∣�Q23L22

∣∣ = �RK (∗)
= 31 TeV. (6)

As we will discuss in detail in Sect. 3, depending on
the specific flavour ansatz, the scale �O can be effec-
tively reduced with respect to the “Fermi constant” of
the process. For example, the transition b → cτ ν̄ could
originate from the operator O = Q33L33, where the
3 → 2 transition in the up sector is due to a CKM mix-
ing (in the basis where Qi = (V †

i j u
j
L , diL)T ), which yields

�Q33L33/
√|Vcb| = �RD(∗)

.
3. �U : the scale of unitarity violation.

This is the scale where the EFT description breaks down.
The important point is that it can be expressed in terms
of the scale �O, without passing through the ambiguous
separation between coupling and mass. Using the results
of Sect. 5 (which are based on a non-trivial calculation
of the scattering amplitude, including gauge group mul-
tiplicity factors) we obtain

�U =
√

4π√
3

∣∣�Qi j Lkl

∣∣ , (7)
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which yields

�U = 9.2 TeV (O = Q23L33 case), (8)

�U = 84 TeV (O = Q23L22 case). (9)

These are the most conservative bounds on the scale of
new physics responsible for the anomalies in b → cτ ν̄

and b → sμμ̄.
4. M�: the NDA mass scale in the strongly coupled regime.

This is the mass scale associated with the effective oper-
ator when saturating perturbativity. After reintroducing
h̄ in the NDA (see e.g. [24–26]), one can formally distin-
guish among scales (�), masses (M) and couplings (g),
and set M = g�. By naively saturating perturbativity at
|g�| = 4π , we can write

1

|�O| = 4π

M�

, (10)

which leads to

M� = 43 TeV (O = Q23L33 case), (11)

M� = 390 TeV (O = Q23L22 case). (12)

Note that M� is a factor 5 larger than the scale of unitarity
violation in Eqs. (8) and (9).

Our results for the EFT analysis are summarized in Table 1
(cf. also Sects. 3–5 for more details of the flavour structure of
the effective operators and the unitarity bounds), where we
report the values of the four different scales discussed above
for the anomalies in either b → cτ ν̄ or b → sμμ̄ transitions,
and depending on the flavour structure of the operatorO. The
two main points to be observed are the following: (i) �U is
sizeably smaller than M� and (ii) depending on the flavour
structure of the operator O, the scale �U approaches the
energy reach of LHC. This motivates an interesting interplay
of the flavour anomalies with direct searches, which is further
explored in Sect. 6 by employing simplified models.

3 On the flavour structure of the effective operators

The RD(∗) and RK (∗) anomalies can be interpreted via new
physics contributions in quark flavour transitions involving
the third and second generation, respectively b → c for
FCCC and b → s for FCNC. In models with motivated
flavour structures, it is natural to expect sizeable effects in
channels not directly related to the flavour anomalies. In par-
ticular, it may happen that operators involving fermions of
the third family are enhanced compared to flavour violat-
ing ones. This implies that a stronger unitary bound can be

derived from 2 → 2 scatterings of fermions of the third gen-
eration. For example, when considering the channel related
to the anomaly in b → cτ ν̄τ we always get a unitarity bound
from the scattering bc → τ ν̄τ , but we can reasonably expect
that scatterings of the form bb → τ τ̄ give stronger unitarity
constraints. In order to create a link between the different
channels, a flavour structure has to be assumed. In the fol-
lowing, we review some well-known frameworks:

1. Minimal flavour violation (MFV)
The MFV hypothesis [27] states that the strength of new
physics effects are linked to the SM Yukawa couplings,
which act as sources of breaking of the enlarged sym-
metry of the gauge-kinetic terms for fermions, SU (3)3

for quarks. In particular, for quark doublets we see that
flavour violating interactions are generated at the leading
order (in powers of Yukawas) by

Qi

(
a YUY

†
U + b YDY

†
D

)

i j
Q j , (13)

where we omitted SU (2)L and Lorentz indices. Here,
a and b are coefficients of similar size. This implies a
suppression of flavour violating quark currents compared
to flavour conserving ones

cLγ μbL
t Lγ μbL

∼ Vcb
Vtb

� Vcb,
sLγ μbL
bLγ μbL

∼ V ∗
ts

V ∗
tb

� V ∗
ts . (14)

2. SU (2)Q flavour symmetry
In the limit of vanishing SM Yukawas for the first
two quark generations, an SU (2)3 global symmetry is
restored. This approximate symmetry (or a subgroup of
it) might be promoted to be a fundamental symmetry in
the UV. In particular, there might be an SU (2)Q symme-
try that distinguishes the quark doublets of the first two
generations from the third one, and which has to be even-
tually broken in order to reproduce the observed pattern
of SM masses and mixings. If the breaking is achieved
via a spurion field 	X that transforms as the fundamental
representation of SU (2)Q , we get (see e.g. [28]) that the
the typical size of | 	X | is of O(λ2), where λ ∼ 0.2 is
the Cabibbo angle. In this case, we also expect that new
physics effects in FCCC and FCNC scale like

cLγ μbL
t Lγ μbL

∼ λ2,
sLγ μbL
bLγ μbL

∼ λ2. (15)

3. Partial compositeness (PC)
A dynamical explanation of the flavour structure of the
SM is provided by the paradigm of PC [29] in the context
of composite Higgs models. In this framework the SM
fields are linear combinations of elementary and compos-
ite states. The admixture elementary-composite of every
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SM state is regulated by a parameter εA
i , where A runs

over the SM fermion fields (A = Q, L , u, d, e) and i is
a family index. In terms of the mixing parameters, the
Yukawas of the SM are given by (YU )i j ∼ ε

Q
i εuj and

(YD)i j ∼ ε
Q
i εdj . It is possible to show (see e.g. [30]) that

the ε
Q
i are linked to the size of the CKM matrix elements,

i.e. ε2/ε3 ∼ λ2 and ε1/ε3 ∼ λ3. New physics effects are
hence related to the size of the εA

i coefficients, and for
quark left-handed currents one expects a similar scaling
for FCCC and FCNC as in Eq. (15).

We conclude that for all the three frameworks above the tran-
sition between the third and second generation is suppressed
by a factor O(λ2) compared to the diagonal case involv-
ing only the third family. This implies that stronger unitarity
bound can be derived from 2 → 2 scattering of the third
family. For the presentation of our results in Table 1 we fix
the numerical values to the MFV case, leading to a |Vcb|
suppression in FCCC and a |Vts | one in FCNC.

On the other hand, the situation in the lepton sector cru-
cially depends on the unknown origin of neutrino masses.
Note that the new physics effects required by the B-flavour
anomalies do not violate the accidentalU (1)e, μ, τ symmetry
of the SM which arises in the mν → 0 limit (or, equiv-
alently, in the decoupling limit of lepton-number-violating
effective operators). It is hence reasonable to assume that the
source of LFU breaking required by the B-flavour anomalies
is connected to the charged lepton masses. Two structures
can easily be motivated:

�̄iLγ μ�iL

�̄
j
Lγ μ�

j
L

∼ (εLi )2

(εLj )
2

∼ m�i

m� j

or

�̄iLγ μ�iL

�̄
j
Lγ μ�

j
L

∼ (YEY
†
E )i i

(YEY
†
E ) j j

∼
(
m�i

m� j

)2

, (16)

where the first option corresponds to PC with εLi ∼ εei
(implying (YE )i j ∼ εLi εLj ) and the second one to MFV in
the charged lepton sector. In Table 1 we use these two bench-
marks, though different patterns can be of course envisaged.

4 Partial-wave unitarity

Here we briefly recap the partial-wave unitarity formalism.
More details can be found e.g. in [31,32]. Let us denote by
M f i (

√
s, cos θ) the matrix element of a 2 → 2 scattering

amplitude in momentum space, where
√
s is the center of

mass energy and θ is the azimuthal angle of the scattering.
The dependence from cos θ can be eliminated by projecting
the amplitude onto partial waves of total angular momentum
J . In our case it suffices to consider the lowest partial wave,
defined by

a0
f i = 1

32πs

∫ 1

−1
d(cos θ)M f i (

√
s, cos θ). (17)

This expression is only valid in the high-energy limit, since
we neglected kinematical factors ensuring that the partial
wave is zero at threshold (see e.g. [33]). The right hand side
of Eq. (17) must be further multiplied by a 1√

2
factor for any

identical pair of particles either in the initial or final state.
The unitarity of the S-matrix implies

1

2i

(
a0
f i − a0∗

i f

)
≥

∑

h

a0∗
h f a

0
hi , (18)

where the inequality originates from the fact that we
restricted the sum over h to 2-particle states. For i = f Eq.
(18) reduces to Im a0

i i ≥ |a0
i i |2 or, equivalently, |Im a0

i i | ≤ 1
and |Re a0

i i | ≤ 1
2 . It is customary to define the perturbative

unitarity bound

|Re (a0
i i )

Born| ≤ 1

2
, (19)

at the level of the Born amplitude. Although the choice in
Eq. (19) is somewhat arbitrary, it yields a reasonable indi-
cation of the range of validity of the perturbative expansion.
In fact, a Born value of Re a0

i i = 1
2 and Im a0

i i = 0 needs
at least a higher-order correction of 40% in order to restore
unitarity (see e.g. [33]), thus signalling the breakdown of the
expansion itself.

It is also useful to note that in order to optimize the uni-
tarity bound one can look for correlations in the partial-wave
matrix (e.g. in the gauge group or flavour space). This cor-
responds to diagonalizing the partial-wave matrix and set-
ting the bound on the largest eigenvalue, Re ã0

i i < 1/2,
with the forward scattering i = f understood to correspond
to a superposition of states which is an eigenvector of ã0

i i .
Note that neglecting a scattering channel for the partial-wave
matrix corresponds to removing the associated row/column.
Thanks to the Cauchy interlacing theorem, we also know that
the largest eigenvalue of the reduced matrix is always ≤ than
the largest eigenvalue of the full matrix. Hence, by neglecting
a scattering channel the unitarity bound still (conservatively)
applies.

5 Unitarity bounds in the EFT

In this section we derive the connection between the scale
of unitarity violation �U and the coefficients �O of the
semi-leptonic SMEFT basis, relevant for the RD(∗) and RK (∗)

anomalies. At energies
√
s � v the scattering amplitudes are

conveniently described by exploiting the full SM invariance.
A complete basis of semi-leptonic d = 6 operators invariant
under the SM gauge symmetry is [23]
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Table 2 Scale of unitarity
violation �U as a function of
the coefficients �O of the
semi-leptonic SMEFT basis of
Eq. (20). For the case of
QL Q̄L → LL L̄L scattering the
SU (2)L triplet and singlet
channels are labelled explicitly.
The third column denotes the
enhancement factors on the
partial wave due to the gauge
group structure in
SU (3)C × SU (2)L space

Scattering �U SU (3)C × SU (2)L

(QL + Q̄L )3 → (LL + L̄ L )3

√
4π√

3

∣∣�QL(3)

∣∣ √
3 × 2

(QL + Q̄L )1 → (LL + L̄ L )1

√
4π√

3

∣∣�QL(1)

∣∣ √
3 × 2

uR + ū R → eR + ēR
√

8π√
3

|�ue|
√

3

dR + d̄R → eR + ēR
√

8π√
3

|�de|
√

3

uR + ū R → LL + L̄ L

√
8π√

6
|�uL | √

3 × √
2

dR + d̄R → LL + L̄ L

√
8π√

6
|�dL | √

3 × √
2

QL + Q̄L → eR + ēR
√

8π√
6

∣∣�Qe
∣∣ √

3 × √
2

dR + Q̄L → LL + ēR
√

8π√
3

∣∣�dQLe
∣∣ √

3

QL + ū R → LL + ēR
√

8π√
3

∣∣�QuLe
∣∣ √

3

LSMEFT ⊃ 1

�2
QL(3)

(Q̄Lγμσ AQL)(L̄ Lγ μσ ALL)

+ 1

�2
QL(1)

(Q̄LγμQL)(L̄ Lγ μLL)

+ 1

�2
ue

(ū RγμuR)(ēRγ μeR)

+ 1

�2
de

(d̄RγμdR)(ēRγ μeR)

+ 1

�2
uL

(ū RγμuR)(L̄ Lγ μLL)

+ 1

�2
dL

(d̄RγμdR)(L̄ Lγ μLL)

+ 1

�2
Qe

(Q̄LγμQL)(ēRγ μeR)

+ 1

�2
dQLe

(d̄R QL)(L̄ L eR)

+ 1

�2
QuLe

(Q̄L uR)iσ 2(L̄ L eR)

+ 1

�2
QuLe′

(Q̄LσμνuR)iσ 2(L̄ LσμνeR) + h.c.,

(20)

where flavour indices have been suppressed. Here, QL and
LL denote SU (2)L doublets, while uR , dR and eR are
SU (2)L singlets.

An important aspect to be taken into account for the deter-
mination of the unitarity bound is the correlation of the scat-
tering amplitude in the SU (3)C × SU (2)L space. Let us
consider, for instance, the scattering (QL)αa + (Q̄L)

β
b →

(LL)c + (L̄ L)d , where greek (latin) indices run over the fun-
damental of SU (3)C (SU (2)L ). Assuming a colour singlet
channel (which applies to all the operators in Eq. (20)) the

amplitude in colour space can be represented by a 4×4 matrix
in the basis {(QL)1(Q̄L)1, (QL)2(Q̄L)2, (QL)3(Q̄L)3, (LL)

(L̄ L)}. Similarly, in SU (2)L space we can represent it via a
4×4 matrix in the basis {ψ1ψ̄1, ψ1ψ̄2, ψ2ψ̄1, ψ2ψ̄2}, where
ψa (a = 1, 2 being an SU (2)L index) denotes either (QL)α

or LL . A stronger unitarity bound can be hence obtained by
preparing the initial and final states of the scattering in the
eigenstate corresponding to the highest eigenvalue of a0 both
in SU (3)C and SU (2)L space (cf. also the discussion at the
end of Sect. 4). By looking at the different scattering chan-
nels displayed in the first column of Table 2, we obtain for
each case the scale of unitarity violation �U (defined as the
value of

√
s where the condition in Eq. (19) is saturated) as

a function of the scale of the SMEFT operator �O, where
O = {QL(3), QL(1), . . . }. In the last column of Table 2 we
also show the enhancement of the a0 eigenvalue due to the
SU (3)C × SU (2)L group structure of the partial wave. The
full calculation of the unitarity bound for the triplet opera-
tor O = QL(3) (including a detailed discussion of the gauge
group enhancement) is exemplified in Appendix A, while the
bounds for the other cases are obtained in a similar way. We
finally observe that since the tensor operator does not con-
tribute to the J = 0 partial wave, in order to apply the uni-
tarity bound from �QuLe′ one would need to inspect higher
partial waves.

6 Unitarity bounds in simplified models

We continue by applying unitarity constraints on the parame-
ter space of simplified models for the explanation of the RD(∗)

and RK (∗) anomalies. Note that this case is slightly different
from the unitarity bounds in the EFT, since the scattering
amplitudes do not grow with the energy. Still, one can exam-
ine the 2 → 2 scatterings of SM fermions in order to set per-
turbativity limits on the renormalizable couplings of the new
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Table 3 Overview of simplified models which can possibly contribute
to RD(∗) or RK (∗) via a singlet/triplet left-handed operator. Only for spe-
cific values of the ratio of the Wilson coefficients c1/c3 (obtained by

integrating out a given mediator) the dangerous di → d jνν̄ operators
are not generated (U1 case)

Simplified model Spin SM irrep c1/c3 RD(∗) RK (∗) No di → d jνν̄

Z ′ 1 (1, 1, 0) ∞ × � ×
V ′ 1 (1, 3, 0) 0 � � ×
S1 0 (3̄, 1, 1/3) −1 � × ×
S3 0 (3̄, 3, 1/3) 3 � � ×
U1 1 (3, 1, 2/3) 1 � � �
U3 1 (3, 3, 2/3) −3 � � ×

mediators and, in turn, translate them into an upper bound
on the mass of the new states (once the ratio coupling/mass
is fixed in terms of the fit to the relevant observable). As
two representative classes of simplified models, we consider
colourless spin-1 mediators and scalar/vector leptoquarks.

However, some comments are in order about the phe-
nomenological viability of the simplified models. The cri-
terium that we are going to follow in order to select the
suitable representations for the new mediators is that after
integrating them out they are able to generate triplet and sin-
glet left-handed operator, namely those associated with the
coefficients �QL(3) and �QL(1) in Eq. (20). In all the cases
that we are going to consider the phenomenologically dis-
favoured right-handed and scalar/tensor operator of Eq. (20)
can be set to zero by a proper choice of the mediator’s cou-
pling. Given these conditions, the full set of simplified models
is displayed in Table 3.

From the SU (2)L decomposition (neglecting flavour
indices and reinserting the Wilson coefficients explicitly)

c1

�2 (Q̄LγμQL )(L̄ Lγ μLL )+ c3

�2 (Q̄Lγμσ AQL )(L̄ Lγ μσ ALL )

= c1 + c3

�2

[(
d̄LγμdL )(ēLγ μeL

) + (
ūLγμuL )(ν̄Lγ μνL

)]

+ c1 − c3

�2

[(
d̄LγμdL )(ν̄Lγ μνL

) + (
ūLγμuL )(ēLγ μeL

)]

+ 2
c3

�2

[(
ūLγμdL )(ēLγ μνL

) + (
d̄LγμuL )(ν̄Lγ μeL

)]
,

(21)

it is evident that for c1/c3 = −1 there are no b → sμμ̄ tran-
sitions. Similarly, for c1/c3 = 1 processes of the type di →
d jνν̄ are absent. The latter are particularly dangerous, since
decays like B → K (∗)νν̄ or K → πνν̄ are very constraining
[34,35]. From this point of view U1 is phenomenologically
favoured, since it automatically ensures the absence of di →
d jνν̄ operators at the scale of the threshold.5 For an incom-
plete list of references addressing both RD(∗) and RK (∗) with
this leptoquark see [37–39]. Other phenomenological issues

5 This can also be achieved in non-minimal scenarios with two lepto-
quarks via a proper cancellation [36].

that have to be taken into account when considering a sim-
plified model are electroweak precision tests and the radia-
tive generation of LFU breaking effects in Z and τ decays
[40,41]. In order to avoid those bounds one has to assume
either a certain level of tuning within the couplings of the sim-
plified model or rely on some non-generic features of the UV
completion of the simplified model. For an example of a lep-
toquark model where all these bounds have been consistently
addressed see e.g. [42]. Finally, one has to consider direct
searches that we briefly address in Sect. 6.3. Our results on
the unitarity bounds for colourless vectors and leptoquarks,
which are summarized in Tables 4 and 5, provide an extra con-
straint which has to be satisfied within perturbative models.

6.1 Colourless vectors

Let us first consider the case of a real electroweak vector,
V ′

μ ∼ (1, 3, 0), which couples to the SM fermions via

LV ′ ⊃ λ
Q
i j Q̄iγ

μσ AQ j V
′A
μ + λL

i j L̄ iγ
μσ AL j V

′A
μ + h.c.

(22)

At energies
√
s � MV ′ the partial-wave scattering matrix in

the (Q j Q̄i , Ll L̄k) basis is given by6

a0 = 1

8π

(
3|λQ

i j |2
√

3λ
Q
i j (λ

L
kl)

∗
√

3(λ
Q
i j )

∗λL
kl |λL

kl |2
)

, (23)

where we also took into account the SU (3)C × SU (2)L mul-
tiplicity factors. The formalism for extracting the correlation
in the gauge group space follows very closely the sample cal-
culation of the scattering with the effective triplet operator,
which is detailed in Appendix A. The largest eigenvalue of
Eq. (23) is

6 An extra channel with V ′V ′ in the initial/final state opens up at ener-
gies

√
s > 2MV ′ . By neglecting such contribution, the unitarity bound

obtained by considering the reduced partial-wave matrix conservatively
applies (cf. the discussion at the end of Sect. 4).
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Table 4 Summary of unitarity
bounds for colourless spin-1
mediators. FSQ and FSL denote
the flavour suppression factors
in the quark and lepton sectors
(same as in Table 1)

Anomaly Coupling FSQ FSL MV ′ (TeV) MZ ′ (TeV)

b → cτ ν̄ λ
Q
23 λL

33 1 1 6.5 ×
b → cτ ν̄ λ

Q
33 λL

33 |Vcb| 1 1.3 ×
b → sμμ̄ λ

Q
23 λL

22 1 1 59 59

b → sμμ̄ λ
Q
33 λL

22 |Vts | 1 12 12

b → sμμ̄ λ
Q
33 λL

33 |Vts | mμ/mτ 2.9 2.9

b → sμμ̄ λ
Q
33 λL

33 |Vts | (mμ/mτ )
2 0.7 0.7

a0 = 3|λQ
i j |2 + |λL

kl |2
8π

, (24)

and the associated unitarity bound reads

3|λQ
i j |2 + |λL

kl |2 < 4π. (25)

Note that this is stronger than the perturbativity bound some-
times quoted in the literature, e.g. |λQ,L

i j | <
√

4π [43]. In
the following, we exemplify the unitarity bounds in the case
where the couplings of V ′ are aligned with the operators
responsible for RD(∗) and RK (∗) , respectively λ

Q
23λ

L
33 and

λ
Q
23λ

L
22. This actually yields the most conservative bounds

without flavour enhancements. The generalization to non-
aligned cases is straightforward and it is reported in Table 4
for some representative cases. In this respect, we note that
the multiple coupling configuration with λ

Q
33 ∼ λ

Q
23 might

help in relaxing the bounds from Refs. [40,41]. Integrating
out the V ′ and matching with Eq. (1), we obtain

λ
Q
23λ

L
33

M2
V ′

= 1

�2
RD(∗)

, −λ
Q
23λ

L
22

M2
V ′

= 1

�2
RK (∗)

. (26)

It is convenient to define the auxiliary functions

r =
∣∣∣∣∣
λL
kl

λ
Q
i j

∣∣∣∣∣
and f (r) = r

3 + r2 , (27)

so that the bound in Eq. (25) can be recast as (using also Eq.
(26))

MV ′ <
√

4π f (r)�A, (28)

where A = {RD(∗) , RK (∗)}. The most conservative bound is
obtained by maximizing the function f (r) at r = √

3, which
yields

MV ′ <

√
2π√

3
�A = 6.5 TeV (59 TeV), (29)

for the case of RD(∗) (RK (∗) ).

The analysis for the Z ′ is basically identical to that of the
V ′ as far as concerns neutral currents. So we do not repeat
it here. The unitarity bounds for both cases are collected in
Table 4.

6.2 Leptoquarks

Let us start by first discussing the flavour structure of the lep-
toquark Lagrangian. Neglecting Lorentz and gauge indices,
we have LLQ ⊃ yi jQL Qi L j�+h.c., where � denotes one of
the four leptoquarks in Table 3. The simplest way to generate
a contribution for either RD(∗) or RK (∗) is to switch on a sin-
gle coupling, e.g. y3 j

QL , with the lepton index j aligned either
along the third or second generation. The 3 → 2 transition in
the quark sector can then be obtained either via a Vcb or Vts
suppression. However, within such an approach the sign of

the Wilson coefficient, which goes either like
∣∣∣y3 j

QL

∣∣∣
2
Vcb or

∣∣∣y3 j
QL

∣∣∣
2
Vts (recall that Vcb > 0 and Vts < 0 in the standard

parametrization), is fixed and does not always correspond to
the one necessary to reproduce the anomaly.7 Hence, in the
following we define our simplified models based on the two
leptoquark couplings y3 j

QL and y2 j
QL , so that the sign of the

contribution can be always matched. We further assume the
scaling y2 j

QL ∼ y3 j
QLλ2, as suggested by motivated flavour

structures. Given the hierarchy y3 j
QL � y2 j

QL , the scatter-

ing amplitudes are dominated by y3 j
QL and the correlation

of the partial wave in flavour space can be safely neglected.
Indeed, for a leptoquark-mediated processes in the t-channel
one should make the following replacement in the bound:

|y3 j
QL |2 →

√
|y3 j

QL |4 + |y2 j
QL |4 ∼ |y3 j

QL |2√1 + λ4, while no
such flavour enhancement is even present for an s-channel
scattering. Given these considerations, for each leptoquark of
Table 2 we compute the unitarity constraints on its couplings
and the matching condition with the effective operators in
Eq. (1). Following the conventions of Ref. [44] we have:

• S1 ∼ (3̄, 1, 1/3): LS1 ⊃ yi jQL Q
c
i,aε

abL j,b S1 + h.c.

7 With the single coupling y3 j
QL we find that S3 cannot explain neither

of the anomalies, while U3 cannot explain RD(∗) .
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The strongest unitarity bound comes from the t-channel
mediated Qc

3Q
c

3 → L j L̄ j scattering, which in the limit√
s � MS1 gives

∣∣∣y3 j
QL

∣∣∣
2

<
8π√

3
, (30)

where we included a
√

3 enhancement factor due to the
correlation of the partial wave in colour space. Integrating
out S1 and matching with the operators in Eq. (1) we
obtain

∣∣∣y33
QL

∣∣∣
2
λ2

2M2
S1

= 1

�2
RD(∗)

. (31)

• S3 ∼ (3̄, 3, 1/3): LS3 ⊃ yi jQL Q
c
i,a(εσ

A)abL j,b SA
3 +

h.c.
Analogously to the previous case we consider the t-
channel mediated Qc

3Q
c

3 → L j L̄ j scattering, from
which we get the unitarity bound

∣∣∣y3 j
QL

∣∣∣
2

<
8π

3
√

3
, (32)

where we included a
√

3 × 3 enhancement factor due
to the correlation of the partial wave in the SU (3)C ×
SU (2)L space. Integrating out S3 and matching with the
operators in Eq. (1) we obtain

∣∣∣y33
QL

∣∣∣
2
λ2

2M2
S3

= 1

�2
RD(∗)

and

∣∣∣y32
QL

∣∣∣
2
λ2

M2
S3

= 1

�2
RK (∗)

.

(33)

• U1 ∼ (3, 1, 2/3): LU1 ⊃ yi jQL Q̄i,aγ
μδabL j,bU1,μ+ h.c.

By examining the s-channel process Q̄3L j → Q̄3L j at√
s � MU1 we extract the unitarity bound8

∣∣∣y3 j
QL

∣∣∣
2

< 4π, (34)

where we included a factor 2 enhancement from the cor-
relation of the partial wave in the SU (2)L space (while
there is no SU (3)C enhancement since the colour flows
through the diagram). Integrating out U1 and matching
with the operators in Eq. (1) we obtain

8 The t-channel mediated Q3 Q̄3 → L j L̄ j scattering cannot be
straightforwardly used here, since the J = 0 partial wave is formally
divergent. This is due to the Coulomb singularity in the forward direc-
tion of the scattering for

√
s � MU1 .

∣∣∣y33
QL

∣∣∣
2
λ2

M2
U1

= 1

�2
RD(∗)

and

∣∣∣y32
QL

∣∣∣
2
λ2

M2
U1

= 1

�2
RK (∗)

.

(35)

• U3 ∼ (3, 3, 2/3): LU3 ⊃ yi jQL Q̄i,aγ
μ(σ A)abL j,bU A

3,μ+
h.c.
Analogously to the previous case, from the s-channel
process Q̄3L j → Q̄3L j we obtain

∣∣∣y3 j
QL

∣∣∣
2

< 4π. (36)

Integrating outU3 and matching with the operators in Eq.
(1) we obtain

∣∣∣y33
QL

∣∣∣
2
λ2

M2
U3

= 1

�2
RD(∗)

and

∣∣∣y32
QL

∣∣∣
2
λ2

M2
U3

= 1

�2
RK (∗)

.

(37)

After saturating the matching condition required to repro-
duce the anomalies, we can translate the unitarity bounds
on the leptoquark couplings into an upper bound on the lep-
toquark masses. As a reference value we fix λ2 = |Vcb|
(|Vts |) for RD(∗) (RK (∗)). The results are displayed in Table
5, depending on the flavour structure of the leptoquark cou-
plings.

6.3 Direct searches at the LHC

We will now briefly discuss the bounds from direct searches
for the simplified models of Table 3 and compare them with
the unitarity bounds on the new mediators’ masses from
Tables 4 and 5. We will focus in particular on decay channels
involving the third family, since these are theoretically moti-
vated by flavour models and because it is precisely in those
cases that the upper bounds on the mass of the new states are
more stringent.

Let us discuss in turn the various cases. Reference [45]
considered vector triplet V ′ exclusion limits by recasting
pp(bb̄) → τ τ̄ searches. The conclusion is that for relatively
heavy vectors MV ′ � 500 GeV the resolution of the RD(∗)

anomaly with dominant third generation couplings requires
a very large Z ′ decay width (where here Z ′ denotes here
the neutral component of V ′), which is beyond the perturba-
tive regime. This is somehow compatible with our unitarity
bound MV ′ < 1.3 TeV in Table 4. Note, however, that a large
Z ′ width also implies extra model-dependent decay channels
which would in principle contribute to our scattering ampli-
tudes, and would yield in turn a bound stronger than 1.3
TeV. On the other hand, for light masses MZ ′ � 400 GeV
a perturbative window with a relatively small Z ′ width is
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Table 5 Summary of unitarity bounds for leptoquarks. FSQ and FSL indicate the flavour suppression factors in the quark and lepton sectors (same
as in Table 1). Bold (italics) values denote the cases excluded (disfavoured) by direct searches (see Sect. 6.3)

Anomaly Coupling FSQ FSL MS1 (TeV) MS3 (TeV) MU1 (TeV) MU3 (TeV)

b → cτ ν̄ y33
QL |Vcb| 1 1.3 0.8 1.7 1.7

b → sμμ̄ y32
QL |Vts | 1 × 14 22 22

b → sμμ̄ y33
QL |Vts | mμ/mτ × 3.3 5.4 5.4

b → sμμ̄ y33
QL |Vts | (mμ/mτ )

2 × 0.8 1.3 1.3

not yet excluded by τ τ̄ searches. However, this requires a
suppression of electroweak precision observables which are
generically quite constraining [46].

If leptoquarks are light enough they can be pair-produced
at LHC with sizeable cross-section via QCD interactions. As
already stated we assume that decay channels are dominated
by third generation SM fermions. S1 has the same quan-
tum numbers of a sbottom and decays into either S1 → b̄ν̄τ

or S1 → t̄ τ̄ (both with B = 50%). Using the results of
[47] we obtain MS1 > 570 GeV, which is still compatible
with the unitarity bound in Table 5. On the other hand, S3

comprises three charge eigenstates, respectively with charges
4/3, 1/3 and −2/3. The predominant decays are S4/3

3 → b̄τ̄ ,

S1/3
3 → b̄ν̄τ or S1/3

3 → t̄ τ̄ (both with B = 50%) and

S−2/3
3 → t̄ ν̄τ . There will be electroweak mass splittings

between the three leptoquark states, allowing the heavier
ones to decay to the lighter ones, but these decays will be
subdominant to those through the leptoquark couplings, if
the mass splittings are small. In fact, by using the results
of Ref. [48] we find that electroweak precision data exclude
mass splittings within S3 above O(25) GeV. For S−2/3

3 we
can infer a bound of M

S−2/3
3

� 950 GeV, by looking at

SUSY searches for t̃ → t χ̃0 [49]. For S4/3
3 there is a dedi-

cated leptoquark search for third generation final states [50],
which yields S4/3

3 � 850 GeV. The bound on S1/3
3 basi-

cally corresponds to the previous one for S1. All in all, when
comparing the limits from direct searches with the unitarity
bounds in Table 5, we conclude that a leptoquark S3 with cou-
plings dominantly aligned along the third generation cannot
explain within a perturbative framework the RD(∗) anomaly
(and RK (∗) as well, under the hypothesis of MFV in the lepton
sector).

We finally discuss vector leptoquarks. Under the assump-
tion of leading third generation couplings one can look at
pp(bb̄) → τ τ̄ searches, which however are not yet sensi-
tive enough to rule out the explanation of RD(∗) via U1 [45].
On the other hand, vector leptoquarks can also be efficiently
pair-produced at LHC via their coupling to gluons. This inter-
action depends however on the UV completion of the vector.
The most general CP-conserving Lagrangian describing the
interaction of the vectorUμ with gluons (including operators
up to d = 4) is given by [51]

Lg
U = −1

2

(
D[μUν]

)†
D[μU ν] + M2

UU
†
μU

μ

−igs(1 − κG)U †
μt

aUνG
aμν, (38)

where Dμ = ∂μ − igs taGa
μ is the QCD covariant derivative

and Ga
μν = ∂μGa

ν − ∂νGa
μ + gs f abcGb

μG
c
ν is the usual QCD

field strength. As two benchmark scenarios we consider the
minimal coupling (MC) and the Yang Mills (YM) type of
coupling of Ref. [51]. The former case (κG = 1), refers
to the interaction stemming purely from the QCD covariant
derivative of the vector, while the latter (κG = 0) includes
non-minimal interactions between the vector and the gluons
which arise when the vector has a gauge origin.9 We remark,
however, that κG is an unknown parameter.

In the exact U (2) flavour limit U1 decays in either
U1 → t ν̄τ or U1 → bτ̄ (both with B = 50%). By revis-
iting a

√
s = 8 TeV ATLAS search [53] for QCD pair-

produced third generation scalar leptoquark in the t t̄νν̄ chan-
nel, Ref. [38] excludes MU1 < 770 GeV. The latter exclu-
sion actually applies to the MC scenario. In the meanwhile,
there has been a new analysis at

√
s = 13 TeV [50] for

searches of scalar leptoquarks decaying in third generation
SM fermions. We perform a rescaling of the bounds by
employing the results in Ref. [51] on the vector leptoquark
total cross-section and extract the bounds: MU1 � 1.0 TeV
(MC case) and MU1 � 1.3 TeV (YM case). Given the vicin-
ity to the unitarity bounds in Table 5, we remark that a dedi-
cated experimental search in this case would be very helpful.
Finally, since U3 contains an isospin component with the
same charge of U1 we expect similar bounds, though opti-
mized searches for the other charge eigenstates might yield
better constraints.

7 Conclusions

In this work we have investigated the constraints of partial-
wave unitarity for the new physics interpretation of the recent
hints of LFU violation in B-meson semi-leptonic decays,

9 The explanation of RD(∗) and/or RK (∗) via gauge leptoquarks is
strongly disfavoured. In fact, gauge invariance enforces extra constraints
on the vector Lagrangian, like e.g. the unitarity of the leptoquark inter-
actions in flavour space (see [52] for a recent discussion).
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both within an EFT approach and by employing simplified
models. In order to simplify the discussion we focussed on
a single SU (2)L triplet operator (cf. Eq. (4)) which can
contribute to both RD(∗) or RK (∗) , but without necessarily
relying on the common explanation of both anomalies. This
can be straightforwardly extended to the more general situ-
ation involving multiple operators, by employing the results
of Sect. 5 in which we derived the connection between the
scale of unitarity violation �U and the coefficients �O of
the semi-leptonic SMEFT operator basis.

The results of the EFT analysis are summarized in Table
1. In particular, we find that the most conservative bound
on the scale of unitarity violation is �U = 9.2 and 84
TeV, respectively for RD(∗) or RK (∗) . This corresponds to the
case when the effective operators are aligned in the direc-
tion of the flavour eigenstates responsible for the anomalies.
On the other hand, motivated frameworks like e.g. MFV,
U (2) flavour models and PC suggest an alignment of the
effective operators along the third generation, thus imply-
ing that stronger unitarity bounds can be actually extracted
by considering third generation fermions’ scatterings. For
instance, in the case of third generation alignment in the
quark sector the previous bounds become �U = 1.9 and
17 TeV, with the latter reaching even few TeV in the case
of hierarchical flavour structures also in the lepton sec-
tor.

In a similar way one can use the tool of perturbative uni-
tarity to set constraints on the parameter space of simplified
models explaining the B-flavour anomalies. As a represen-
tative class of models we considered colourless vectors and
scalar/vector leptoquarks (cf. Table 3). In all those cases,
it was possible to use partial-wave unitarity in order to set
bounds on the renormalizable couplings of the new media-
tors with the SM fermions. By fixing the ratio coupling/mass
in order to fit the anomaly, the unitarity bound was hence
translated into an upper bound on the mass of the simplified
model’s mediator. The results are collected in Tables 4 and 5
for some reference flavour structures.

While for the anomalies in b → s��̄ transitions it is much
easier to accommodate direct searches, that is not the case for
RD(∗) . Simplified models for explaining the latter are prob-
lematic for various reasons: di → d jνν̄ transitions, elec-
troweak precision observables, radiative generation of LFU
breaking effects in Z and τ decays, etc. On top of that, one
should take into account unitarity constraints within pertur-
batively calculable models. The vector leptoquark U1 seems
phenomenologically in a better shape for explaining RD(∗) ,
since it is automatically free from issues like di → d jνν̄ tran-
sitions and also because, being an SU (2)L singlet, bounds
from electroweak precision data are more easily evaded.
For this specific case we provided a new bound by rescal-
ing recent searches at LHC Run-2 with full dataset, finding
that MU1 � 1 ÷ 1.3 TeV (depending on the UV comple-

tion of the vector). In those cases where the leptoquark cou-
plings are dominantly aligned along the third generation, the
open window between direct searches and perturbativity is
quite reduced and might be eventually closed in the near
future.
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A Sample calculation: SU(2)L triplet operator

In this appendix we exemplify the calculation of the unitarity
bound in the presence of the triplet operator

1

�2
QL(3)

(
Q̄Lγ μσ AQL

) (
L̄ Lγμσ ALL

)
. (39)

We are interested in evaluating the scattering amplitude

Q(p, r, a, α) + Q̄(k, s, b, β) → L(p′, r ′, c) + L̄(k′, s′, d),

(40)

where the indices (p, r, a, α) denote respectively momen-
tum, polarization, SU (2)L and colour indices. The Lorentz
invariant matrix element is given by

M = − 1

4�2
QL(3)

δαβ(σ A)ab(σ
A)cd

×
(
v̄s(k)γμ(1 − γ5)u

r (p)ūr
′
(p′)γ μ(1 − γ5)v

s′(k′)
)

.

(41)

Since in the massless limit the fermions in Eq. (39) are helic-
ity eigenstates, at energies

√
s � v only the + − −+ polar-

ization survives, yielding10

M+−−+(
√
s, cos θ)

√
s�v� 2

�2
QL(3)

δαβ(σ A)ab(σ
A)cd s cos2 θ

2
.

(42)

10 We refer to Appendix A.2 of Ref. [33] for the explicit representation
of the spinorial variables.
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The J = 0 partial-wave scattering matrix is obtained via

a0
√
s�v� 1

32

∫ +1

−1
d(cos θ)M+−−+(

√
s, cos θ)

= s

16π

1

�2
QL(3)

δαβ(σ A)ab(σ
A)cd . (43)

In order to maximize the unitarity bound one can pre-
pare the scattering eigenstates in such a way that they
correspond to the highest eigenvalues of a0 in the gauge
group space. Let us discuss in turn the SU (3)C and
SU (2)L structures. In the former case the partial wave
can be represented via the matrix (defined on the basis
{(QL)1(Q̄L)1, (QL)2(Q̄L)2, (QL)3(Q̄L)3, (LL)(L̄ L)})

a0
SU (3)C

=

⎛

⎜⎜
⎝

0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 0

⎞

⎟⎟
⎠ , (44)

whose eigenvalues are (
√

3,−√
3, 0, 0). Thus, by preparing

the initial and final states of the scattering in the eigenstate
1√
6
(1, 1, 1,

√
3), the colour enhancement factor corresponds

to
√

3. On the other hand, the partial wave in the SU (2)L
space has the matrix form

a0
SU (2)L

=

⎛

⎜⎜
⎝

1 0 0 −1
0 0 2 0
0 2 0 0

−1 0 0 1

⎞

⎟⎟
⎠ , (45)

defined on the basis {ψ1ψ̄1, ψ1ψ̄2, ψ2ψ̄1, ψ2ψ̄2}, where ψa

(a = 1, 2 being an SU (2)L index) denotes either (QL)α

or LL . In order to derive Eq. (45) it is convenient to use
the Fierz identity (σ A)ab(σ

A)cd = 2δadδcb − δabδcd . Since
the eigenvalues of a0

SU (2)L
are (2, 2,−2, 0), by preparing

the initial and final states of the scattering in the eigenstate
1√
2
(0, 1, 1, 0), the SU (2)L enhancement factor is 2. Summa-

rizing, the gauge group enhancement leads to an extra
√

3×2
factor in the partial-wave eigenvalue, and including the latter
we obtain

a0 =
√

3

8π

s

�2
QL(3)

. (46)

From the condition in Eq. (19) it finally the unitarity bound√
s < �U follows, where

�U =
√

4π√
3

∣∣�QL(3)

∣∣ . (47)

As a final remark, we briefly mention an alternative way
to work out the gauge group enhancement which employs

irreducible representations for the scattering amplitude [33].
Denoting by ψi (ψ j ) the fundamental (anti-fundamental)
representation of an SU (N ) group, a general two-particle
state |ψiψ j 〉 can be decomposed into a singlet and an adjoint
channel,

|ψψ〉1 = δi j√
N

|ψiψ j 〉, (48)

|ψψ〉AAdj = T A
i j |ψiψ j 〉, (49)

where T A, with A = 1, . . . , N 2 − 1, are SU (N ) generators
(in the normalization Tr T AT B = δAB) and we properly nor-
malized the states to unitary norm. The scattering amplitude
in Eq. (42) has both SU (3)C and SU (2)L components. In
the former case the S-matrix elements in the (colour) singlet
and adjoint channels are

〈L L̄|S|QQ̄〉1 = δαβ√
3
〈L L̄|S|Qα Q̄b〉

= δαβ√
3
MSU (3)C δαβ = √

3MSU (3)C , (50)

〈L L̄|S|QQ̄〉AAdj = T A
αβ〈L L̄|S|Qα Q̄β〉

= T A
αβ MSU (3)C δαβ = 0, (51)

where MSU (3)C denotes the matrix element in Eq. (42)
stripped from the colour structure. For the SU (2)L case istead
let us collectively denote the doublets (either Q or L) by ψa ,
with a = 1, 2 being an SU (2)L index. Then the singlet and
adjoint scattering channels are

1〈ψψ̄ |S|ψψ̄〉1 = δabδcd

2
〈ψaψ̄b|S|ψcψ̄d 〉

= δabδcd

2
MSU (2)L (2δadδcb − δabδcd )

= 1

2
MSU (2)L (2δaa − δaaδcc) = 0, (52)

A
Adj〈ψψ̄ |S|ψψ̄〉BAdj = T A

abT
B
cd 〈ψaψ̄b|S|ψcψ̄d 〉

= T A
abT

B
cdMSU (2)L (2δadδcb − δabδcd )

= MSU (2)L

(
2Tr (T AT B)−Tr (T A)Tr (T B)

)

= 2δABMSU (2)L , (53)

where MSU (2)C denotes the matrix element in Eq. (42)
stripped from the SU (2)L structure. Hence, by considering
the singlet channel in colour space and the adjoint channel
in SU (2)L space, we gain respectively a factor

√
3 and 2 in

the partial wave.

References

1. LHCb Collaboration, R. Aaij et al., Differential branching fractions
and isospin asymmetries of B → K (∗)μ+μ− decays. JHEP06, 133
(2014). arXiv:1403.8044 [hep-ex]

123

http://arxiv.org/abs/1403.8044


Eur. Phys. J. C (2017) 77 :536 Page 13 of 14 536

2. LHCb Collaboration, R. Aaij et al., Measurement of form-factor-
independent observables in the decay B0 → K ∗0μ+μ−. Phys.
Rev. Lett.111, 191801 (2013). arXiv:1308.1707 [hep-ex]

3. LHCb Collaboration, R. Aaij et al., Angular analysis of the B0 →
K ∗0μ+μ− decay using 3 fb−1 of integrated luminosity. JHEP02,
104 (2016). arXiv:1512.04442 [hep-ex]

4. LHCb Collaboration, R. Aaij et al., Angular analysis and differen-
tial branching fraction of the decay B0

s → φμ+μ−. JHEP 09, 179
(2015). arXiv:1506.08777 [hep-ex]

5. LHCb Collaboration, R. Aaij et al., Test of lepton universality using
B+ → K+�+�− decays. Phys. Rev. Lett. 113, 151601 (2014).
arXiv:1406.6482 [hep-ex]

6. LHCb Collaboration, R. Aaij et al., Test of lepton universality with
B0 → K ∗0�+�− decays. arXiv:1705.05802 [hep-ex]

7. M. Bordone, G. Isidori, A. Pattori, On the Standard Model pre-
dictions for RK and RK ∗ . Eur. Phys. J. C 76(8), 440 (2016).
arXiv:1605.07633 [hep-ph]

8. B. Capdevila, A. Crivellin, S. Descotes-Genon, J. Matias, J. Virto,
Patterns of new physics in b → s�+�− transitions in the light of
recent data. arXiv:1704.05340 [hep-ph]

9. W. Altmannshofer, P. Stangl, D.M. Straub, Interpreting hints for
lepton flavor universality violation. arXiv:1704.05435 [hep-ph]

10. G. D’Amico, M. Nardecchia, P. Panci, F. Sannino, A. Strumia,
R. Torre, A. Urbano, Flavour anomalies after the RK ∗ measure-
ment. arXiv:1704.05438 [hep-ph]

11. M. Ciuchini, A.M. Coutinho, M. Fedele, E. Franco, A. Paul, L. Sil-
vestrini, M. Valli, On flavourful Easter eggs for new physics hunger
and lepton flavour universality violation. arXiv:1704.05447 [hep-
ph]

12. L.-S. Geng, B. Grinstein, S. Jager, J. Martin Camalich, X.-L. Ren,
R.-X. Shi, Towards the discovery of new physics with lepton-
universality ratios of b → s�� decays. arXiv:1704.05446 [hep-ph]

13. BaBar Collaboration, J.P. Lees et al., Measurement of an excess of
B̄ → D(∗)τ−ν̄τ decays and implications for charged Higgs bosons.
Phys. Rev. D 88(7), 072012 (2013). arXiv:1303.0571 [hep-ex]

14. LHCb Collaboration, R. Aaij et al., Measurement of the ratio of
branching fractions B(B̄0 → D∗+τ−ν̄τ )/B(B̄0 → D∗+μ−ν̄μ).
Phys. Rev. Lett. 115(11), 111803 (2015). arXiv:1506.08614 [hep-
ex]. [Erratum: Phys. Rev. Lett. 115, no. 15, 159901 (2015)]

15. S. Belle Collaboration, Hirose et al., “Measurement of the τ lepton
polarization and R(D∗) in the decay B̄ → D∗τ−ν̄τ ,”. Phys. Rev.
Lett. 118(21), 211801 (2017). arXiv:1612.00529 [hep-ex]

16. F.U. Bernlochner, Z. Ligeti, M. Papucci, D.J. Robinson, Combined
analysis of semileptonic B decays to D and D∗: R(D(∗)), |Vcb|,
and new physics. arXiv:1703.05330 [hep-ph]

17. LHCb Collaboration, Lepton flavour universality tests using semi-
tauonic decays at LHCb. Antonio Romero Vidal, LHC Seminar
presented at CERN, 06/06/2017

18. B.W. Lee, C. Quigg, H.B. Thacker, The strength of weak interac-
tions at very high-energies and the Higgs boson mass. Phys. Rev.
Lett. 38, 883–885 (1977)

19. B.W. Lee, C. Quigg, H.B. Thacker, Weak interactions at very high-
energies: the role of the Higgs boson mass. Phys. Rev. D 16, 1519
(1977)

20. E. Fermi, Tentativo di una Teoria Dei Raggi β. Nuovo Cim. 11,
1–19 (1934)

21. C.M. Becchi, G. Ridolfi, An Introduction to Relativistic Processes
and the Standard Model of Electroweak Interactions (Springer,
Berlin, 2014)

22. U. Aydemir, M.M. Anber, J.F. Donoghue, Self-healing of unitarity
in effective field theories and the onset of new physics. Phys. Rev.
D 86, 014025 (2012). arXiv:1203.5153 [hep-ph]

23. R. Alonso, B. Grinstein, J. Martin Camalich, Lepton universality
violation and lepton flavor conservation in B-meson decays. JHEP
10, 184 (2015). arXiv:1505.05164 [hep-ph]

24. A. Manohar, H. Georgi, Chiral quarks and the nonrelativistic quark
model. Nucl. Phys. B 234, 189–212 (1984)

25. A.G. Cohen, D.B. Kaplan, A.E. Nelson, Counting 4 pis in strongly
coupled supersymmetry. Phys. Lett. B 412, 301–308 (1997).
arXiv:hep-ph/9706275 [hep-ph]

26. G. Panico, A. Wulzer, The composite Nambu–Goldstone Higgs.
Lect. Notes Phys. 913, 1–316 (2016). arXiv:1506.01961 [hep-ph]

27. G. D’Ambrosio, G.F. Giudice, G. Isidori, A. Strumia, Minimal
flavor violation: an effective field theory approach. Nucl. Phys. B
645, 155–187 (2002). arXiv:hep-ph/0207036 [hep-ph]

28. R. Barbieri, G. Isidori, J. Jones-Perez, P. Lodone, D.M. Straub,
U (2) and minimal flavour violation in supersymmetry. Eur. Phys.
J. C 71, 1725 (2011). arXiv:1105.2296 [hep-ph]

29. D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynam-
ically generated fermion masses. Nucl. Phys. B 365, 259–278
(1991)

30. B. Keren-Zur, P. Lodone, M. Nardecchia, D. Pappadopulo, R.
Rattazzi, L. Vecchi, On partial compositeness and the CP asym-
metry in charm decays. Nucl. Phys. B 867, 394–428 (2013).
arXiv:1205.5803 [hep-ph]

31. C. Itzykson, J.B. Zuber, Quantum Field Theory. International Series
in Pure and Applied Physics (McGraw-Hill, New York, 1980).
doi:10.1063/1.2916419

32. M.S. Chanowitz, M.A. Furman, I. Hinchliffe, Weak interactions of
ultraheavy fermions. 2. Nucl. Phys. B 153, 402 (1979)

33. L. Di Luzio, J.F. Kamenik, M. Nardecchia, Implications of per-
turbative unitarity for scalar di-boson resonance searches at LHC.
Eur. Phys. J. C 77(1), 30 (2017). arXiv:1604.05746 [hep-ph]

34. A.J. Buras, J. Girrbach-Noe, C. Niehoff, D.M. Straub, B →
K (∗)νν decays in the Standard Model and beyond. JHEP 02, 184
(2015). arXiv:1409.4557 [hep-ph]

35. M. Bordone, D. Buttazzo, G. Isidori, J. Monnard, Probing lepton
flavour universality with K → πνν̄ decays. arXiv:1705.10729
[hep-ph]

36. A. Crivellin, D. Muller, T. Ota, Simultaneous explanation of
R(D(∗)) and b → sμ+μ−: the last scalar leptoquarks standing.
arXiv:1703.09226 [hep-ph]

37. L. Calibbi, A. Crivellin, T. Ota, Effective field theory approach to
b → s��(′), B → K (∗)νν̄ and B → D(∗)τν with third generation
couplings. Phys. Rev. Lett. 115, 181801 (2015). arXiv:1506.02661
[hep-ph]

38. R. Barbieri, G. Isidori, A. Pattori, F. Senia, Anomalies in B-decays
and U (2) flavour symmetry. Eur. Phys. J. C 76(2), 67 (2016).
arXiv:1512.01560 [hep-ph]

39. R. Barbieri, C.W. Murphy, F. Senia, B-decay anomalies in a
composite leptoquark model. Eur. Phys. J. C 77(1), 8 (2017).
arXiv:1611.04930 [hep-ph]

40. F. Feruglio, P. Paradisi, A. Pattori, Revisiting lepton flavor uni-
versality in B decays. Phys. Rev. Lett. 118(1), 011801 (2017).
arXiv:1606.00524 [hep-ph]

41. F. Feruglio, P. Paradisi, A. Pattori, On the importance of elec-
troweak corrections for B anomalies. arXiv:1705.00929 [hep-ph]

42. W. Altmannshofer, P.S.B. Dev, A. Soni, RD(∗) anomaly: a pos-
sible hint for natural supersymmetry with R-parity violation.
arXiv:1704.06659 [hep-ph]

43. A. Greljo, G. Isidori, D. Marzocca, On the breaking of lepton flavor
universality in B decays. JHEP 07, 142 (2015). arXiv:1506.01705
[hep-ph]

44. I. Dorsner, S. Fajfer, A. Greljo, J.F. Kamenik, N. Kosnik, Physics
of leptoquarks in precision experiments and at particle colliders.
Phys. Rep. 641, 1–68 (2016). arXiv:1603.04993 [hep-ph]

45. D.A. Faroughy, A. Greljo, J.F. Kamenik, Confronting lepton flavor
universality violation in B decays with high-pT tau lepton searches
at LHC. Phys. Lett. B 764, 126–134 (2017). arXiv:1609.07138
[hep-ph]

123

http://arxiv.org/abs/1308.1707
http://arxiv.org/abs/1512.04442
http://arxiv.org/abs/1506.08777
http://arxiv.org/abs/1406.6482
http://arxiv.org/abs/1705.05802
http://arxiv.org/abs/1605.07633
http://arxiv.org/abs/1704.05340
http://arxiv.org/abs/1704.05435
http://arxiv.org/abs/1704.05438
http://arxiv.org/abs/1704.05447
http://arxiv.org/abs/1704.05446
http://arxiv.org/abs/1303.0571
http://arxiv.org/abs/1506.08614
http://arxiv.org/abs/1612.00529
http://arxiv.org/abs/1703.05330
http://arxiv.org/abs/1203.5153
http://arxiv.org/abs/1505.05164
http://arxiv.org/abs/hep-ph/9706275
http://arxiv.org/abs/1506.01961
http://arxiv.org/abs/hep-ph/0207036
http://arxiv.org/abs/1105.2296
http://arxiv.org/abs/1205.5803
http://dx.doi.org/10.1063/1.2916419
http://arxiv.org/abs/1604.05746
http://arxiv.org/abs/1409.4557
http://arxiv.org/abs/1705.10729
http://arxiv.org/abs/1703.09226
http://arxiv.org/abs/1506.02661
http://arxiv.org/abs/1512.01560
http://arxiv.org/abs/1611.04930
http://arxiv.org/abs/1606.00524
http://arxiv.org/abs/1705.00929
http://arxiv.org/abs/1704.06659
http://arxiv.org/abs/1506.01705
http://arxiv.org/abs/1603.04993
http://arxiv.org/abs/1609.07138


536 Page 14 of 14 Eur. Phys. J. C (2017) 77 :536

46. D. Pappadopulo, A. Thamm, R. Torre, A. Wulzer, Heavy vec-
tor triplets: bridging theory and data. JHEP 09, 060 (2014).
arXiv:1402.4431 [hep-ph]

47. B. Gripaios, M. Nardecchia, S.A. Renner, Composite lepto-
quarks and anomalies in B-meson decays. JHEP 05, 006 (2015).
arXiv:1412.1791 [hep-ph]

48. L. Di Luzio, R. Grober, J.F. Kamenik, M. Nardecchia, Accidental
matter at the LHC. JHEP 07, 074 (2015). arXiv:1504.00359 [hep-
ph]

49. ATLAS Collaboration, Search for a scalar partner of the top quark
in the Jets + ETmiss final state at

√
s = 13 TeV with the ATLAS

detector. ATLAS-CONF-2017-020
50. CMS Collaboration, A.M. Sirunyan et al., Search for the third-

generation scalar leptoquarks and heavy right-handed neutrinos
in final states with two tau leptons and two jets in proton-proton
collisions at

√
s = 13 TeV. arXiv:1703.03995 [hep-ex]. CMS-EXO-

16-023, CERN-EP-2017-025

51. J. Blumlein, E. Boos, A. Kryukov, Leptoquark pair produc-
tion in hadronic interactions. Z. Phys. C 76, 137–153 (1997).
arXiv:hep-ph/9610408 [hep-ph]

52. C. Biggio, M. Bordone, L. Di Luzio, G. Ridolfi, Massive vec-
tors and loop observables: the g − 2 case. JHEP 10, 002 (2016).
arXiv:1607.07621 [hep-ph]

53. ATLAS Collaboration, G. Aad et al., Searches for scalar lepto-
quarks in pp collisions at

√
s = 8 TeV with the ATLAS detector.

Eur. Phys. J. C 76(1), 5 (2016). arXiv:1508.04735 [hep-ex]

123

http://arxiv.org/abs/1402.4431
http://arxiv.org/abs/1412.1791
http://arxiv.org/abs/1504.00359
http://arxiv.org/abs/1703.03995
http://arxiv.org/abs/hep-ph/9610408
http://arxiv.org/abs/1607.07621
http://arxiv.org/abs/1508.04735

	What is the scale of new physics behind the B-flavour anomalies?
	Abstract 
	1 Introduction
	2 A tale of scales
	3 On the flavour structure of the effective operators
	4 Partial-wave unitarity
	5 Unitarity bounds in the EFT
	6 Unitarity bounds in simplified models
	6.1 Colourless vectors
	6.2 Leptoquarks
	6.3 Direct searches at the LHC

	7 Conclusions
	Acknowledgements
	A Sample calculation: SU(2)L triplet operator
	References




